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Running title: Seizure suppression with magnetic coil   

Abstract  

Non-invasive brain tissue stimulation with a magnetic coil provides several irreplaceable 

advantages over that with an implanted electrode, in altering neural activities under pathological 

situations. We reviewed clinical cases that utilized time-varying magnetic fields for the treatment 

of epilepsy, and the safety issues related to this practice. Animal models have been developed 

to foster understanding of the cellular/molecular mechanisms underlying magnetic control of 

epileptic activity. These mechanisms include (but are not limited to) (1) direct membrane 

polarization by the magnetic field, (2) depolarization blockade by the deactivation of ion 

channels, (3) alteration in synaptic transmission, and (4) interruption of ephaptic interaction and 

cellular synchronization. Clinical translation of this technology could be improved through the 

advancement of magnetic design, optimization of stimulation protocols, and evaluation of the 

long-term safety. Cellular and molecular studies focusing on the mechanisms of magnetic 

stimulation are of great value in facilitating this translation. 

Keywords:  epilepsy; magnetic stimulation; animal models; cellular mechanisms  
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Abbreviations 

4-AP:  4-aminopyridine 

CD50:  Convulsant dose 

DBS:  Deep Brain Stimulation 

EcoG:  Electrocorticography  

EEG:  Electroencephalography 

ELF-MF:  Extremely low frequency magnetic fields 

GABA:  Gamma-Aminobutyric acid 

HFS:  High Frequency Stimulation 

KA:  Kainic acid 

LD50:  Lethal dose 

LTD:  Long-term depression 

LTP:  Long-term potential 

MEG:  Magnetoencephalography 

MRI:  Magnetic resonance imaging  

NMDAR:  N-methyl-D-aspartate receptor 

PTZ:  Pentylenetetrazol 

REM:  Rapid eye movement 

tDCS:  Transcranial direct-current stimulation 

TES:  Transcranial electrical stimulation 

TLE:  temporal lobe epilepsy 

TMS:  Transcranial magnetic stimulation 

rTMS:  Repetitive transcranial magnetic stimulation 

SMF:  Static magnetic field 
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  Epilepsy is one of the most widespread and devastating neurological disorders, with a 

lifetime prevalence of 7.60 per 1,000 people (Fiest et al., 2017). The disease is characterized by 

abnormal neural activity in the brain, which ultimately leads to spontaneous recurrent seizures. 

In the U.S. alone, the annual epilepsy-related medical expenses are close to $15.5 billion (NIH), 

with yearly epilepsy-specific healthcare costs ranging up to $19,749 per patient (Begley and 

Durgin, 2015). Despite significant advances made in new pharmacological development (Kaur 

et al., 2016), traditional anti-epileptic drugs demonstrate limited specificity in targeting particular 

groups of cells and epileptic neural circuitry. One-third of patients continue to experience 

pharmacologically intractable seizures (Kwan and Brodie, 2000, Laxer et al., 2014) and may 

have to consider a variety of surgical options, such as resectional surgery (e.g. temporal 

lobectomy, cortical excision, lesionectomy) and disconnection surgery (e.g. corpus callosotomy 

and functional hemispherotomy). These surgeries are irreversible, and are often associated with 

many neurological deficits such as memory, speech, motor, and visual impairments (Josephson 

et al., 2013).   

1. Electric stimulation for seizure control 

  Electric activation of neurons has been reported for more than two centuries, dating back 

to the discovery by Luigi Galvani in 1780 (Galvani, 1791), who accidently found that muscle 

from a deceased frog would twitch upon touch with a charged metal scalpel. The event sparked 

the appreciation of electricity in relation to animation — or life. At present, electric stimulation of 

neurons in the central and peripheral nervous systems has been successful in controlling neural 

network activity (Selimbeyoglu and Parvizi, 2010), regulating synaptic transmission (Nowak and 

Bullier, 1998), alleviating memory loss (Esmaeilpour et al., 2017) and blocking pain (Coderre et 

al., 1993, Rodrigo et al., 2017). Electric currents have also been clinically used to modulate or 

suppress seizure activity, as a reversible and adjustable alternative to surgical removal of 

epileptic foci. One successful therapy is vagus nerve stimulation (Morris and Mueller, 1999, 

Yuan and Silberstein, 2016, Oliveira et al., 2017). 

 

Deep bran stimulation (DBS) 

  Electric currents delivered via deeply implanted electrodes, or deep bran stimulation 

(DBS), have been effective in alleviating seizures in humans. In this practice, many discrete 

brain structures have been target areas, including the locus coeruleus (Faber and Vladyka, 

1983), centromedian nucleus (Velasco et al., 2000), anterior nucleus of the thalamus (Kerrigan 

et al., 2004, Salanova et al., 2015), cerebellum (Cooper, 1973, Cooper et al., 1973), and other 

predetermined epileptic foci (Morrell and Group, 2011, Sun and Morrell, 2014). It is generally 
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believed that the effects of an electric field on neuronal tissue are caused by the establishment 

of a transmembrane potential (Esselle and Stuchly, 1994, Schnabel and Struijk, 2001, McIntyre 

et al., 2004, Ye et al., 2007, Lu et al., 2008). In addition, other field-induced mechanisms, such 

as K+ release (Shin and Carlen, 2008, Sutton et al., 2013), depolarization blockage (Gluckman 

et al., 1996, Lian et al., 2003), inactivation of voltage-gated currents (Shin et al., 2007), altered 

synaptic transmission (Chiken and Nambu, 2014), or altered field coupling among neurons 

(Ghai et al., 2000), are believed to be involved in the modification of neural network activity. A 

more detailed discussion is also presented in section 5.  

   Despite the significant improvement and clinical promise of electrical stimulation for 

seizure control with directly implanted electrodes, its implementation comes with some technical 

and biological limitations, mainly invasiveness and poor bio-compatibility.   

  DBS cannot avoid the risks of major surgery including hemorrhage (1–2%) and infection 

(3–5%) (Doshi, 2011, Bjerknes et al., 2014). Other complications include lead migration (1.60%) 

and electrode fracture (1.46%) (Jitkritsadakul et al., 2017). The complication rate is dependent 

on the experience of the surgical team.  

  A primary concern in DBS device design is biocompatibility of the implanted electrodes 

(Polikov et al., 2005). Therapeutic effects can be largely altered by inflammatory and immune 

responses due to the direct contact between the tissue and stimulating electrode (Kim et al., 

2004, Liu et al., 2017). The formation of glial scarring around individual electrodes (Polikov et 

al., 2005, Grill et al., 2009) can block electric currents produced by the electrode, which causes 

a change (or even loss) of the resultant neural response. Electrodes implanted into the primary 

visual cortex of macaque monkeys lost effectiveness within a few months, even though each 

electrode had reliably elicited a visual percept (phosphene) shortly after implantation (Davis et 

al., 2012). There is some recent exploration into new electrode designs and implantation 

techniques to minimize tissue response and promote long-term stability of the implants (Liu et 

al., 2017, Luan et al., 2017).   

  When DBS patients are examined by Magnetic Resonance Imaging (MRI), excess heat 

can be produced at the stimulating electrode tip due to the interaction between the MRI-

generated radio-frequency waves and the conductive leads (Angelone et al., 2004), which can 

result in neurological damage (Rezai et al., 2004). In examination of possible alternatives to the 

customary platinum-iridium electrodes, carbon nanotube yarns have demonstrated improved 

biocompatibility and decreased MRI distortion (Jiang et al., 2013, Guo et al., 2015).  

 

Transcranial direct current stimulation (tDCS) 
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tDCS, a noninvasive method that modulates cortical excitability, was developed in the 

last 20 years for the treatment of epilepsy. tDCS is applied using two electrodes (anode and 

cathode) positioned on the cranium to deliver a weak electric current and alter cortical 

excitability. Cortical excitability decreases under cathodal stimulation (Nitsche and Paulus, 

2000), a principle used for suppressing epileptiform discharges and seizures in basic and 

clinical studies of epilepsy (Fregni et al., 2006c, Varga et al., 2011, Yook et al., 2011, 

Auvichayapat et al., 2013, San-Juan et al., 2017, San-Juan et al., 2018). tDCS is generally 

considered safe in clinical practice (Matsumoto and Ugawa, 2017). tDCS experimental protocols 

have resulted in only minor side effects, including mild headache and itching at the site of 

electrode placement (Fregni et al., 2005) (Fregni et al., 2006a), but no obvious adverse effects 

such as cognitive impairment (Fregni et al., 2006a).  

New methods have been developed in recent years to further improve the efficiency of 

neural control by tDCS. Voroslakos et al. developed an “intersectional short pulse” method to 

increase the intensity of the electric current injected into the brain, and to keep the sensation on 

the scalp surface relatively low (Voroslakos et al., 2018). Grossman et al. used temporally 

interfering electric fields to stimulate neurons throughout a region where interference between 

the multiple fields establishes an electric field envelope (Grossman et al., 2017). The 

researchers demonstrated that temporally interfering stimulation facilitated the targeting of deep 

neurons in living mice without stimulating overlying cortical cells. Using a rodent model of 

generalized epilepsy, Berenyi et al. developed a closed-loop system to provide on-demand 

stimulation, which avoided detrimental side effects of continuous stimulation (Berenyi et al., 

2012). These works have significantly improved the temporal and spatial resolution of tDCS.  

2. Magnetic stimulation as an alternative method in neural modulation 

  While electric currents delivered by tissue-contacting electrodes have provided a 

physical mechanism to modulate neuronal activity, electric currents can also be generated via 

magneto-electric induction with magnetic coils (Maccabee et al., 1991, Maccabee et al., 1993, 

Ye et al., 2010, Ye et al., 2011, Ye and Steiger, 2015). Magnetic stimulation on excitable 

biological tissues was first reported in the early 20th century by Jacques d’Arsonval (1896) and 

Silvanus P. Thompson (1910) with their pioneer work on human visual sensations. Effects of a 

time-varying magnetic field are generally believed to be caused by its induced electric field and 

the establishment of a transmembrane potential (Ye et al., 2007) (Pashut et al., 2014). In 

comparison to electrical stimulation, magnetic stimulation offers advantages in biocompatibility 

and consistency.   
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  While electrodes require direct contact with biological tissue, magnetic stimulation may 

stimulate neural tissue without requiring surgery for coil implantation. The magnetic field can 

penetrate biological tissue without much attenuation, thereby maintaining its intensity and 

stimulation consistency.  

 More importantly, magnetic stimulation can prevent the direct contact between an 

electrode and neural tissue, eliminating numerous problems that arise at the brain-electrode 

interface. For example, issues including charge transfer, electrode surface modification, and 

corrosion are reduced through coil-based stimulation (Polikov et al., 2005, Cogan, 2008, 

Koivuniemi et al., 2011). The coils are capable of stimulating specific nuclei with decreased 

disruption of surrounding regions. By avoiding direct contact with brain tissue, these coils 

greatly enhance biocompatibility and MRI compatibility (Golestanirad et al., 2018, Zaeimbashi 

et al., 2018).  

  Coils may still be implanted if focal stimulation is required. The coils are insulated with a 

soft biocompatible material, which attenuates the cortical tissue response to implantation 

(Saxena et al., 2013, Canales et al., 2015, Lee et al., 2016) while increasing stimulation 

intensity to the target tissue. Regulating the spatial orientation of miniature-sized implantable 

coils allows the induced electric fields to be specifically designed to activate particular groups of 

neurons while simultaneously avoiding others (Bonmassar et al., 2012, Lee and Fried, 2014). In 

the cortex, this could include the ability to activate vertically oriented pyramidal neurons without 

activating horizontally oriented passing axons (Lee et al., 2016). Encapsulation of the miniature 

coils could prevent many adverse effects and the diminishing of coil performance over time, as 

occurs with electrodes (Lee et al., 2016). 

3. Epilepsy treatment with magnetic field and its safety 

  Reports on epilepsy treatment with magnetic field emerged in the 1990s (Anninos et al., 

1991, Anninos et al., 1999). It was reported that magnetic field caused attenuation in seizure 

frequency and alteration in the circadian occurrence of seizure (Sandyk and Anninos, 1992b). 

The authors proposed that magnetic fields alter the functions of the pineal gland, which is a 

magnetosensitive organ that "transduces" environmental information of the light-dark cycle and 

earth's magnetic field into an endocrine message. This message, mediated via circadian 

release of melatonin, attenuates seizure activity. In a case report, external magnetic field was 

applied to seizure foci (Sandyk and Anninos, 1992a). This was done by emitting back the same 

intensity and frequency of magnetic field defined by the magnetoencephalography (MEG) from 

the patient. The method was successful in mitigating seizure activity in over 150 patients with 
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various forms of epilepsy. Similarly, it was found that external magnetic stimulation applied in 

the frontal, occipital, and temporal lobes resulted in rapid attenuation of the MEG activity of 

epileptic patients (Anninos et al., 2003).  

  At present, repetitive transcranial magnetic stimulation (rTMS) is amongst emerging 

options for seizure treatment. Overall, case reports demonstrate reduction of seizure frequency 

and/or epileptic discharges after rTMS applications. Menkes and Gruenthal investigated the 

impact of slow-frequency rTMS in a patient with medically refractory partial seizures due to focal 

cortical dysplasia (Menkes and Gruenthal, 2000). rTMS led to a 70% decrease in the frequency 

of seizures and a 77% reduction in the occurrence of interictal spikes. In another study, rTMS 

was delivered to the vertex with a round coil, at an intensity 5% below motor threshold (Brasil-

Neto et al., 2004). This led to a 22.8% decrease in the mean daily number of seizures in 

patients. Kinoshita et al. evaluated the effects of rTMS on seizure frequency in adults with 

medically intractable extratemporal lobe epilepsy (Kinoshita et al., 2005). After low-frequency 

rTMS for one week, the frequency of all seizure types, complex partial seizures, and simple 

partial seizures was reduced by 19.1, 35.9, and 7.4%, respectively. Liu et al. reported that 

transcranial magnetic stimulation (TMS) decreased seizure frequency for refractory focal status 

epilepticus in the intensive care unit (ICU) (Liu et al., 2013). In a randomized double-blinded 

study, rTMS significantly decreased the number of seizures in the active compared with the 

sham rTMS group for patients with refractory epilepsy and malformations of cortical 

development (Fregni et al., 2006b). Likewise, low-frequency high intensity rTMS (90% resting 

motor threshold) delivered into the epileptogenic zone had a significant antiepileptic effect on 

patients with refractory partial seizures (Sun et al., 2012). A recent meta-analysis revealed a 

30% average rate of 50% seizure reduction when low-frequency rTMS was used in the 

treatment of drug-resistant epilepsy (Cooper et al., 2018). This is consistent with previous 

analysis that identified a 34% reduction in seizure frequency after rTMS treatment (Hsu et al., 

2011). 

  In general, rTMS is a safe practice with some side effects. Liu et al. reported that rTMS 

was safe and did not interfere with the functioning of ICU equipment (Liu et al., 2013). In a 

systematic review, Pereira et al. summarized 46 studies with epileptic subjects undergoing 

rTMS. Among these subjects, 18.3% reported adverse events. The majority of the adverse 

effects were mild, with headache or dizziness being most common. The authors calculated a 

2.9% per subject seizure risk (Pereira et al., 2016). It appears that in about 2% of the studies, 

rTMS could induce seizures, especially when rTMS was implemented in relatively high 

frequency (Rossi et al., 2009). A recent systematic review of available data indicates that risk 
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from TMS/theta-burst stimulation is small in children and is similar to that in adults (Allen et al., 

2017).  

4.       Basic research that investigates magnetic control of epilepsy   

  Although clinical and experimental results show that magnetic stimulation, including 

rTMS, is effective and relatively safe in the treatment of epilepsy, the characteristics of the 

magnetic field are empirical in these studies. Most of the explorations were case reports and 

randomized trails, which showed high dependency on individual parameters. Animal models 

were developed to provide better control of these parameters in basic lab research, and to 

provide in-depth study of the neurological mechanisms underlying magnetic control of seizure.  

Interactions between inhibitory and excitatory elements shape neural network activity 

(Ziburkus et al., 2006). Alteration of this balance is believed to be the underlying mechanism of 

epileptogenesis (Epsztein et al., 2006, Derchansky et al., 2008, Lasztoczi et al., 2009, 

Huberfeld et al., 2011). Therefore, animal models of epilepsy were developed mainly by 

disrupting this balance. Current animal model work focuses on investigating the possibility of 

magnetic intervention in restoring the excitation/inhibition balance. A few studies have started to 

delineate the neurological mechanisms of its action.  

 Magnetic fields may suppress seizure by altering the inhibitory network. Sung et al. 

found that magnetic field exposure decreases an animals’ convulsion susceptibility to bicuculline 

(an antagonist of GABAA receptors) (Sung et al., 2003). Mice were exposed to either a placebo, 

or 20 G of extremely low frequency magnetic fields (ELF-MF) for 24 hours. Bicuculline was 

administered intraperitoneally at various doses and the seizure onset time and duration were 

measured. In addition, lethal dose (LD50) and convulsant dose (CD50) of the clonic and tonic 

convulsions were measured. The mice subjected to ELF-MFs showed moderately higher CD50, 

LD50, and induction time on the bicuculline-induced seizure. In another investigation, Kistsen et 

al. studied the anticonvulsive effects of different modes of impulse magnetic field on the 

picrotoxin (a non-competitive channel blocker of GABAA receptors) seizure model, with the 

animals exposed to a big ring coil (Kistsen et al., 2016). In the study, picrotoxin was injected at a 

dose of 2.5 mg/kg subcutaneously after either rTMS or a placebo. Exposure to rTMS caused a 

decrease in the number of seizures and a reduction in the convulsive readiness of the brain, 

which was quantified by the latent period of myoclonuses during the picrotoxin test. These 

works suggest that magnetic stimulation may alter the convulsion susceptibility through a 

GABAergic mechanism. 

  Magnetic fields may suppress seizure by altering the excitatory network. Sung et al. 

studied the effects of magnetic field exposure on the convulsant and lethal doses of NMDA-
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induced seizures in animals (Sung et al., 2003). Subjection to magnetic field was followed by a 

significant increase in glutamate and decrease in GABA levels in this seizure model. Yet, this 

elevation in glutamate concentration did not precipitate an increase in convulsion response. 

Pentylenetetrazol (PTZ) increases calcium and sodium influx to the cell, both of which 

depolarize the neuron. After intraperitoneal administration (60 mg/kg) of PTZ, mice were 

exposed to a 50 Hz, 2 G (0.2 mT) magnetic field in glass cages for 1 hour. This magnetic field 

did not demonstrate a significant effect on the average number of PTZ-induced seizures, 

seizure latency, total seizure duration, or mortality (Keskil et al., 2001). In another work, 

magnetic stimulation was applied to a rat kainate (a glutamate receptor agonist) status 

epilepticus model. Bursts of high-frequency rTMS, together with a low dose of lorazepam, 

suppressed seizures (Gersner et al., 2016a). Therefore, the minimal effect of magnetic field on 

the excitatory network could be promoted in conjunction with pharmacologic approaches.   

  Magnetic fields may suppress seizure by altering cellular properties. Repeated 

stimulation of the amygdala can prompt afterdischarges and motor seizure (Chen et al., 2016). 

Potschka et al. found that chronic exposure of rats to a 50-Hz, 100-µT magnetic field exerted 

weak inhibitory effects on some seizure parameters in amygdala kindled rats (Potschka et al., 

1998). In another study, application of rTMS during amygdala kindling prevented seizures. A 

cellular mechanistic study revealed that rTMS administration inhibited kindling-induced changes 

in the electrophysiological properties of hippocampal CA1 pyramidal neurons (Shojaei et al., 

2014).  

  Magnetic fields may suppress seizure by altering synaptic activity. Varro et al. studied 

the effects of  extremely low frequency electromagnetic field (ELF-EMF) on living rats.  Animals 

were then sacrificed and the brain slices were examined (WhB or “Whole body group”). The 

authors compared this to a group to rats who were not exposed to magnetic field while they 

were living, but rather their brain slices were exposed to the ELF-EMF (”slice group”). 

Interestingly, the development of seizure-like activity was promoted in the WhB group. In 

contrast, seizure activity was inhibited in the slice group (Varro et al., 2009). The authors 

concluded that ELF-EMF exposure exerts significant effects on synaptic activity, which 

depended on the specific spatial parameters and constancy of EMF. 

 These animal model investigations provide a link between bench studies and clinical 

practice. Outcomes from such systemic level works beg for in-depth analysis of cellular and 

molecular studies on the biological effects of magnetic fields.   

5.  Possible cellular mechanisms underlying magnetic field stimulation 
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  Electric fields that are induced by the magnetic stimulation have been found to control 

many aspects of neuronal behavior, which set the foundation for the magnetic control of seizure. 

However, in comparison to the large body of literature studying the cellular basis of seizure 

control with direct electric stimulation, studies with magnetic field as an inhibitory stimulus are 

rare. There are several possible molecular/cellular mechanisms by which magnetic fields could 

affect network activity, and potentially suppress seizure, namely (A) direct alteration of neuronal 

excitability, (B) alteration of ion channel functions, (C) alteration of synaptic transmission, (D) 

interruption of ephaptic effects, and so on.   

(A) Direct alteration of neuronal excitability by induced membrane polarization 

Evidence supports the direct membrane polarization of individual neurons by magnetically-

induced currents in neuronal tissue. In vivo and in vitro studies from TMS revealed that low 

frequency stimulation decreases neural activity, while high frequency stimulation excites neural 

circuitry (Dayan et al., 2013, Parkin et al., 2015). Application of rTMS conserved normal 

neuronal firing of CA1 pyramidal neurons induced by kindling and prevented hyperexcitability in 

these cells (Shojaei et al., 2014, Moradi Chameh et al., 2015). Micro-magnetic stimulation, using 

a small coil, has been successful in the local activation of neurons in vitro (Bonmassar et al., 

2012) and in vivo (Park et al., 2013), offering potential advantages over electric field and TMS 

due to enhanced spatial selectivity in neural control. Lee et al. described a new micro-coil 

design to activate cortical neurons and drive behavioral responses (Lee et al., 2016).   

Computational work on the effects of magnetic stimulation on neurons provides valuable, 

quantitative insight and supporting evidence for the direct polarization of the cell membrane by 

the magnetic field. Using analytical methods, we calculated the induced membrane potential for 

a spherical cell (Ye et al., 2007) and internal organelles (Ye et al., 2010). Other works focused 

on axonal responses to the fields (Schnabel and Struijk, 2001) (Esselle and Stuchly, 1994, Ye et 

al., 2011), or axons located at the center of a nerve bundle (Nagarajan and Durand, 1995). 

Numerical simulation allows for the insertion of ion channels into modeled cells, which provide a 

close-to real morphological representation of the cell. Using this method, it was found that 

magnetic stimulation depolarized the soma of central nervous system neurons, followed by 

initiation of an action potential in the initial segment of the axon (Pashut et al., 2014). Goodwin 

and Butson modeled cortical neurons subject to external TMS, and found that the sites of neural 

activation are coil orientation dependent (Goodwin and Butson, 2015). This finding is consistent 

with previous animal studies, which indicated that the effects of magnetic field on synaptic 

activity are influenced by spatial parameters (Varro et al., 2009). 
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(B) Control of neuronal activity and network excitability via alteration of ion channels  

  Change in neuronal excitability is associated with the modulation of ionic channels under 

magnetic stimulation. Specifically, modifications in the electrophysiological properties of Na+-

channels, A-type K+ channels, and Ca2+ channels are associated with altered neural excitability 

in rTMS (Tan et al., 2013). Computational simulation suggests that magnetic stimulation could 

adjust sodium channel currents and field excitatory postsynaptic potentials in rat hippocampal 

CA1 neurons (Zheng et al., 2017). 

  Modification in ionic homogeneity could be an interesting strategy for seizure blockage 

through the electromagnetic field. In support of this notion, it was found that high frequency (140 

Hz) electric stimulation of hippocampal slices induced an increase in the extracellular potassium 

concentration and blocked neuronal depolarization (Lian et al., 2003). Bikson et al. (2001) found 

that during high frequency stimulation (HFS), the increase in extracellular potassium 

concentration ([K+]e ) coincided with suppressed epileptiform activity. Likewise, HFS or elevated 

K+ depresses neuronal activity in the rat entopeduncular nucleus (Shin et al., 2007). It is 

hypothesized that direct magnetic stimulation can suppress seizures via an increase in  [K+]e, 

leading to an inactivation of voltage-dependent ion channels and depolarization blockade.  

(C)  Control of neural activity via alteration in synaptic transmission  

  Magnetic field could alter synaptic transmission via its induced electric field, including 

long- term and short-term modulation. Magnetic field generated by a circular coil (50Hz, 100 

mT) increased long term potential (LTP) induction in the hippocampal area of rats (Komaki et 

al., 2014). In addition, 100 Hz pulsed sinusoidal magnetic field can also modulate LTP in the 

hippocampus (Dong et al., 2018), likely due to a NMDAR-dependent mechanism (Tokay et al., 

2009).  

  Research on the effects of magnetic field on short term synaptic plasticity is rare. 

However, one can make speculations from works of electric field stimulation. Short-term 

depression of synaptic transmission was observed during high frequency electric stimulation in 

the globus pallidus in rats (Rav-Acha et al., 2005) and in primates (Erez et al., 2009). 

Depression of synaptic transmission by HFS could be due to the fact that HFS-induced release 

of inhibitory GABA molecules is more prominent than the excitatory neurotransmitter 

(Feuerstein et al., 2011). Alternatively, it could be due to axonal and/or synaptic failure, which 

suppress the synaptic transfer of firing rate oscillations, synchrony, and rate-coded information 

during high frequency DBS (Rosenbaum et al., 2014). DBS-induced short term depression is a 

major therapeutic mechanism of DBS for Parkinson’s disease. It was found that stimulation can 
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decouple pre- and post-synaptic spiking patterns and suppress pallidal β oscillations in 

Parkinson’s patients (Rosenbaum et al., 2014).  

(D) Interruption of ephaptic coupling 

  Neurons affect each other via local electric fields, a phenomenon called ephaptic 

coupling. The functional significance of ephaptic coupling was largely ignored until the 1960s, 

when an inhibitory function of mauthner cells in goldfish was discovered (Furukawa and 

Furshpan, 1963). Via ephaptic interaction, these cells control 40-80 interneurons (Faber and 

Korn, 1983). Ephaptic interactions play a critical role in non-synaptic epileptogenesis (Haas and 

Jefferys, 1984, Richardson and O'Reilly, 1995). Communication among cells via ephaptic 

coupling could facilitate synchronized activity, epileptic-like neuronal bursting (Dudek et al., 

1998), and neuron-glia communication (Amzica and Steriade, 2000). As such, interruption of 

ephaptic interaction between neurons, using external electric stimulation, has been proposed as 

a key neuronal mechanism for seizure suppression (Ghai et al., 2000). Similarly, by interrupting 

ephaptic coupling mechanisms in epileptogenesis, magnetic field could also de-synchronize 

neuronal firing and suppress seizure via its induced electric field.   

(E)  Other mechanisms 

  The impact of magnetic field is not only limited to neurons and their 

activation/deactivation. Magnetic fields can also enhance adult neural stem and progenitor cell 

proliferation (Cullen and Young, 2016). In addition, magnetic fields may effect microglia, which 

can modulate normal neuronal activity. Low intensity, high frequency rTMS following ischemic 

injury or demyelination activates microglia (Fang et al., 2010, Raus et al., 2013). On the other 

hand, high intensity, high frequency rTMS applied to injured spinal cord decreased microglial 

activation (Kim et al., 2013). In another study, high intensity, low frequency rTMS did not 

significantly change microglial number in the motor cortex or hippocampus of healthy rats 

(Liebetanz et al., 2003). The various results and limited number of studies assessing the effects 

of TMS on microglia suggest the need for further research in this area.   

 

6.     Translational Considerations 

  Several practical strategies could potentially improve the transition into more clinically 

relevant contexts. It is premature to completely replace current pharmacological treatments with 

magnetic stimulation in seizure treatment. Rather, a combination of the two could be expected 

to yield more efficient seizure suppression. For example, bursts of high-frequency rTMS, 

together with lorazepam, suppresses seizures in a rat kainate status epilepticus model (Gersner 

et al., 2016a), with the combined methods more effective than rTMS alone. In another example, 
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static magnetic field (SMF) is more effective in decreasing audiogenic seizure severity when 

administrated with the anticonvulsant phenytoin (McLean et al., 2003)  (McLean et al., 2008). 

The combined methods can potentially reduce the required dose of the anticonvulsant medicine 

(and, therefore, the likelihood of medication-induced side effects). Future research should 

address issues that could potentially improve the outcomes of the complementary therapies.  

  As a replacement for electric stimulation with invasive electrodes, magnetic stimulation 

must also overcome some of the limitations that occur with electric stimulation. For example, 

specific stimulation of certain cell types is not easily addressed. Nevertheless, delicate design of 

the coil can provide a desired electric field distribution that significantly improves specificity of 

the target. It is possible to construct customized coils to fit the needs of specific requirements 

and animal models (Tang et al., 2016). While conventional rTMS stimulators activate only 

superficial cortical areas, it is possible to reach deep epileptic foci, such as in temporal lobe 

epilepsy (TLE), by using specially designed H-coils (Gersner et al., 2016b). Furthermore, mini-

coils can be covered in biocompatible material and positioned inside the animals, closer to the 

distinct target (Lee et al., 2016).  

   The ultimate goal of epilepsy therapies is to control seizure while minimizing side effects. 

A closed-loop system that can automatically detect seizure activity, optimize stimulus input, and 

apply current to the coil would be an ideal system for precise, low cost, and efficient seizure 

control with magnetic field. Successful examples of closed-loop control systems for seizure 

control have emerged from transcranial electrical stimulation (TES) studies (Berenyi et al., 2012, 

Kozak and Berenyi, 2017). The closed-loop approach also generated promising results in 

optogenetic inhibition of epilepsy (Krook-Magnuson et al., 2013), in which EEG has been used 

to predict and trigger optogenetic inhibition of excitatory principal cells, or to activate a 

subpopulation of GABAergic cells. For rTMS control of seizure, EEG has been used to guide 

rTMS in a rat kainic acid (KA) epilepsy model. In this study, the idea of closed-loop control 

emerged but had not been fully developed. EEG was continuously viewed by an operator who 

identified each seizure onset (Rotenberg et al., 2008).  

The above-mentioned, successful closed-loop examples in TES and optogenetic studies 

could shine some lights on closed-loop seizure control with magnetic fields. This control 

diagram could be constructed to form a therapeutic loop.  First, seizure signal must be reliably 

measured through electrophysiological recording, such as electrocorticography (EcoG), 

electroencephalography (EEG), and single unit recording. Other physiological parameters can 

also be measured to improved seizure prediction, such as blood flow, blood oxygenation, 

metabolism (Schwartz, 2007, Zhao et al., 2011, Patel et al., 2013), and heart rate (Lockman et 
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al., 2011). Features of these recordings will then be extracted with computational tools. Previous 

work done in these areas could be readily adapted into an innovative closed-loop system for 

seizure control with magnetic field. The above mentioned novel coil design will ultimately 

provide more specific stimulation, which will be seamlessly integrated into a system that 

contains hardware and software design for accurate temporal prediction and stimulation.  

  

Concluding remarks 

  Despite the promising clinical potential for magnetic treatment of epilepsy, significant 

progress is still necessary. This includes the advancement of magnetic design, optimization of 

stimulation protocols, and evaluation of the long-term safety of these approaches so that the 

technique can become more translatable for clinical use in humans. Basic laboratory research 

that focuses on the mechanisms of magnetic field stimulation at the molecular, cellular, and 

network levels are of great value in facilitating this translation. We are optimistic that these 

challenges are not insurmountable, and that magnetic stimulation can become a reliable, 

practical method for epilepsy treatment with the continued close collaboration of clinicians, 

neuroscientists, engineers, and regulators.   
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