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Abstract

The real number field, denoted R, is the most well-known extension field of Q, the field of

rational numbers, but it is not the only one. For each prime p, there exists an extension field Qp of

Q, and these fields, known as the p-adic fields, have some properties substantially different from

R. In this paper, we construct the p-adic numbers from the ground up and discuss the local-global

principle, which concerns connections between solutions of equations found in Q and in Qp. We

state the Hasse-Minkowski theorem, which addresses a type of Diophantine equation to which the

local-global principle applies, and conclude with a computation in which we apply the theorem

followed by Selmer’s famous counterexample for cubic curves.
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Local-Global Principles for Diophantine Equations

Introduction

One of the many (though certainly countable) motivations of the field of real numbers is

the need for a solution to the equation X 2 − 2 = 0. The integers and rational numbers are intuitive

and fairly simple, but solving such equations as above necessitates a field beyond the rationals.

Despite this “as needed” construction of the real numbers, many of the elements of this field

extension are now familiar to any student past elementary school. Such universal application of a

formerly unknown extension might reasonably prompt a question: “Are there other extensions of

the rational numbers?” This is one of the questions which motivates p-adic theory.

p-adic numbers occur in many areas of mathematics, from abstract number theory to

geophysical modeling applications (Oleshchko and Khrennikov, 2017), but for this paper, we

address the connections between p-adic solutions and rational solutions of an equation. The idea

that connections exist between p-adic solutions and rational solutions is known as the local-global

principle, and it essentially states that “a theorem or property holds over Q if and only if it holds

over R and Qp for all p” (Conrad, n.d.-c, p. 1). In many contexts, this principle does not hold, but

for some, it does. In this paper, we will study how this principle applies to certain types of

Diophantine equations, which are “equations or systems of polynomial equations that must be

solved in integers, rational numbers, or more generally in algebraic numbers” (Cohen, 2007, p.

v). However, we must begin by understanding what p-adic numbers themselves are.

Valuations

We begin with some basic number theory. Recall that for any given prime p, we can write
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each x ∈ Z as x = npr for some n ∈ Z, r ∈ N ∪ {0} such that p ∤ n. Likewise, for y ∈ Q, we can

write y = pr ab for a, b, r ∈ Z such that p ∤ ab (Salzmann, Grundhöfer, Hähl, and Löwen, 2007).

Using this idea, we can define the p-adic valuation following Gouvêa (1997).

Definition 1. For x ∈ Z, we define the p-adic valuation function vp : Z\{0} −→ R such that

vp(x) is the unique positive integer satisfying the equation

x = pvp(x)n, p ∤ n ∈ Z.

For y ∈ Q× such that y = a/b where a, b ∈ Z and b ̸= 0, we extend this valuation:

vp(y) = vp(a)− vp(b).

Remark. One exception not handled by this definition is the valuation of 0, so we formally let

vp(0) = +∞. “The reasoning here is that we can certainly divide 0 by p, and the answer is 0,

which we can divide by p, and the answer is 0, which we can divide by p...” (Gouvêa, 1997, p.

25). The idea is that 0 is infinitely divisible by p, so although our definition of valuation does not

directly address the valuation of 0, defining the valuation in this way is consistent and logical.

Example. Consider the 3-adic and 5-adic valuations of 90 and 13
625 .

v3(90) = v3(32 · 10) = 2

v3
(
13
625

)
= v3(13)− v3(625) = 0− 0 = 0

v5(90) = v5(51 · 18) = 1

v5
(
13
625

)
= v5(13)− v5(54) = 0− 4 = −4.
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From these examples, we see that the more divisible x ∈ Q is by p, the higher the p-adic

valuation will be. Note that 0 is not the lowest valuation possible since rational numbers

containing negative powers of p exist.

We now prove some properties that will be helpful in the next section (Gouvêa, 1997).

Lemma 2. For all x, y ∈ Q×, the following holds:

(1) vp(xy) = vp(x) + vp(y).

(2) vp(x+ y) ≥ min{vp(x), vp(y)}.

Proof. Let x = pvp(x) ab and y = pvp(y) cd for some a, b, c, d ∈ Z such that p ∤ abcd and bd ̸= 0.

For (1), using the definition of the p-adic valuation, we obtain

vp(xy) = vp
(
pvp(x)

a
b
· pvp(y) c

d

)
= vp

(
pvp(x)+vp(y) · ac

bd

)
= vp(x) + vp(y).

For (2), suppose without loss of generality that vp(x) ≥ vp(y). Observe:

vp(x+ y) = vp
(
pvp(x)

a
b
+ pvp(y)

c
d

)
= vp

(
pvp(x)ad+ pvp(y)bc

bd

)
= vp(pvp(x)ad+ pvp(y)bc)− vp(bd)

= vp
(
pvp(y)(pvp(x)−vp(y)ad+ bc)

)
− vp(bd)

= vp
(
pvp(y)

)
+ vp

(
pvp(x)−vp(y)ad+ bc

)
− 0

≥ vp(y).

Remark. One detail that will be useful to us later is a guarantee for equality in condition (2). If

vp(x) > vp(y), then vp(pvp(x)−vp(y)ad+ bc) = 0 because p | (pvp(x)−vp(y)ad) while p ∤ bc. This

implies vp(x+ y) = vp(y). Thus, if vp(x) ̸= vp(y), then vp(x+ y) = min{vp(x), vp(y)}.
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Absolute Values

Absolute value is a familiar concept, but the traditional absolute value is actually a

function specifically defined for the real numbers. In order to discuss and eventually construct the

p-adic numbers, it is necessary to first establish a proper definition of an abstract absolute value.

Definition 3. Given a ring R, an absolute value is a function | · | : R −→ [0,∞) which satisfies:

1. |x| = 0 if and only if x = 0,

2. |x| · |y| = |x · y|,

3. |x+ y| ≤ |x|+ |y|

for all x, y ∈ R. Additionally, if the condition

4. |x+ y| ≤ max{|x|, |y|}

is met, then | · | is a non-archimedean absolute value (Gouvêa, 1997).

Note that the usual absolute value conforms to the above definition. However,

|1+ 1| = |2| = 2 > 1 = max{|1|, |1|}, so it is not non-archimedean.

p-adic Absolute Values

What follows is the construction of a new absolute value that makes use of our previous

work with p-adic valuations (Gouvêa, 1997).

Definition 4. Let p be prime. For x ∈ Q×, we define the p-adic absolute value of x by

|x|p = p−vp(x).

For x = 0, we define |0|p = 0.
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Before taking a closer look at this function, we will first prove that it satisfies the

requirements of an absolute value.

Proposition 5. | · |p is a non-archimedean absolute value on Q.

Proof. First, note that by construction, |x|p > 0 for all x ∈ Q×, so because we defined |0|p = 0, it

is clear that |x|p = 0 if and only if x = 0.

Let x, y ∈ Q×, and let p be prime. For some a, b, c, d ∈ Z such that p ∤ abcd, we can write

x = pvp(x) ab and y = pvp(y) cd . Observe:

|x · y|p =
∣∣∣pvp(x)ab · pvp(y) c

d

∣∣∣
p
=
∣∣∣pvp(x)+vp(y) · ac

bd

∣∣∣
p

= p−vp(x)−vp(y) = p−vp(x)p−vp(y) =
∣∣∣pvp(x)ab∣∣∣p ·

∣∣∣pvp(y) cd∣∣∣p = |x|p · |y|p.

Thus, the second condition of an absolute value is satisfied. We now prove the non-archimedean

condition, using Lemma 2 to justify the following inequality.

|x+ y|p = p−vp(x+y) ≤ p−min{vp(y),vp(y)} = max{|x|p, |y|p}.

Since the non-archimedean condition implies condition three, this function meets all of the

conditions for a non-archimedean absolute value on Q.

Remark. Since vp(x) ̸= vp(y) implies vp(x+ y) = min{vp(x), vp(y)}, it follows from our proof of

the non-archimedean condition that |x|p ̸= |y|p guarantees that |x+ y|p = max{|x|p, |y|p}.

Example. Consider the 3-adic absolute value of the following elements:

∣∣∣∣1811
∣∣∣∣
3
= 3−(v3(18)−v3(11)) = 3−2 =

1
9
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|126|3 = 3−v3(126) = 3−2 =
1
9∣∣∣∣306187

∣∣∣∣
3
= 3−(v3(306)−v3(187)) = 3−2 =

1
9

Note that it does not matter if the fraction is fully reduced or if the numerator and denominator

share a power of p as a factor. This is necessary because absolute values must be well-defined

functions. Also note that quantities which are of vastly different magnitude from the perspective

of the real number absolute value can have equivalent 3-adic absolute values.

Constructing the p-adic Fields

Now we begin the work of constructing the p-adic numbers, following the approach found

in Fernando Gouvea’s p-adic Numbers: An Introduction (1997).

Incompleteness of the Rationals

First, recall that a Cauchy sequence is essentially a sequence of elements which are getting

closer and closer together. More precisely, the sequence (xn) is Cauchy if “for any ε > 0 there

exists a natural number H(ε) such that for all natural numbers n,m ≥ H(ε), the terms xn, xm

satisfy |xn − xm| < ε” (Bartle & Sherbert, 2011, p. 85). Such sequences have many applications,

but one of the most significant is in the definition of a complete field. A foundational concept in

Real Analysis is that while R is a complete field, Q is not, and this is because there exists at least

one Cauchy sequence in Q that converges to a limit (
√
2, for example) that is not contained in Q.

The definition of a Cauchy sequence involves an absolute value, so what changes if we

use a p-adic absolute value? To answer this, we must check whether Q is complete with respect to

a p-adic absolute value. First, however, we need a more convenient way of checking if a sequence

is Cauchy.
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Lemma 6. Let | · | be a non-archimedean absolute value. If a sequence (xn) of rational numbers

meets the condition

lim
n→∞

|xn+1 − xn| = 0,

then that sequence is Cauchy.

Proof. Let ε > 0. By assumption and the definition of a limit, there existsM > 0 such that

|xn+1 − xn| < ε for all n > M. Without loss of generality, let m = k+ r > k > M. Observe:

|xm − xk| = |xk+r − xk+r−1 + xk+r−1 − xk+r−2 + ...+ xk+1 − xk|

≤ max{|xk+r − xk+r−1|, |xk+r−1 − xk+r−2|, ..., |xk+1 − xk|} < ε

since k+ r > k+ r− 1 > ... > k+ 1 > k > M. Thus, for any ε > 0, there existsM such that

|xm − xk| < ε for every m, k > M. Therefore, the sequence is Cauchy.

With this result in hand, we proceed to inspect Q. Since Q is not complete with respect to

the usual absolute value, it is reasonable to suspect that Q is not complete with respect to the

p-adic absolute values as well. We will now prove that this suspicion is correct.

Proposition 7. The field Q of rational numbers is not complete with respect to any of its p-adic

absolute values.

Proof. Suppose p > 2 is a prime. The goal is to construct a Cauchy sequence of elements in Q

that converges to a limit not in Q. First consider an integer a such that

• a is not a square in Q

• p ∤ a
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• X 2 ≡ a (mod p) has a solution.

As an example, if p = 3, we could choose a = 7. One way of doing this is to take a perfect square

in Q and simply add 2p; this will obtain the type of integer we require.

Now the goal is to construct a Cauchy sequence of rational numbers that converges to a

solution to the equation X 2 = a. This will show that Q is not complete with respect to | · |p.

Clearly, by construction of a, there exists x0 ∈ Q such that x20 ≡ a (mod p). We will now show

that given xn−1 ∈ Q such that x2n−1 ≡ a (mod pn), we can construct xn ∈ Q so that xn ≡ xn−1

(mod pn) and x2n ≡ a (mod pn). This will result in the sequence we desire.

Suppose xn−1 ∈ Q such that x2n−1 ≡ a (mod pn). Then there exists kn ∈ Z such that

x2n−1 = a+ knpn. Since p ∤ a and p is odd, p ∤ 2xn−1. Clearly, pn and 2xn−1 are coprime, and thus,

2xn−1 is invertible modulo pn.We now let xn = xn−1 + bnpn where 0 ≤ bn < pn, and we let

bn ≡ −(2xn−1)−1kn (mod p). This congruence implies

kn + 2xn−1bn ≡ 0 (mod p).

We multiply through by pn to obtain

pnkn + 2xn−1bnpn ≡ 0 (mod pn+1).

Substituting in x2n−1 = a+ knpn, we get

a ≡ x2n−1 + 2xn−1bnpn ≡ x2n−1 + 2xn−1bnpn + (bnpn)2 ≡ (xn−1 + bnpn)2 ≡ x2n (mod pn).

By induction, we now have a sequence of elements in Q. We now check that it is Cauchy.

Note that for any xn in the sequence, xn ≡ xn−1 (mod pn), so xn = xn−1 + pnbn for bn ∈ Z. Thus,

|xn − xn−1|p = |xn−1 + pnbn − xn−1|p = |pnbn|p ≤
1
pn
.
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By the Squeeze Theorem, we have that lim
n→∞

|xn − xn−1|p = 0. Thus, by Lemma 6, (xn) is a

Cauchy sequence. Now since x2n ≡ a (mod pn+1) for any xn, we have that x2n = a+ pn+1bn for

some bn ∈ Z. Thus,

|x2n − a|p = |a+ pn+1bn − a|p = |pn+1bn|p ≤
1

pn+1
,

so we have that lim
n→∞

|x2n − a|p = 0. However, this implies that the limit of (xn) is a solution to

X 2 = a, which has no solution in Q. Therefore, Q is not complete with respect to | · |p for p ≥ 3.

Now let p = 2. Similarly to the above, we must come up with some conditions for our

initial integer and our Cauchy sequence. Let a ∈ Z satisfy the following conditions:

• a is not a cube in Q.

• a is odd.

• X 3 ≡ a (mod 2) has a solution.

For example, a = 29 works.

By construction, there exists x0 ∈ Q such that x30 ≡ a (mod 2). Similarly to before, we

will show that given xn−1 ∈ Q such that x3n−1 ≡ a (mod 2n), we can construct xn ∈ Q such that

xn ≡ xn−1 (mod 2n) and x3n ≡ a (mod 2n).

Suppose xn−1 ∈ Q such that x3n−1 ≡ a (mod pn). Then there exists kn ∈ Z such that

x3n−1 = a+ kn2n. Since a and 3 are odd, 2 ∤ 3a, and so 2 ∤ 3xn−1. This means that 2n and 3xn−1 are

coprime, so 3xn−1 is invertible modulo 2n.We let xn = xn−1 + bn2n where 0 ≤ bn < 2n, and we let

bn ≡ −(3x2n−1)−1kn (mod 2). This congruence yields

kn + 3x2n−1bn ≡ 0 (mod 2).
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Multiplying through by 2n, we get

kn2n + 3x2n−1bn2n ≡ 0 (mod 2n+1),

and finally, we substitute x3n−1 = a+ kn2n to obtain

a ≡ x3n−1 + 3x2n−1bn2n ≡ x3n−1 + 3x2n−1bn2n + 3xn−1(bn2n)2 + (bn2n)3

≡ (xn−1 + bn2n)3

≡ x3n (mod 2n+1).

To see that this sequence is Cauchy, see that xn = xn−1 + 2nbn for bn ∈ Z, and this implies

lim
n→∞

|xn − xn−1|2 = lim
n→∞

|xn−1 + 2nbn − xn−1|2 = lim
n→∞

|2nbn|2 ≤ lim
n→∞

1
2n

= 0.

Now for any xn in the sequence, x3n ≡ a (mod 2n+1), which implies that x3n = a+ 2n+1bn

for some bn ∈ Z. This means that we can write

|x3n − a|2 = |a+ 2n+1bn − a|2 = |2n+1bn|2 ≤
1

2n+1
.

Clearly, lim
n→∞

|x3n − a|2 = 0, but this implies that the limit of (xn) is a solution to X 3 = a, which

does not have a solution in Q. Therefore, Q is not complete with respect to | · |2.

Combining the above, we have proven that Q is not complete with respect to any | · |p.

The p-adic Numbers

Now that we have shown that Q is not complete, we can now begin constructing the

p-adic fields. How do we begin? Well, the proof above demonstrated that Q is not complete

because there exist “gaps” in Q. Although a Cauchy sequence may be composed entirely of
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rational numbers, it is possible that it will converge to a gap that the rational numbers do not

include. The way, then, to construct a complete field is to specifically define its elements so that

every rational Cauchy sequence converges to an element in the field. One way to do this is to

make each element a Cauchy sequence, and this is where we will begin.

Definition 8. Let | · |p be a non-archimedean absolute value on Q. We denote by C the set

C = {(xn) : (xn) is a Cauchy sequence with respect to | · |p}.

This definition provides “numbers” to work with. Next, we define how they interact.

Proposition 9. Let (xn), (yn) ∈ C. “Defining

(xn) + (yn) = (xn + yn)

(xn) · (yn) = (xnyn)

makes C a commutative ring with unity” (Gouvêa, 1997, p. 53).

The reader is invited to check that (xn + yn) and (xnyn) are Cauchy sequences. Assuming

this is true, we can see that the constant sequences (0) = (0, 0, 0, ...) and (1) = (1, 1, 1, ...) are the

zero and the 1 in C, respectively, and the rest of the ring axioms follow quite simply from

properties of the rational numbers.

We now have a commutative ring. One important thing to note is that there is a “copy” of

the rational numbers in C. Let (x) = (x, x, x, ...) be a constant sequence where x ∈ Q. Clearly, (x)

is a Cauchy sequence, so if we let f : Q → C be a function defined by f (x) = (x), we see that f is

an inclusion of Q in C. This is easy to check through the addition and multiplication rules for C.
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However, C is vastly larger than Q, and it is not a field because it contains zero divisors.

Thus, our final step is to find a maximal ideal of C.

Definition 10. “We define N ⊂ C to be the ideal

N = {(xn) : xn → 0} = {(xn) : lim
n→∞

|xn|p = 0}

of sequences that tend to zero with respect to the absolute value | · |p” (Gouvêa, 1997, p. 54).

We now have two steps left: proving that N is an ideal of C and that it is a maximal ideal.

That it is an ideal is quite intuitive. Real analysis demonstrates that the limit of two convergent

sequences multiplied element-wise will be the product of the limits of the sequences. Thus, if

(xn) ∈ C and (an) ∈ N, it seems reasonable that the sequence (xnan) will converge to 0. The

reader is invited to work out the details, but we will move on to maximality.

Theorem 11. The set N is a maximal ideal of the commutative ring C.

Proof. We will use an approach from Bachman (1964). Let (xn) ∈ C such that (xn) does not tend

to zero with respect to | · |p.We begin by showing there exists some δ > 0 such that |xn|p > δ for

every n > N where N is a sufficiently high natural number. Suppose to a contradiction that there

is no such δ. We choose ε > 0, and since (xn) is Cauchy, there exists an integerM ∈ N such that

|xn − xm|p < ε
2 for any n,m > M. By assumption, there exists some k > M such that |xk|p < ε

2 .

Consider for any m > M:

|xm|p = |xm + xk − xk|p ≤ |xm − xk|p + |xk|p <
ε
2
+

ε
2
= ε.

However, since ε is arbitrary, |xm|p < ε for every m > M then implies that (xn) does tend to zero,

which is false. Thus, there exists a constant δ > 0 and N ∈ N such that |xn|p > δ for all n > N.
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We choose ε > 0, and note the existence of Nx ∈ N such that |xn − xm|p < ε for all

n,m > Nx. Now we define a new sequence (yn) so that yn = 0 for all n ≤ Ny and yn = 1
xn for all

n > Ny. We let N = max{Nx,Ny} and m, n > N. Observe

|yn − ym|p =
∣∣∣∣ 1xn − 1

xm

∣∣∣∣
p
=

∣∣∣∣xm − xn
xnxm

∣∣∣∣
p
=

|xm − xn|p
|xn|p|xm|p

<
|xm − xn|p

δ2
<

ε
δ2
.

Since ε is arbitrary, (yn) is Cauchy, and we therefore have that (xn)(yn) is also Cauchy. Note that

(xn)(yn) = (0, 0, ..., 0, 1, 1...) = (1)− (1, 1, ..., 1, 0, 0, ...).

Now suppose that I is an ideal of C with N ⊂ I. Let (xn) ∈ I and (xn) ̸∈ N, noting that this

means that (xn) does not tend to zero. By the above work, we know that for this (xn) there exists a

corresponding (yn) ∈ C. Since (xn)(yn) = (1)− (1, 1, ..., 1, 0, 0, ...) and I is an ideal, (xn)(yn) ∈ I.

However, (1, 1, ..., 1, 0, 0, ...) ∈ N ⊂ I because it tends to zero. Thus, if we add this sequence to

(xn)(yn), we have that (1) ∈ I. This implies that I = C, so N is a maximal ideal of C.

Definition 12. The field of p-adic numbers is defined as the quotient of the ring C by its maximal

ideal N, or in other words, Qp = C/N (Gouvêa, 1997).

We have now constructed the p-adic fields, and the final step is to extend the p-adic

absolute value to irrational elements of Qp.

Definition 13. If a rational sequence (xn) converges to x ∈ Qp, then we define

|x|p = lim
n→∞

|xn|p.

For example, if a sequence of integers coprime to p converges to an irrational x ∈ Qp, then

|x|p = 1. The reader is invited to check that the choice of sequence converging to x does not

change the absolute value of x.
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Hensel’s Lemma

Now that we have constructed the p-adic numbers, we can advance to developing some

properties. We begin by defining an important subring of our field.

Definition 14. We define the ring of p-adic integers as

Zp = {x ∈ Qp : |x|p ≤ 1}.

By definition, |0|p = 0 for every prime p, so 0 is clearly a p-adic integer. Note also that

every nonzero integer is also a p-adic integer since for every x ∈ Z, vp(x) ≥ 0, and thus,

|x|p = x−vp(x) ≤ p0 = 1. Thus, 1 is also a p-adic integer. It follows from properties of a

non-archimedean absolute value that Zp is closed, for if x, y ∈ Zp, then

|x− y|p ≤ max{|x|p, | − y|p} = max{|x|p, |y|p} ≤ 1 and |xy|p = |x|p · |y|p ≤ 1 · 1 = 1. The rest of

the ring axioms follow from the fact that Zp ⊂ Qp, a field. Thus, Zp is a ring.

Next we have a useful identity.

Proposition 15. Let F(X) = c0 + c1X+ ...+ cnX n be a polynomial of degree n with coefficients

cj ∈ Zp. Then for a, b ∈ Zp, we can write

F(a+ b) =
d∑

k=0

bk
(
F(k)(a)

k!

)

where F(k)(a) is the (formal) k-th derivative of F(a).

Proof. First note that for a p-adic polynomial F with degree n, we can write

F(X) =
n∑

j=0

cjX j.
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Now consider that by the binomial theorem and properties of sums, we can write

F(a+ b) =
n∑

j=0

cj(a+ b) j =

n∑
j=0

cj
j∑

k=0

(
j
k

)
a j−kbk

=

n∑
k=0

 n∑
j=k

cj
(
j
k

)
a j−k

 bk

=

n∑
k=0

bk
 n∑

j=k

cj
j!

k!(j− k)!
a j−k


=

n∑
k=0

bk
1
k!

 n∑
j=k

cj
j!

(j− k)!
a j−k

 .

However, the inner sum above is equivalent to the k-th formal derivative of F(a), and thus, we

have

F(a+ b) =
n∑

k=0

bk
(
F (k)(a)

k!

)
.

Remark. It will shortly be important to recognize that F (k)(a)
k! , as in the proof above, is a p-adic

integer. This may not seem obvious at first, but observe that since
(j
k

)
is an integer, the sum∑n

j=k cj
(j
k

)
a j−k is an integer. Thus, it is also a p-adic integer. However, the proof above then

shows that this sum is equivalent to F (k)(a)
k! , and therefore, it must be that F (k)(a)

k! ∈ Zp.

We can now state a result found in Gouvêa (1997) that is vital to solving equations in Qp.

Theorem 16 (Hensel’s Lemma). Let F(X) = c0 + c1X+ c2X 2 + ...+ cnX n be a polynomial

whose coefficients are in Zp. Suppose there exists α1 ∈ Zp such that

|F(α1)|p < |F ′(α1)|2p,

where F ′(X) is the formal derivative of F(X). Then there exists α ∈ Zp such that F(α) = 0.
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Proof. Let F(X) = c0 + c1X+ c2X 2 + ...+ cnX n. We proceed with a strategy derivative of

approaches from Robert (2000) and Cassels (1986).

Since Zp is a ring, the fact that all coefficients of F(X) as well as α1 are in Zp implies that

F(n)(α1) ∈ Zp for all n. Thus, |F(n)(α1)|p ≤ 1. Combining this with our assumption, we obtain

|F(α1)|p < |F ′(α1)|2p ≤ |F ′(α1)|p ≤ 1.

Now we define b1 = − F(α1)
F ′(α1)

, noting that by our assumption, F(α1) is more than twice as

divisible by p as F ′(α1). Therefore, |b1|p < 1, and b1 ∈ Zp. With this b1, we have that

F(α1) + b1F ′(α1) = 0.

Now consider F(α1 + b1). By Proposition 15, we can write

F(α1 + b1) = F(α1) + F ′(α1)b1 +
F ′′(α1)
2!

b21 + ...+
F(n)(α1)

n!
bn1.

The first two terms sum to 0, and F (j)(α1)
j! ∈ Zp. The non-archimedean property yields

|F(α1 + b1)|p ≤ max
j≥2

∣∣∣∣F(j)(α1)
j!

bj1

∣∣∣∣
p
≤ max

j≥2

∣∣bj1∣∣p .
Since |b1|p < 1, |bj1|p < |b21|p for all j > 2. Thus, |b21|p ≥ max

j≥2

∣∣∣F(j)(α1)
j! bj1

∣∣∣
p
, and we write

|F(α1 + b1)|p ≤ |b21|p =
∣∣∣∣ F(α1)2F ′(α1)2

∣∣∣∣
p
=

|F(α1)|2p
|F ′(α1)|2p

<
|F(α1)|2p
|F(α1)|p

= |F(α1)|p.

Similarly, we have

|F ′(α1 + b1)− F ′(α1)|p ≤ |b1|p <
|F ′(α1)|2p
|F ′(α1)|p

= |F ′(α1)|p. (1)

Recall that for a non-archimedean absolute value, |x|p ̸= |y|p implies |x+ y|p = max{|x|p, |y|p}.

By (1), we have that

|F ′(α1 + b1)|p = |F ′(α1 + b1)− F ′(α1) + F ′(α1)|p = |F ′(α1)|p.
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So we have that α1 and b1 satisfy |F(α1 + b1)|p < |F(α1)|p and |F ′(α1 + b1)|p = |F ′(α1)|p.

Now we define αn+1 = αn + bn, where bn = − F(αn)
F ′(αn) , and we suppose that

|F(αn)|p < |F ′(αn)|2p. By similar calculations to the above, we have that

|F ′(αn + bn)− F ′(αn)|p = |F ′(αn)− F ′(αn) + F ′′(αn)bn + ...|p

≤ max
j≥2

∣∣∣∣F (j)(αn)

(j− 1)!
b j−1
n

∣∣∣∣
p

= |bn|p

< |F ′(αn)|p,

and therefore, |F ′(αn + bn)|p = |F ′(αn)|p. In addition, since F(αn) + bnF ′(αn) = 0, we can write

|F(αn + bn)|p ≤ max
j≥2

∣∣∣∣F (j)(αn)

j!
b j
n

∣∣∣∣
p
≤ |b2n|p =

|F(αn)|2p
|F ′(αn)|2p

< |F(αn)|.

By induction, we now have a sequence of elements (αn) such that for every αn,

|F ′(αn)|p = |F ′(α1)|p and |F(αn+1)|p < |F(αn)|p. Note that this second condition implies

|F(αn)|p ≤
1
p
|F(αn−1)|p ≤

1
p2
|F(αn−2)|p ≤ ... ≤ 1

pn−1
|F(α1)|p ≤

1
pn
.

If we choose ε > 0, it is clear that there exists n ∈ N such that 1
pn < ε. Thus, for this same n,

|F(αn)− 0|p < ε, so by the limit definition, lim
n→∞

F(αn) = 0.

Now observe

|αn+1 − αn|p = |bn|p =
∣∣∣∣ F(αn)

F ′(αn)

∣∣∣∣
p
=

|F(αn)|p
|F ′(α1)|p

.

Since |F ′(α1)|p is a constant, our above work with F(αn) yields lim
n→∞

|αn+1 − αn|p = 0. By Lemma

6, (αn) is a Cauchy sequence, and a limit α ∈ Zp exists. Therefore, we have found α ∈ Zp such

that F(α) = 0.
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Remark. Note carefully that |F(αn)|p and 1
pn are real numbers in this context whereas F(αn) is a

p-adic number. The limit definition still applies to p-adic numbers, but when we speak of the limit

of F(αn), we speak of the p-adic limit as opposed to the real limit of |αn+1 − αn|p. This is an

important distinction, for while the real limit of the sequence ( 1
pn ) is 0, the p-adic limit of (

1
pn )

does not exist.

This form of Hensel’s Lemma will be necessary later in this paper, but Gouvêa lists a

weaker version which is easier to apply in certain contexts (1997). We state this version below.

Corollary 17 (Weak Hensel’s Lemma). Let F(X) = a0 + a1X+ a2X 2 + ...+ anX n be a

polynomial whose coefficients are in Zp. Suppose that there exists α1 ∈ Zp such that

F(α1) ≡ 0 (mod p) and F ′(α1) ̸≡ 0 (mod p),

where F ′(X) is the formal derivative of F(X). Then there exists α ∈ Zp such that F(α) = 0.

Proof. Observe:

F ′(α) ̸≡ 0 (mod p) ⇔ vp(F ′(α)) ≤ 0 ⇔ −vp(F ′(α)) ≥ 0 ⇔ |F ′(α)|p ≥ 1

and

F(α) ≡ 0 (mod p) ⇔ vp(F(α)) > 0 ⇔ |F(α)|p < 1.

Thus, |F(α)|p < |F ′(α)|2p, and by Theorem 16, there exists α ∈ Zp such that F(α) = 0.

Remark. For brevity’s sake, we will henceforth use the term “Hensel’s Lemma” for these two

results interchangeably unless the context requires clarification.
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Example. For which p is 1
2 a p-adic integer? We can determine this by applying Hensel’s Lemma

to the polynomial F(X) = 2X− 1. Note that we cannot apply Hensel’s Lemma to this function if

p = 2 because 2x− 1 ≡ −1 ̸≡ 0 (mod 2). Consider, then, p ̸= 2. Then p+ 1 is an even number,

and therefore, p+1
2 ∈ Zp. Observe

F
(
p+ 1
2

)
= 2

(
p+ 1
2

)
− 1 = p+ 1− 1 ≡ 0 (mod p).

Further, F ′(p+12 ) = 2 ̸≡ 0 (mod p). Therefore, by Hensel’s Lemma, there exists a p-adic integer

which solves this equation, and this implies that 1
2 is a p-adic integer for all p ̸= 2. Of course, we

already know this since for p ̸= 2 we have |12 |p = p−[vp(1)−vp(2)] = p0 = 1, and in this way, we can

also find that |12 |2 = 21 = 2 ≥ 1, implying that 2 is not a 2-adic integer. However, this example

demonstrates the power of Hensel’s Lemma as a computational tool.

This result provides an effective method of determining whether or not any polynomial

has a root in a given Zp, an ability essential to making use of the local-global principle.

The Local-Global Principle and Applications

The reason that Hensel’s lemma is such a valuable tool with regards to the local-global

principle is that there are situations where the local-global principle does hold. This section

details some examples of situations in which the local-global principle either applies or fails. We

will begin with the former.

Hasse-Minkowski

The Hasse-Minkowski Theorem is perhaps the best example of a circumstance in which

the local-global principle reliably applies. Although its application is restricted to one type of

equation, it still has quite a bit of power. A similar version of the following statement of the
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theorem can be found in Gouvêa (1997).

Theorem 18 (Hasse-Minkowski). Let F(X1,X2, ...,Xn) ∈ Q[X1,X2, ...,Xn] be a quadratic form (a

homogeneous polynomial of degree 2 in n variables). The equation

F(X1,X2, ...,Xn) = 0

has non-trivial solutions in Q if and only if it has non-trivial solutions in R and Qp for each p.

Note that the forward direction of this theorem is immediate: because of the inclusion of

Q into Qp, a rational solution implies a solution in every Qp and in R. The proof of the other

direction is beyond the scope of this paper, but its application is much simpler to grasp. In order

to discover whether or not a rational solution exists, we must determine whether or not solutions

exist in Qp, and we have already seen these types of problems in specific Qp. However, in order

to tackle an application of Hasse-Minkowski, we need two lemmas from Gouvêa (1997).

Lemma 19. For any n ∈ Z such that 0 ≤ n < p− 1, the following holds:

p−1∑
x=0

xn ≡ 0 (mod p).

Proof. Note first that for n = 0, we obtain 1+ 1+ ...+ 1 = p ≡ 0 (mod p). Also note that this

takes care of the case p = 2 since we require that n < p− 1.

Now let 1 ≤ n < p− 1. We first recall Lagrange’s Theorem, which states that a

polynomial of degree n has at most n solutions modulo p for p a prime (Hardy & Wright, 1979).

Since n < p− 1, there exist at most p− 2 incongruent solutions to the congruence xn − 1 ≡ 0

(mod p), and therefore, at least two elements of Z/pZ are not solutions. We will choose

a ∈ (Z/pZ)× such that a is one of these non-solutions.
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Now recall that Z/pZ under addition is a cyclic group, and note that p and a are relatively

prime. In addition, since a ∈ (Z/pZ)×, which is a cyclic group under multiplication,

an ∈ (Z/pZ)×. Accordingly, σa : Z/pZ −→ Z/pZ defined by σa(x) = ax for all x ∈ Z/pZ is an

automorphism (Dummit & Foote, 2004). Therefore, since 0, 1, ..., p− 1 are all distinct modulo p,

we have that a(0), a(1), ..., a(p− 1) are also all distinct modulo p, and this means that
p−1∑
x=0

xn ≡
p−1∑
x=0

(ax)n (mod p).

Observe

(an − 1)
p−1∑
x=0

xn =
p−1∑
x=0

(ax)n −
p−1∑
x=0

xn ≡ 0 (mod p).

Now since we chose a such that an − 1 ̸≡ 0 (mod p), we must have
p−1∑
x=0

xn ≡ 0 (mod p).

Lemma 20. Let p ̸= 2 be prime, and let a, b, c ∈ Z be relatively prime with p ∤ abc. Then there

exist x0, y0, z0 ∈ Z, not all divisible by p, such that

ax20 + by20 + cz20 ≡ 0 (mod p).

Proof. Since we are working modulo p, we have p3 options for (x0, y0, z0). We will attempt to

count how many of these p3 options are solutions to the congruence. Recall Fermat’s Little

theorem, which states that for any prime p, k p−1 ≡ 1 (mod p) for all k ∈ Z (Dummit & Foote,

2004). With this result, for any 3-tuple (x0, y0, z0) we can write

(ax20 + by20 + cz20)p−1 ≡


1 (mod p) (x0, y0, z0) not a solution

0 (mod p) (x0, y0, z0) a solution.
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This means that we can write the number N of non-solutions as

N ≡
∑
(x,y,z)

(ax2 + by2 + cz2)p−1 (mod p)

where
∑

(x,y,z)
means that there are exactly p3 summands, one for each (x0, y0, z0). Expanding this

expression using the multinomial theorem, we obtain

N ≡
∑
(x,y,z)

 ∑
k1+k2+k3=p−1

(
p− 1

k1, k2, k3

)
x2k1y2k2z2k3

 (mod p),

which we can rewrite as

N ≡
∑

k1+k2+k3=p−1

(
p− 1

k1, k2, k3

)∑
(x,y,z)

x2k1y2k2z2k3

 (mod p).

Since k1 + k2 + k3 = p− 1, it must be true for every
∑

(x,y,z)
x2k1y2k2z2k3 that 2kt < p− 1 for

some t ∈ {1, 2, 3}. Otherwise 2(k1 + k2 + k3) ≥ 3(p− 1), which is a contradiction. We can

therefore split up the above sum as N ≡
∑

1+
∑

2+
∑

3 (mod p), where
∑

1 sums only terms

for which 2k1 < p− 1,
∑

2 sums terms where 2k1 ≥ p− 1 and 2k2 < p− 1, and
∑

3 sums the

remaining terms for which only 2k3 < p− 1.

Consider
∑

1. By Lemma 19 and the fact that 2k1 < p− 1, we can observe that

∑
1
≡

∑
k1+k2+k3=p−1

(
p− 1

k1, k2, k3

)∑
(x,y,z)

x2k1y2k2z2k3


≡

∑
k1+k2+k3=p−1

(
p− 1

k1, k2, k3

)∑
(y,z)

y2k2z2k3
( p−1∑

x=1

x2k1
)

≡
∑

k1+k2+k3=p−1

(
p− 1

k1, k2, k3

)∑
(y,z)

y2k2z2k3(0)

 ≡ 0 (mod p).

Thus,
∑

1 ≡ 0 (mod p). However, a similar inspection of
∑

2 and
∑

3 show the same result.

Thus, we have that N ≡ 0 (mod p), or in other words, N is divisible by p.
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Now since the number of non-solutions is divisible by p, it must be that the number S of

solutions is divisible by p as well since these two numbers sum to p3. However, consider that one

of the p3 options for (x0, y0, z0) is (0, 0, 0), which is certainly a solution. Thus, S > 0, and the fact

that p | S then implies that S > 1 since 1 is not prime. Therefore, there is a solution other than

(0, 0, 0), and that solution must be non-trivial.

This result is powerful in our context. Hensel’s Lemma requires only that the equation has

a solution modulo p, so Lemma 20 enables us to prove the existence of solutions for infinitely

many p-adic fields, requiring us only to check Qp for p dividing a coefficient of the equation. We

will now demonstrate this idea through an example, found in Hatley (2009), of the

Hasse-Minkowski Theorem in action.

Example. Does the equation 5X 2 + 7Y 2 − 13Z 2 = 0 have any non-trivial rational solutions?

Note that (
√
5 · 7, 12,

√
13 · 7) is a real solution, so we now only have to deal with Qp. We

will take the cases p = 2, 5, 7, 13 individually from all other p.

Let p ∤ 2 · 5 · 7 · 13. Since the coefficients of this equation are distinct primes, Lemma 20

gives us that there exists x0, y0, z0 ∈ Z such that 5x20 + 7y20 − 13z20 ≡ 0 (mod p). In addition, we

know that at least one of these integers is not divisible by p. It is no loss of generality to assume

that p ∤ x0, and accordingly, we let F(X) = 5X 2 + 7y20 − 13z20 and observe that F(x0) ≡ 0

(mod p). In addition, since p ∤ 2 · 5 · x0, we have that F ′(x0) = 10x0 ̸≡ 0 (mod p). Thus, by

Hensel’s Lemma, a solution x0 exists for F(X), and since p was any prime not equal to 2, 5, 7, or

13, we now have only four primes left to check.

Let p = 2. If Y = 0 and Z = 1, then we have F(X) = 5X 2 − 13 and F ′(X) = 10X. Testing
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X = 1, we obtain

|5(12)− 13|2 = | − 8|2 =
1
8
<

1
4
= |10(1)|2.

Thus, Hensel’s Lemma tells us that a 2-adic solution exists for F(X).

Let p = 5. If X = 0 and Z = 1, then we have F(Y) = 7Y 2 − 13 and F ′(Y) = 14Y. If we let

Y = 7, then we obtain

F(7) = 330 ≡ 0 (mod 5) and F ′(7) = 98 ̸≡ 0 (mod 5).

Hensel’s Lemma then gives a solution for F(Y), and thus, a 5-adic solution exists.

Let p = 7. If Y = 0 and Z = 1, then we have F(X) = 5X 2 − 13 and F ′(X) = 10X. Letting

X = 2, we get

F(2) = 7 ≡ 0 (mod 7) and F ′(2) = 20 ̸≡ 0 (mod 7).

By Hensel’s Lemma, there is a 7-adic solution.

Let p = 13. If X = 5 and Z = 0, then F(Y) = 45+ 7Y 2 and F ′(Y) = 14Y. Y = 1 gives us

F(1) = 52 ≡ 0 (mod 13) and F ′(1) = 14 ̸≡ 0 (mod 13),

so Hensel’s Lemma yields a 13-adic solution.

We have found a solution for all p-adic fields and the real numbers, and thus, by the

Hasse-Minkowski Theorem, we know that a rational solution to this quadratic form exists.

Selmer’s Counterexample

Since the local-global principle applies to any quadratic form, it is natural to then ask

whether it applies to higher order equations. The following counterexample from mathematician
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Ernst Selmer (as cited in Conrad, n.d.-c) demonstrates that the local-global principle does not

work so nicely with other types of polynomials.

Theorem 21. The equation 3X 3 + 4Y 3 + 5Z 3 = 0 has only the zero solution over Q, but there is

a nonzero solution over every completion Qp and over R.

Proof. Note first that ( 3
√
3, 3
√
4,− 3

√
5) is a solution to the equation in R. We now address Qp,

using a method of proof from Keith Conrad’s The Local-Global Principle (n.d.-c).

First, we will look at the requirements for an element of Zp to be a cube. The original

form of Hensel’s Lemma gives us that for F(X) = X 3 − α, the existence of β ∈ Zp such that

|β3− α|p < |3β2|p ≤ |3|2p will imply that a solution exists for F(X), and thus, that α is a cube in Zp.

Now let p = 2. If X = 1 and Y = 0, then the equation becomes Z 3 = −3
5 . Then β = 1

yields |13 + 3
5 |2 = |85 |2 =

1
8 < 1 = |3|22. Thus, by Hensel’s Lemma, there exists a cubic root of −3

5 ,

and we have a nontrivial 2-adic solution.

Let p = 3. If X = 0 and Y = 1, then Z 3 = −4
5 . Setting β = 4, we get

|43 + 4
5 |3 = | 3245 |3 = 1

81 <
1
9 = |3|23. Hensel’s Lemma tells us the cube root of −4

5 exists, and

therefore, a 3-adic solution exists.

For p = 5, if Z = 0 and X = 1, we have Y 3 = −3
4 . Letting β = 7, we obtain

|73 + 3
4 |5 = | 13754 |5 = 1

125 < 1 = |3|25. Thus, by Hensel’s Lemma, the cubic root of −3
4 exists, and

we have a 5-adic solution.

Now let p ≥ 7 be prime, noting that this means 3 and 5 are not congruent to 0 modulo p.

Recall that the group (Z/pZ)× = (Z/pZ)− {0} is a multiplicative cyclic group of order p− 1.

We will inspect how many cubes exist in this group by observing the endomorphism
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Φ3 : (Z/pZ)× → (Z/pZ)× defined by Φ3(a) = a3 for a ∈ (Z/pZ)×.

First suppose that p ̸≡ 1 (mod 3). By Lagrange’s Theorem from group theory, the order

of each element must divide the order of (Z/pZ)× (Dummit & Foote, 2004), which is p− 1, so

because 3 does not divide p− 1, there exist no elements of order 3. This implies that

ker Φ3 = {a ∈ (Z/pZ)× : |a| = 1} = {1}. By the First Isomorphism Theorem,

Im(Φ3) ∼= (Z/pZ)×/{1} = (Z/pZ)×,

and thus, every element of (Z/pZ)× is a cube. Now clearly 3 has an inverse 1
3 in (Z/pZ)

×, and

since every element of (Z/pZ)× is a cube, we have that 1
3 is a cube. This means that X

3 − 1
3 ≡ 0

(mod p) has a solution, and by Hensel’s Lemma, there exists x ∈ Zp such that x3 = 1
3 . Therefore,

(x, 1,−1) is a solution to 3X 3 + 4Y 3 + 5Z 3 = 0.

Now suppose that p ≡ 1 (mod 3). Note that if there exists k ∈ (Z/pZ)× such that k3 = 3,

then (k−1)3 = 1
3 . Thus,

1
3 is a cube, and by the above work there exists a solution to Selmer’s

equation. Assume then that 3 is not a cube. It is quite clear that the image Im(Φ3) is a subgroup of

(Z/pZ)×, and furthermore, since (Z/pZ)× is abelian, Im(Φ3) is a normal subgroup. Again, the

First Isomorphism Theorem provides that Im(Φ3) ∼= (Z/pZ)×/ ker Φ3, and we can then write

|Im(Φ3)| = |(Z/pZ)×/ ker Φ3| = |(Z/pZ)×|
| ker Φ3| by Lagrange’s Theorem (Dummit & Foote, 2004).

Rewriting the equation and again applying Lagrange obtains |(Z/pZ)×/Im(Φ3)| = | ker Φ3|. Now

ker Φ3 = {a ∈ (Z/pZ)× : |a| = 1, 3}, which clearly contains 1. Because 3 is prime and divides

|(Z/pZ)×| = p− 1, Cauchy’s Theorem provides that there is at least one element of order 3 in

(Z/pZ)× as well (Dummit & Foote, 2004). However, (Z/pZ)× is cyclic, which implies that

(Z/pZ)× has φ(3) = 2 elements of order 3 (Dummit & Foote, 2004), and thus,
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| ker Φ3| = |(Z/pZ)×/Im(Φ3)| = 3. Since (Z/pZ)× is cyclic, (Z/pZ)×/ImΦ3 is a cyclic group of

order 3 with coset representatives {1, 3, 9}. Thus, for any a ∈ (Z/pZ)×, we have that a ≡ b3

(mod p), a ≡ 3b3 (mod p), or a ≡ 9b3 (mod p).We will now consider a = 5.

First, suppose 5 ≡ b3 (mod p) for some b ∈ (Z/pZ)×. Then by Hensel’s Lemma, 5 is a

cube, so taking y ∈ Zp such that y3 = 5, we have that (y,−y, 1) is a solution to Selmer’s equation.

Next, suppose 5 ≡ 3b3 (mod p) for some b ∈ (Z/pZ)×. Then by Hensel’s Lemma, 53 is a

cube, so taking y ∈ Zp such that y3 = 5
3 , we have that (y, 0,−1) solves Selmer’s equation.

Finally, suppose 5 ≡ 9b3 (mod p) for some b ∈ (Z/pZ)×. Multiplying both sides of the

congruence by 3, we find by Hensel’s Lemma that 15 is a cube in Zp. Letting y ∈ Zp such that

y3 = 15, we have that (3y, 5,−7) solves Selmer’s equation.

Combining the above, we have that for any prime p there exists a solution in Qp as well as

in R for the equation 3X 3 + 4Y 3 + 5Z 3 = 0. However, although it is beyond the scope of this

paper, it can be proven that (0, 0, 0) is the only rational solution to this equation. Thus, we have

that the restriction of the Hasse-Minkowski Theorem to quadratic forms is necessary, for the

theorem does not apply to cubic forms in general.

Conclusion

Clearly, the local-global principle is not universal, but this prompts a more interesting

question. Why is it that Hasse-Minkowski works with homogeneous second-order diophantine

equations? Given that the local-global principle does not apply to cubic equations or to integer

solutions of equations, it is fascinating that a situation exists in which the principle applies

consistently. The very existence of Hasse-Minkowski merits further research into potential

applications of the local-global principle in other contexts.
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