
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

DIAGONALLY-REINFORCED 
CONCRETE COUPLING BEAMS 

WITH  
HIGH-STRENGTH STEEL BARS 

 
 
 
 

By 
Shahedreen Ameen 
Rémy D. Lequesne 

Andrés Lepage 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 

Structural Engineering and Engineering Materials 
SM Report No. 138 

May 2020 
 

THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC. 
2385 Irving Hill Road, Lawrence, Kansas 66045-7563 



 



 

 
 
 

Diagonally-Reinforced Concrete Coupling Beams with 
High-Strength Steel Bars 

 

 

By 
Shahedreen Ameen 
Rémy D. Lequesne 

Andrés Lepage 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Structural Engineering and Engineering Materials 
SM Report No. 138 

THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC. 
LAWRENCE, KANSAS 

May 2020 



 
 

 
 



i 

ABSTRACT 

The use of high-strength steel in diagonally reinforced coupling beams was investigated with 

the aims of minimizing reinforcement congestion and increasing the maximum permissible design 

shear stress without compromising behavior under large displacement reversals. Five large-scale 

diagonally reinforced concrete coupling beam specimens with clear span-to-depth ratios of 1.9 

were tested under fully reversed cyclic loads. The primary variables were yield stress of the 

diagonal reinforcement (60 and 120 ksi [420 and 830 MPa]), target beam shear stress (10 and 

15�𝑓𝑓𝑐𝑐′ psi [0.83 and 1.25�𝑓𝑓𝑐𝑐′ MPa]), length of the secondary (non-diagonal) longitudinal 

reinforcement, and axial restraint. All specimens had the same nominal concrete compressive 

strength and beam dimensions.  

Chord rotation capacities exhibited by the specimens with Grade 120 (830) reinforcement 

were between 5.1 and 5.6%, less than that of the control specimen with Grade 60 (420) diagonal 

reinforcement (7.1%). Neither development of secondary reinforcement nor increases in design 

shear stress affected specimen chord rotation capacity. The axially-restrained specimen with Grade 

120 (830) diagonal reinforcement showed the same chord rotation capacity as a similar specimen 

without axial restraint, but 14% larger strength. In specimens with secondary longitudinal 

reinforcement extended into the wall (such that the embedment length exceeded the calculated 

development length), the localization of damage evident along the beam-wall interface in tests of 

specimens with bars terminating near the wall face was not observed. Although damage was more 

distributed throughout the beam span, deformation capacity was not increased. Among the 

specimens, it was shown that the initial stiffness, area of the shear force-chord rotation hysteresis 
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cycles, and residual chord rotation at zero shear force changed in inverse proportion to the diagonal 

bar yield stress.  

A database of results from tests of diagonally reinforced coupling beams was compiled and 

used to evaluate the sensitivity of coupling beam chord rotation capacity to a range of variables. 

Variables included aspect ratio, reinforcement grade, transverse confinement reinforcement (type, 

spacing, and ratio), shear stress, and length of secondary (non-diagonal) reinforcement (whether 

terminated near the beam-wall interface or developed into the wall). An equation was proposed 

for calculating coupling beam chord rotation capacity as a function of beam clear span-to-height 

ratio and the ratio of hoop spacing to diagonal bar diameter. Chord rotation capacity was not 

correlated with other variables. Modifications are also proposed to the stiffness and deformation 

capacity modeling parameters recommended in ASCE 41-17 and ACI 369.1-17 for diagonally 

reinforced coupling beams to account for reinforcement grade.  
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CHAPTER 1 INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

Coupled structural walls are a commonly used lateral-force-resisting system in seismically 

active regions due to their strength and stiffness. Coupled walls consist of two or more structural 

walls arranged in series and linked, over the height of the structure, by a series of short coupling 

beams. For satisfactory performance of the system in an earthquake, coupling beams are required 

to sustain high shear forces throughout large displacement demands. 

To achieve this behavior, coupling beams are often reinforced with diagonally oriented 

reinforcing bars confined with closely spaced transverse reinforcement. Such reinforcement 

detailing has been shown to resist both diagonal tension and sliding shear failures in highly stressed 

coupling beams with small aspect ratios (clear span-to-overall depth ratios less than approximately 

2), resulting in excellent deformation capacity under reversals of load (Paulay and Binney, 1974). 

In practice, the ACI Building Code requires diagonally reinforced coupling beams to be designed 

such that the inclined bars resist all the shear and moment demand (ACI Building Code References 

are to ACI 318-14 unless otherwise noted). Closely spaced hoops are required to confine either 

each diagonal cage or the entire coupling-beam cross section. These hoops are necessary to 

maintain integrity of the concrete core and delay buckling of diagonal reinforcement. This reliance 

on well-confined diagonal reinforcement cages to resist the whole coupling beam shear demand 

often results in heavy congestion of reinforcement. 

Use of high-strength steel (yield strengths up to 120 ksi, or 830 MPa) has the potential to 

alleviate difficulties with construction of diagonally-reinforced coupling beams by facilitating the 

use of fewer and smaller reinforcing bars. However, use of steel with a nominal yield strength 
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larger than 60 ksi (420 MPa) is not permitted in special seismic systems (ACI Building Code) due 

to lack of experimental data. Coupling beams are good candidates for use of high-strength steel 

because the concerns associated with use of high strength steel, such as compatibility between 

reinforcing bars and concrete under compression and control of crack widths at service-level loads, 

are unlikely to cause problems.  

As a result of the reduced reinforcement congestion, it may be feasible to construct coupling 

beams with high-strength reinforcement that have design shear stresses larger than 10�𝑓𝑓𝑐𝑐′ [psi] 

(0.83�𝑓𝑓𝑐𝑐′ [MPa]), the current ACI Building Code limit. For conventionally reinforced beams (with 

no diagonal bars), this shear stress limit prevents diagonal compression failures. Coupling beams, 

however, may be less susceptible to diagonal compression failures because of the diagonal bars 

proportioned to resist all inclined tension and compression forces. Diagonally reinforced coupling 

beams may, therefore, exhibit adequate deformation capacity under shear stresses larger than 

10�𝑓𝑓𝑐𝑐′ [psi] (0.83�𝑓𝑓𝑐𝑐′ [MPa]).  

A concern with the use of high-strength reinforcement is that increases in yield strength are 

typically associated with decreases in bar strain at fracture. To maximize member deformation 

capacity, it may be necessary to use reinforcement detailing that limits concentration of strain 

demands near beam ends to encourage the spread of deformations throughout the beam span when 

using high-strength reinforcement. It may therefore be problematic that the ACI Building Code 

(318-14) commentary recommends terminating secondary (non-diagonal) longitudinal 

reinforcement near the intersection with the wall to limit unexpected overstrength of the member. 

Tests have indicated that undesirable localized damage may occur along the wall-beam interface 

as a result of this detail (Lequesne, Parra-Montesinos, and Wight, 2013). This localization was not 
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evident in recent tests of coupling beams with all reinforcement at the beam-wall interface 

satisfying development length requirements (Lim, Hwang, Cheng, and Lin, 2016). These tests 

showed that developing all beam reinforcement into the wall may lead to increased beam strength 

and deformation capacity. There is a need to evaluate the importance of this reinforcement 

detailing on the behavior of coupling beams constructed with high-strength steel. 

Finally, there is a need to evaluate the effect of axial restraint on the behavior of coupling 

beams under earthquake-type displacement reversals. Most previously used test setups allowed 

free elongation of the coupling beam specimen. This is unlike typical in-situ conditions, where 

stiff structural walls and diaphragms provide some resistance to beam elongation. Among the few 

tests providing axial force or restraint were those by Tegos and Penelis (1988), who tested twenty-

four diagonally reinforced columns under double curvature, twenty-one of which were axially 

loaded. Lequesne (2011) and Han et al. (2015) tested coupling beam specimens with restraint 

provided with steel links. None of these studies, however, directly evaluated the effects of restraint 

on behavior. 

1.2 OBJECTIVES 

The primary aim of this research was to investigate the use of high-strength steel as diagonal 

reinforcement in coupling beams. This objective was motivated by the desire to: a) minimize 

reinforcement congestion by reducing the amount and size of steel bars, and b) increase the 

maximum permissible design shear stress without compromising behavior under large 

displacement reversals. To accomplish this aim, the following objectives were set: 

1) Quantify, in terms of strength, deformation capacity, and stiffness, how the behavior of 

coupling beams designed for a shear stress of 10�𝑓𝑓𝑐𝑐′ [psi] (0.83�𝑓𝑓𝑐𝑐′ [MPa]) and 
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constructed with Grade 120 (830) bars differs from an ACI Building Code compliant 

control specimen, 

2) Evaluate whether, and to what extent, the behavior of coupling beam specimens designed 

for a target shear stress of 15�𝑓𝑓𝑐𝑐′ [psi] (1.25�𝑓𝑓𝑐𝑐′ [MPa]) differs from that of specimens 

designed for the ACI Building Code limit (10�𝑓𝑓𝑐𝑐′ [psi], or 0.83�𝑓𝑓𝑐𝑐′ [MPa]), and 

3) Determine the impact of terminating secondary beam longitudinal reinforcement near 

the beam-wall interface, as recommended in the ACI Building Code commentary, on 

diagonal reinforcing bar strain demand and member deformation capacity. 

In addition to these, two complementary secondary objectives were also set:  

4) Quantify the effects of axial restraint on coupling beam behavior, again in terms of 

strength, deformation capacity, and stiffness, and 

5) Propose beam deformation capacity limits that account for beam aspect ratio and 

reinforcement grade for use in non-linear simulation of coupled-wall systems. 

1.3 APPROACH 

To address Objectives 1 through 4, five large-scale tests of diagonally-reinforced coupling 

beam specimens (Table 1.1) were conducted. The approximately ½-scale specimens, which had 

an aspect ratio (clear span-to-overall depth) of 1.9, were tested under fully reversed cyclic loading 

to simulate earthquake-type demands.  
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Table 1.1 – Summary of coupling beam specimens (1 ksi = 6.89 MPa, 1 psi = 0.00689 MPa, 1 in. 
= 25.4 mm) 

ID 
Diagonal Bar 

Nominal 
Yield Stress 

Transverse and 
Longitudinal Bar 
Nominal Yield 

Stress 

Target 
Nominal 

Shear 
Strengtha 

Diagonal 
Barsb 

Longitudinal 
Bars 

Transverse 
Bars 

Axially 
Restrained 

 ksi ksi psi     
        

CB1 60 60 10�𝑓𝑓𝑐𝑐′𝐴𝐴𝑐𝑐𝑐𝑐 12#7 8#3c #3@3 in. No 

CB2 120 60 10�𝑓𝑓𝑐𝑐′𝐴𝐴𝑐𝑐𝑐𝑐 8#6 8#3c #3@3 in. No 

CB2D 120 60 10�𝑓𝑓𝑐𝑐′𝐴𝐴𝑐𝑐𝑐𝑐 8#6 8#3d developed #3@3 in. No 

CB2AD 120 60 10�𝑓𝑓𝑐𝑐′𝐴𝐴𝑐𝑐𝑐𝑐 8#6 8#3d developed #3@3 in. Yes 

CB3D 120 60 15�𝑓𝑓𝑐𝑐′𝐴𝐴𝑐𝑐𝑐𝑐 12#6 8#3d developed #3@3 in. No 
        

a Based on ACI 318-14 Eq. 18.10.7.4 using specified material properties; 𝐴𝐴𝑐𝑐𝑐𝑐 is the cross-sectional area of the 
 coupling beam. 
b Includes all bars from both diagonal groups. 
c Cutoff 2 in. (50 mm) into the wall from the beam-wall interface, consistent with ACI commentary. 
d Developed into wall per ACI 318-14 Eq. 25.4.2.3a.  

The specimens (Table 1.1) included a control specimen compliant with ACI Building Code 

requirements that used conventional Grade 60 (420) steel as diagonal reinforcement. The other 

four specimens were constructed with Grade 120 (830) steel as diagonal reinforcement. These 

specimens were designed for target shear stresses of either 10�𝑓𝑓𝑐𝑐′ [psi] (0.83�𝑓𝑓𝑐𝑐′ [MPa]), the 

upper limit permitted by the ACI Building Code, or 15�𝑓𝑓𝑐𝑐′ [psi] (1.25�𝑓𝑓𝑐𝑐′ [MPa]). Two different 

reinforcement details were used at the beam-wall interface: either all secondary longitudinal beam 

reinforcement was cutoff 2 in. (50 mm) into the wall from the beam-wall interface or it was 

extended into the walls a length equal to the development length. To study the effects of axial 

restraint, one of the specimens with high-strength steel was tested in parallel with stiff 

longitudinally-oriented links designed to provide axial restraint. Other specimens were free to 

elongate. 
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To address Objective 5, a database was compiled of results from tests of diagonally 

reinforced coupling beams. Using this database and experimental results reported herein, the 

sensitivity of coupling beam deformation capacity to several parameters was evaluated. 

Modifications to ASCE 41-17 and ACI 369.1-17 modeling parameters for diagonally reinforced 

coupling beams, including stiffness and deformation capacity, are proposed to account for 

reinforcement grade. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 COUPLING BEAMS 

Under earthquake-type or other lateral loading, the deformation of coupled walls causes a 

differential movement between the supported ends of the coupling beams (Figure 2.1). The chord 

rotation demand imposed on coupling beams, calculated as the differential movement divided by 

the length of the beam, is often significantly larger than the global drift demand due to the geometry 

of the system. A key requirement for attaining the desired behavior from a coupled wall system is 

therefore the deformation capacity of its coupling beams. Coupling beams also need to maintain 

adequate strength and stiffness under large flexural and shear deformations in order to spread 

inelastic deformations over the height of the system and sustain wall coupling throughout the 

imposed loading. 

 
Figure 2.1 – Deformed shape of a coupled shear wall subjected to lateral load (Subedi, 1991) 
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2.1.1 REINFORCED CONCRETE COUPLING BEAMS 

The deformation of reinforced concrete coupling beams is a combination of flexural and 

shear deformations. Flexural deformations develop because coupling beams are under double 

curvature bending, with a point of inflection at the center of the beam, when the structure deforms 

laterally. Flexural deformations are thus expected to be largest at the beams ends, where the use of 

confinement reinforcement in the expected flexural hinge region can delay degradation of the 

compression zone and buckling of reinforcement. 

Lateral building drifts also impose uniform shear over the length of coupling beams. Shear 

deformations tend to cause compression along one diagonal (AC in Figure 2.1) and tension along 

the other diagonal (BD), with both top and bottom surfaces of the beam remaining in tension along 

the length of the beam when unrestrained axially. To prevent or delay inclined shear failures, 

transverse or inclined reinforcement must be placed throughout the beam span. In addition, after 

several cycles of reversing loads, wide flexural cracks near the beam ends are susceptible to 

developing large sliding shear displacements that can limit the beam deformation capacity. 

Inclined reinforcement is most effective at preventing or delaying sliding shear failures. 

2.1.1.1 ORIGINATION OF DIAGONALLY ORIENTED REINFORCEMENT 

In 1969, Paulay reported results from tests of twelve deep reinforced concrete coupling 

beams with aspect ratios of 1.0, 1.3 and 2.0 under static and cyclic loading. The tests were part of 

a project initiated to investigate the behavior of coupled shear walls. The results clearly showed 

the inadequacy of conventional ‘moment-frame-type’ reinforcement layouts (longitudinal bars 

with transverse steel, as shown in Figure 2.2) for coupling beams with aspect ratios less than 2.0. 

Because the specimens were relatively deep, short-spanned, and subjected to very high shear 
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stresses, their behavior was dominated by shear deformations and not flexure. Paulay found that 

conventional horizontally reinforced (‘moment-frame-type’) coupling beams are likely to exhibit 

diagonal tension or sliding shear (shear compression) failures after high intensity reversed cyclic 

loading. The ductility of these beams was inadequate to satisfy the demand in coupled shear wall 

structures that are expected to be subjected to large earthquakes (Paulay, 1971). Other than at low 

shear stresses, beams with conventional ‘moment-frame-type’ reinforcement do not exhibit 

satisfactory performance.  

  
Figure 2.2 - Conventionally (left) and diagonally (right) reinforced coupling beams (wall 

reinforcement omitted for clarity) 
 

The Paulay test results also showed that instead of developing the strain profile expected 

based on imposed sectional moments, tensile strain was developed in the longitudinal 

reinforcement over the entire span of the beam for both top and bottom steel as shown in Figure 

2.3. The figure shows the reinforcing bar strain measured at several points along the span of one 

of the conventionally reinforced beams tested by Paulay. Each curve in the figure is labeled with 

a circled value to indicate the imposed chord rotation. This shows that traditional reinforced 

concrete flexural design principles are not applicable to short coupling beams subjected to large 
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nominal shear stresses. Furthermore, Paulay argued that the presence of compression 

reinforcement cannot be expected to improve beam ductility if it is, in fact, elongating throughout 

the loading protocol. 

 
Figure 2.3 – Strain distribution in longitudinal steel in a coupling beam tested by Paulay, 1969 

 



11 

These findings led Paulay and Binney to propose a different reinforcement detailing 

approach in 1972 aimed at improving coupling beam performance. Paulay and Binney tested three 

short and deep coupling beams (two with an aspect ratio of 1.29 and one with 1.02) under repeated 

cyclic loading with the principal reinforcement placed in the form of two intersecting diagonal 

bars (Figure 2.2). Reinforced in this way, the beam acts as a cross-bracing with equal diagonal 

tension and compression capacity. For a member experiencing antisymmetric bending with its 

inflection point at midspan, this reinforcement arrangement is a logical solution because the depth 

of the primary flexural reinforcement follows the moment distribution. Test results showed that 

diagonally reinforced coupling beams possess excellent deformation capacity and energy 

dissipation properties when the inclined reinforcement is adequately restrained from buckling. 

The improved behavior exhibited by diagonally reinforced coupling beams is shown in 

Figures 2.4 and 2.5, which show plots of load versus beam chord rotation for two specimens 

reported by Paulay in 1969 and Paulay and Binney in 1974, respectively. Strain measurements 

indicated that steel stresses along the diagonal bars were nearly uniform over the length of the 

beam after the onset of diagonal cracking. Strain measurements taken on longitudinal (non-

diagonal) reinforcement again showed that in beams with an aspect ratio less than 1.5, the flexural 

reinforcement is subjected to tension over the entire span of the beam (not only at midspan but 

also in the theoretical compression zones for both top and bottom reinforcement). Specimens tested 

by Paulay and Binney developed strengths in excess of the calculated nominal strength due to 

strain hardening.  
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Figure 2.4 – Load-rotation relationship for “Beam 312” with moment-frame-type reinforcement 
(Paulay, 1969) 

 

Figure 2.5 – Load-rotation relationship for “Beam 317” with diagonal reinforcement (Paulay and 
Binney, 1974) 
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Subsequent experimental work has supported the effectiveness of diagonally oriented 

reinforcement as a means of improving the deformation capacity of reinforced concrete coupling 

beams. In 1976, Irwin and Ord reported results from tests of six small-scale reinforced concrete 

coupled shear wall models. The specimens consisted of two pier segments linked by a series of 

coupling beams, with the depth of the coupling beams varied among the specimens. It was 

concluded that diagonally reinforced coupling beams are capable of providing adequate strength 

and ductility and are thus appropriate for use in coupled walls. Similar tests of large-scale coupled 

systems, reported by Paulay and Santhakumar in 1976, showed similar results. 

In 1988, results were published from two independent research programs designed to study 

the use of full-length diagonal reinforcement for improving the hysteretic response of short 

columns subjected to high shear stresses – a situation similar to that of coupling beams. Kuramoto, 

Minami, and Wakabayashi tested fifteen reinforced concrete short columns subjected to axial 

compression and lateral cyclic loading. Twelve of the fifteen specimens – all of them having an 

aspect ratio of 2.0 – were diagonally reinforced. The study confirmed that diagonal reinforcement 

improves the strength and ductility of short columns if adequately confined. The need for this 

confinement increases with axial load, because the cause of failure in diagonally reinforced 

members is typically buckling of diagonally oriented bars. In a separate study, Tegos and Penelis 

tested twenty-four column specimens to evaluate the use of diagonal reinforcement in short 

columns. Their results also demonstrated the improved behavior exhibited by diagonally 

reinforced concrete members relative to those with more conventional reinforcement. 
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2.1.1.2 ALTERNATIVE REINFORCEMENT LAYOUTS 

Despite the excellent behavior consistently exhibited by diagonally reinforced coupling 

beams, researchers have continued to seek alternatives. This is because diagonally reinforced 

coupling beams are difficult and time-consuming to construct due to reinforcement congestion (a 

large amount of confinement reinforcement is needed for the diagonal reinforcement and 

diagonally oriented beam reinforcement must intersect the densely reinforced wall boundary 

elements). 

In 1978, Shiu, Barney, Fiorato, and Corley reported tests of eight reinforced concrete 

coupling beam specimens to evaluate the performance of three different reinforcement layouts. 

Three coupling beam specimens with conventional ‘moment-frame-type’ reinforcement, three 

specimens with diagonal bars near the beam-wall interface (Figure 2.6) and two with full-length 

diagonal reinforcement were subjected to high shear stresses ranging from 7 to 11�𝑓𝑓𝑐𝑐′ [psi] 

(0.58 to 0.91�𝑓𝑓𝑐𝑐′ [MPa]). The specimens had aspect ratios of 2.5 and 5.0 for each type of detailing. 

From the results, it was observed that performance of the beams with conventional ‘moment-

frame-type’ reinforcement was limited by sliding-shear in the hinging region, a mode of failure 

that is not improved by increasing the amount of transverse reinforcement. Damage at the ends of 

the beams caused by sliding shear was not observed in specimens with diagonal bars near the 

beam-wall interface, but the overall improvement in hysteretic response was not significant enough 

to justify the additional cost of detailing. For the beams with an aspect ratio of 2.5, full-length 

diagonal reinforcement dramatically improved the deformation capacity. Furthermore, the beams 

with an aspect ratio of 2.5 and full-length diagonal reinforcement reached the predicted shear 

capacity, whereas most of the other specimens were more than 10% below the expected strength. 
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The deformation capacity of beams with full-length diagonal reinforcement was limited by 

buckling and subsequent fracture of diagonal bars. In the case of the beams with an aspect ratio of 

5.0, use of full-length diagonal reinforcement did not result in a significant improvement in 

behavior relative to the beams with ‘moment-frame-type’ reinforcement. A possible explanation 

for this difference is that in slender beams, diagonally-oriented reinforcement has a very small 

angle of inclination relative to the longitudinal beam axis. The contribution of the diagonal bars to 

shear resistance is therefore small and inefficient. It was concluded that it is not economical to use 

full-length diagonal reinforcement in coupling beams with aspect ratios larger than 4.0. 

In their 1988 paper, Tegos and Penelis also reported results from tests of specimens 

constructed with an alternative reinforcement detail aimed at preventing premature diagonal-

splitting failures in shear-critical columns. The proposed reinforcement detail consisted of 

arranging the main longitudinal reinforcement into the shape of a rhombus (Figure 2.6). Through 

tests of twenty-four column specimens with aspect ratios of 2.0, 3.0 and 4.0, eighteen of which 

had rhombic reinforcement detailing, it was observed that the specimens with inclined rhombic 

reinforcements and an aspect ratio of more than 1.5 retained strength up to a rotation of 4% with 

no significant deterioration after reaching their maximum capacity. Three of the eighteen 

specimens had no imposed axial load, while the others were under large compression, ranging 

from 20% to 35% of 𝐴𝐴𝑔𝑔𝑓𝑓𝑐𝑐′, where 𝐴𝐴𝑔𝑔 is the gross cross-sectional area. Specimens without 

compression loads had deformation capacities larger than similar specimens under large 

compression loads, as expected, but the results were not sufficient to evaluate the effect of axial 

restraint because elongation was not controlled and it was not clear the magnitude of imposed axial 

force was representative of the axial forces that develop in restrained beams. More important, 
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introducing inclined rhombic-type reinforcement appeared to prevent explosive inclined shear 

failures; thereby reducing the amount of hoops required. 

  
Figure 2.6 – Bent-up bar (left) and rhombic reinforcement (right) at beam-wall interface (wall 

reinforcement omitted for clarity) 
 

In 1996, Tassios, Moretti, and Bezas reported results from tests of ten coupling beams with 

five different layouts of reinforcement and two different aspect ratios (1.0 and 1.66). Other than 

the conventional (moment-frame-type) and “well-established but difficult to construct” diagonal 

reinforcement detailing, three other reinforcement arrangements were evaluated. Two of those 

included short and long dowels across the end of the beams (Figure 2.7) aimed at preventing sliding 

shear failures, and the third had bent-up bars, parallel in the middle and intersecting at the ends, 

similar to the ones tested by Shiu et al. (Figure 2.6). The specimens were tested in a vertical 

position with one end fixed to the reaction frame and the other end free to elongate. It was again 

observed that before development of diagonal cracking, the distribution of strains measured along 

the primary longitudinal reinforcement was very close to that predicted by flexural theory. After 

inclined cracking, however, the strain distribution changed such that tensile strains were recorded 

along the full length of the beam along both the top and bottom of the beams. This abrupt change 
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in the distribution of longitudinal strains was more evident in specimens with an aspect ratio of 

1.0. 

The Tassios et al. tests once again showed that use of a diagonal reinforcement layout leads 

to larger deformation capacity than other layouts, particularly in specimens with lower aspect 

ratios (less than approximately 1.5). Specimens with bent-up bars had larger strength and 

deformation capacity than the conventionally reinforced specimens. Although the presence of 

dowels did prevent sliding at the beam ends, it did not prevent shear compression failures (at the 

ends for specimens with long dowels and near the middle of the beam span for specimens with 

short dowels). A severe pinching of the force-displacement relationship was also observed in the 

response of all specimens with dowel bars. In general, specimens with an aspect ratio of 1.66 

exhibited a larger deformation capacity than those with an aspect ratio of 1.0. From the crack 

patterns, it appears shear was primarily transferred through a diagonal compressive strut in 

specimens with aspect ratios of 1.0, whereas in specimens with aspect ratios of 1.66, a truss-like 

mechanism seemed to be a better model. The researchers recommended that for coupling beams 

with aspect ratios lower than about 1.5, well-confined diagonal reinforcement designed to sustain 

the entire shear force and bending moment be used. For beams with aspect ratios larger than 1.5, 

diagonal reinforcement resulted in the best performance, but alternative reinforcement layouts also 

resulted in satisfactory behavior. For instance, the researchers suggested that use of full-length 

dowels near mid-depth in combination with bent-up bars near the beam ends and conventional 

longitudinal reinforcement along the top and bottom of the beam may be adequate. For beams with 

aspect ratios larger than approximately 2.66, Tassios et al. suggested that conventional ‘moment-

frame-type’ detailing may be adequate based on previous research. 
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Figure 2.7 – Coupling beam with short (left) and long (right) dowels across the end (wall 

reinforcement omitted for clarity) 
 

In 2000, Galano and Vignoli published results from tests aimed at comparing the behavior 

of 15 short coupling beam specimens. The specimen behavior was compared in terms of failure 

mechanism, deformation capacity, peak strength, and degradation in stiffness. To verify the claim 

by Tegos and Penelis that specimens with full-length diagonal and rhombic reinforcement layouts 

exhibited similar behavior, the test series included specimens with four different reinforcement 

layouts: conventional (moment-frame-type), diagonal without confining ties, diagonal with 

confining ties, and rhombic. The specimens had an aspect ratio of 1.5 and were subjected to either 

monotonic or reversed cyclic shear loading. It was found that specimens with the rhombic 

reinforcement configuration exhibited better strength retention and similar energy dissipation 

compared to specimens with well-confined diagonal reinforcement. Although not discussed in the 

Galano and Vignoli paper, the unexpected failure mode (crushing of the concrete strut) exhibited 

by some of the diagonally reinforced specimens raise questions about the validity of the findings. 

According to Canbolat’s review (2004), the unanticipated crushing of the concrete strut can likely 

be attributed to the concrete quality, which varied among the specimens. 
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Tests of beams with a hybrid reinforcement scheme (Figure 2.8) were reported in 2016 by 

Lim, Hwang, Cheng, and Lin. The series of six coupling beam specimens included two with 

moment-frame-type reinforcement, two with full-length diagonal reinforcement, and two with 

conventional (moment-frame-type) detailing combined with diagonal reinforcement, named a 

‘hybrid layout’. The proposed hybrid reinforcement layout was similar to that proposed previously 

for beams constructed of high-performance fiber reinforced concrete (Lequesne, 2011). The six 

specimens included beams with aspect ratios of 3.0 and 4.0. Specimens with the hybrid 

reinforcement layout exhibited a deformation capacity that was judged to be adequate; larger than 

that of specimens with conventional (moment-frame-type) detailing but less than that of specimens 

with full-length diagonal reinforcement. For example, among specimens with aspect ratios of 3.0, 

it was observed that conventionally reinforced specimens retained 80% of the maximum lateral 

force until a chord rotation of 4.1%, while diagonally reinforced specimens reached 7% chord 

rotation. For the hybrid specimens, the limiting chord rotation was 5.5%. The authors argued that 

a chord rotation of 5.5% is adequate and that the hybrid reinforcement layout is likely to be simpler 

to construct than a diagonal-bar layout because of the reduced amount of diagonal reinforcement 

and horizontal longitudinal bar development into the wall boundary element. 

 

Figure 2.8 – Coupling beams with hybrid layout (wall reinforcement omitted for clarity) 
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The Lim et al. diagonally reinforced beam specimens deviated from ACI Building Code 

commentary recommendations in at least two important ways: (1) the diagonal bars were bent near 

the beam ends and entered the walls horizontally instead of at an inclination, and (2) the 

development length of the secondary (non-diagonal) longitudinal reinforcement (ACI Building 

Code references are to ACI 318-14 unless otherwise noted). Instead of terminating near the beam-

wall interface, the secondary (non-diagonal) longitudinal reinforcement satisfied ACI Building 

Code development length requirements. As a result of this second detail, damage was spread 

throughout the beam spans in the Lim et al. tests while in other tests (Naish, Fry, Klemencic, and 

Wallace, 2009, Lequesne, Parra-Montesinos, and Wight, 2013) localized damage was observed 

along the beam-wall interface. It therefore seems possible that developing the non-diagonal 

reinforcement may be a way to reduce concentrations of deformations near the beam ends. This 

may be particularly advantageous when less ductile high-strength steel is used.  

Recently, a new reinforcement detail for reinforced concrete coupling beams was proposed 

by Choi, Hajyalikhani, and Chao (2018) that consists of reinforcing a deep coupling beam as if it 

was two slender ‘moment-frame’-type beams stacked vertically (Figure 2.9). The reinforcement 

cages are separated by a small unreinforced strip of concrete. Five “double-beam” coupling beam 

specimens, four with aspect ratios of 2.4 and one with an aspect ratio of 3.3, were tested under 

reversed cyclic loads. Two of the specimens with aspect ratios of 2.4 and the one with an aspect 

ratio of 3.3 had 1 in. (25.4 mm) clear spacing between the ends of the transverse reinforcement at 

midheight; in the other two specimens, the clear spacing was either 0.25 in. (6.35 mm) or 2 in. (51 

mm). The results showed that under small displacements the “double-beam” specimens act like 

conventional coupling beams. Under large displacements, cracks concentrate near midheight at 

midspan and then propagate toward the beam ends. Eventually, the beam separates into two 
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relatively slender beams that each have approximately twice the aspect ratio of the original beam. 

As a result, the shear-dominated deep beam behavior typical of coupling beams becomes flexure-

dominated slender beam behavior. As a result, sliding shear failures at the beam-wall interface 

become less likely. The specimens sustained large rotations (6 to 11%) and large shear stresses 

between 10 and 12�𝑓𝑓𝑐𝑐′ [psi] (0.83 and 1.0�𝑓𝑓𝑐𝑐′ [MPa]). 

 

Figure 2.9 – Reinforcement layout in “double-beam” coupling beams (wall reinforcement omitted 
for clarity) 

 

Several different reinforcement layouts have thus been investigated in an effort to find 

simpler ways to construct coupling beams that exhibit deformation capacities similar to diagonally 

reinforced beams. Although several have resulted in deformation capacities close to that of 

diagonally reinforcement beams, the apparent reduction in reinforcement congestion achieved by 

some of the alternatives has not been significant enough to motivate their adoption in practice. 

Diagonally-oriented reinforcement continues to be the primary layout used in construction of 

reinforced concrete coupling beams. 
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2.1.1.3 CONFINEMENT 

Since the ACI Building Code adopted provisions for diagonally reinforced concrete 

coupling beams in 1999, their use has become common in multistory buildings. To ensure stability 

of the diagonal reinforcement under compression, the ACI Building Code (318-99) required that 

each diagonal cage be confined by hoops with an area and spacing satisfying the requirements for 

confinement of columns in moment frames classified as special (Figure 2.10a). These requirements 

remained unchanged until an alternative was added in 2008 (318-08) that allowed the use of hoops 

to confine the entire coupling beam cross section instead of only the inclined reinforcement cages 

(Figure 2.10b). This change, justified based on the studies described below, was made to alleviate 

the reinforcement congestion caused by confinement reinforcement.  

  
(a) Diagonal confinement (b) Full confinement 

Figure 2.10 – Confinement detailing of coupling beam 

 

In 2008, with the aim of promoting relaxed confinement requirements, Fortney, Rassati, 

and Shahrooz reported results from tests under reversed cyclic loading of two diagonally-
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reinforced coupling beam specimens with different transverse reinforcement detailing. One 

specimen was in full compliance with ACI Building Code (318-05) provisions, whereas the other 

had fewer hoops around the diagonal bar groups along the length of the beam where the diagonal 

bar groups intersected. In addition, both the specimens had more than twice the area of transverse 

reinforcement around the core of the specimens than required by Code provisions (ACI 318-05). 

The experimental results showed that providing more transverse reinforcement than required 

beneficially impacted the response of the specimens by ensuring necessary confinement to the 

concrete core of the beam and delaying buckling. Though the two test results were insufficient to 

propose a minimum transverse reinforcement ratio, it was clear that the concrete core must remain 

intact through large deformation cycles. Therefore, contrary to expectations, the final 

recommendation was to increase the minimum transverse reinforcement ratio above the code 

specified requirements. 

In 2013, Naish, Fry, Klemencic, and Wallace reported results from an experimental study 

aimed at comparing the behavior of specimens constructed in accordance with the requirements of 

either ACI 318-05 or ACI 318-08 (diagonal cage confinement or full-section confinement, 

respectively). The test specimens were designed to simulate common tall-building configurations 

for residential and office construction. Of the eight specimens tested, five had an aspect ratio of 

2.4, which is a typical aspect ratio for coupling beams in residential buildings, and the other three 

specimens had an aspect ratio of 3.33, intended to represent typical office buildings. Two 

specimens with each aspect ratio had hoops placed along the intersecting groups of diagonal bars 

(“diagonal” confinement) whereas other specimens had hoops placed so as to provide confinement 

for the core of the coupling beam (“full-section” confinement). Test results showed the use of full-

section confinement results in behavior that is similar to that of specimens with confinement of 
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only the diagonal bars. These results supported the ACI Building Code change, adopted in 2008, 

permitting the use of full-section confinement in coupling beams. 

In the Naish et al. tests, the beams were not axially restrained. Three of the five specimens 

with an aspect ratio of 2.4 were, however, constructed with a 4 in. (100 mm) thick reinforced 

concrete slab, two of which also contained post-tensioned strands that provided some partial 

restraint to axial growth along the member length. Most damage experienced by the beams was 

concentrated at the beam-wall interface in the form of slip/extension of diagonal reinforcement, 

even when axial load was applied to the beam via post-tensioning. 

2.1.1.4 CODE REQUIREMENTS AND LIMITATIONS 

According to the ACI Building Code (318-14), coupling beams with aspect ratios less than 

2.0 and nominal shear stresses over 4�𝑓𝑓𝑐𝑐′ [psi] (0.33�𝑓𝑓𝑐𝑐′ [MPa]) shall be diagonally reinforced. 

For coupling beams with aspect ratios between 2.0 and 4.0, either diagonal or special moment 

frame reinforcement detailing are permitted. When the aspect ratio is larger than or equal to 4.0, 

the beam shall be designed with special moment frame detailing. These provisions reflect that use 

of inclined reinforcement to resist transverse shear becomes increasingly inefficient as the beam 

aspect ratio increases (and thus the angle of reinforcement inclination decreases).  

Where diagonal reinforcement is used, the diagonal bar groups must consist of at least four 

longitudinal bars arranged to form a rectangle. The diagonal bars have to be designed to resist the 

entire shear, with the nominal shear capacity thus calculated using Eq. 2.1 (Figure 2.11). 

 𝑉𝑉𝑛𝑛 = 2𝐴𝐴𝑣𝑣𝑣𝑣 𝑓𝑓𝑦𝑦sin(𝛼𝛼) ≤ 10�𝑓𝑓𝑐𝑐′𝑏𝑏ℎ Eq. 2.1 
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The ACI Building Code allows coupling beams to be designed for nominal shear strengths up to 

10�𝑓𝑓𝑐𝑐′ [psi] (0.83�𝑓𝑓𝑐𝑐′ [MPa]) with a maximum diagonal bar yield stress 𝑓𝑓𝑦𝑦 of 60 ksi (420 MPa), 

although Harries, Fortney, Shahrooz, and Brienen (2005) have argued that nominal shear strengths 

larger than 6�𝑓𝑓𝑐𝑐′ [psi] (0.5�𝑓𝑓𝑐𝑐′ [MPa]) are difficult to achieve in slender coupling beams due to 

reinforcement congestion. 

For confinement, the ACI Building Code provides the two options shown in Figure 2.10; 

either a) confine each group of diagonal bars independently with hoops, or b) provide hoops and 

crossties to confine the entire beam cross section. In either case, the area and spacing of hoops 

must satisfy the requirements for confinement of special moment frame columns supporting axial 

loads less than 0.3𝐴𝐴𝑔𝑔𝑓𝑓𝑐𝑐′, where 𝐴𝐴𝑔𝑔 is the gross cross-sectional area. Each bar within the diagonal 

group must be embedded into the wall at least 25 percent more than the calculated development 

length in tension. 

 
Figure 2.11 – Schematic of diagonally reinforced coupling beam showing end reactions (wall 

reinforcement omitted for clarity) 
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2.1.2 STEEL COUPLING BEAMS 

Use of steel sections, embedded into reinforced concrete walls, is an alternative to 

reinforced concrete coupling beams. In 1993, Harries, Mitchell, Cook, and Redwood published 

results from tests under reversed cyclic loading of two full-scale specimens that demonstrated that 

use of steel sections as coupling beams can provide excellent deformation capacity and energy 

dissipation. The beams were designed and detailed following the seismic design requirements for 

eccentrically braced frames in the Canadian Steel Design Standard. When properly embedded into 

the adjacent reinforced concrete walls, steel coupling beams can also exhibit larger strength than 

reinforced concrete beams with shallower depths. Harries et al. argued that use of steel coupling 

beams may be the only way to provide the required strength and stiffness in structures with height 

restrictions. 

In 1993, Shahrooz, Remmetter, and Qin reported results from tests of three specimens 

consisting of wall piers and coupling beams. The tests were aimed at investigating the transfer of 

cyclic forces between the steel coupling beams and reinforced concrete walls. Built-up steel 

sections were attached to the wall piers by embedment into the boundary element, interfering with 

the wall reinforcement. According to the test results, the performance of the steel coupling beams 

was satisfactory in terms of hysteresis and energy dissipation characteristics. Subsequent studies, 

such as Park and Yun (2005), have proposed models for computing the proper embedment length 

of steel coupling beams. Though smaller than concrete coupling beams of similar strength and 

stiffness, steel coupling beams are difficult to place on-site; their embedment causes significant 

interference with reinforcement in the adjacent wall boundary elements. 
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2.1.3 COMPOSITE COUPLING BEAMS 

Use of composite coupling steel-concrete coupling beams has also been investigated. In 

1996, Gong, Shahrooz, and Gillum published results from tests on coupling beams consisting of 

wide-flanged steel beams encased in lightly reinforced concrete. The composite members 

exhibited both strength and deformation capacity, while the concrete encasement prevented 

undesirable web and flange buckling of the steel section. In 2005, Lam, Su, and Pam proposed 

another alternative consisting of a steel plate encased in concrete. After testing three beams under 

reversed cyclic loading (one conventionally reinforced and two with embedded steel plates along 

the whole span, either with or without shear studs), it was concluded that embedded steel plates 

improved the strength and stiffness of coupling beams.  

In 2017, Motter, Fields, Hooper, Klemencic, and Wallace published results from tests of 

four large-scale steel-reinforced concrete coupling beam specimens to quantify the effects of steel 

section embedment length, aspect ratio, wall boundary longitudinal and transverse reinforcement 

amounts, and loading. These results once again confirmed that improved performance was 

associated with long embedment length as well as heavy wall boundary reinforcement; reduced 

embedment length and light wall boundary reinforcement led to reduced performance with cyclic 

degradation evident in the load-deformation response and significant damage in the embedment 

region.  

In general, composite coupling beams have the same limitation as steel coupling beams: 

the long embedment required to ensure full development of the steel section must pass through, 

and thus disrupt, the longitudinal and transverse reinforcement in the wall boundary zone. 
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2.1.4 HPFRC COUPLING BEAMS 

Use of high performance fiber reinforced concrete (HPFRC) in construction of coupling 

beams has gained some traction in practice. In 2005, Canbolat, Parra-Montesinos, and Wight 

published results from tests four coupling beams with aspect ratios of 1.0. This series of tests 

included a reinforced concrete specimen detailed to satisfy ACI Building Code (318-02) 

requirements, an HPFRC specimen with no diagonal reinforcement, and two precast, diagonally 

reinforced, HPFRC coupling beams. Results demonstrated that HPFRC can provide effective 

confinement of diagonal reinforcement, thereby significantly reducing the need for transverse 

reinforcement. HPFRC was also shown to increase the shear strength and energy dissipation of the 

member, potentially allowing for a reduction in the amount of diagonal reinforcement required to 

attain a target shear strength. Finally, use of HPFRC was shown to improve the damage tolerance 

of the member by dispersing damage over more numerous, finer cracks. As a result, HPFRC 

coupling beams may require less costly repairs than reinforced concrete coupling beams following 

an earthquake.  

In 2007, Zhang, Zhang, and Huang reported similar findings from their tests of nine fiber-

reinforced and four high-strength concrete coupling beams with aspect ratios less than 2.5. The 

variables were aspect ratio, steel fiber volume fraction, hoop content, and loading mode. The test 

results indicated that the partial replacement of hoops by steel fibers can not only improve the 

shear resistance of the coupling beams but also change the failure type from brittle shear failure to 

ductile flexural failure. Another contemporary study by Yun, Kim, Jeon, Park, and Lee (2008) on 

three coupling beams with aspect ratios of 1.0 and two different reinforcement arrangements also 

supported the use of HPFRC in shear dominated coupling beams. 
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Subsequent tests of HPFRC coupling beams with aspect ratios from 1.75 to 3.3 (Parra-

Montesinos, Wight, and Setkit, 2010, Lequesne, 2011) have shown that use of HPFRC permits a 

significant reduction in the amount of diagonal reinforcement required to achieve acceptable 

performance under earthquake-type loads. For an HPFRC coupling beam with an aspect ratio of 

1.75, the area of diagonal reinforcement can be reduced by approximately 2/3 relative to reinforced 

concrete coupling beams without markedly compromising deformation capacity. For HPFRC 

coupling beams with aspect ratios larger than approximately 2.5, no diagonal reinforcement is 

required.  

These findings led to the use of HPFRC coupling beams in high-rise structures on the west 

coast of the United States. However, despite early adoption, widespread use of HPFRC coupling 

beams has been hindered by the somewhat higher cost of HPFRC and the unfamiliarity of 

contractors with sourcing and handling it. 

2.2 HIGH STRENGTH STEEL 

The idea of using high-strength reinforcement in concrete structures can be traced back to at 

least 1934 when Richart and Brown performed a series of laboratory tests on columns with circular 

cross sections and spiral reinforcement. The tests showed that longitudinal bars with yield stress 

close to 100 ksi (690 MPa) were fully effective in columns resisting concentric axial loads. With 

adequate spiral confinement, the core concrete developed compressive strains large enough for the 

longitudinal bars to reach their yield point. In 1960, experimental work at the Portland Cement 

Association (PCA) Laboratory led to similar conclusions. But for tied columns with rectangular 

sections, PCA reported that the specified yield point needs to be reached at or below a strain of 

0.003 if it is to be developed in a concentrically loaded column. As a result, in 1963, the ACI 
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Building Code limited the yield stress of vertical column reinforcement to 75 ksi (515 MPa), 

which, in 1971, was increased to 80 ksi (550 MPa) for non-seismic applications. The limit was 60 

ksi (420 MPa) for seismic applications. 

Recent advances in steel production have made it possible to produce higher strength 

reinforcement at a price that is competitive with Grade 60 (420) steel. As a result, there has been 

renewed interest in the use of high-strength steel as a means of reducing reinforcement congestion 

as well as material, shipping, and placing costs.  

In 2012, Rautenberg, Pujol, Tavallali, and Lepage reported the results of four column tests. 

Two control specimens were reinforced with conventional Grade 60 (420) reinforcement and two 

specimens had high-strength Grade 120 (830) reinforcement. The strengths of all specimens were 

approximately equal because the product of the reinforcement ratio and steel yield stress was 

approximately constant. Transverse reinforcement (No. 3 Grade 60 (420) hoops) was provided to 

restrain buckling of the longitudinal reinforcement, confine the core concrete, resist shear, and 

improve bond between concrete and the longitudinal bars. Under fully reversed cyclic loads, all 

four specimens exhibited drift capacities of at least 4%. Based on the results, Rautenberg et al. 

argued that use of high-strength reinforcement in columns of earthquake-resistant structures has a 

high potential to be effective because when columns are sized so that the axial load demand falls 

below the balanced point, the moment capacity is governed by reinforcement in tension. As a 

result, the drawbacks of using high-strength reinforcement – crack width and deflection during 

service – do not control. Other tests of members constructed with high-strength steel have led to 

similar conclusions regarding the viability of using high-strength steel in columns, beams, and 

squat walls (Yotakhong, 2003, Tavallali, 2011, Ghannoum, and Slavin, 2015, Cheng, Hung, 

Lequesne, and Lepage, 2016). 
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2.3 SUMMARY 

The difficulties associated with constructing coupling beams capable of exhibiting the 

required deformation capacity, strength, and stiffness have resulted in a large body of research 

aimed at developing simpler and more effective coupling beam designs. Researchers have 

investigated the use of diagonal reinforcement, a rhombic arrangement of primary bars, steel 

beams, steel-concrete composite beams, HPFRC coupling beams, and more (including fully 

unbonded post-tensioned precast concrete coupling beams reported by Weldon and Kurama, 2006, 

coupling beams with side bolted steel plates reported by Zhu, Zhou, and Su, 2008, coupling beams 

with a replaceable fuse reported by Chen and Lu, 2012, and bolted steel coupling beams reported 

by Lim, Kang, and Hong, 2016). Experimental results showed that each of these alternatives 

exhibited better behavior than conventional ‘moment-frame-type’ coupling beams but also had 

other limitations. 

The reinforcement detail that consistently exhibits the largest deformation capacity and is 

most commonly used in practice is diagonal reinforcement. If properly detailed, diagonally-

reinforced coupling beams exhibit considerable stiffness, strength, and deformation capacity. 

However, due to significant reinforcement congestion, diagonally reinforced coupling beams are 

also often difficult to construct, particularly in more slender members and those with nominal shear 

stresses near the ACI Building Code limit of 10�𝑓𝑓𝑐𝑐′ [psi] (0.83�𝑓𝑓𝑐𝑐′ [MPa]). 

Use of high-strength steel is believed to be a likely means of significantly reducing the 

reinforcement congestion common in reinforced concrete coupling beams, and thus simplifying 

construction and reducing costs. Other structural members have been shown to exhibit high 

deformation capacity under earthquake-type loads when reinforced with high strength steel (up to 
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Grade 120 (830)). Use of such high-strength reinforcement is not, however, permitted by the ACI 

Building Code due to lack of experimental data. There is a need to experimentally evaluate the 

behavior of coupling beams reinforced with high-strength reinforcement. 

In addition to this, the ACI Building Code commentary recommends terminating all the 

secondary (non-diagonal) longitudinal reinforcement near the beam-wall interface to limit 

unexpected overstrength. No previous experimental work has directly investigated the effect of 

this reinforcement detail on beam behavior, although there is evidence that it impacts the failure 

mechanism. It is plausible that, because it tends to delay concentration of deformation demands 

near the wall face, developing all reinforcement will tend to increase the deformation capacity of 

coupling beams – particularly when reinforcement is used that has limited deformation capacity.  

Finally, despite the restraint of coupling beam growth provided by walls in practice, the 

effect of axial restraint on coupling beam behavior has been frequently omitted in past tests of 

coupling beams. Although axial forces developed in response to the restraint may increase beam 

flexural and shear strengths, it may also make the beam more prone to exhibit buckling of diagonal 

reinforcement. The effect of axial restraint on coupling beam deformation capacity needs to be 

evaluated.  
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CHAPTER 3 EXPERIMENTAL PROGRAM 

3.1 SPECIMENS 

3.1.1 DESIGN AND DETAILING 

Five coupling beam specimens were tested under reversed cyclic loading (Table 1.1, Table 

3.1, and Figure 3.1). For convenience, the specimens were tested oriented as shown in Figure 3.1 

instead of their typical horizontal orientation. The specimens had a length of 34 in. (860 mm), 

depth of 18 in. (460 mm), and width of 10 in. (250 mm), resulting in an aspect ratio (ratio of clear 

span-to-overall depth) of 1.9. The specimens had either Grade 60 or 120 (420 or 830) steel as 

diagonal reinforcement and Grade 60 (420) steel for all non-diagonally oriented reinforcement. 

Four of the five specimens (CB1, CB2, CB2D, and CB2AD) were designed to have nominal shear 

strengths, calculated assuming the two intersecting diagonal reinforcement cages resist all imposed 

shear force (Eq. 2.1), of 10�𝑓𝑓𝑐𝑐′ [psi] (0.83�𝑓𝑓𝑐𝑐′ [MPa]); while the other (CB3D) was designed to 

have a nominal shear strength near 15�𝑓𝑓𝑐𝑐′ [psi] (1.25�𝑓𝑓𝑐𝑐′ [MPa]), 50% more than the ACI 

Building Code limit (ACI Building Code references are to ACI 318-14 unless otherwise noted). 

Table 3.1 contains the calculated nominal strengths of the specimens. 
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Figure 3.1 – Nominal specimen dimensions and reinforcement (1 in. = 25.4 mm) 

 

Table 3.1 – Specimen nominal strength and transverse reinforcement (1 psi = 0.00689 MPa, 1 
kip = 4.45 kN, 1 in. = 25.4 mm) 

Specimen ID Calculated Nominal  
Shear Strength a 

Ratio of Transverse Reinforcement Area Provided to Required b 
ACI 318-14 Eq. 18.10.7.4d (i) ACI 318-14 Eq. 18.10.7.4d (ii) 

 psi kips For 10 in. For 18 in. For 10 in. For 18 in. 
       CB1 9.6�𝑓𝑓𝑐𝑐′𝐴𝐴𝑐𝑐𝑐𝑐 134 0.96 0.99 1.01 1.05 

CB2 9.4�𝑓𝑓𝑐𝑐′𝐴𝐴𝑐𝑐𝑐𝑐 131 0.96 0.99 1.01 1.05 

CB2D 9.4�𝑓𝑓𝑐𝑐′𝐴𝐴𝑐𝑐𝑐𝑐 131 0.96 0.99 1.01 1.05 

CB2AD 9.4�𝑓𝑓𝑐𝑐′𝐴𝐴𝑐𝑐𝑐𝑐 131 0.96 0.99 1.01 1.05 

CB3D 14.1�𝑓𝑓𝑐𝑐′𝐴𝐴𝑐𝑐𝑐𝑐 197 0.96 0.99 1.01 1.05 
       a Based on ACI 318-14 Eq. 18.10.7.4 using specified material properties; 𝐴𝐴𝑐𝑐𝑐𝑐 is the cross-sectional area of the coupling 

 beam. 
b Using specified material properties. 
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As shown in Figure 3.2, CB1 had 12 No. 7 (22) diagonal bars, CB2, CB2D, and CB2AD 

had 8 No. 6 (19) diagonal bars, and CB3D had 12 No. 6 (19) diagonal bars. The diagonal bars were 

inclined 18 degrees relative to the longitudinal beam axis. Transverse reinforcement, provided for 

the full beam cross section, was nominally identical in all specimens, with Grade 60 (420) No. 3 

(10) hoops and crossties spaced at 3 in. (75 mm) on center. The amount of transverse reinforcement 

was determined according to ACI 318-14 section 18.10.7.4d. The ratio of the amount of transverse 

reinforcement provided to the amount of transverse reinforcement required for each principal 

direction is provided in Table 3.1. The 3-in. (75-mm) spacing ended up being 3.4db for specimens 

with Grade 60 (420) steel and 4db for specimens with Grade 120 (830) steel. This difference in 

spacing in terms of db means the No. 6 (19) Grade 120 (830) diagonal bars had longer unbraced 

lengths and higher stresses than the No. 7 (22) Grade 60 (420) diagonal bars in CB1. The Grade 

120 (830) bars are therefore more prone to buckling than the Grade 60 (420) bars. This may result 

in reduced deformation capacities for CB2, CB2D, CB2AD, and CB3D relative to that of CB1. 

   

(a) CB1 (b) CB2, CB2D, CB2AD (c) CB3D 

Figure 3.2 - Coupling beam cross-sections near wall intersection (1 in. = 25.4 mm) 

 

The specimens also had eight No. 3 bars oriented longitudinally and distributed around the 

perimeter of the beam such that each bar was supported by either a crosstie or a corner of a hoop. 

To be consistent with the detailing recommended in the ACI Building Code commentary, the 
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secondary longitudinal reinforcement was terminated 2 in. (50 mm) into the top and bottom blocks 

in two specimens (CB1 and CB2). In the other three specimens, the secondary longitudinal 

reinforcement was extended 9 in. (230 mm) into the walls. This was equal to the development 

length calculated per ACI 318-14 Eq. 25.4.2.3a with 1.25fy substituted for fy (extension shown with 

dotted lines in Figure 3.1). Diagonal bar embedment lengths were 26 in. (660 mm) and 35 in. (890 

mm) for Grade 60 (420) No. 7 (22) and Grade 120 (830) No. 6 (19) bars, respectively. These 

satisfied the ACI 318-14 development length requirements. Because the ACI 318-14 development 

length equation was not intended for use with Grade 120 (830) reinforcement, the development 

length for Grade 120 (830) No. 6 bars was also checked against the length calculated using Eq. 4-

11b in ACI 408R-03. The provided embedment length was 92% of the development length 

calculated using ACI 408R-03 recommendations. Although less than recommended, the large 

concrete cover and dense reinforcement in the top and bottom blocks were believed to justify use 

of a slightly shorter development length in these tests. 

The test setup was designed to test the beam specimens rotated 90 degrees from horizontal, 

with a top and bottom block designed to simulate wall boundary elements (Figure 3.1). To achieve 

this, these blocks were reinforced with a dense cage of Grade 60 (420) longitudinal and transverse 

steel similar to wall boundary element reinforcement near the connection with the coupling beam. 

3.1.2 MATERIALS  

3.1.2.1 CONCRETE 

Ready-mix concrete provided by a local supplier was used to cast the specimens. The 

concrete had a target compressive strength of 6,000 psi (41 MPa) and a maximum aggregate size 

of 0.5 in. (13 mm). Concrete mixture proportions are listed in Table 3.2. 
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The measured concrete compressive strengths, listed in Table 3.3, were obtained from tests 

of standard concrete cylinders following ASTM standards. Each value is the average results from 

compressive tests on three 4-in. by 8-in. (100-mm by 200-mm) cylinders conducted on the test 

dates. Test day values of fcm are used for analysis of results.  

Table 3.2 - Batched proportions (per cubic yard) for concrete mixture (1 lb = 0.45 kg, 1 in. = 25.4 mm) 

ID Water 

Cementitious 
Material (CM) Aggregate Admixtures 

Water/ 
CM h 

Initial 
Slump Spread 

Cement a Fly Ash b Fine c Coarse 

Retarder f Water 
Reducer g A d B e 

lb lb lb lb lb lb oz oz  in. in. 
            

CB1 284 649 150 1208 507 1177 24 35 0.40 9 18.5 
CB2 230 748 0 1727 1111 0 0 30 0.39 6.25  

CB2D 286 647 150 1196 503 1177 24 35 0.40 11 23 
CB2AD 284 649 150 1208 507 1177 24 35 0.40 9 18.5 
CB3D 286 647 150 1196 503 1177 24 35 0.40 11 23 

            a Type I Portland Cement 
b Class C 
c Kansas River sand, meets ASTM C33/C33M-16 requirements for fine aggregate 
d Pea gravel, maximum aggregate size of 3/8 in. (10 mm) 
e Crushed limestone, maximum aggregate size of 3/4 in. (19 mm) 
f Set retarder (compliant with ASTM C494/C494M-16) 
g High-range water-reducing admixture (compliant with ASTM C494/C494M-16) 
h Calculated by dividing the weight of water in one cubic yard of concrete, including corrections to 
account for aggregate moisture content, by total weight of cement and fly ash 

Table 3.3 - Concrete strength on the day of testing 

Specimen ID Specified Compressive Strength Compressive Strength at Test Day 
 𝑓𝑓𝑐𝑐′ 𝑓𝑓𝑐𝑐𝑐𝑐a,b 
 psi (MPa) psi (MPa) 
   CB1 

6000 (41) 
 

5990 (41) 
CB2 7190 (50) 

CB2D 6310 (44) 
CB2AD 5640 (39) 
CB3D 6180 (43) 

   a Measured from laboratory tests following ASTM C39/39M-17a. 
b Cylinder size of 4 by 8 in. (100 by 200 mm), reported value is average of three. 



38 

3.1.2.2 REINFORCING STEEL 

Deformed mild-steel bars were used for all reinforcement. Mill certifications for reinforcing 

bars used as conventional Grade 60 (420) steel showed compliance with ASTM A706/A706M-15 

(2015) Grade 60 (420). Mill certifications for reinforcing bars used as Grade 120 (830) showed 

compliance with ASTM A1035-16a Grade 120 (830). Reinforcing bar mechanical properties, 

shown in Table 3.4, were obtained from tensile tests in accordance with ASTM A370-17 and 

ASTM E8-16a. Figure 3.3 shows samples of tensile test data.  

 

Table 3.4 – Reinforcing steel properties 

Bar Size Nominal Bar 
Diameter Yield Stress Tensile 

Strength 
Uniform 

Elongation 
Fracture 

Elongation 

 𝑑𝑑𝑏𝑏 𝑓𝑓𝑦𝑦a 𝑓𝑓𝑡𝑡a 𝜀𝜀𝑠𝑠𝑠𝑠b 𝜀𝜀𝑠𝑠𝑠𝑠c 
No. in. (mm) ksi (MPa) ksi (MPa)   

      7 (22) 0.875 (22.2) 63 (434) 90 (621) 12.8% 20.5% 
6 (19) 0.750 (19.1) 128 (883) 168 (1158)  5.3% 10.0% 
3 (10)d 0.375 (9.5) 69 (476) 107 (738)  10.2% 13.0% 
3 (10)e 0.375 (9.5) 68 (469) 105 (724)  10.8% 12.9% 

      a Measured from laboratory tests following ASTM A370-17. 
b Corresponds to strain at peak stress following ASTM E8/E8M-16a. 
c Determined from stress-strain curve as the intersection of the horizontal axis and a line passing 
 through the fracture point with a slope equal to the measured elastic modulus. 
d Used for the secondary (non-diagonal) longitudinal reinforcement. 
e Used for the hoops and crossties. 
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Figure 3.3 – Measured stress versus strain for diagonal bars (1 ksi = 6.89 MPa) 

 

3.1.3  CONSTRUCTION 

Photos of the various stages of specimen construction are provided in Appendix A from 

Figure A.1 through Figure A.11. Construction of each specimen included the assembly of 

reinforcing bar cages, preparation and erection of wooden formwork, and placement of the 

concrete. Concrete for the specimen and the top and bottom blocks was placed monolithically 

(while laying horizontally). After finishing the concrete, specimens and cylinders were covered 

with wet burlap and plastic sheets until removal of the formwork, which typically occurred three 

to four days after casting. After formwork was removed, all specimens were kept in the laboratory 

until they were tested. 
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CB1 was constructed using Grade 60 (420) diagonal reinforcement, whereas CB2, CB2D, 

CB2AD, and CB3D were constructed using Grade 120 (830) diagonal reinforcement. The bottom 

and top blocks of all specimens were built with nominally identical detailing using Grade 60 (420) 

reinforcement. Two steel pipes with outer diameters of 6.63 in. (170 mm) and inner diameters of 

6.07 in. (155 mm) were cast into the blocks for CB2AD to accommodate the axial restraint fixtures 

described in Section 3.2 (Figure A.8). 

3.2 TEST SETUP 

The general test setup is shown in Figure 3.4. For testing, the bottom block of each 

specimen was bolted to the laboratory strong floor with two 2.5-in. (64-mm) diameter high-

strength threaded rods passing through the bottom block (Figure 3.4). To distribute the hold-down 

forces, each of the threaded rods was connected to a steel spreader beam under the strong floor. 

Two MTS 201.70 hydraulic actuators were used to load the specimens. Each actuator has a stroke 

length of 40 in. (1020 mm) and a force capacity of 220 kips (980 kN). The two actuators were 

connected to the laboratory strong wall and the specimen top block through vertically oriented HP 

steel sections. The HP section closest to the specimen was connected to the top block with a pair 

of hollow structural steel (HSS) sections for transmitting compression and six 2.26-in. (57-mm) 

diameter high-strength threaded rods for transmitting tension (Figure 3.4). Additional steel fixtures 

were used to brace the HP section against out-of-plane motion (Figure 3.4). Steel plates with a 

mirror finish (attached to the HP section) and nylon pads (attached to the bracing) were used to 

minimize frictional forces. 
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Figure 3.4 – General test setup 

To minimize sliding of the bottom block relative to the strong floor in the positive loading 

direction, a 100 by 68 by 10-in. (2540 by 1730 by 250-mm) concrete block was bolted to the strong 

floor next to the specimen using six 1.75-in. (44-mm) diameter high-strength threaded rods. Shim 

plates were inserted between this block and the specimen bottom block prior to testing. A wide-

flanged section (that was also part of the bracing) was used in a similar manner to reduce sliding 

in the negative loading direction. 

In addition to these, the test setup for CB2AD had two 3.0-in. (75-mm) diameter high-

strength threaded rods connecting the top and bottom blocks on both sides to restrain any axial 

growth (Figures 3.5 and 3.6). Two steel pipes with outer diameters of 6.63 in. (170 mm) and inner 

diameters of 6.07 in. (155 mm) were placed within the top and bottom blocks during casting. 

Before testing, two 5.0-in. (125-mm) diameter Gr. 50 solid steel rods were passed through those 

steel pipes. The two 3.0-in. (75-mm) diameter high-strength threaded rods were attached at both 

Actuator 
HP section 

Optical 
Markers 

Threaded rod 

HP section 
Top block 

Instrumentation stand 

Bottom block 

Bracing 

Concrete 
block 



42 

ends to steel fixtures that rotated freely around the 5.0-in. (125-mm) diameter steel rods while 

maintaining restraint against axial growth. Figure 3.7 shows the details of the steel fixtures. 

 
Figure 3.5 – Axially-restrained test setup for CB2AD 

 

Figure 3.6 – Fixture for axial restraint of CB2AD 

 

Threaded rod to 
provide axial restraint Concrete block 

to minimize 
sliding 
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Figure 3.7 – Details of fixture for axial restraint of CB2AD (1 in. = 25.4 mm) 

 
 

3.3 INSTRUMENTATION 

Several instruments were used to record deformations of the specimens. An infrared-based 

non-contact position measurement system was used to record the position of 59 markers, attached 

to the surface of the specimens, which emit infrared light pulses that are detected by cameras. The 

spatial coordinates of the markers were triangulated and recorded throughout the tests at a selected 

frequency. The markers were arranged in a 4-in. (100-mm) square grid on one face of the coupling 

beam and part of the top and bottom blocks (Figure 3.8). Data from this system were analyzed to 

determine the distribution of deformations. 
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Figure 3.8 – Optical marker positions (1 in. = 25.4 mm) 

 

In addition to the infrared markers, seven potentiometers were used during the test of CB2 

(which was constructed and tested before the other four) as a redundant measuring system. 

Throughout the tests, lateral deflection of the top block was measured with two potentiometers 

installed horizontally on opposite sides. To measure the rotation of the top block with respect to 

the bottom block, two potentiometers were positioned vertically connecting the top and bottom 

blocks. Three potentiometers (two vertical and one horizontal) were used to monitor rotation and 

sliding of the bottom block relative to the strong floor. The readings from these potentiometers 

were found to be less precise than measurements based on the infrared marker positions. As a 

result, these potentiometers were not used in the later tests. Instead, two LVDTs (linear variable 

differential transformers) were attached to the end of the top block to measure lateral deflection 
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and rotation along with the infrared optical system for the other four tests (CB1, CB2D, CB2AD, 

and CB3D). The location of the external instrumentation is shown in Figure 3.9. 

  

(a) CB2 (b) CB1, CB2D, CB2AD, CB3D 

Figure 3.9 – Instrumentation 

Diagonal, transverse, and longitudinal reinforcing bars were instrumented with 28 120-ohm 

electrical resistance strain gauges placed at the locations shown in Figure 3.10 (also shown in 

Figure D.1, Figure D.62 and Figure D.88). In each specimen, two diagonal bars were instrumented 

with six strain gauges each, eleven strain gauges were attached to the outside perimeter of hoops 

and on crossties, and two of the No. 3 (10) longitudinal bars were instrumented with five strain 

gauges (three to one, and two to the other. The strain gauges were rated for 15% strain to allow 

measurements throughout the test.  

For the test of CB2AD, two strain gauges were attached to each of the two 3-in. (75-mm) 

diameter threaded rods for calculation of the restraining force. 
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Figure 3.10 – Strain gauge layout 

 

3.4 LOADING PROTOCOL 

Specimens were subjected to a series of reversed cyclic displacements following the protocol 

shown in Table 3.5 and Figure 3.11, which is patterned after the protocol recommended in FEMA 

461 (2007). To overcome imprecision of relatively small displacement measurements, force-based 

control was used prior to yielding of the diagonal reinforcement; force was increased until the 

chord rotation was approximately equal to the target values in Table 3.5 and the loading direction 
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was then reversed. The remaining cycles were imposed using displacement control. The ratio 

between forces or displacements applied by the two actuators was selected such that an inflection 

point remained near mid-span of the coupling beam throughout the tests (beams were bent in 

double-curvature). 

Table 3.5 – Loading protocol 

Step a 1 2 3 4 5 6 7 8 9 10 11 12 13 

CR b % 0.2 0.3 0.5 0.75 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 
a Two cycles of loading in each step, following recommendations in FEMA 461. 
b Chord rotation, defined as the relative lateral displacement between end blocks divided by the beam 

clear span and accounting for relative rotation between the bottom and top blocks as described in 
Section 4.1.1. 

 

 

Figure 3.11 – Loading protocol 
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As can be seen in Figure 3.4, the weight of all the fixtures (HP, HSS, and actuators) hung 

off one side of the specimen, causing a uniform moment in the beam of approximately 42 ft-kips 

(57 m-kN) prior to loading. To counteract this moment and start from a neutral point, an 

approximately equal and opposite moment was applied using the actuators before the start of the 

test. 

The loading rate for chord rotations up to 1% was approximately 0.01 in./sec (0.25 

mm/sec); the rate was increased to 0.02 in./sec (0.51 mm/sec) for larger chord rotations. Prior to 

testing, several small cycles were imposed (with forces below the cracking load) to facilitate 

tightening of the threaded rods connecting the bottom block to the strong floor and the top block 

to the actuators. 
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CHAPTER 4 RESULTS AND OBSERVATIONS 

4.1 SHEAR VERSUS CHORD ROTATION 

4.1.1 CHORD ROTATION 

Beam chord rotation, 𝐶𝐶𝐶𝐶, is defined as the relative displacement between top and bottom 

blocks, corrected for rotation of both top and bottom blocks, divided by the clear span of the beam 

(Eq. 4.1). 

 
𝐶𝐶𝐶𝐶 =

𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡 − 𝛿𝛿𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐
ℓ𝑛𝑛

−
𝛳𝛳𝑧𝑧,𝑇𝑇𝑇𝑇 + 𝛳𝛳𝑧𝑧,𝑇𝑇𝑇𝑇

2
 

Eq. 4.1 

In Figure 4.1, 𝛳𝛳𝑡𝑡𝑡𝑡𝑡𝑡 is negative and all other values are positive. Displacements and rotations were 

calculated using data from the infrared-based non-contact position measurement system (Section 

3.3). 
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Figure 4.1 – Deformed shape of coupling beam 

However, top and bottom block displacements were not measured at the beam-wall 

interface. They were measured 3 in. (75 mm) above the bottom of the top block and 3 in. (75 mm) 

below the top of the bottom block. To correct for the effects of the instrumentation placement, 𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡 

was replaced with �𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡,𝑐𝑐 − (3 in. )𝛳𝛳𝑧𝑧,𝑇𝑇𝑇𝑇�, where the m subscript refers to the measured value, 

and 𝛿𝛿𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐 was replaced with �𝛿𝛿𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐,𝑐𝑐 + (3 in. )𝛳𝛳𝑧𝑧,𝑇𝑇𝑇𝑇�. With these substitutions, and inserting 

34 in. (860 mm) in place of ℓ𝑛𝑛, Eq. 4.1 becomes Eq. 4.2. 

 
𝐶𝐶𝐶𝐶 =

𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡,𝑐𝑐 − 𝛿𝛿𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐,𝑐𝑐 − (20 𝑖𝑖𝑖𝑖. )𝛳𝛳𝑧𝑧,𝑇𝑇𝑇𝑇 − (20 𝑖𝑖𝑖𝑖. )𝛳𝛳𝑧𝑧,𝑇𝑇𝑇𝑇

34 𝑖𝑖𝑖𝑖.
 

Eq. 4.2 

 

𝜃𝜃𝑧𝑧,𝑇𝑇𝑇𝑇 

𝜃𝜃𝑧𝑧,𝑇𝑇𝑇𝑇 

𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡 

𝛿𝛿𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐 

𝑙𝑙𝑛𝑛 
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4.1.2 SPECIMEN RESPONSE AND OBSERVATIONS 

Each of the five coupling beam specimens described in Chapter 3 was subjected to the 

loading history shown in Figure 3.11. The measured shear force versus chord rotation is plotted in 

Figures 4.2 through 4.6 for each specimen. Photos of the specimens during and after testing are 

shown in Appendix B. The progression of damage will be discussed in more detail in Section 4.2. 

4.1.2.1 CB1 

The control specimen, CB1, completed two cycles at 6% chord rotation while retaining 

more than 80% of its peak strength (Figure 4.2). One of the 12 No. 7 (22 mm) diagonal bars and 

several longitudinal bars fractured during the first excursion to 8% chord rotation at approximately 

6% chord rotation (Figure B.23, Figure B.24). The specimen completed two cycles at a target 

chord rotation of 8% but the force dropped below 40% of the peak load in the second cycle due to 

bar fracture and severe damage to the concrete core. The test was stopped during the first excursion 

to 10% chord rotation due to limitations of the testing apparatus. 

Reinforcement buckling preceded bar fracture. Buckling of the longitudinal bars was first 

observed during the first cycle to -5% chord rotation (Figure B.21). This buckled bar never 

fractured. Buckling of a diagonal bar was first observed during the first cycle to -6% chord rotation 

(Figure B.22). That same diagonal bar fractured during the first excursion to 8% chord rotation. 
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Figure 4.2 – Shear versus chord rotation for CB1 (1 kip = 4.45 kN) 

The maximum shear forces resisted by the specimen were 182 and -184 kips (810 and -820 

kN) at chord rotations of +3.0 and -4.1%, respectively. The maximum shear force resisted by the 

specimen corresponds to a shear stress of 13.2�𝑓𝑓𝑐𝑐𝑐𝑐 [psi] (1.10�𝑓𝑓𝑐𝑐𝑐𝑐 [MPa]). 

4.1.2.2 CB2 

The measured shear versus chord rotation response for CB2 is shown in Figure 4.3. The 

specimen retained more than 80% of its peak strength in both loading directions until the final 

push towards +6% chord rotation. Failure of the specimen was sudden and dominated by fracture 

of two of the 8 No. 6 (19 mm) diagonal bars (Figure B.25). Though the shape of the fractured and 

adjacent bars observed after testing indicated that bar fracture was preceded by bar buckling, no 

buckling was observed during testing. 
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Figure 4.3– Shear versus chord rotation for CB2 (1 kip = 4.45 kN) 

The maximum shear forces resisted by the specimen were 207 and -192 kips (920 and -850 

kN) in the positive and negative loading directions, respectively. The maximum shear corresponds 

to a shear stress of 13.6�𝑓𝑓𝑐𝑐𝑐𝑐 [psi] (1.13�𝑓𝑓𝑐𝑐𝑐𝑐 [MPa]). The peak forces occurred at chord rotations 

of +4.2 and -3.1%. 

4.1.2.3 CB2D 

The measured shear versus chord rotation plot for CB2D is shown in Figure 4.4. The 

specimen completed one cycle at 5% chord rotation with while retaining more than 80% of its 

peak strength. Strength dropped below 80% of peak strength during the second excursion to -5% 

chord rotation due to the buckling of diagonal bars (Figure B.27). The secondary (non-diagonal) 

longitudinal bars first fractured during the second excursion to +5% chord rotation (Figure B.26).  
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Figure 4.4 – Shear versus chord rotation for CB2D (1 kip = 4.45 kN) 

During the cycles to 6% chord rotation, CB2D exhibited a large reduction in strength, with 

peak strengths in the second cycle to 6% chord rotation reaching approximately 30% of the 

maximum strength. During these cycles, most of the secondary (non-diagonal) longitudinal bars 

fractured. All the diagonal bars exhibited buckling, but none of them fractured. The failure 

mechanism of CB2D was thus different from that of CB1 and CB2, which had a similar target 

shear stress but terminated secondary (non-diagonal) longitudinal bars. CB2D exhibited less 

concentrated damage at the face of the wall but damage to the concrete core was more extensive 

(Figure 4.7). The test was stopped after passing 8% chord rotation as the force dropped below 20% 

of the peak load. 

The maximum shear forces resisted by the specimen were 204 and -194 kips (910 and -860 

kN) in the positive and negative loading directions, respectively. In both directions, the 

corresponding chord rotation was 3.0%. The maximum shear force resisted by the specimen 

-10 -8 -6 -4 -2 0 2 4 6 8 10
Chord Rotation, %

-300

-200

-100

0

100

200

300

Sh
ea

r, 
ki

p

Diagonal Bar 
Buckling 



55 

corresponds to a shear stress of 14.3�𝑓𝑓𝑐𝑐𝑐𝑐 [psi] (1.20�𝑓𝑓𝑐𝑐𝑐𝑐 [MPa]), 5% higher than that of CB2, 

which was identical to CB2D except the secondary (non-diagonal) longitudinal bars were 

terminated 2 in. (50 mm) from the beam-wall interface. 

4.1.2.4 CB2AD 

The measured shear is plotted versus chord rotation for CB2AD in Figure 4.5. Strength 

dropped below 80% of the peak during the second excursion to +5% chord rotation due to buckling 

of most of the longitudinal (Figure B.28) and diagonal bars (Figure B.29). The failure mechanism 

of the beam was similar to that of CB2D, where most of the secondary (non-diagonal) longitudinal 

bars fractured but none of the diagonal bars fractured. The test was stopped when the force dropped 

to approximately 20% of the peak load after passing 6% chord rotation. 

 

Figure 4.5 – Shear versus chord rotation for CB2AD (1 kip = 4.45 kN) 
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The maximum shear forces resisted by the specimen were 228 and -234 kips (1010 and -

1040 kN) at chord rotations of +3.2 and -4.7%, respectively. The maximum shear force resisted 

by the specimen corresponds to a shear stress of 17.4�𝑓𝑓𝑐𝑐𝑐𝑐 [psi] (1.50�𝑓𝑓𝑐𝑐𝑐𝑐 [MPa]), which is 28 

and 22% higher than that of CB2 and CB2D, respectively. This high shear stress resulted from the 

axial restraint. 

4.1.2.5 CB3D 

A plot of measured shear versus chord rotation is shown in Figure 4.6 for CB3D. The 

specimen completed two cycles at 5% chord rotation while retaining more than 80% of its peak 

strength. During the first excursion to -6% chord rotation, strength suddenly dropped below 80% 

due to simultaneous buckling of three of the 12 No. 6 (19 mm) diagonal bars (Figure B.31). The 

secondary (non-diagonal) longitudinal bars had previously buckled during the second cycle to -

4% chord rotation (Figure B.30), which was at a smaller chord rotation than in any of the other 

tests. Though, like CB2D and CB2AD, the specimen had secondary (non-diagonal) longitudinal 

bars developed satisfying the ACI 318-14 code requirement for development length, strength loss 

was not as gradual as observed in those two specimens. 
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Figure 4.6 – Shear versus chord rotation for CB3D (1 kip = 4.45 kN) 

The maximum shear forces resisted by the specimen were 275 and -268 kips (1220 and -

1190 kN) at chord rotations of +5.0 and -3.8%, respectively. The maximum shear force resisted 

by the specimen corresponds to a shear stress of 19.4�𝑓𝑓𝑐𝑐𝑐𝑐 [psi] (1.63�𝑓𝑓𝑐𝑐𝑐𝑐 [MPa]). 

4.1.3 BEAM STRENGTH AND CHORD ROTATION CAPACITY  

Table 4.1 shows the maximum measured shear force and the chord rotation capacity for 

each specimen. The chord rotation capacity of a specimen is defined herein as the average of the 

maximum chord rotations imposed in each loading direction without more than a 20% reduction 

in shear strength. According to this definition, CB1 had a chord rotation capacity of 7.1% (8.0% 

in one direction and 6.3% in the other). CB2, CB2D, and CB2AD exhibited chord rotation 

capacities of 5.1% (5.6% and 4.5%), 5.3% (same in both directions), and 5.3% (5.1% and 5.5%) 
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respectively. For CB3D, the chord rotation capacity was calculated as 5.6% (6.3% in one direction 

and 5.0% in the other). 

Table 4.1 – Maximum measured shear force and chord rotation 

Specimen 
ID 

𝑉𝑉𝑐𝑐𝑚𝑚𝑚𝑚 a 𝑣𝑣𝑐𝑐𝑚𝑚𝑚𝑚/�𝑓𝑓𝑐𝑐𝑐𝑐 b 𝐶𝐶𝐶𝐶𝑐𝑐𝑚𝑚𝑚𝑚 c 𝐶𝐶𝐶𝐶𝑐𝑐𝑚𝑚𝑡𝑡 d 
kips (kN) psi (MPa) % % 

 − + − + − +  
        

CB1 184 (820) 182 (810) 13.2 (1.10) 13.1 (1.10) 6.3 8.0 7.1 
CB2 192 (920) 207 (920) 12.6 (1.05) 13.6 (1.13) 4.5 5.6 5.1 

CB2D 194 (860) 204 (910) 13.6 (1.13) 14.3 (1.20) 5.3 5.3 5.3 
CB2AD 234 (1040) 228 (1010) 17.4 (1.50) 17.0 (1.42) 5.5 5.1 5.3 
CB3D 268 (1190) 275 (1220) 18.9 (1.58) 19.4 (1.63) 5.0 6.3 5.6 

        a Maximum measured shear force per loading direction. 
b Shear stress calculated as 𝑉𝑉𝑐𝑐𝑚𝑚𝑚𝑚 (𝑏𝑏ℎ)⁄  divided by �𝑓𝑓𝑐𝑐𝑐𝑐, where 𝑏𝑏 = 10 in. (250 mm), ℎ = 18 in. (460 mm), 
 and 𝑓𝑓𝑐𝑐𝑐𝑐 is taken from Table 3.3. 
c  Maximum chord rotation attained in a loading direction while maintaining a shear force not less than 
 0.8𝑉𝑉𝑐𝑐𝑚𝑚𝑚𝑚.  
d Chord rotation capacity obtained from the average of 𝐶𝐶𝐶𝐶𝑐𝑐𝑚𝑚𝑚𝑚. 
 

 

Another definition of chord rotation capacity was used that is based on the envelope drawn 

to the point of maximum chord rotation reached in the first cycle to each target chord rotation. 

This manner of constructing a backbone curve is consistent with procedures in Section 7.6 of 

ASCE-SEI 41-17. Chord rotation capacity was then taken as the average chord rotation at which 

the backbone curve first dropped below 80% of the peak force in each loading direction. Using 

this second definition, CB1 had a chord rotation capacity of 7.4%, and CB2, CB2D, CB2AD, and 

CB3D had chord rotation capacities of 5.1%, 5.4%, 5.4%, and 5.6%, respectively. Chord rotation 

capacities determined according to this definition were either equal to or slightly larger than the 

values obtained using the prior definition. Trends among specimens were similar regardless. 
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According to both definitions, chord rotation capacities exhibited by specimens with Grade 

120 (830) diagonal reinforcement were between 5.1 and 5.6%. These were smaller than that 

exhibited by the control specimen with Grade 60 (420) diagonal reinforcement (7.1% and 7.4% by 

two definitions). This reduction in chord rotation capacity of specimens with Grade 120 (830) 

diagonal reinforcement may be due to the larger transverse reinforcement spacing in terms of db 

(4db versus 3.4db). For the Grade 60 and 120 (420 and 830) bars to be similarly prone to buckling, 

the transverse reinforcement spacing would have needed to be 6db and 4db, respectively. 

4.2 PROGRESSION OF DAMAGE 

Photographs in Figure B.1 through Figure B.20 in Appendix B show the condition of the 

specimens at peak chord rotations during the second cycle to target chord rotations of 2, 3, 4 and 

5% (actual chord rotations are provided below each figure). Horizontal cracking associated with 

flexure was observed on the two 10-in. (250-mm) sides of the beams at both ends of the specimens. 

Inclined cracks were observed on the 18-in. (460-mm) faces that, in most cases, connected to 

horizontal cracks on the 10-in. (250-mm) sides. The first cracks occurred at a chord rotation of 

approximately 0.2%. New cracks developed through chord rotations of approximately 4%, after 

which existing cracks continued to widen, but new cracks were not observed. 

Figure 4.7 shows all the specimens at a chord rotation of approximately 5%. It is evident 

in Figure 4.7 that in CB1 and CB2, deformations concentrated near the beam-to-wall interface 

where the diagonal bars buckled and then ultimately fractured. In CB2D, CB2AD, and CB3D, 

damage was more distributed throughout the span of the beam. This difference is attributed to the 

choice of whether to terminate or continue the secondary (non-diagonal) longitudinal reinforcing 
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bars beyond the beam-wall interface. Where secondary longitudinal bars were terminated near the 

beam-wall interface, deformations concentrated near the interface. 

As the chord rotation demands increased in accordance with the loading protocol (Figure 

3.11), each of the specimens exhibited buckling and/or fracture of reinforcement. Table 4.2 

identifies the target chord rotation cycles where bar buckling or bar fracture was first observed 

during the test of each coupling beam specimen. Buckling and/or fracture of diagonal and 

longitudinal bars are treated independently in Table 4.2. Figure B.21 through Figure B.31 show 

most of the events (bar buckling and bar fracture) identified in Table 4.2. 

Buckling of diagonal reinforcement was first observed during the second cycle to a chord 

rotation of +5% for CB2AD, second cycle to a chord rotation of -5% for CB2D, and first cycle to 

a chord rotation of -6% for CB1 and CB3D. No visible buckling of diagonal reinforcement was 

observed for CB2, though the shape of the bars near the fractured bar, observed after testing, 

indicates that buckling occurred. Fracture of diagonal reinforcement was first observed during the 

first cycle to +6% chord rotation for CB2 and +8% chord rotation for CB1. The other three 

specimens (CB2D, CB2AD, and CB3D) clearly exhibited buckling of the diagonal bars, but none 

of them fractured. Because of the embedment length of the secondary (non-diagonal) longitudinal 

reinforcing bars, these specimens exhibited more extensive damage within the beam span and less 

fracture of bars at the wall connection. 
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CB1 (5.0%) CB2 (5.2%) 

   

CB2D (5.2%) CB2AD (5.5%) CB3D (5.4%) 

Figure 4.7 – Specimens at approximately 5% chord rotation 
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Table 4.2 – Target chord rotation of the cycle when bar buckling or bar fracture was first observed 

Specimen ID Bar Type 

Target Chord Rotation Cycle a 

4% 5% 6% 8% 

i+ i– ii+ ii– i+ i– ii+ ii– i+ i– ii+ ii– i+ i– 

CB1 
Diagonal          B   F  

Longitudinal      B       F  

CB2 
Diagonal     F          

Longitudinal               

CB2D 
Diagonal        B       

Longitudinal     F          

CB2AD 
Diagonal       B        

Longitudinal       B        

CB3D 
Diagonal          B     

Longitudinal    B F          
a Notation: 
 i+: first cycle in positive loading direction; 
 i–: first cycle in negative loading direction; 
 ii+: second cycle in positive loading direction; 
 ii–: second cycle in negative loading direction; 
 B: bar buckling; 
 F: bar fracture. 
 

4.3 CALCULATED AND MEASURED STRENGTHS  

Table 4.3 shows the measured shear strength of each specimen and the measured strength 

divided by the strength calculated using three methods. Strength was calculated using three 

methods.  Method 1 was the nominal shear strength determined in accordance with ACI 318-14 

Eq. 18.10.7.4, Method 2 was the shear force corresponding to development of the nominal flexural 

strength, 𝑀𝑀𝑛𝑛, at both ends of the beam, and Method 3 was the shear force corresponding to 

development of the probable flexural strength, 𝑀𝑀𝑡𝑡𝑝𝑝, at both ends of the beam (calculated assuming 
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a tensile reinforcement stress of 1.25𝑓𝑓𝑦𝑦). To calculate the flexural strength (Methods 2 and 3), the 

beams were assumed to be doubly reinforced and the longitudinal component of the diagonal bar 

group area was used. In CB1 and CB2, the contribution of the secondary (non-diagonal) 

longitudinal bars was neglected as the bars were cut off near the beam-wall interface. In each of 

the three cases, measured-to-calculated strength ratios are provided assuming specified and 

measured yield stresses and concrete strengths. Except for CB2AD, axial force was neglected in 

Methods 2 and 3.  

Table 4.3 – Measured strength divided by calculated strength 

ID 
Measured Shear 

Strength Method 1 a Method 2 b Method 3 c 

kips (kN) (a) (b) (a) (b) (a) (b) 
        

CB1 184 (820) 1.38 1.31 1.06 1.02 0.90 0.86 

CB2 207 (920) 1.45 1.47 1.29 1.19 1.15 1.07 

CB2D 204 (910) 1.52 1.46 1.15 1.10 1.05 1.01 

CB2AD 234 (1040) 
1.85 1.67 1.32 1.31 1.21 1.20 

- - 1.24 d 1.24 d 1.18 d 1.23 d 

CB3D 275 (1220) 1.38 1.31 1.21 1.17 1.12 1.10 
        a Calculated nominal shear strength based on ACI 318-14 Eq. 18.10.7.4; (a) using specified material properties, 

 (b) using measured material properties. 
b Calculated nominal shear strength based on 𝑀𝑀𝑛𝑛; (a) using specified material properties, (b) using measured 
 material properties. 
c Calculated nominal shear strength based on 𝑀𝑀𝑡𝑡𝑝𝑝; (a) using specified material properties, (b) using measured 
 material properties. 
d Includes axial force equal to 100 kips (445 kN) based on results in Section 4.7. 

 

For all specimens constructed with Grade 120 (830) diagonal reinforcement, measured 

shear strengths were larger than all six calculated strengths. The maximum difference was between 

the strength of CB2AD and the nominal strength calculated using ACI provisions and specified 



64 

material properties, where measured strength was 85% larger than the calculated value. This 

overstrength is due to many factors including reinforcement overstrength, reinforcement strain 

hardening, development of secondary reinforcement, and axial restraint. The other two specimens 

(CB2 and CB2D), designed to have a nominal shear strength of 10�𝑓𝑓𝑐𝑐′ [psi] (0.83�𝑓𝑓𝑐𝑐′ [MPa]) 

exceeded the nominal strength based on ACI by approximately 50%, while CB3D, the one 

designed for 15�𝑓𝑓𝑐𝑐′ [psi] (1.25�𝑓𝑓𝑐𝑐′ [MPa]), exceeded the nominal strength by more than 30%. For 

the specimens with developed secondary (non-diagonal) longitudinal bars (CB2D, CB2AD, and 

CB3D), the contribution of the secondary longitudinal bars to flexural strength was on the order 

of 10% of the flexural strength. Among specimens with Grade 120 (830) diagonal reinforcement, 

Method 3 resulted in the most accurate estimation of strength, although it still provided an estimate 

that was consistently less than the measured value. Perhaps alpha, the factor used to increase bar 

stress when calculating probable moment strength, should be taken to be larger than its typical 

value of 1.25 when steel with round-house behavior is used and an accurate estimate of strength is 

required.  

For control specimen CB1, the only specimen with Grade 60 (420) diagonal reinforcement, 

strength calculated using Method 3 overestimated the measured strength by more than 10%. For 

CB1, the most accurate estimation of strength was based on Method 2b (the shear force 

corresponding to development of beam nominal flexural strength, 𝑀𝑀𝑛𝑛, at both ends of the beam 

using measured material properties). The measured strength exceeded this value by only 2%. 

4.4 CHORD ROTATION COMPONENTS  

Data from the optical markers attached to the surface of each specimen were analyzed to 

quantify the specimen deformations attributable to flexural rotation, strain penetration, shear, and 
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sliding at the beam ends. As shown in Figure 4.8, the markers were arranged in a 4-in. (100-mm) 

square grid pattern over one face of each specimen and part of the top and bottom blocks. The term 

‘layer’ refers to the space between two marker rows (e.g., Layer 1 is between marker Rows 1 and 

2 as shown in Figure 4.8) and the term ‘station’ (the shaded area in Figure 4.8) refers to the region 

surrounded by four corner markers  (A, B, C, and D, in Figure 4.9).  

 

Figure 4.8 – Locations of optical markers on coupling beam specimens (1 in. = 25.4 mm) 

 

4.4.1 FLEXURAL ROTATION AND STRAIN PENETRATION 

Flexural rotations were calculated for each of the coupling beam specimens using data from 

the optical position tracking system. Flexural rotation was calculated for each layer throughout the 

test as the difference between the rotations of the marker rows above and below the layer. For a 

given row of markers, rotation was calculated using the vertical displacements of the two 
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outermost markers in the row (Eq. 4.3, where 𝜃𝜃𝑖𝑖 is the flexural rotation in layer 𝑖𝑖, 𝑓𝑓 is the change 

in vertical position of the marker identified by the subscript, and ℓ𝑖𝑖,𝐶𝐶1𝐶𝐶5 is the initial horizontal 

distance between Columns 1 and 5 (Figure 4.8) in Row 𝑖𝑖). In the case of marker malfunction, 

markers from Column 2 were used instead of Column 1 and markers from Column 4 were used 

instead of Column 5. In a few occasions (later in the test), markers from Column 3 needed to be 

used instead of either Column 4 or Column 2. Cases where the markers in either Column 1 or 5 

were replaced are identified in plots with solid shapes. 

 𝜃𝜃𝑖𝑖 =
�𝑓𝑓𝑅𝑅𝑖𝑖𝐶𝐶5 − 𝑓𝑓𝑅𝑅𝑖𝑖𝐶𝐶1�

ℓ𝑖𝑖,𝐶𝐶1𝐶𝐶5
−
�𝑓𝑓𝑅𝑅𝑖𝑖+1𝐶𝐶5 − 𝑓𝑓𝑅𝑅𝑖𝑖+1𝐶𝐶1�

ℓ𝑖𝑖+1,𝐶𝐶1𝐶𝐶5
 

Eq. 4.3 

Figure C.1 through Figure C.10 in Appendix C show the distribution of flexural rotations 

over the beam span for all specimens. The flexural rotation calculated for each layer is plotted at 

the mid-height of the layer. The plotted values are taken at the peak chord rotation in the second 

cycle to each target chord rotation. Rotations occurring at the beam ends, referred to herein as 

strain penetration, are not included. 

The plots show that during cycles to both positive and negative chord rotations, flexural 

rotations of all the specimens were small and somewhat uniform near the midspan throughout the 

tests. Near the ends of the beams, flexural rotations increased with increases in chord rotation. For 

CB3D, flexural rotations remained small and nearly constant throughout the beam span up to a 

chord rotation of about 2.1%, after which data was not available. 

Strain penetration refers to the relative rotation between the beam ends and the adjacent 

top or bottom blocks. It was calculated using Eq. 4.3 as the relative rotation between the top row 

(Row 1 in Figure 4.8) or bottom row (Row 9 in Figure 4.8) of markers on the beam and those 
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located on the top block or bottom block, respectively. This definition of strain penetration 

therefore includes beam end rotation due to straining and slip of bars anchored into the end blocks 

and flexural rotations occurring within the first 1 in. (25.4 mm) of the beam span, which were 

assumed to be small relative to the beam-end rotations. Figure C.11 through Figure C.20 show 

plots of flexural rotations along the beam length that include strain penetration. 

Up to about 1% chord rotation, rotations due to strain penetration were slightly larger than 

rotations due to flexure for all specimens. Beyond 1%, rotation due to strain penetration increased 

significantly for CB1 and CB2. The other three specimens (CB2D, CB2AD, and CB3D) exhibited 

much less rotation due to strain penetration. This difference is attributable to the continuation of 

the secondary (non-diagonal) longitudinal reinforcing bars beyond the beam-wall interface in 

CB2D, CB2AD, and CB3D. This detailing reduced the concentration of rotations at the beam ends. 

4.4.2 SHEAR DEFORMATIONS 

Shear deformations were calculated throughout the beam span using optical marker data 

(Figure 4.8). Shear distortion of each station was calculated throughout the tests using the positions 

of the four corner markers (A, B, C, and D, in Figure 4.9) and then averaged across each horizontal 

layer. 
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Figure 4.9 – General deformed shape of a station 

 

The distorted shape of a station (Figure 4.9) can be decomposed into three distinct 

deformation components that cause changes in the angles formed by each corner of the station: 

flexural rotation 𝜃𝜃, shear distortion 𝛾𝛾, and expansion 𝜓𝜓 (Figure 4.10). 

 

 

 

 

 

Bending  Shear  Expansion 

Figure 4.10 – Components of angular change of a station 

 

The change in angle of each corner of a station was set equal to the sum of the three 

components of angular change, as shown in Eq. 4.4 through Eq. 4.7, where ∆𝐴𝐴,∆𝐵𝐵,𝐶𝐶, and ∆𝐷𝐷 are 

the change in angle of each of the four corners of a distorted station (Figure 4.9). 
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 ∆𝐴𝐴 = +𝜃𝜃
2� − 𝛾𝛾′ − 𝜓𝜓 Eq. 4.4 

 ∆𝐵𝐵 = −𝜃𝜃 2� + 𝛾𝛾′ − 𝜓𝜓 Eq. 4.5 

 ∆𝐶𝐶 = −𝜃𝜃 2� − 𝛾𝛾′ + 𝜓𝜓 Eq. 4.6 

 ∆𝐷𝐷 = +𝜃𝜃
2� + 𝛾𝛾′ + 𝜓𝜓 Eq. 4.7 

The shear distortion of the station was then calculated with Eq. 4.8.  

 𝛾𝛾′ = −
1
4

(∆𝐴𝐴 − ∆𝐵𝐵 + ∆𝐶𝐶 − ∆𝐷𝐷) Eq. 4.8 

 This approach assumes uniform curvature within the element, which is believed to be a 

reasonable assumption given that the layer height is only 4 in. (100 mm). Angles 𝐴𝐴,𝐵𝐵,𝐶𝐶 and 𝐷𝐷 

were calculated using Eq. 4.9 through Eq. 4.12, where the variables represent the distances 

between station corners as illustrated in Figure 4.9. 

 
𝐴𝐴 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �

ℎ𝑡𝑡2 + 𝑣𝑣𝑙𝑙2 − 𝑑𝑑22

2 ℎ𝑡𝑡 𝑣𝑣𝑙𝑙
� 

Eq. 4.9 

 
𝐵𝐵 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �

ℎ𝑡𝑡2 + 𝑣𝑣𝑝𝑝2 − 𝑑𝑑12

2 ℎ𝑡𝑡 𝑣𝑣𝑝𝑝
� 

Eq. 4.10 

 
𝐶𝐶 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �

ℎ𝑏𝑏2 + 𝑣𝑣𝑝𝑝2 − 𝑑𝑑22

2 ℎ𝑏𝑏 𝑣𝑣𝑝𝑝
� 

Eq. 4.11 

 
𝐷𝐷 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �

ℎ𝑏𝑏2 + 𝑣𝑣𝑙𝑙2 − 𝑑𝑑12

2 ℎ𝑏𝑏 𝑣𝑣𝑙𝑙
� 

Eq. 4.12 

The shear distortion of a layer was calculated using Eq. 4.13, a weighted average of the 

shear distortions calculated for the four stations comprising one layer. In Eq. 4.13 subscript 𝑖𝑖 
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indicates the layer number, subscript 𝑗𝑗 indicates the station number, 𝑖𝑖𝑠𝑠 is the number of stations 

(four), and ℓ𝑗𝑗 is the width of the station (nominally 4 in. (100 mm)). When a marker stopped 

functioning, as often occurred late in a test as damage accumulated, the stations associated with 

that marker were omitted from the weighted average. Instances where this occurred are identified 

in plots of results by shading points so they are solid. 

 
𝛾𝛾𝑖𝑖 =

∑ 𝛾𝛾𝑖𝑖,𝑗𝑗′  ℓ𝑗𝑗
𝑛𝑛𝑠𝑠
𝑗𝑗=1

∑ ℓ𝑗𝑗
𝑛𝑛𝑠𝑠
𝑗𝑗=1

 
Eq. 4.13 

Figure C.21 through Figure C.30 show the distribution of shear distortion per layer, 𝛾𝛾𝑖𝑖, 

over the height of the specimens both for positive and negative loading directions. The shear 

distortion for a given layer is plotted at the distance from midspan associated with the mid-height 

of the layer, with positive and negative values of distance indicating layers located above and 

below midspan. In each figure, shear distortions are plotted for different chord rotations. The 

plotted values are from the second cycle to a target chord rotation. Shearing at the joint with the 

top and bottom blocks is not included in these figures. 

The plots show that shear distortions of all specimens were small and somewhat uniform 

throughout the beam span in both loading directions up to a chord rotation of approximately 1%. 

For larger chord rotations, shear distortions of CB1 were largest in the topmost layer with values 

of 0.0085 and -0.0088 rad at 3% chord rotation in positive and negative loading directions, 

respectively. These values were similar for CB2. CB2D and CB3D exhibited larger shear 

distortions at lower chord rotations (0.012 rad at 2% chord rotation for CB2D and -0.014 rad 

at -2.1% chord rotation for CB3D). This is attributed to the continuation of the secondary (non-
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diagonal) longitudinal reinforcing bars beyond the beam-wall interface, which caused a decrease 

in rotations concentrated at the beam ends. 

CB1 exhibited its largest shear distortions in the top and bottommost layers, with a 

midpoint located 14 in. (360 mm) away from midspan. In CB2, CB2D, and CB3D, shear 

distortions were largest in a layer having its midpoint located 10 in. (250 mm) from midspan. For 

CB1, shear distortion at midspan was nearly zero throughout the test, while the other specimens 

(CB2, CB2D, CB2AD, and CB3D) exhibited larger shear distortions near midspan. It is not known 

why CB2 had larger shear distortions within the beam span than CB1. 

Shear distortions of CB2AD, the only specimen tested with axial restraint, were small up 

to a chord rotation of 1% like the other specimens. Unlike other specimens, for larger chord 

rotations, maximum shear distortion was found near the midspan of the beam, in a layer with its 

midpoint located 6 in. (150 mm) above midspan for positive chord rotations and in a layer with its 

midpoint located 2 in. (50 mm) below midspan for negative chord rotation. This is consistent with 

the extensive damage observed throughout the span of this beam (Figure B.19). 

4.4.3 SLIDING 

Sliding is defined herein as the relative movement between the beam ends and the adjacent 

end blocks (both top and bottom), measured parallel to the face of the blocks and corrected for 

twisting (if any) of both top and bottom blocks. Sliding was calculated as the difference between 

horizontal displacements of the rows located on the top and bottom blocks and the rows closest to 

the top and bottom blocks, respectively (Figure 4.8). Sliding was calculated using Eq. 4.14 and 

Eq. 4.15, where 𝛥𝛥𝑠𝑠𝑙𝑙,𝑡𝑡𝑡𝑡𝑡𝑡 and 𝛥𝛥𝑠𝑠𝑙𝑙,𝑏𝑏𝑡𝑡𝑡𝑡 are referred to as sliding at the beam-top block and beam-bottom 

block interfaces, respectively; 𝛿𝛿, 𝛳𝛳𝑦𝑦, and 𝛳𝛳𝑧𝑧 are displacement, rotation about the y-axis, and 
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rotation about the z-axis, respectively; and subscripts 𝐵𝐵𝐵𝐵, 𝑇𝑇𝐵𝐵, 1, and 9 refer to the row numbers 

shown in Figure 4.8. Eq. 4.14 and Eq. 4.15 were derived assuming that all flexural rotation in the 

1 in. of beam closest to the wall faces was concentrated at the wall face. 

 𝛥𝛥𝑠𝑠𝑙𝑙,𝑡𝑡𝑡𝑡𝑡𝑡 =  𝛿𝛿𝑇𝑇𝑇𝑇 − 𝛿𝛿1 − (3 𝑖𝑖𝑖𝑖. )𝛳𝛳𝑧𝑧,𝑇𝑇𝑇𝑇 − (1 𝑖𝑖𝑖𝑖. )𝛳𝛳1 − (5 𝑖𝑖𝑖𝑖. )𝛳𝛳𝑦𝑦,𝑇𝑇𝑇𝑇 Eq. 4.14 

 𝛥𝛥𝑠𝑠𝑙𝑙,𝑏𝑏𝑡𝑡𝑡𝑡 =  𝛿𝛿9 − 𝛿𝛿𝑇𝑇𝑇𝑇 − (1 𝑖𝑖𝑖𝑖. )𝛳𝛳9 − (3 𝑖𝑖𝑖𝑖. )𝛳𝛳𝑧𝑧,𝑇𝑇𝑇𝑇 + (5 𝑖𝑖𝑖𝑖. )𝛳𝛳𝑦𝑦,𝑇𝑇𝑇𝑇 Eq. 4.15 

Figure C.31 through Figure C.40 show the sliding at beam ends for all specimens plotted 

against chord rotation. The figures indicate that in most cases and in both directions, the value of 

sliding increased with increases in chord rotation. Up to a chord rotation of 3%, in both positive 

and negative loading directions, none of the specimens experienced sliding larger than ±0.06 in. 

(±1.5 mm) at the bottom and ±0.08 in. (±2.0 mm) at the top, except CB2AD, which had about 

+0.18 in. (±4.6 mm) top sliding at approximately +3% chord rotation (Figure C.37). The reason 

for this difference is not evident. At larger chord rotations, the maximum sliding calculated was 

for CB2 with approximately -0.23 in. (±5.8 mm) of top sliding at -4% chord rotation (Figure C.33). 

4.4.4 CONTRIBUTION/COMPARISON 

Based on the calculated deformation components described previously, the relative 

contributions of the four mechanisms to the total beam chord rotation were calculated for the 

second cycle of loading to each target chord rotation from 0.75% until data was available. The four 

deformation components considered were flexural rotation, strain penetration evident at the beam 

ends, shear deformation, and sliding at the connections with the top and bottom blocks. Figures 
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4.11 through 4.15 show the calculated cumulative relative contributions to chord rotation of the 

four mechanisms plotted versus chord rotation for each coupling beam.  

The total chord rotation due to flexure, 𝜃𝜃𝑠𝑠, was calculated with Eq. 4.16, where 𝜃𝜃𝑖𝑖 is the 

flexural rotation in layer i and 𝑑𝑑𝑖𝑖 is the distance between midspan and midheight of layer i. The 

distance from beam midspan to midheight of a layer was negative for layers above the middle of 

the beam (i = 1 to 4). This approach assumes curvature is uniformly distributed within each layer, 

which is approximately true because of the small layer dimension.  

 𝜃𝜃𝑠𝑠 =  
∑ 𝜃𝜃𝑖𝑖 𝑑𝑑𝑖𝑖
𝑛𝑛𝑙𝑙
𝑖𝑖=1
𝑙𝑙𝑛𝑛

 Eq. 4.16 

The total chord rotation due to strain penetration, 𝜃𝜃𝑠𝑠𝑡𝑡, into the top and bottom blocks was 

calculated with Eq. 4.17.  

 𝜃𝜃𝑠𝑠𝑡𝑡 =
𝜃𝜃𝑠𝑠𝑡𝑡,𝑏𝑏𝑡𝑡𝑡𝑡 − 𝜃𝜃𝑠𝑠𝑡𝑡,𝑡𝑡𝑡𝑡𝑡𝑡

2
 Eq. 4.17 

The total chord rotation due to shear distortion, 𝜃𝜃𝑣𝑣, was calculated with Eq. 4.18, the sum 

over 𝑖𝑖𝑙𝑙 layers of the product of average shear distortion for a given layer, 𝛾𝛾𝑖𝑖, and the height of the 

layer, ℎ𝑖𝑖, divided by 𝑙𝑙𝑛𝑛. 

 𝜃𝜃𝑣𝑣 =
∑ 𝛾𝛾𝑖𝑖
𝑛𝑛𝑙𝑙
𝑖𝑖=1 ℎ𝑖𝑖
𝑙𝑙𝑛𝑛

 Eq. 4.18 

The total chord rotation due to sliding at the face of the blocks, 𝜃𝜃𝑠𝑠𝑙𝑙, was calculated using 

Eq. 4.19. 
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 𝜃𝜃𝑠𝑠𝑙𝑙 =  
𝛥𝛥𝑠𝑠𝑙𝑙,𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛥𝛥𝑠𝑠𝑙𝑙,𝑏𝑏𝑡𝑡𝑡𝑡

𝑙𝑙𝑛𝑛
 Eq. 4.19 

CB1 and CB2, the two specimens with secondary (non-diagonal) longitudinal bars 

terminated near the beam-wall interface (as recommended by the ACI 318-14 commentary), 

experienced similar contributions from different components to the total chord rotation (Figures 

4.11 and 4.12). In both loading directions, strain penetration accounted for most of the total chord 

rotation, as expected for coupling beams with secondary (non-diagonal) longitudinal bars 

terminated near the beam-wall interface. When the specimens were loaded in the positive direction, 

the contribution of flexure was small, remaining less than 20% throughout the tests. Rotation due 

to strain penetration accounted for the major part (45 to 90%) of the total chord rotation. The 

contribution of shear ranged between 10 and 25%. Finally, the contribution of sliding at the beam 

ends was between 5 and 10% of the total chord rotation. In the negative loading direction, the 

contributions to total chord rotation of flexure, strain penetration, shear, and sliding were about 5 

to 35%, 35 to 70%, 10 to 25%, and 5 to 15%, respectively. In both loading directions, the sum of 

all calculated contributions accounted for 85 to 100% of the total chord rotation of CB1 and CB2.  

Secondary (non-diagonal) longitudinal bars were not terminated near the beam-wall 

interface in CB2D, CB2AD, and CB3D. This difference in detailing caused a change in the relative 

contributions to total chord rotation, compared to those of CB1 and CB2 (Figures 4.13 to 4.15). 

The contributions to total chord rotation of flexure, strain penetration, shear, and sliding were about 

10 to 25%, 30 to 50%, 20 to 50%, and 5 to 10%, respectively. In the negative loading direction, 

the sum of calculated contributions accounted for between 85 to 95% of total chord rotation. The 

contributions to total chord rotation of flexure, strain penetration, shear, and sliding were about 10 

to 35%, 25 to 50%, 25 to 30%, and 0 to 10%, respectively. Unlike CB1 and CB2, strain penetration 
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did not account for the majority of chord rotation in CB2D, CB2AD, and CB3D. The developed 

secondary (non-diagonal) longitudinal bars resulted in less concentration of rotations near the 

beam-wall interface (less strain penetration), and more damage spread throughout the beam span. 

The relative importance of both flexural and shear deformations therefore increased in specimens 

with developed secondary reinforcement. The contribution of sliding was similar (and small) for 

all specimens. 

Overall, neither diagonal reinforcement grade nor axial restraint were associated with 

notable changes in the relative importance of deformation mechanisms.  

 

Figure 4.11 – Cumulative relative contribution of chord rotation components for CB1 
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Figure 4.12 – Cumulative relative contribution of chord rotation components for CB2 

 

Figure 4.13 – Cumulative relative contribution of chord rotation components for CB2D 
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Figure 4.14 – Cumulative relative contribution of chord rotation components for CB2AD 

 

Figure 4.15 – Cumulative relative contribution of chord rotation components for CB3D 
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4.5 MEASURED REINFORCEMENT STRAINS 

Diagonal, transverse, and secondary longitudinal reinforcing bars were instrumented with 

28 electrical resistance strain gauges attached at the locations shown in Figure 3.10. In each 

specimen, two diagonal bars were instrumented with six strain gauges each, five strain gauges 

were attached to the No. 3 (10 mm) secondary (non-diagonal) longitudinal bars, and the hoops and 

crossties were instrumented with eleven strain gauges. The strain gauges were rated for 15% strain 

to allow measurements throughout the tests. The locations of strain gauges and the measured strain 

data are shown in Figure D.1 through Figure D.143 in Appendix D. All strain gauge data are 

reported assuming zero strain in the reinforcement at the start of the tests.  

4.5.1 DIAGONAL REINFORCEMENT  

Figure D.2 through Figure D.61 show the strains measured with gauges on two diagonal 

bars in each specimen. The measured strains indicate that for all specimens, the strains in the 

diagonal bars were less than 1% at locations within the bottom block (gauges D1 through D4 in 

Figure D.1, plots shown in Figure D.2 through Figure D.21). Strains recorded with gauges D1 and 

D2, located a distance of two thirds of the embedment length from the wall face (20𝑑𝑑𝑏𝑏 for CB1 

and 32𝑑𝑑𝑏𝑏 for other specimens), were lower in all specimens than the strains corresponding to 

measured yield stress, 0.22% for Grade 60 (420) and 0.67% for Grade 120 (830). Strains recorded 

with gauges D3 and D4, located a distance of one third of the embedment length from the wall 

face (10𝑑𝑑𝑏𝑏 for CB1 and 16𝑑𝑑𝑏𝑏 for others), were larger than the strain associated with yield stress 

for all specimens with Grade 120 (830) diagonal bars. This yielding of reinforcement occurred at 

a chord rotation of approximately 1.5%. In CB1, the only specimen with Grade 60 (420) diagonal 

reinforcement, gauges D3 and D4 were not functional. 
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Figure D.22 through Figure D.31 show the strains measured with gauges on the diagonal 

bars at the beam–bottom block interface (D5 and D6). The measured strains indicate that yielding 

of the diagonal reinforcement at this interface generally occurred while loading to a chord rotation 

of 1.5% or 2.0% in specimens with Grade 120 (830) diagonal reinforcement, and at a target chord 

rotation of 0.75% for CB1, which had Grade 60 (420) diagonal reinforcement. The difference in 

strains measured with D5 for CB1 and other specimens is clearly visible in Figure 4.16, which 

shows the strains measured with D5 for all specimens at peak chord rotations up to 5%. The figure 

indicates that for CB1, the maximum strain recorded with D5 was almost 4.0% at a chord rotation 

of +2%, while for other specimens, recorded strain did not exceed 1.5% at the same chord rotation. 

Figure 4.16 also shows an effect of bar constitutive properties on strain demands. Because the 

Grade 60 (420) bars had a yield plateau, a large increase in strain occurred for CB1 when the bar 

yielded that was not associated with a large increase in chord rotation. Because the Grade 120 

(830) bars had a roundhouse-shaped constitutive behavior (Figure 3.3), increases in strain were 

more closely associated with increases in chord rotation. Strains recorded with D6 could not be 

compared as D6 was not functional for all specimens. The range of strains recorded with D6 for 

some specimens, such as CB3D, was large. For CB3D, which was designed to have a 50% higher 

nominal shear strength than the ACI Building Code limit, strains varied between -2.0 and +5% at 

chord rotations of 4 and 5%.  
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Figure 4.16 – Strains measured with gauge D5 at peak chord rotations 

For CB1, measured diagonal bar strains (from gauges D7, D8, D9, and D10) indicate that 

the diagonal bars reached values larger than the yield strain at every instrumented location within 

the beam span. Yielding of the bar generally occurred at a chord rotation of 1.5% to 3.0%. The 

maximum strain recorded for CB1 (with D9) was 5.0% at a chord rotation of 7.5% (Figure D.42). 

For CB2, the maximum measured diagonal bar strain (D8) was only 1.0% at a chord rotation 

of -5%, much lower than that for CB1 (Figure D.38). For CB2D, the maximum recorded diagonal 

bar strain (D7) was 2.5% at a chord rotation of 5% (Figure D.34), a higher value than for CB2, but 

not as high as for CB1. The maximum measured diagonal bar strains (D10) for CB2AD and CB3D 

were almost 3.0% (Figure D.50 and Figure D.51, respectively). 

Figures 4.17 and 4.18 show the strains measured with gauges D7 and D8, respectively, for 
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CB1 than in other specimens are evident in Figure 4.17, especially between 1% and 4% chord 

rotation. However, there was no clear difference in strains measured with D8 in CB1 and other 

specimens. The difference in length of secondary (non-diagonal) longitudinal bars (whether they 

are terminated near the wall face or developed) does not seem to have a notable effect on diagonal 

bar strains. 

 

Figure 4.17 – Strains measured with gauge D7 at peak chord rotations 
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Figure 4.18 – Strains measured with gauge D8 at peak chord rotations 

Strain gauges located on diagonal bars at the beam-top block interface recorded similar 

values as those located at the beam-bottom block interface. According to the measured strains 

shown in Figure D.52 through Figure D.61 for gauges D11 and D12, yielding of diagonal 

reinforcement at the beam-top block interface generally occurred while loading to a chord rotation 

of 1.5% except for CB1, for which yielding occurred at 1% chord rotation. For CB1, the maximum 

strain recorded on the diagonal bars at the beam–top block interface (with D12) was more than 

5.0% at a target chord rotation of 6% (Figure D.57), while for other specimens, recorded strains 

did not exceed 2.0%. Figure 4.19 shows the strains measured with D11 for four specimens (except 

CB2) at peak chord rotations. The figure indicates that at 2% chord rotation, in both the positive 

and negative loading directions, strains recorded for CB1 were much higher than those recorded 

for the other specimens. 
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Figure 4.19 – Strains measured with gauge D11 at peak chord rotations 

 

4.5.2 SECONDARY (NON-DIAGONAL) LONGITUDINAL REINFORCEMENT  

Figure D.63 through Figure D.87 show the strains measured on the secondary (non-
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Code commentary and common in current design practice. Figures 4.20 and 4.21 show the strains 

measured with H3 and H4, respectively, for all the specimens at the peak chord rotation of each 

loading cycle. The figures also indicate the higher strain values recorded for CB2D, CB2AD, and 

CB3D relative to those in CB1 and CB2.    

 

Figure 4.20 – Strains measured with gauge H3 at peak chord rotations 
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Figure 4.21 – Strains measured with gauge H4 at peak chord rotations 
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0.3%. Figure 4.22 shows the strains measured with S3 at peak chord rotations for each specimen. 

The largest values occurred at chord rotations exceeding 2%, when the shorter hoop leg may have 

been engaged and working to restrain buckling of diagonal and secondary longitudinal bars. 

 

Figure 4.22 – Strains measured with gauge S3 at peak chord rotations 
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specimen with conventional Grade 60 (420) diagonal reinforcement, and the other specimens with 

high strength Grade 120 (830) diagonal reinforcement. In CB1, both gauges measured strains less 

than 0.2% (strains measured with S7 were close to 0.1% at peak chord rotations). Strains measured 

with S7 and S8 in CB2, which was nominally identical to CB1 but with Grade 120 (830) diagonal 

bars), exceeded the yield strain at chord rotations larger than approximately 1%. The strains 

recorded for CB2D, CB2AD, and CB3D were even larger, which should be expected in specimens 

with developed secondary reinforcement. In these specimens, shear damage was spread throughout 

the beam instead of concentrating near the beam-wall interface. An explanation for these 

differences is not readily apparent. Additional research is necessary to replicate and explain these 

observations.  

 

Figure 4.23 – Strains measured with gauge S7 at peak chord rotations 
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Figure 4.24 – Strains measured with gauge S8 at peak chord rotations 
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specimen designed to have a higher nominal shear strength (50% more than the ACI Building 

Code limit). This, once again, may indicate a need for more confinement in beams designed for 

larger shear stresses. Relative to other specimens, no clear difference in strains was observed for 

CB2AD, the specimen tested with axial restraint. 

 

Figure 4.25 – Strains measured with gauge T1 at peak chord rotations 
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results in smaller amounts of reinforcement, it is worth documenting how steel grade affects 

maximum crack widths and the crack widths after unloading. 

Crack widths were measured using crack comparators on three sides of the beam (the other 

side of the beam was reserved for instrumentation) at four instances during the second cycle to 

each target chord rotation: peak positive chord rotation, zero force during the excursion from 

positive peak to negative peak, peak negative chord rotation, and again zero force during the 

excursion from negative peak to the next positive peak. Measurements were taken at zero force to 

know the extent to which cracks close after unloading. 

Figures 4.26 and 4.27 show the largest crack widths measured at peak chord rotations and 

at zero shear force following peak chord rotations, respectively, plotted against peak chord rotation 

of each cycle. Crack widths measured at peak chord rotation (Figure 4.26) remained below 0.06 

in. (1.5 mm) up to 2% chord rotation and 0.10 in. (2.5 mm) up to 5% chord rotation. At zero shear 

force following peak chord rotations, cracks tended to close somewhat in both the positive and 

negative loading directions (Figure 4.27). There was no clear difference in behavior between 

specimens with conventional Grade 60 (420) diagonal reinforcement and those with high strength 

Grade 120 (830) diagonal reinforcement in terms of both crack widths at peak chord rotation 

(Figure 4.26) and after unloading (Figure 4.27). Also, neither the length of secondary (non-

diagonal) longitudinal bars, nor the design shear stress, nor the presence of axial restraint seemed 

to have a measurable effect on the size of the cracks at peak chord rotations (Figure 4.26) or after 

unloading (Figure 4.27). These observations appear to contradict observations made regarding 

Figure 4.7, where specimens with developed secondary (non-diagonal) longitudinal bars (CB2D, 

CB2AD, and CB3D) were seen to have larger crack widths than CB1 and CB2, the specimens with 

secondary longitudinal bars terminated near the beam-wall interface. The reason behind this 
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inconsistency is that in CB1 and CB2, a small number of wide flexural cracks occurred on the 

10-in. (250-mm) sides of the beam near the beam-bottom block interface, whereas the large cracks 

in CB2D, CB2AD, and CB3D occurred nearer to midspan on the 18-in. (460-mm) side of the 

beam. 

To quantify the extent to which cracks closed after loading, a crack width ratio defined as 

crack width at zero shear force (𝑤𝑤𝑧𝑧𝑧𝑧𝑧𝑧𝑐𝑐) over crack width at the preceding peak displacement (𝑤𝑤𝑝𝑝𝑧𝑧𝑝𝑝𝑝𝑝) 

was calculated. Crack width ratio is plotted against chord rotation in Figure 4.28. Due to the large 

variability, there is no clear difference between specimens with different grades of diagonal 

reinforcement, lengths of longitudinal reinforcement, design shear stresses, or axial restraint. 

 

Figure 4.26 – Measured crack width at peak chord rotations (1 in. = 25.4 mm) 
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Figure 4.27 – Measured crack width at zero shear versus peak chord rotation attained (1 in. = 25.4 

mm) 

 

Figure 4.28 – Crack width ratio versus chord rotation 
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4.7 BEAM ELONGATION 

The elongations of the coupling beam specimens are plotted in Figures 4.29 through 4.33 

in terms of normalized beam length (the ratio of beam length at any time to the original beam 

length) versus chord rotation. Elongation of a beam was calculated as the difference between the 

vertical position of the middle marker on the top block (3 in. [75 mm] above the bottom of the top 

block) and the vertical position of the middle marker on the bottom block (3 in. [75 mm] below 

the top of the bottom block). If the middle marker was not functioning, the average vertical position 

of the two adjacent markers was used. The original beam length was taken as the clear length of 

each beam specimen measured prior to testing. 

From Figure 4.29, CB1 elongated more than 2.5% while loading to a chord rotation of -6%, 

after which the beam shortened. This shortening coincided with the buckling of diagonal bars. 

While loading to a target chord rotation of +10%, the target that could not be reached due to 

limitations of the test setup, the beam shortened more than 2% relative to its original length at a 

chord rotation of +8%. 

Figure 4.30 shows the elongation of CB2. While loading to a chord rotation of more than 

5% in the positive loading direction, the specimen elongated more than 1.5%. Unlike CB1, CB2 

did not shorten. This is consistent with the observation that in CB2, no visible buckling or 

associated loss of strength occurred. 

Figures 4.31 and 4.32 show the elongations of CB2D and CB2AD. Both the beams 

exhibited less elongation than CB1 and CB2. This difference in elongations may be due to the 

increased length of the secondary (non-diagonal) longitudinal reinforcement in CB2D and 

CB2AD. The presence of axial restraint in the test of CB2AD resulted in less elongation than in 
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CB2D, with maximum elongations of 1% and 0.6% for CB2D and CB2AD, respectively. After 

reaching 5% chord rotation in both positive and negative loading directions, both specimens 

shortened, coinciding with buckling of diagonal bars. 

The elongation of CB3D is shown in Figure 4.33. Though CB3D had its secondary (non-

diagonal) longitudinal bars extended in to the blocks like CB2D and CB2AD, elongation was 

larger than for CB2D and CB2AD. While loading to a chord rotation of -5%, the beam elongated 

more than 1.5%. After the first excursion to -6% chord rotation, the beam started to shorten due to 

simultaneous buckling of several of the No. 6 (19 mm) diagonal bars. 

 

Figure 4.29 – Beam elongation for CB1 
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Figure 4.30 – Beam elongation for CB2 

 

Figure 4.31 – Beam elongation for CB2D 
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Figure 4.32 – Beam elongation for CB2AD 

 

Figure 4.33 – Beam elongation for CB3D 
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To calculate the axial restraining force generated while testing CB2AD, two strain gauges 

were attached to each of the two 3-in. (75-mm) diameter high-strength threaded rods used to link 

the top and bottom blocks and restrain axial growth (Figures 3.5 and 3.6). As discussed earlier in 

this section, elongation of CB2AD was smaller than that of other specimens because of the axial 

restraint. Due to the restraint, the beam experienced an axial force that increased with chord 

rotation up to approximately 5% chord rotation. The axial force was estimated using the strain data 

recorded with the gauges on the threaded rods assuming an elastic modulus of 29,000 ksi (200 

GPa) and nominal area of 6.8 in.2 (4400 mm2). Total beam axial force is plotted against chord 

rotation in Figure 4.34. 

 

Figure 4.34 – Restraining force measured in CB2AD  (1 kip = 4.45 kN) 
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kN) at a chord rotation of 5%. This maximum axial force is approximately 50% of the longitudinal 

component of 𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦 for one diagonal group based on an area of 1.76 in.2 (1140 mm2) and a yield 

stress of 128 ksi (883 MPa). Figure 4.34 also shows the axial restraining force as a percentage of 

𝐴𝐴𝑔𝑔𝑓𝑓𝑐𝑐𝑐𝑐. The figure indicates that axial force just exceeded 10% of 𝐴𝐴𝑔𝑔𝑓𝑓𝑐𝑐𝑐𝑐.  

Axial restraint of CB2AD did not result in reduced chord rotation capacity compared to 

CB2D. This is not consistent with findings reported by Poudel (2018) from the test of a specimen 

with conventional Grade 60 (420) diagonal reinforcement (specimen was named CB1A). In that 

test, the maximum axial restraining force developed was nearly 19% of 𝐴𝐴𝑔𝑔𝑓𝑓𝑐𝑐𝑐𝑐. Also, the chord 

rotation capacity exhibited by CB1A was approximately 10% less than CB1, the control specimen 

reported herein with Grade 60 (420) diagonal reinforcement and tested without axial restraint. 

To try to understand the different effects of axial restraint observed in the tests of CB1A 

(Poudel, 2018) and CB2AD, the stiffness of the entire restraining assemblies, including 

connections with the top and bottom blocks, was estimated. Figure 4.35 is a plot of axial force 

versus elongation of CB2AD. If beam axial force and elongation were linearly related, the slope 

of the relationship could be taken as the effective stiffness of the axial restraint mechanism present 

during the test. However, this was not the case. There was very little axial force up to 

approximately 0.08 in. (2 mm), after which axial force began to increase with elongation. From 

the figure, the effective stiffness of the axial restraint system when loading was found to be 

approximately 900 kips/in. (157 kN/mm). When unloading, the stiffness was estimated to be 1200 

kips/in. (210 kN/mm). This difference in loading and unloading stiffness led to a sort of ratcheting 

effect, shown in Figure 4.35. Restraint system stiffness accounting for this ratcheting was 

approximated as the slope of a line drawn through the peaks of each cycle (Figure 4.35). The slope 

of this line is 650 kips/in. (114 kN/mm). 
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Figure 4.35 – Axial force versus elongation in CB2AD (1 kip = 4.45 kN) 
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rotation. Typically, the outermost markers were those located in Columns 1 and 5 (Figure 4.8). In 

the case of marker malfunction, markers from Column 2 were used instead of Column 1 and 

Column 4 were used instead of Column 5. In a few occasions (later in the test), markers from 

Column 3 needed to be used instead of either Column 4 or Column 2. Values calculated using 

markers from Columns 2, 3, or 4 are identified with a solid symbol in Figures 4.36 to 4.45. 

Changes in the depth of CB1 and CB2, the specimens with the secondary (non-diagonal) 

longitudinal reinforcement terminated near the beam-block interface, were small (≤0.6%) near 

midspan and larger near the beam-block interface (up to 1.0%). CB2 exhibited slightly larger 

changes in depth than CB1, especially near midspan (Figures 4.36, 4.37, 4.38, and 4.39). 

Changes in the depth of CB2D and CB2AD, the two specimens with the secondary (non-

diagonal) longitudinal reinforcement extended into the blocks, did not vary much from midspan 

to end and were larger than those of CB1 and CB2 after a chord rotation of 2% (Figures 4.40, 4.41, 

4.42, and 4.43). The depth of CB2D was more than 2% larger than its original depth at a chord 

rotation of 3%, indicating that shear related damage was becoming extensive at that stage of 

loading as a result of deformations moving away from the joint and into the span due to the 

extended secondary reinforcement. CB2AD, most probably due to the presence of axial restraint, 

exhibited the largest change in depth among all the specimens (Figures 4.42 and 4.43), exceeding 

1% expansion at a chord rotation of 2% and 3% expansion at a chord rotation of about 3%. This 

may indicate that axial restraint increased the shear-related damage beginning at a chord rotation 

of only 2% (also evident in Figure C.27 and Figure C.28). 

CB3D, the other specimen with secondary (non-diagonal) longitudinal reinforcement 

extended into the blocks, exhibited changes in depth similar to CB2D up to 2% chord rotation, 
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after which change in beam depth could not be calculated (Figures 4.44 and 4.45). The higher 

design shear stress therefore did not cause a marked change in damage up to 2% chord rotation. 

 

 
Figure 4.36 – Normalized beam depth for CB1 at positive chord rotations, solid symbols indicate 

use of markers that are not in the outermost columns (1 in. = 25.4 mm) 
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Figure 4.37 – Normalized beam depth for CB1 at negative chord rotations, solid symbols indicate 

use of markers that are not in the outermost columns (1 in. = 25.4 mm) 

 
Figure 4.38 – Normalized beam depth for CB2 at positive chord rotations, solid symbols indicate 

use of markers that are not in the outermost columns (1 in. = 25.4 mm) 
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Figure 4.39 – Normalized beam depth for CB2 at negative chord rotations, solid symbols indicate 

use of markers that are not in the outermost columns (1 in. = 25.4 mm) 

 

Figure 4.40 – Normalized beam depth for CB2D at positive chord rotations (1 in. = 25.4 mm) 
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Figure 4.41 – Normalized beam depth for CB2D at negative chord rotations (1 in. = 25.4 mm) 

 
Figure 4.42 – Normalized beam depth for CB2AD at positive chord rotations, solid symbols 

indicate use of markers that are not in the outermost columns (1 in. = 25.4 mm) 
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Figure 4.43 – Normalized beam depth for CB2AD at negative chord rotations, solid symbols 

indicate use of markers that are not in the outermost columns (1 in. = 25.4 mm) 

 

Figure 4.44 – Normalized beam depth for CB3D at positive chord rotations (1 in. = 25.4 mm) 
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Figure 4.45 – Normalized beam depth for CB3D at negative chord rotations (1 in. = 25.4 mm) 
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stiffness 𝐾𝐾𝑠𝑠 represents the secant stiffness from the maximum displacement of a loading cycle to 

the point of zero lateral force. 

 

Figure 4.46 – Idealized force-displacement curve and hysteresis model (Otani, 1981) 

 

4.9.1 EFFECTIVE INITIAL STIFFNESS 

Envelopes of the measured shear force-chord rotation responses for the coupling beam 

specimens are shown in Figures 4.47 through 4.51. The coordinates of each data point defining the 

envelopes are presented in Table E.1 through Table E.10 in Appendix E. The envelope was 

determined by identifying the chord rotation (for each loading direction) associated with the peak 

shear attained for each step of the loading protocol (Table 3.5).  

 

Notional Yield Point 
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Figure 4.47 – Envelope of shear versus chord rotation for CB1 (1 kip = 4.45 kN) 

 

Figure 4.48 – Envelope of shear versus chord rotation for CB2 (1 kip = 4.45 kN) 
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Figure 4.49 – Envelope of shear versus chord rotation for CB2D (1 kip = 4.45 kN) 

 

Figure 4.50 – Envelope of shear versus chord rotation for CB2AD (1 kip = 4.45 kN) 
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Figure 4.51 – Envelope of shear versus chord rotation for CB3D (1 kip = 4.45 kN) 
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Figure 4.52 – Envelopes of shear versus chord rotation (1 kip = 4.45 kN) 

The envelopes of the measured shear force-chord rotation data were used to determine the 

effective initial stiffness 𝐾𝐾𝑒𝑒 based on the secant to 75% of the maximum force resisted by the 
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corresponding secant stiffness, Ke, are shown in Table E.1 through Table E.10 in Appendix E. The 
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proportion with yield stress.  
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The values of Ke obtained for CB3D are in between the previous two – ranging from 440 to 470 

kips/in. (77 to 82 kN/mm). In summary, the average value of Ke obtained for CB1 was 660 kips/in. 

(116 kN/mm), about 68% higher than 390 kips/in. (69 kN/mm), the average value of Ke obtained 

for CB2, CB2D, and CB2AD, and more than 45% higher than 460 kips/in. (80 kN/mm), the 

average value of Ke obtained for CB3D in both the positive and negative loading directions.  

Neglecting shear deformations, an effective moment of inertia (𝐼𝐼𝑒𝑒𝑠𝑠𝑠𝑠) was calculated based 

on the shear force-chord rotation data by setting the chord rotation at 0.75𝑉𝑉𝑐𝑐𝑚𝑚𝑚𝑚 equal to 

0.75𝑉𝑉𝑐𝑐𝑚𝑚𝑚𝑚𝑙𝑙𝑛𝑛
2 12𝐸𝐸𝑐𝑐𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒� . Values of 𝐼𝐼𝑒𝑒𝑠𝑠𝑠𝑠 𝐼𝐼𝑔𝑔⁄  are shown in Figure 4.53 for each specimen and loading 

direction. The ratios were approximately 0.1 for CB1 and 0.06 for all other specimens. Values of  

𝐼𝐼𝑒𝑒𝑠𝑠𝑠𝑠 were approximately 40% lower for specimens with high strength Grade 120 (830) 

reinforcement than for the specimen with conventional Grade 60 (420) reinforcement. A similar 

plot is shown in Figure 4.54 with transformed moment of inertia (𝐼𝐼𝑡𝑡𝑝𝑝) instead of gross moment of 

inertia (𝐼𝐼𝑔𝑔). The ratios reduced to approximately 0.08 for CB1 and 0.055 for all other specimens. 
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Figure 4.53 – Effective moment of inertia Ieff normalized by gross moment of inertia Ig 

 

Figure 4.54 – Effective moment of inertia Ieff normalized by transformed moment of inertia Itr 
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4.9.2 UNLOADING STIFFNESS 

The unloading stiffness 𝐾𝐾𝑠𝑠, as discussed earlier, is the secant stiffness from the maximum 

chord rotation of a loading cycle to the point of zero shear force (Figure 4.46). Table E.11 through 

Table E.20 contain the measured shear versus chord rotation data used to calculate 𝐾𝐾𝑠𝑠. The data 

correspond to the peak chord rotation (and the associated shear force) during the second cycle to 

each target chord rotation. Values of 𝐾𝐾𝑠𝑠 in Table E.11 through Table E.20 are plotted in Figures 

4.55 through 4.59 as a function of chord rotation. To allow for a direct comparison among 

specimens, the data from Figures 4.55 through 4.59 are combined in Figure 4.60. This shows 𝐾𝐾𝑠𝑠 

is somewhat similar for the specimens with high strength Grade 120 (830) diagonal reinforcement 

(CB2, CB2D, CB2AD, CB3D) and larger for CB1, the control specimen with conventional Grade 

60 (420) diagonal reinforcement. 

 

Figure 4.55 – Unloading stiffness Ku versus chord rotation for CB1 (1 kip/in. = 0.175 kN/mm) 
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Figure 4.56 – Unloading stiffness Ku versus chord rotation for CB2 (1 kip/in. = 0.175 kN/mm) 

 

Figure 4.57 – Unloading stiffness Ku versus chord rotation for CB2D (1 kip/in. = 0.175 kN/mm) 
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Figure 4.58 – Unloading stiffness Ku versus chord rotation for CB2AD (1 kip/in. = 0.175 kN/mm) 

 

Figure 4.59 – Unloading stiffness Ku versus chord rotation for CB3D (1 kip/in. = 0.175 kN/mm) 
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Figure 4.60 – Unloading stiffness Ku versus chord rotation (1 kip/in. = 0.175 kN/mm) 

 

4.10 HYSTERETIC ENERGY DISSIPATION 

The shear versus chord rotation data obtained during the second cycle of each loading step 
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coupling beams. The index Eh was calculated with Eq. 4.20 (Otani 1981), where W is the area 
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The index represents the equivalent viscous damping factor of a linear-elastic system capable of 
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 𝐸𝐸ℎ =
𝑊𝑊

2𝜋𝜋𝐷𝐷𝑐𝑐𝑉𝑉𝑐𝑐
 Eq. 4.20 

Figure 4.61 shows 𝐸𝐸ℎ versus chord rotations for all five specimens. The figure shows that 

for chord rotations between 3 and 5%, 𝐸𝐸ℎ for CB1, the control specimen with conventional Grade 

60 (420) diagonal reinforcement, was approximately two times larger than 𝐸𝐸ℎ  for specimens with 

high-strength Grade 120 (830) diagonal reinforcement. The value of 𝐸𝐸ℎ therefore changed in 

approximately inverse proportion to the yield stress. The chord rotations plotted in Figure 4.61 can 

be adjusted by multiplying chord rotation by 60 𝑓𝑓𝑦𝑦⁄  in ksi (420 𝑓𝑓𝑦𝑦⁄  in MPa). Figure 4.62, a plot of 

𝐸𝐸ℎ versus chord rotations adjusted for the yield stress of the diagonal bars, shows that 𝐸𝐸ℎ is a 

function of plastic deformation, which for a given chord rotation is smaller for a beam having 

higher grade of reinforcement with higher yield stress. 
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Figure 4.61 – Hysteretic energy dissipation index Eh versus chord rotation 

 

 
Figure 4.62 – Hysteretic energy dissipation index Eh versus chord rotation normalized for yield 

stress of diagonal bars 
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4.11  RESIDUAL CHORD ROTATIONS WHEN UNLOADED 

Residual chord rotation after unloading (at zero shear force) is important as an indicator of 

potential repair needs after an earthquake. Figure 4.63 shows the residual chord rotation divided 

by peak chord rotation of the same loading cycle plotted versus chord rotation. For this plot, 

residual chord rotation was calculated for the second cycle of loading to each target drift. Starting 

from 1% chord rotation, large differences were evident between CB1, the control specimen with 

conventional Grade 60 (420) diagonal reinforcement, and the other specimens. For instance, at 4% 

chord rotation, residual chord rotations were below 40% of the prior peak in both loading directions 

for CB2, CB2D, CB2AD, and CB3D. At the same target chord rotation, the residual chord rotation 

was more than 60% of the previous peak for CB1.  

Similar to hysteretic energy dissipation, residual chord rotations are related to the extent of 

yielding. Figure 4.64 is a replica of Figure 4.63 except the horizontal axis is multiplied by 60 𝑓𝑓𝑦𝑦⁄  

in ksi (420 𝑓𝑓𝑦𝑦⁄  in MPa). When chord rotation is adjusted in this manner, residual chord rotations 

are similar among the specimens. It therefore appears that residual displacements of isolated 

members decrease in approximately inverse proportion to reinforcement yield stress.  
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Figure 4.63 – Residual chord rotation versus chord rotation 

 
Figure 4.64 – Residual chord rotation versus chord rotation normalized for yield stress of diagonal 

bars 
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CHAPTER 5 ESTIMATION OF CHORD ROTATION CAPACITY AND 
MODELING RECOMMENDATIONS 

5.1 ESTIMATION OF CHORD ROTATION CAPACITY 

5.1.1 DATABASE DESCRIPTION 

A database of results from 33 diagonally reinforced coupling beam tests (including the 5 

beams reported herein) was compiled from the literature (Appendix F). The criteria for inclusion 

in this database were that: 1) the specimen was diagonally reinforced, 2) sufficient information 

was available describing the specimens, and 3) the concrete contained no fiber reinforcement. 

Details are provided for each specimen in Appendix F including specimen geometry, material 

properties, reinforcement, measured strength, and chord rotation capacity. The chord rotation 

capacity of a specimen was defined as the average of the maximum chord rotations imposed in 

each loading direction while maintaining 80% of the peak force in each loading direction. 

Exceptions to this definition were made for a few cases as identified in Appendix F. Several 

specimens that are listed in Appendix F were not included in subsequent analyses; reasons 

justifying the exclusions are provided.  

The database includes 18 diagonally reinforced coupling beams with all longitudinal 

reinforcement terminated near the beam-wall interface and 15 diagonally reinforced coupling 

beams with all longitudinal reinforcement fully developed into the adjacent walls. Twenty of the 

33 specimens were confined with hoops around the entire coupling beam cross section (designated 

as ‘full section confinement’). The other 13 specimens had hoops confining each diagonal cage 

(designated as ‘diagonal confinement’). The database includes beams with aspect ratios ranging 

from 1.0 to 5.0, with most specimens having aspect ratios between 1.0 and 3.5. The specimens in 
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the database were of reasonably large scale, with a mean clear span length of 36 in. (910 mm). 

Concrete strengths of the specimens varied from 2600 to 8000 psi (18 to 55 MPa), while the yield 

stress of the diagonal bars ranged from 40 to 128 ksi (276 to 883 MPa).  

The 17 specimens in Table 5.1 were selected from the database in Appendix F for analysis. 

The criteria for including a specimen in the analysis database were that it had: 1) no slab, 2) a ratio 

of transverse reinforcement spacing to diagonal bar diameter (𝑐𝑐 𝑑𝑑𝑏𝑏⁄ ) less than or equal to 6, 3) an 

axial force not larger than approximately 10% of 𝐴𝐴𝑔𝑔𝑓𝑓𝑐𝑐𝑐𝑐, 4) dimensions reasonably representative 

of full scale (h > 10 in. or 250 mm), and 5) a systematic loading protocol. These limits were 

imposed so specimens in the analysis database would represent, to some extent, beams conforming 

to requirements of ACI 318-14. The small number of specimens with slabs were omitted from the 

analysis database to remove a variable that could not be easily evaluated due to the limited number 

of data. It will be shown later that these specimens tended to have larger chord rotation capacities 

than expected for specimens with similar proportions and no slab. The three specimens with axial 

forces larger than 10% of 𝐴𝐴𝑔𝑔𝑓𝑓𝑐𝑐𝑐𝑐 were also excluded for this reason. 

Table 5.1 lists key variables for each specimen in the analysis database, including: length 

of beam (𝑙𝑙𝑛𝑛), aspect ratio (clear span-to-overall depth, 𝑙𝑙𝑛𝑛 ℎ⁄ ), length of secondary (non-diagonal) 

reinforcement (whether terminated near the beam-wall interface or developed into the wall), type 

of confinement (full-section confinement or diagonal-bar-group confinement), ratio of transverse 

reinforcement spacing to diagonal bar diameter (𝑐𝑐 𝑑𝑑𝑏𝑏⁄ ) normalized by yield stress (𝑓𝑓𝑦𝑦) of diagonal 

bars ((𝑐𝑐 𝑑𝑑𝑏𝑏⁄ ) × �𝑓𝑓𝑦𝑦 60⁄ ), ratio of transverse reinforcement area provided to transverse 

reinforcement area required in ACI 318-14 Section 18.10.7.4d(i) (𝐴𝐴sh,provided 𝐴𝐴sh,calculated⁄ ) 

parallel to both beam width and depth, measured maximum shear force and shear stress, and chord 
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rotation capacity. It was decided to multiply 𝑐𝑐 𝑑𝑑𝑏𝑏⁄  by �𝑓𝑓𝑦𝑦 60⁄  because transverse reinforcement 

spacing is approximately equal to the unbraced length required to restrain bar buckling and bar 

stress at buckling is inversely proportional to the square of that length.  
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Table 5.1 – Database of diagonally reinforced coupling beam specimens used for analysis 

Reference 
Specimen 

ID (as 
stated) 

𝒍𝒍𝒏𝒏  
in. (mm) 

𝒍𝒍𝒏𝒏
𝒉𝒉  

Non-diag. 
Reinf. 
Type 

Conf.  
Type 

𝒔𝒔
𝒅𝒅𝒃𝒃

�𝒇𝒇𝒚𝒚
𝟔𝟔𝟔𝟔 

𝑨𝑨𝒔𝒔𝒉𝒉,𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩

𝑨𝑨𝒔𝒔𝒉𝒉,𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐩𝐩𝐩𝐩
 

𝑽𝑽𝐩𝐩𝐞𝐞𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐞𝐞𝐩𝐩𝐞𝐞𝐜𝐜  
kips (kN) 

𝒗𝒗𝐩𝐩𝐞𝐞𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐞𝐞𝐩𝐩𝐞𝐞𝐜𝐜  
�𝒇𝒇𝒄𝒄𝒄𝒄, [psi 

(MPa)] 

Chord 
Rotation 

Capacity a Parallel to 
beam 
width 

Parallel to 
beam 
depth 

Tassios, 
Moretti and 

Bezas 
(1996) 

CB-2A 19.7 (500) 1.00 Developed Diagonal 5.8 1.54 1.54 64 (285) 9.8 (0.82) 4.4 

CB-2B 19.7 (500) 1.67 Developed Diagonal 5.8 1.66 1.66 38 (169) 10.2 (0.86) 5.0 

Gonzalez 
(2001) K 48.0 (1220) 2.74 Developed Diagonal 3.6 1.12 2.25 221 (983) 14.6 (1.23) 7.4 b1 

Canbolat, 
Parra and 

Wight 
(2005) 

Specimen 1 23.6 (600) 1.00 Developed Diagonal 6.2 1.03 1.03 106 (472) 7.4 (0.63) 3.8 b2 

Fortney, 
Rassati, and 

Shahrooz 
(2008) 

DCB-2 36.0 (914) 3.00 Cutoff Diagonal 2.5 0.93 1.09 93 (414) 8.7 (0.73) 10 

Naish, Fry, 
Klemencic, 
and Wallace 

(2013) 

CB24D 36.0 (914) 2.40 Cutoff Diagonal 3.1 1.84 2.50 159 (708) 10.7 (0.90) 8.0 

CB24F 36.0 (914) 2.40 Cutoff Full 3.7 1.31 1.23 171 (761) 11.5 (0.97) 9.0 

CB33F 60.0 (1520) 3.33 Cutoff Full 3.7 1.31 1.26 124 (552) 6.9 (0.58) 8.0 
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Reference 
Specimen 

ID (as 
stated) 

𝒍𝒍𝒏𝒏  
in. (mm) 

𝒍𝒍𝒏𝒏
𝒉𝒉  

Non-diag. 
Reinf. 
Length 

Conf.  
Type 

𝒔𝒔
𝒅𝒅𝒃𝒃

�𝒇𝒇𝒚𝒚
𝟔𝟔𝟔𝟔 

𝑨𝑨𝒔𝒔𝒉𝒉,𝒑𝒑𝒑𝒑𝒑𝒑𝒗𝒗𝒑𝒑𝒅𝒅𝒑𝒑𝒅𝒅

𝑨𝑨𝒔𝒔𝒉𝒉,𝒄𝒄𝒄𝒄𝒍𝒍𝒄𝒄𝒄𝒄𝒍𝒍𝒄𝒄𝒄𝒄𝒑𝒑𝒅𝒅
 

𝑽𝑽𝒑𝒑𝒆𝒆𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒄𝒄𝒑𝒑𝒏𝒏𝒄𝒄  
kips (kN) 

𝒗𝒗𝒑𝒑𝒆𝒆𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒄𝒄𝒑𝒑𝒏𝒏𝒄𝒄  
�𝒇𝒇𝒄𝒄′ , [psi 
(MPa)] 

Chord 
Rotation 

Capacity a Parallel to 
beam 
width 

Parallel to 
beam 
depth 

Lim, 
Hwang, 

Cheng, and 
Lin (2016) 

CB30-DA 59.1 (1500) 3.0 Developed Diagonal 4.9 0.70 0.70 151 (672) 8.6 (0.72) 7.8 

CB30-DB 59.1 (1500) 3.0 Developed Full 3.3 1.13 0.85 164 (730) 9.4 (0.78) 7.7 

Lim, 
Hwang, 

Wang, and 
Chang 
(2016) 

CB10-1 19.7 (500) 1.0 Developed Full 4.3 2.69 1.66 325 (1450) 23.8 (1.98) 5.8 

CB20-1 39.4 (1000) 2.0 Developed Full 3.7 1.55 1.18 241 (1070) 11.9 (1.00) 7.3 

Current 
study 

CB1 34.0 (864) 1.89 Cutoff Full 3.5 1.09 1.12 184 (819) 13.2 (1.10) 7.1 

CB2 34.0 (864) 1.89 Cutoff Full 5.8 0.91 0.93 207 (921) 13.6 (1.13) 5.1 

CB2D 34.0 (864) 1.89 Developed Full 5.8 1.03 1.07 204 (908) 14.3 (1.20) 5.3 

CB2AD 34.0 (864) 1.89 Developed Full 5.8 1.16 1.20 234 (1040) 17.4 (1.50) 5.3 

CB3D 34.0 (864) 1.89 Developed Full 5.8 1.05 1.08 275 (1220) 19.4 (1.63) 5.6 

 

a  Chord rotation capacity obtained from the average of maximum chord rotations attained in both loading directions while maintaining a shear force 
 not less than 80% of the maximum measured shear force in that loading direction. 
b Exception from the definition of chord rotation capacity stated in ‘a’. 
 b1 Average of chord rotation attained in one loading direction and chord rotation corresponding to peak shear force in the other loading direction. 
 b2 Average of maximum chord rotations attained in two loading directions, though in one the shear force was less than 80% of the maximum. 
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5.1.1.1 ANALYSIS OF TRENDS 

In Figures 5.1 through 5.6, beam chord rotation capacity is plotted against 𝑙𝑙𝑛𝑛 ℎ⁄ , maximum 

shear stress (in terms of �𝑓𝑓𝑐𝑐𝑐𝑐), 𝑐𝑐 𝑑𝑑𝑏𝑏⁄ , (𝑐𝑐 𝑑𝑑𝑏𝑏⁄ ) × �𝑓𝑓𝑦𝑦 60⁄ , and transverse reinforcement area 

provided parallel to beam width or depth (separate plots) divided by transverse reinforcement area 

required in ACI 318-14 Section 18.10.7.4d(i) (𝐴𝐴𝑠𝑠ℎ,provided 𝐴𝐴𝑠𝑠ℎ,calculated⁄ ). Beams with cutoff 

longitudinal bars and beams with developed longitudinal bars are distinguished with different 

marker shapes. Beams with aspect ratios of 2.0 or more are identified with a cross within the 

markers. Solid markers identify the specimens reported herein.  

Figure 5.1 shows a positive correlation between chord rotation capacity and aspect ratio, 

with beams with higher aspect ratios withstanding larger chord rotations. No difference was 

observed between the trends for beams with cutoff longitudinal reinforcement and for beams with 

developed longitudinal reinforcement. 

The plot of chord rotation capacity versus shear stress (Figure 5.2) did not exhibit a trend. 

The lack of clear trend is consistent with the observation in Chapter 4 that designing CB3D for a 

nominal shear strength near 15�𝑓𝑓𝑐𝑐′ [psi] (1.25�𝑓𝑓𝑐𝑐′ [MPa]), 50% more than the ACI Building Code 

limit, did not lead to a smaller chord rotation capacity. Shear stress may therefore not have a strong 

influence on the chord rotation capacity of well detailed diagonally reinforced coupling beams.  

Figures 5.3 and 5.4 show negative correlations between chord rotation capacity and both 

𝑐𝑐 𝑑𝑑𝑏𝑏⁄  and 𝑐𝑐 𝑑𝑑𝑏𝑏⁄ �𝑓𝑓𝑦𝑦 60⁄ . These trends were similar for beams with cut off longitudinal bars and 

beams with developed longitudinal bars. Although data from tests with Grade 120 (830) are 

limited, the plot against 𝑐𝑐 𝑑𝑑𝑏𝑏⁄ �𝑓𝑓𝑦𝑦 60⁄  is believed to be the more appropriate comparison because: 
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1) an important function of transverse reinforcement is restraint of bar buckling and 2) the Euler 

buckling equation indicates that bar stress at buckling is inversely proportional to the square of 

unbraced length, which can be taken approximately equal to transverse reinforcement spacing. 

This may also explain the lower chord rotation capacities exhibited by the specimens with Grade 

120 (830) diagonal reinforcement compared to the control specimen with Grade 60 (420) diagonal 

reinforcement (Section 4.1.3) in this study. 

No correlation was observed in Figures 5.5 and 5.6 between chord rotations and 

𝐴𝐴𝑠𝑠ℎ,provided 𝐴𝐴𝑠𝑠ℎ,calculated⁄  in either direction (parallel to both beam width and beam depth). From 

measured strains in the transverse reinforcement (Section 4.5.3), it was observed that most of the 

hoops and crossties did not yield. The lack of trend may be because transverse reinforcement is 

not fully engaged.  

 

Figure 5.1 – Chord rotation versus aspect ratio (ln/h); specimens with ln/h ≥ 2 have an “x” 
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Figure 5.2 – Chord rotation versus shear stress; specimens with ln/h ≥ 2 have an “x” 

 

Figure 5.3 – Chord rotation versus s/db; specimens with ln/h ≥ 2 have an “x” 
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Figure 5.4 – Chord rotation versus s/db normalized by diagonal bar yield stress; specimens with 

ln/h ≥ 2 have an “x” 

 
Figure 5.5 – Chord rotation versus Ash,provided/Ash,calculated parallel to beam width; specimens with 

ln/h ≥ 2 have an “x” 
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Figure 5.6 – Chord rotation versus Ash,provided/Ash,calculated parallel to beam depth; specimens with 

ln/h ≥ 2 have an “x” 
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𝐶𝐶𝐶𝐶 = 8.553 + 0.970

𝑙𝑙𝑛𝑛
ℎ
− 0.874

𝑐𝑐
𝑑𝑑𝑏𝑏

× �𝑓𝑓𝑦𝑦
60

 Eq. 5.1 

 
𝐶𝐶𝐶𝐶 = 8.5 +

𝑙𝑙𝑛𝑛
ℎ
− 0.9

𝑐𝑐
𝑑𝑑𝑏𝑏

× �𝑓𝑓𝑦𝑦
60

≥ 3.0 Eq. 5.2 

Figure 5.7 shows the chord rotation capacities calculated with Eq. 5.2 using reported values 

of 𝑙𝑙𝑛𝑛 ℎ⁄  and (𝑐𝑐 𝑑𝑑𝑏𝑏⁄ ) × �𝑓𝑓𝑦𝑦 60⁄  plotted against the measured chord rotation capacities. The figure 

shows a close fit between calculated and measured chord rotation capacities and that most of the 

measured values are within ±1 standard deviation. The standard deviation in Figure 5.7 was 

obtained by multiplying the coefficient of variation calculated for the ratios of measured-to-

calculated chord rotation capacities by the trendline values. The closeness of fit indicates that Eq. 

5.2 includes the most relevant parameters for estimating chord rotation capacity. It is noted that 

use of the same database for development and evaluation of an equation is not a rigorous approach, 

but the analysis is limited by the number of available data. In Figure 5.7, filled square markers 

identify three specimens with slabs (Naish et al., 2013); these beams were excluded from the 

analysis database but are shown here for comparison. All three specimens with slabs exhibited 

chord rotation capacities equal to or larger than calculated with Eq. 5.2 for otherwise similar 

specimens. It is possible slabs improve beam chord rotation capacity by confining the section.  

Figure 5.8 shows the same plot as Figure 5.7, with filled triangular markers identifying the 

specimens with a ratio of transverse reinforcement spacing to diagonal bar diameter (𝑐𝑐 𝑑𝑑𝑏𝑏⁄ ) more 

than 6. These specimens were excluded from the analysis database because the amount or spacing 

of transverse reinforcement were beyond the range considered. All these specimens were 

calculated to have chord rotation capacities of 3.0, the lower limit with Eq. 5.2.  Similarly, Figure 
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5.9 shows the same plot as Figure 5.7 with filled circular markers identifying the specimens with 

stiff axial restraint. Although Poudel (2018) observed an approximately 10% reduction in chord 

rotation capacity correlated with stiff axial restraint, that trend is not evident in Figure 5.9. 

 

 
Figure 5.7 – Chord rotations calculated with Eq. 5.2 versus measured chord rotation capacity; 

solid squares represent specimens with slabs that were not in the analysis database 
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Figure 5.8 – Chord rotations calculated with Eq. 5.2 versus measured chord rotation capacity; 

solid triangles represent specimens with (s/db) more than 6 that were not in the analysis database 

 
Figure 5.9 – Chord rotations calculated with Eq. 5.2 versus measured chord rotation capacity; 
solid circles represent specimens with stiff axial restraint that were not in the analysis database 
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Figures 5.10 and 5.11 show the ratios of measured-to-calculated chord rotation capacities 

plotted against 𝑙𝑙𝑛𝑛 ℎ⁄  and (𝑐𝑐 𝑑𝑑𝑏𝑏⁄ ) × �𝑓𝑓𝑦𝑦 60⁄ , respectively. The dotted lines in the figures indicate 

±1 standard deviation. Both figures show the ratios are near 1.0 and relatively independent of the 

values on the abscissa. This shows that Eq. 5.2 captures the effect of these variables on chord 

rotation capacity. This also shows that values calculated with Eq. 5.2 approximately represent a 

median chord rotation. If a version of Eq. 5.2 were to be used as a basis for design, calculated 

values should be adjusted to produce the appropriate conservatism. 

 

Figure 5.10 – Measured chord rotation capacity divided by the chord rotation capacity calculated 
with Eq. 5.2 versus aspect ratio 
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Figure 5.11 – Measured chord rotation capacity divided by the chord rotation capacity calculated 
with Eq. 5.2 versus s/db normalized by diagonal bar yield stress 
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ASCE 41 (2017) parameters recommended in TBI (2017) (“Envelope B”) and Naish et al. (2013) 

(“Envelope C”). The modifications proposed by Naish et al. (2013) included corrections intended 

to account for the scale of the test specimens because, they argued, deformations due to strain 

penetration do not scale in proportion to deformations attributed to other mechanisms.  

 
Figure 5.12 – Generalized force-deformation relationship as defined in ASCE 41 (2017) and ACI 

369.1 (2017) 

 

Figures 5.13 through 5.17 show the backbone curves (envelopes) for the five specimens 

described herein. The backbone curves connect the points where peak shear was attained for each 

step of the loading protocol (Table 3.5). Figures 5.13 through 5.17 also show Envelopes A through 

C based on the parameters listed in Table 5.2. For calculation of the coordinates of Point B, a stress 

of 1.1 times the specified 𝑓𝑓𝑦𝑦 was assumed in the diagonal reinforcement and a concrete 

compressive strength of 𝑓𝑓𝑐𝑐𝑐𝑐 was used. These were used as an estimate of expected material 

properties for reinforcing bars and concrete respectively. Although ASCE 41 (2017) and ACI 

369.1 (2017) recommend using an expected concrete compressive strength of 1.5𝑓𝑓𝑐𝑐′, this value was 

not appropriate for use on specimens tested within a few months of casting. For calculation of the 

∆𝑦𝑦 
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force at Point C, a stress of 1.25 times the specified 𝑓𝑓𝑦𝑦 was assumed in the diagonal reinforcement 

(which is the stress ACI 318 recommends for calculation of probable flexural strength) and a 

concrete compressive strength of 𝑓𝑓𝑐𝑐𝑐𝑐 was used. The figures show the specimens attained larger 

strength and deformation than the envelopes defined in Table 5.2. 

 

Table 5.2 – Envelopes used for nonlinear seismic analysis 

Parameters 
Envelope A  

ASCE 41 (2017) and ACI 
369.1 (2017) 

Envelope B  
TBI (2017) 

Envelope C  
Naish et al. (2013) 

    
c 0.8 0.8 0.3 

d 0.03 0.03 0.035 + ∆𝑦𝑦  

e 0.05 0.05 0.055 + ∆𝑦𝑦  

𝐼𝐼𝑒𝑒𝑠𝑠𝑠𝑠 𝐼𝐼𝑔𝑔⁄  0.3 a 0.07 (𝑙𝑙𝑛𝑛 ℎ)⁄  b 0.15 to 0.20 c 

𝑄𝑄𝑇𝑇 d 𝑉𝑉𝑛𝑛 e 𝑉𝑉𝑛𝑛 e 𝑉𝑉𝑛𝑛 e 

𝑄𝑄𝐶𝐶 f 𝑉𝑉𝑡𝑡𝑝𝑝 g 𝑉𝑉𝑡𝑡𝑝𝑝 g 𝑉𝑉𝑡𝑡𝑝𝑝 g 
    a Based on Table 10-5 of ASCE 41-17 (2017). 

b Based on Table 4-3 of TBI (2017). 
c 0.15 was used in Figures 5.13 through 5.17. 
d Force at yielding point B. 
e Based on Eq. 2.1 (without an upper limit on shear stress), using measured (or expected) material properties 
and 𝛼𝛼 = 18 degrees. Figures 5.13 through 5.22 are based on 𝑓𝑓𝑐𝑐𝑐𝑐 and 1.1𝑓𝑓𝑦𝑦. 
f Force at capping point C. 
g Based on Eq. 2.1 (without an upper limit on shear stress) and using 1.25 times the specified 𝑓𝑓𝑦𝑦. 
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Figure 5.13 – Envelope of shear versus chord rotation for CB1 compared with other modeling parameters 

(1 kip = 4.45 kN) 

 
Figure 5.14 – Envelope of shear versus chord rotation for CB2 compared with other modeling parameters 

(1 kip = 4.45 kN) 
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Figure 5.15 – Envelope of shear versus chord rotation for CB2D compared with other modeling parameters 

(1 kip = 4.45 kN) 

 
Figure 5.16 – Envelope of shear versus chord rotation for CB2AD compared with other modeling 

parameters (1 kip = 4.45 kN) 
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Figure 5.17 – Envelope of shear versus chord rotation for CB3D compared with other modeling parameters 

(1 kip = 4.45 kN) 
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in Chapter 4 that the initial stiffness of specimens with Grade 120 (830) diagonal bars was 

approximately 60% of the initial stiffness of CB1, constructed with Grade 60 (420) reinforcement. 

For simplicity, and given the few data available, it is recommended to multiply the initial stiffness 

by 60 𝑓𝑓𝑦𝑦⁄  (ksi) (420 𝑓𝑓𝑦𝑦⁄  MPa) as shown in the last row of Table 5.3. Furthermore, the parameters 

d and e of Envelope C should not vary with bar grade because the total deformation capacity does 

not vary with reinforcement grade as long as 0.9(𝑐𝑐 𝑑𝑑𝑏𝑏⁄ )�𝑓𝑓𝑦𝑦 60⁄  is constant (Section 5.1.2). This 

is achieved in the “Modified C” recommendations listed in Table 5.3 by setting ∆𝑦𝑦 = 1%.  

Table 5.3 – Envelopes used for nonlinear seismic analysis and proposed modifications to account 
for yield stress (𝑓𝑓𝑦𝑦 in ksi) 

Parameters Envelope A Envelope B Envelope C Modified B Modified C 

      
c 0.8 0.8 0.3 0.8 0.3 

d 0.03 0.03 0.035 + ∆𝑦𝑦 0.03 0.045  

e 0.05 0.05 0.055 + ∆𝑦𝑦 0.05  0.065 

𝐼𝐼𝑒𝑒𝑠𝑠𝑠𝑠 𝐼𝐼𝑔𝑔⁄  0.3 0.07 (𝑙𝑙𝑛𝑛 ℎ)⁄  0.15 0.07 (𝑙𝑙𝑛𝑛 ℎ⁄ )(60 𝑓𝑓𝑦𝑦⁄ ) 0.15 (60 𝑓𝑓𝑦𝑦⁄ ) 
      

 

Table 5.3 lists the values for envelopes A, B, and C from Table 5.2 alongside proposed 

modifications. Figures 5.18 through 5.22 compare the measured backbone curves (envelopes) of 

the five beams in this study with the envelopes defined by the proposed modeling parameters. The 

figures indicate that both Modified B and C have an initial stiffness that closely matches the initial 

stiffness of CB2 through CB3D, the specimens with Grade 120 (830) diagonal reinforcement. 

Also, deformation at peak strength as well as the ultimate deformation capacities obtained from 

Modified B and C are equivalent to those of Envelopes B and C based on the parameters listed in 

Table 5.2. 
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Figure 5.18 – Envelope of shear versus chord rotation for CB1 compared with proposed modeling 
parameters (1 kip = 4.45 kN) 

 
Figure 5.19 – Envelope of shear versus chord rotation for CB2 compared with proposed modeling 

parameters (1 kip = 4.45 kN) 

 

-10 -8 -6 -4 -2 0 2 4 6 8 10

Chord Rotation, %

-300

-200

-100

0

100

200

300

Sh
ea

r, 
ki

p

Envelope (Backbone Curve)

Modified B

Modified C

-10 -8 -6 -4 -2 0 2 4 6 8 10

Chord Rotation, %

-300

-200

-100

0

100

200

300

Sh
ea

r, 
ki

p

Envelope (Backbone Curve)

Modified B

Modified C



144 

 

Figure 5.20 – Envelope of shear versus chord rotation for CB2D compared with proposed modeling 
parameters (1 kip = 4.45 kN) 

 
Figure 5.21 – Envelope of shear versus chord rotation for CB2AD compared with proposed modeling 

parameters (1 kip = 4.45 kN) 
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Figure 5.22 – Envelope of shear versus chord rotation for CB3D compared with proposed modeling 

parameters (1 kip = 4.45 kN) 
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Figure 5.23 – Normal cumulative distribution for measured chord rotation capacity divided by the chord 

rotation capacity calculated with Eq. 5.2 
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Table 5.4 – Envelopes used for nonlinear seismic analysis and proposed modifications based on 
database analysis 

Parameters Envelope A Envelope B Envelope C Modified Envelope 

     
a 0.03 0.03 0.035 6.5 + 𝑙𝑙𝑛𝑛

ℎ
− 0.9 𝑠𝑠

𝑣𝑣𝑏𝑏
× �𝑠𝑠𝑦𝑦

60
  

b 0.05 0.05 0.055  8.5 + 𝑙𝑙𝑛𝑛
ℎ
− 0.9 𝑠𝑠

𝑣𝑣𝑏𝑏
× �𝑠𝑠𝑦𝑦

60  

c 0.8 0.8 0.3 0.8 

𝐼𝐼𝑒𝑒𝑠𝑠𝑠𝑠 𝐼𝐼𝑔𝑔⁄  a 0.3 0.07 (𝑙𝑙𝑛𝑛 ℎ)⁄  0.15 0.07 (𝑙𝑙𝑛𝑛 ℎ⁄ )(60 𝑓𝑓𝑦𝑦⁄ ) 
     a Effective section property expressed as a fraction of gross section property. 
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CHAPTER 6 SUMMARY AND CONCLUSIONS 

An experimental program was conducted to investigate the deformation capacity of 

coupling beams reinforced with high-strength steel under reversed cyclic displacements. Results 

were reported from tests of five diagonally reinforced concrete coupling beams (CB1, CB2, CB2D, 

CB2AD, and CB3D). The main variables were yield stress of the diagonal reinforcement, target 

beam shear stress, length of the secondary (non-diagonal) longitudinal reinforcement, and axial 

restraint. All specimens had the same nominal concrete compressive strength and beam 

dimensions. In addition to analyzing the test results, a database of 17 specimens, selected from 

among 33 diagonally reinforced coupling beam tests reported in the literature, was analyzed to 

determine which specimen parameters most strongly influence deformation capacity. Chord 

rotation capacity was defined as the average of the largest chord rotations in each loading direction 

at which the force exceeded 80% of the peak force. The following conclusions were drawn on the 

basis of these tests and analyses: 

1) Chord rotation capacities exhibited by specimens with Grade 120 (830) diagonal reinforcement 

were between 5.1 and 5.6%. These were smaller than that exhibited by the control specimen 

with Grade 60 (420) diagonal reinforcement (7.1%). This difference may be partly attributable 

to the wider transverse reinforcement spacing in terms of db (4db versus 3.4db for specimens 

constructed with Grade 120 and 60 (830 and 420) bars). 

2) Higher diagonal bar grade was correlated with large and consistent changes in beam stiffness, 

hysteretic energy dissipation, and residual chord rotation at zero force. A change from Grade 

60 to 120 (420 to 830) resulted in an approximately 40% reduction in stiffness, 50% reduction 

in hysteretic energy dissipation, and 50% reduction in residual chord rotation. The extent to 
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which these differences would affect the drift of a full-scale structure under dynamic excitation 

was outside the project scope. 

3) The 2017 Tall Building Initiative Report recommends using an effective moment of inertia of 

0.07 (𝑙𝑙𝑛𝑛 ℎ⁄ )𝐼𝐼𝑔𝑔 for diagonally reinforced coupling beams. When multiplied by �60 𝑓𝑓𝑦𝑦⁄ �, this 

closely represented the stiffness of all specimens tested in this study, regardless of grade.  

4) A simple equation, reproduced as Eq. 6.1, was proposed to represent the mean coupling beam 

chord rotation capacity for a database of 17 specimens. The equation is based on a database of 

diagonally reinforced concrete coupling beams with aspect ratios between 1.0 and 4.0, 

transverse reinforcement spacing not more than 6𝑑𝑑𝑏𝑏, and reinforcement yield stress between 

60 and 130 ksi (420 and 900 MPa). The equation is not a function of shear stress because it 

was found to not have a strong correlation with the chord rotation capacity of well detailed 

diagonally reinforced coupling beams. 

 
𝐶𝐶𝐶𝐶 = 8.5 +

𝑙𝑙𝑛𝑛
ℎ
− 0.9

𝑐𝑐
𝑑𝑑𝑏𝑏

× �𝑓𝑓𝑦𝑦
60 Eq. 6.1 

5) It may be appropriate to calculate probable flexural strength assuming bar stresses larger than 

1.25 times the yield stress when steel without a yield plateau is used and an accurate estimate 

of strength is required. For specimens with Grade 120 (830) diagonal reinforcement, beam 

strength estimated on the basis of the beam attaining its probable flexural strength at both ends 

was closer to measured strength than estimates obtained with other simple methods, although 

it still provided an estimate that was frequently less than the measured value.  

6) Design for shear stresses larger than 10�𝑓𝑓𝑐𝑐′ [psi] (0.83�𝑓𝑓𝑐𝑐′ [MPa]) may be feasible in well 

detailed diagonally reinforced coupling beams. The specimen designed for a nominal shear 
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stress near 15�𝑓𝑓𝑐𝑐′ [psi] (1.25�𝑓𝑓𝑐𝑐′ [MPa]), 50% more than the ACI Building Code limit, 

exhibited a chord rotation capacity and mode of damage similar to other specimens. There also 

was no trend between deformation capacity and shear stress among database specimens. 

Furthermore, shear damage (in terms of shear deformations) did not increase with shear stress.  

7) Axial restraint resulted in a maximum beam axial force of approximately 10% of 𝐴𝐴𝑔𝑔𝑓𝑓𝑐𝑐𝑐𝑐. The 

result was large beam overstrength, with the maximum specimen strength exceeding the 

nominal strength by 85%. There was evidence that the axially restrained specimen exhibited 

larger shear-related damage than a similar unrestrained specimen beginning at 2% chord 

rotation (based on increases in beam depth). Axial restraint did not, however, result in reduced 

chord rotation capacity or changes in the relative contribution from different deformation 

mechanisms. This was counter to findings reported by Poudel 2018. The difference may be 

due to the difference in restraining system stiffness which caused a higher axial force to 

develop in the specimen tested by Poudel (2018). 

8) Specimens with secondary longitudinal reinforcement cutoff near the wall face exhibited a 

localization of damage at the beam-wall interface. Specimens with secondary longitudinal 

reinforcement extended into the wall had damage that was more distributed throughout the 

span. Despite this difference in damage, deformation capacities exhibited by the specimens 

were similar. 
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NOTATION 

𝐴𝐴𝑐𝑐𝑐𝑐 = coupling beam cross-sectional area (𝑏𝑏ℎ), in.2 (mm2) 

𝐴𝐴𝑠𝑠ℎ = total cross-sectional area of transverse reinforcement, including crossties, within 
spacing 𝑐𝑐 and perpendicular to dimension 𝑏𝑏, in.2 (mm2) 

𝐴𝐴𝑣𝑣𝑣𝑣 = total reinforcement area of each diagonal group, in.2 (mm2) (Figure 2.11), 

𝐴𝐴𝑔𝑔 = gross cross-sectional area, in.2 (mm2) 

𝑏𝑏 = beam width, in. (mm) 

c = parameter used to represent residual strength (Figure 5.12) 

d = parameter used to calculate total deformation to capping point C (Figure 5.12) 

e = parameter used to calculate total deformation to point E (Figure 5.12) 

𝐶𝐶𝑀𝑀 = cementitious material, includes cement and fly ash (Table 3.2) 

𝐶𝐶𝐶𝐶 = chord rotation 

𝐶𝐶𝐶𝐶𝑐𝑐𝑚𝑚𝑡𝑡 = chord rotation capacity obtained from the average of 𝐶𝐶𝐶𝐶𝑐𝑐𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝑐𝑐𝑚𝑚𝑚𝑚 = Maximum chord rotation attained in a loading direction while maintaining a shear 
force not less than 0.8𝑉𝑉𝑐𝑐𝑚𝑚𝑚𝑚. 

𝐷𝐷𝑐𝑐 = Peak displacement during a loading cycle, in. (mm) 

𝐷𝐷𝑐𝑐𝑚𝑚𝑚𝑚 = previously attained maximum displacement in the direction of loading, in. (mm) 

𝐷𝐷𝑦𝑦 = notional yield displacement, in. (mm) 

𝑑𝑑𝑏𝑏 = diameter of diagonal bars, in. (mm) 

𝑑𝑑𝑖𝑖 = distance between midspan and midheight of layer i, in. (mm) 

𝑑𝑑1 = distance between the top left and bottom right corners of a station, in. (mm) 
(Figure 4.9) 

𝑑𝑑2 = distance between the bottom left and top right corners of a station, in. (mm) 
(Figure 4.9) 

𝐸𝐸𝑐𝑐 = modulus of elasticity of concrete, ksi (MPa)  

𝐸𝐸ℎ = hysteretic energy dissipation index 

𝑓𝑓𝑐𝑐′ = specified compressive strength of concrete, psi (MPa) 

𝑓𝑓𝑐𝑐𝑐𝑐 = average measured compressive strength of the concrete, psi (MPa) 

𝑓𝑓𝑡𝑡 = tensile strength of reinforcement, ksi (MPa) 

𝑓𝑓𝑦𝑦 = yield stress of reinforcement, ksi (MPa) 

ℎ = overall depth of beam, in. (mm) 

ℎ𝑏𝑏 = distance between the bottom corners of a station, in. (mm) (Figure 4.9) 
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ℎ𝑡𝑡 = distance between the top corners of a station, in. (mm) (Figure 4.9) 

𝐼𝐼𝑒𝑒𝑠𝑠𝑠𝑠 = effective moment of inertia, in.4 (mm4) 

𝐼𝐼𝑔𝑔 = moment of inertia of gross concrete section about centroidal axis, neglecting 
reinforcement, in.4 (mm4) 

𝐼𝐼𝑡𝑡𝑝𝑝 = moment of inertia of transformed concrete section about centroidal axis, typically 
multiplied with 𝐸𝐸𝑐𝑐, in.4 (mm4) 

𝐾𝐾𝑒𝑒 = effective initial stiffness, kip/in. (kN/mm) 

𝐾𝐾𝑠𝑠 = unloading stiffness, kip/in. (kN/mm) 

𝐿𝐿 = length of a fixed beam, in. (mm) 

ℓ = width of a station (nominally 4 in. (100 mm)) (Figure 4.8) 

ℓ𝑖𝑖,𝐶𝐶1𝐶𝐶5 = initial distance between Columns 1 and 5 (Figure 4.8) in Row 𝑖𝑖 

𝑙𝑙𝑛𝑛 = coupling beam clear span length measured from the top of the bottom block to the 
bottom of the top block, in. (mm) 

𝑀𝑀𝑛𝑛 = nominal flexural strength, kip-ft (kN-m) 

𝑀𝑀𝑡𝑡𝑝𝑝 = probable flexural strength, kip-ft (kN-m) 

𝑖𝑖𝑠𝑠 = number of stations (four) 

𝑄𝑄𝑇𝑇 = force at yielding point B (Figure 5.12) 

𝑄𝑄𝐶𝐶 = force at capping point C (Figure 5.12) 

𝑐𝑐 = transverse reinforcement spacing, in. (mm) 

𝑉𝑉𝑐𝑐  force associated with peak displacement 𝐷𝐷𝑐𝑐. 

𝑣𝑣𝑙𝑙 = distance between left-most corners of a station, in. (mm) (Figure 4.9) 

𝑣𝑣𝑐𝑐𝑚𝑚𝑚𝑚 = shear stress calculated as 𝑉𝑉𝑐𝑐𝑚𝑚𝑚𝑚 (𝑏𝑏ℎ)⁄  

𝑉𝑉𝑐𝑐𝑚𝑚𝑚𝑚 = maximum measured shear force, kip (kN) 

𝑉𝑉𝑛𝑛 = nominal shear strength, kip (kN) 

𝑣𝑣𝑝𝑝 = distance between right-most corners of a station, in. (mm) (Figure 4.9) 

𝑓𝑓 = change in vertical position of the marker identified by the subscript 

𝛼𝛼 = angle defining the orientation of diagonal reinforcement relative to the longitudinal 
beam axis 

∆𝐴𝐴 = change in angle A of a station (Figure 4.9) 

∆𝐵𝐵 = change in angle B of a station (Figure 4.9) 

∆𝐶𝐶 = change in angle C of a station (Figure 4.9) 

∆𝐷𝐷 = change in angle D of a station (Figure 4.9) 
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𝛥𝛥𝑠𝑠𝑙𝑙,𝑏𝑏𝑡𝑡𝑡𝑡 = sliding at the beam-bottom block interface 

𝛥𝛥𝑠𝑠𝑙𝑙,𝑡𝑡𝑡𝑡𝑡𝑡 = sliding at the beam-top block interface 

∆𝑦𝑦 = drift ratio associated with reinforcement yielding estimated using 𝑉𝑉𝑛𝑛 and 𝐼𝐼𝑒𝑒𝑠𝑠𝑠𝑠  

𝑊𝑊 = amount of hysteretic energy dissipated per cycle for each loading direction resisting a 
force 𝑉𝑉𝑐𝑐 at the peak displacement 𝐷𝐷𝑐𝑐. 

𝛿𝛿 = displacement, in. (mm) 

𝛿𝛿𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐 = displacement of bottom block (at its top surface) (Figure 4.1), in. (mm) 

𝛿𝛿𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐,𝑐𝑐 = displacement of bottom block measured 3 in. (75 mm) below its top surface, in. (mm) 

𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡 = displacement of top block (at its bottom surface) (Figure 4.1), in. (mm) 

𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡,𝑐𝑐 = displacement of top block measured 3 in. (75 mm) above its bottom surface), in. (mm) 

𝜀𝜀𝑠𝑠𝑠𝑠 = measured fracture elongation of reinforcement 

𝜀𝜀𝑠𝑠𝑠𝑠  = measured uniform elongation of reinforcement 

𝛳𝛳 = flexural rotation (Figure 4.10) 

𝜃𝜃𝑠𝑠 = chord rotation due to flexure 

𝛳𝛳𝑖𝑖 = flexural rotation in layer i  

𝜃𝜃𝑠𝑠𝑙𝑙 = chord rotation due to sliding at the face of the blocks 

𝜃𝜃𝑠𝑠𝑡𝑡 = chord rotation due to strain penetration into the top and bottom blocks 

𝜃𝜃𝑠𝑠𝑡𝑡,𝑏𝑏𝑡𝑡𝑡𝑡 = rotation due to strain penetration into the bottom block 

𝜃𝜃𝑠𝑠𝑡𝑡,𝑡𝑡𝑡𝑡𝑡𝑡 = rotation due to strain penetration into the top block 

𝜃𝜃𝑣𝑣 = chord rotation due to shear distortion 

𝜃𝜃𝑦𝑦 = rotation about y-axis 

𝜃𝜃𝑧𝑧 = rotation about z-axis 

𝛳𝛳𝑧𝑧,𝑇𝑇𝑇𝑇 = rotation of bottom block in the plane of the specimen (about z-axis) (Figure 4.1) 

𝛳𝛳𝑧𝑧,𝑇𝑇𝑇𝑇 = rotation of the top block in the plane of the specimen (about z-axis) (Figure 4.1) 

𝜓𝜓 = angle change due to expansion (Figure 4.10) 

𝛾𝛾 = distortion due to shear (Figure 4.10) 
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APPENDIX A  PHOTOS DURING CONSTRUCTION 
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Figure A.1 - Formwork for a coupling beam specimen 

 

Figure A.2 - Bottom block reinforcement 
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Figure A.3 - Bottom block reinforcement inside formwork 

 

Figure A.4 - Top block reinforcement inside formwork 
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Figure A.5 - CB1 before casting 

 

Figure A.6 - CB2 before casting 
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Figure A.7 – CB2D before casting 

 

Figure A.8 – CB2AD before casting (steel pipes embedded into top and bottom blocks) 
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Figure A.9 – CB3D before casting 

 

Figure A.10 – Curing of a coupling beam specimen 
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Figure A.11 – Coupling beam specimen after stripping formwork 
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APPENDIX B  PHOTOS OF SPECIMENS DURING AND AFTER TESTING 
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(+1.8%) (-1.9%) 

Figure B.1 – CB1 at target 2% chord rotation 

  
(+2.9%) (-2.1%) 

Figure B.2 – CB2 at target 2% chord rotation 
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(+2.0%) (-2.0%) 

Figure B.3 – CB2D at target 2% chord rotation 

  
(+2.0%) (-2.2%) 

Figure B.4 – CB2AD at target 2% chord rotation 
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(+2.1%) (-2.1%) 

Figure B.5 – CB3D at target 2% chord rotation 
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(+3.0%) (-3.0%) 

Figure B.6 – CB1 at target 3% chord rotation 

  
(+4.1%) (-3.2%) 

Figure B.7 – CB2 at target 3% chord rotation 
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(+3.1%) (-3.1%) 

Figure B.8 – CB2D at target 3% chord rotation 

  
(+2.8%) (-2.9%) 

Figure B.9 – CB2AD at target 3% chord rotation 
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(+3.3%) (-3.0%) 

Figure B.10 – CB3D at target 3% chord rotation 
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(+3.9%) (-3.9%) 

Figure B.11 – CB1 at target 4% chord rotation 

  
(+5.2%) (-4.5%) 

Figure B.12 – CB2 at target 4% chord rotation 
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(+4.3%) (-4.0%) 

Figure B.13 – CB2D at target 4% chord rotation 

  
(+3.8%) (-4.8%) 

Figure B.14 – CB2AD at target 4% chord rotation 
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(+4.1%) (-4.1%) 

Figure B.15 – CB3D at target 4% chord rotation 
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(+5.0%) (-5.0%) 

Figure B.16 – CB1 at target 5% chord rotation 

  

  
Figure B.17 – CB2 at target 5% chord rotation 

  

Did not reach Did not reach 
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(+5.2%) (-5.2%) 

Figure B.18 – CB2D at target 5% chord rotation 

  
(+5.5%) (-6.2%) 

Figure B.19 – CB2AD at target 5% chord rotation 
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(+5.4%) (-4.9%) 

Figure B.20 – CB3D at target 5% chord rotation 
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 Figure B.21 – CB1 with longitudinal bar buckling during first cycle to -5% chord rotation 

 

Figure B.22 – CB1 with diagonal bar buckling during first cycle to -6% chord rotation 
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 Figure B.23 – CB1 with diagonal bar fracture during first cycle to +8% chord rotation 

 

Figure B.24 – CB1 with longitudinal bar fracture during first cycle to +8% chord rotation 
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Figure B.25 – CB2 with two diagonal bar fractures during first cycle to +6% chord rotation 
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Figure B.26 – CB2D with longitudinal bar fracture during second cycle to +5% chord rotation 

 

 Figure B.27 – CB2D with diagonal bar buckling during second cycle to -5% chord rotation 
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Figure B.28 – CB2AD with longitudinal bar buckling during second cycle to +5% chord rotation 

 

 Figure B.29 – CB2AD with diagonal bar buckling during first cycle to +6% chord rotation 
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Figure B.30 – CB3D with longitudinal bar buckling during second cycle to -4% chord rotation 

 

Figure B.31 – CB3D with diagonal bar buckling during first cycle to -6% chord rotation 
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APPENDIX C  COMPONENTS OF CHORD ROTATION 
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Figure C.1 – Calculated flexural rotation for CB1 at positive chord rotations (1 in. = 25.4 mm) 

 

Figure C.2 – Calculated flexural rotation for CB1 at negative chord rotations (1 in. = 25.4 mm) 
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Figure C.3 – Calculated flexural rotation for CB2 at positive chord rotations (1 in. = 25.4 mm) 

 

Figure C.4 – Calculated flexural rotation for CB2 at negative chord rotations (1 in. = 25.4 mm) 
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Figure C.5 – Calculated flexural rotation for CB2D at positive chord rotations (1 in. = 25.4 mm) 

 

Figure C.6 – Calculated flexural rotation for CB2D at negative chord rotations (1 in. = 25.4 
mm) 
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Figure C.7 – Calculated flexural rotation for CB2AD at positive chord rotations (1 in. = 25.4 mm) 

 

Figure C.8 – Calculated flexural rotation for CB2AD at negative chord rotations (1 in. = 25.4 
mm) 
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Figure C.9 – Calculated flexural rotation for CB3D at positive chord rotations (1 in. = 25.4 mm) 

 

Figure C.10 – Calculated flexural rotation for CB3D at negative chord rotations (1 in. = 25.4 
mm) 
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Figure C.11 – Calculated flexural rotation including strain penetration for CB1 at positive chord 
rotations (1 in. = 25.4 mm) 

 

Figure C.12 – Calculated flexural rotation including strain penetration for CB1 at negative 
chord rotations (1 in. = 25.4 mm) 
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Figure C.13 – Calculated flexural rotation including strain penetration for CB2 at positive chord 
rotations (1 in. = 25.4 mm) 

 

Figure C.14 – Calculated flexural rotation including strain penetration for CB2 at negative 
chord rotations (1 in. = 25.4 mm) 
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Figure C.15 – Calculated flexural rotation including strain penetration for CB2D at positive chord 
rotations (1 in. = 25.4 mm) 

 

Figure C.16 – Calculated flexural rotation including strain penetration for CB2D at negative 
chord rotations (1 in. = 25.4 mm) 
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Figure C.17 – Calculated flexural rotation including strain penetration for CB2AD at positive 
chord rotations (1 in. = 25.4 mm) 

 

Figure C.18 – Calculated flexural rotation including strain penetration for CB2AD at negative 
chord rotations (1 in. = 25.4 mm) 
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Figure C.19 – Calculated flexural rotation including strain penetration for CB3D at positive chord 
rotations (1 in. = 25.4 mm) 

 

Figure C.20 – Calculated flexural rotation including strain penetration for CB3D at negative 
chord rotations (1 in. = 25.4 mm) 
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Figure C.21 – Calculated shear distortion for CB1 at positive chord rotations (1 in. = 25.4 mm) 

 

Figure C.22 – Calculated shear distortion for CB1 at negative chord rotations (1 in. = 25.4 mm) 
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Figure C.23 – Calculated shear distortion for CB2 at positive chord rotations (1 in. = 25.4 mm) 

 

Figure C.24 – Calculated shear distortion for CB2 at negative chord rotations (1 in. = 25.4 mm) 
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Figure C.25 – Calculated shear distortion for CB2D at positive chord rotations (1 in. = 25.4 mm) 

 

Figure C.26 – Calculated shear distortion for CB2D at negative chord rotations (1 in. = 25.4 
mm) 
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Figure C.27 – Calculated shear distortion for CB2AD at positive chord rotations (1 in. = 25.4 mm) 

 

Figure C.28 – Calculated shear distortion for CB2AD at negative chord rotations (1 in. = 25.4 
mm) 
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Figure C.29 – Calculated shear distortion for CB3D at positive chord rotations (1 in. = 25.4 mm) 

 

Figure C.30 – Calculated shear distortion for CB3D at negative chord rotations (1 in. = 25.4 
mm) 
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Figure C.31 – Calculated sliding at top for CB1 (1 in. = 25.4 mm) 

 

Figure C.32 – Calculated sliding at bottom for CB1 (1 in. = 25.4 mm) 
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Figure C.33 – Calculated sliding at top for CB2 (1 in. = 25.4 mm) 

 

Figure C.34 – Calculated sliding at bottom for CB2 (1 in. = 25.4 mm) 
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Figure C.35 – Calculated sliding at top for CB2D (1 in. = 25.4 mm) 

 

Figure C.36 – Calculated sliding at bottom for CB2D (1 in. = 25.4 mm) 
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Figure C.37 – Calculated sliding at top for CB2AD (1 in. = 25.4 mm) 

 

Figure C.38 – Calculated sliding at bottom for CB2AD (1 in. = 25.4 mm) 
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Figure C.39 – Calculated sliding at top for CB3D (1 in. = 25.4 mm) 

 

Figure C.40 – Calculated sliding at bottom for CB3D (1 in. = 25.4 mm) 
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APPENDIX D  STRAIN MEASUREMENTS 
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Figure D.1 – Location of strain gauges on diagonal bars 
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Figure D.2 – Strain measured with D1 for CB1 

 

Figure D.3 – Strain measured with D1 for CB2 
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Figure D.4 – Strain measured with D1 for CB2D 

 

Figure D.5 – Strain measured with D1 for CB2AD 
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Figure D.6 – Strain measured with D1 for CB3D 
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Figure D.7 – Strain measured with D2 for CB1 

 

Figure D.8 – Strain measured with D2 for CB2 
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Figure D.9 – Strain measured with D2 for CB2D 

 

Figure D.10 – Strain measured with D2 for CB2AD 
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Figure D.11 – Strain measured with D2 for CB3D 
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Figure D.12 – Strain measured with D3 for CB1 

 

Figure D.13 – Strain measured with D3 for CB2 
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Figure D.14 – Strain measured with D3 for CB2D 

 

Figure D.15 – Strain measured with D3 for CB2AD 
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Figure D.16 – Strain measured with D3 for CB3D 
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Figure D.17 – Strain measured with D4 for CB1 

 

Figure D.18 – Strain measured with D4 for CB2 
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Figure D.19 – Strain measured with D4 for CB2D 

 

Figure D.20 – Strain measured with D4 for CB2AD 
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Figure D.21 – Strain measured with D4 for CB3D 
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Figure D.22 – Strain measured with D5 for CB1 

 

Figure D.23 – Strain measured with D5 for CB2 
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Figure D.24 – Strain measured with D5 for CB2D 

 

Figure D.25 – Strain measured with D5 for CB2AD 
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Figure D.26 – Strain measured with D5 for CB3D 
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Figure D.27 – Strain measured with D6 for CB1 

 

Figure D.28 – Strain measured with D6 for CB2 
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Figure D.29 – Strain measured with D6 for CB2D 

 

Figure D.30 – Strain measured with D6 for CB2AD 
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Figure D.31 – Strain measured with D6 for CB3D 
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Figure D.32 – Strain measured with D7 for CB1 

 

Figure D.33 – Strain measured with D7 for CB2 
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Figure D.34 – Strain measured with D7 for CB2D 

 

Figure D.35 – Strain measured with D7 for CB2AD 
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Figure D.36 – Strain measured with D7 for CB3D 
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Figure D.37 – Strain measured with D8 for CB1 

 

Figure D.38 – Strain measured with D8 for CB2 
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Figure D.39 – Strain measured with D8 for CB2D 

 

Figure D.40 – Strain measured with D8 for CB2AD 
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Figure D.41 – Strain measured with D8 for CB3D 
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Figure D.42 – Strain measured with D9 for CB1 

 

Figure D.43 – Strain measured with D9 for CB2 
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Figure D.44 – Strain measured with D9 for CB2D 

 

Figure D.45 – Strain measured with D9 for CB2AD 
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Figure D.46 – Strain measured with D9 for CB3D 
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Figure D.47 – Strain measured with D10 for CB1 

 

Figure D.48 – Strain measured with D10 for CB2 
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Figure D.49 – Strain measured with D10 for CB2D 

 

Figure D.50 – Strain measured with D10 for CB2AD 
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Figure D.51 – Strain measured with D10 for CB3D 
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Figure D.52 – Strain measured with D11 for CB1 

 

Figure D.53 – Strain measured with D11 for CB2 
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Figure D.54 – Strain measured with D11 for CB2D 

 

Figure D.55 – Strain measured with D11 for CB2AD 
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Figure D.56 – Strain measured with D11 for CB3D 
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Figure D.57 – Strain measured with D12 for CB1 

 

Figure D.58 – Strain measured with D12 for CB2 
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Figure D.59 – Strain measured with D12 for CB2D 

 

Figure D.60 – Strain measured with D12 for CB2AD 
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Figure D.61 – Strain measured with D12 for CB3D 
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Figure D.62 – Location of strain gauges on secondary (non-diagonal) longitudinal bars 
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Figure D.63 – Strain measured with H1 for CB1 

 

Figure D.64 – Strain measured with H1 for CB2 

  

-8 -6 -4 -2 0 2 4 6 8
Chord Rotation, %

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

St
ra

in
, %

-8 -6 -4 -2 0 2 4 6 8
Chord Rotation, %

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

St
ra

in
, %



D-41 

 

Figure D.65 – Strain measured with H1 for CB2D 

 

Figure D.66 – Strain measured with H1 for CB2AD 
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Figure D.67 – Strain measured with H1 for CB3D 
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Figure D.68 – Strain measured with H2 for CB1 

 

Figure D.69 – Strain measured with H2 for CB2 
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Figure D.70 – Strain measured with H2 for CB2D 

 

Figure D.71 – Strain measured with H2 for CB2AD 
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Figure D.72 – Strain measured with H2 for CB3D 
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Figure D.73 – Strain measured with H3 for CB1 

 

Figure D.74 – Strain measured with H3 for CB2 
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Figure D.75 – Strain measured with H3 for CB2D 

 

Figure D.76 – Strain measured with H3 for CB2AD 
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Figure D.77 – Strain measured with H3 for CB3D 
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Figure D.78 – Strain measured with H4 for CB1 

 

Figure D.79 – Strain measured with H4 for CB2 
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Figure D.80 – Strain measured with H4 for CB2D 

 

Figure D.81 – Strain measured with H4 for CB2AD 
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Figure D.82 – Strain measured with H4 for CB3D 
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Figure D.83 – Strain measured with H5 for CB1 

 

Figure D.84 – Strain measured with H5 for CB2 
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Figure D.85 – Strain measured with H5 for CB2D 

 

Figure D.86 – Strain measured with H5 for CB2AD 
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Figure D.87 – Strain measured with H5 for CB3D 
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Figure D.88 – Location of strain gauges on transverse reinforcement (hoops and crossties) 
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Figure D.89 – Strain measured with S1 for CB1 

 

Figure D.90 – Strain measured with S1 for CB2 
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Figure D.91 – Strain measured with S1 for CB2D 

 

Figure D.92 – Strain measured with S1 for CB2AD 
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Figure D.93 – Strain measured with S1 for CB3D 
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Figure D.94 – Strain measured with S2 for CB1 

 

Figure D.95 – Strain measured with S2 for CB2 
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Figure D.96 – Strain measured with S2 for CB2D 

 

Figure D.97 – Strain measured with S2 for CB2AD 
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Figure D.98 – Strain measured with S2 for CB3D 
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Figure D.99 – Strain measured with S3 for CB1 

 

Figure D.100 – Strain measured with S3 for CB2 
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Figure D.101 – Strain measured with S3 for CB2D 

 

Figure D.102 – Strain measured with S3 for CB2AD 
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Figure D.103 – Strain measured with S3 for CB3D 
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Figure D.104 – Strain measured with S4 for CB1 

 

Figure D.105 – Strain measured with S4 for CB2 
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Figure D.106 – Strain measured with S4 for CB2D 

 

Figure D.107 – Strain measured with S4 for CB2AD 
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Figure D.108 – Strain measured with S4 for CB3D 
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Figure D.109 – Strain measured with S5 for CB1 

 

Figure D.110 – Strain measured with S5 for CB2 
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Figure D.111 – Strain measured with S5 for CB2D 

 

Figure D.112 – Strain measured with S5 for CB2AD 

  

-8 -6 -4 -2 0 2 4 6 8
Chord Rotation, %

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

St
ra

in
, %

-8 -6 -4 -2 0 2 4 6 8
Chord Rotation, %

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

St
ra

in
, %

Gauge Malfunction 



D-70 

 

Figure D.113 – Strain measured with S5 for CB3D 
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Figure D.114 – Strain measured with S6 for CB1 

 

Figure D.115 – Strain measured with S6 for CB2 
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Figure D.116 – Strain measured with S6 for CB2D 

 

Figure D.117 – Strain measured with S6 for CB2AD 

  

-8 -6 -4 -2 0 2 4 6 8
Chord Rotation, %

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

St
ra

in
, %

-8 -6 -4 -2 0 2 4 6 8
Chord Rotation, %

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

St
ra

in
, %

Gauge Malfunction 



D-73 

 

Figure D.118 – Strain measured with S6 for CB3D 
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Figure D.119 – Strain measured with S7 for CB1 

 

Figure D.120 – Strain measured with S7 for CB2 
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Figure D.121 – Strain measured with S7 for CB2D 

 

Figure D.122 – Strain measured with S7 for CB2AD 

  

-8 -6 -4 -2 0 2 4 6 8
Chord Rotation, %

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

St
ra

in
, %

-8 -6 -4 -2 0 2 4 6 8
Chord Rotation, %

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

St
ra

in
, %

-8 -4 0 4 8
-1

0

1

2

3



D-76 

 

Figure D.123 – Strain measured with S7 for CB3D 
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Figure D.124 – Strain measured with S8 for CB1 

 

Figure D.125 – Strain measured with S8 for CB2 
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Figure D.126 – Strain measured with S8 for CB2D 

 

Figure D.127 – Strain measured with S8 for CB2AD 
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Figure D.128 – Strain measured with S8 for CB3D 
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Figure D.129 – Strain measured with S9 for CB1 

 

Figure D.130 – Strain measured with S9 for CB2 
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Figure D.131 – Strain measured with S9 for CB2D 

 

Figure D.132 – Strain measured with S9 for CB2AD 
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Figure D.133 – Strain measured with S9 for CB3D 
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Figure D.134 – Strain measured with T1 for CB1 

 

Figure D.135 – Strain measured with T1 for CB2 
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Figure D.136 – Strain measured with T1 for CB2D 

 

Figure D.137 – Strain measured with T1 for CB2AD 
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Figure D.138 – Strain measured with T1 for CB3D 
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Figure D.139 – Strain measured with T2 for CB1 

 

Figure D.140 – Strain measured with T2 for CB2 
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Figure D.141 – Strain measured with T2 for CB2D 

 

Figure D.142 – Strain measured with T2 for CB2AD 
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Figure D.143 – Strain measured with T2 for CB3D 
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APPENDIX E  STIFFNESS 

  



E-2 

Table E.1 – Secant stiffness from measured shear-chord rotation envelope for CB1 during 
positive chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, 
CR a Shear, V V/Vmax 

b
 

Secant Stiffness, 
K c 

Shear at 
0.75Vmax

 CR at 0.75Vmax
 Ke

 d 

% kips  kips/in. kips % kips/in. 
       

0.33 86 0.47 755 

136 0.61 656 

0.56 131 0.72 682 

0.77 153 0.84 584 

0.98 162 0.89 486 

1.69 164 0.90 287 

2.94 182 1.00 182 

3.89 180 0.99 136 

4.69 178 0.98 112 

5.73 178 0.98 91.3 

7.69 151 0.83 57.6 
       

a Identifies chord rotation, CR, associated with peak force for each step (two cycles per step) of the loading protocol. 
 Chord Rotation, CR, is defined as the relative lateral displacement between end blocks divided by the beam clear 
 span and correcting for rotation of the bottom and top blocks. 
b Vmax is the maximum measured shear force per loading direction. 
c K is calculated using V/ (CR· ln), where ln is the clear span of the beam measured from the top of the bottom block to 
 the bottom of the top block (Figure 4.1). 
d Ke corresponds to the secant stiffness at V = 0.75Vmax, based on linear interpolation. 
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Table E.2 – Secant stiffness from measured shear-chord rotation envelope for CB1 during 
negative chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, 
CR a Shear, V V/Vmax 

b
 

Secant Stiffness, 
K c 

Shear at 
0.75Vmax

 CR at 0.75Vmax
 Ke

 d 

% kips  kips/in. kips % kips/in. 
       

-0.33 -86 0.47 770 

-138 -0.63 667 

-0.56 -131 0.71 693 

-0.72 -151 0.82 619 

-0.83 -150 0.82 534 

-1.31 -161 0.87 360 

-2.92 -179 0.97 180 

-4.03 -184 1.00 134 

-4.96 -182 0.99 108 

-5.59 -172 0.93 90.5 

-6.88 -129 0.70 55.1 
       

a Identifies chord rotation, CR, associated with peak force for each step (two cycles per step) of the loading protocol. 
 Chord Rotation, CR, is defined as the relative lateral displacement between end blocks divided by the beam clear 
 span and correcting for rotation of the bottom and top blocks. 
b Vmax is the maximum measured shear force per loading direction. 
c K is calculated using V/ (CR· ln), where ln is the clear span of the beam measured from the top of the bottom block to 
 the bottom of the top block (Figure 4.1). 
d Ke corresponds to the secant stiffness at V = 0.75Vmax, based on linear interpolation. 
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Table E.3 – Secant stiffness from measured shear-chord rotation envelope for CB2 during 
positive chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, 
CR a Shear, V V/Vmax 

b
 

Secant Stiffness, 
K c 

Shear at 
0.75Vmax

 CR at 0.75Vmax
 Ke

 d 

% kips  kips/in. kips % kips/in. 
       

0.24 50 0.24 609 

154 1.23 384 

0.55 90 0.44 483 

0.83 121 0.59 430 

1.15 152 0.74 389 

1.53 171 0.83 329 

1.89 185 0.90 288 

2.90 203 0.99 206 

4.34 205 1.00 139 

4.89 206 1.00 124 
       

a Identifies chord rotation, CR, associated with peak force for each step (two cycles per step) of the loading protocol. 
 Chord Rotation, CR, is defined as the relative lateral displacement between end blocks divided by the beam clear 
 span and correcting for rotation of the bottom and top blocks. 
b Vmax is the maximum measured shear force per loading direction. 
c K is calculated using V/ (CR· ln), where ln is the clear span of the beam measured from the top of the bottom block to 
 the bottom of the top block (Figure 4.1). 
d Ke corresponds to the secant stiffness at V = 0.75Vmax, based on linear interpolation. 
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Table E.4 – Secant stiffness from measured shear-chord rotation envelope for CB2 during 
negative chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, 
CR a Shear, V V/Vmax 

b
 

Secant Stiffness, 
K c 

Shear at 
0.75Vmax

 CR at 0.75Vmax
 Ke

 d 

% kips  kips/in. kips % kips/in. 
       

-0.15 -47 0.25 920 

-144 -0.97 428 

-0.47 -90 0.47 560 

-0.74 -122 0.64 487 

-1.04 -147 0.77 418 

-1.43 -173 0.90 355 

-1.65 -178 0.93 317 

-2.14 -187 0.98 257 

-3.06 -192 1.00 184 

-4.27 -190 0.99 131 
       

a Identifies chord rotation, CR, associated with peak force for each step (two cycles per step) of the loading protocol. 
 Chord Rotation, CR, is defined as the relative lateral displacement between end blocks divided by the beam clear 
 span and correcting for rotation of the bottom and top blocks. 
b Vmax is the maximum measured shear force per loading direction. 
c K is calculated using V/ (CR· ln), where ln is the clear span of the beam measured from the top of the bottom block to 
 the bottom of the top block (Figure 4.1). 
d Ke corresponds to the secant stiffness at V = 0.75Vmax, based on linear interpolation. 
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Table E.5 – Secant stiffness from measured shear-chord rotation envelope for CB2D during 
positive chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, 
CR a Shear, V V/Vmax 

b
 

Secant Stiffness, 
K c 

Shear at 
0.75Vmax

 CR at 0.75Vmax
 Ke

 d 

% kips  kips/in. kips % kips/in. 
       

0.21 51 0.25 717 

153 1.08 357 

0.32 58 0.29 541 

0.51 83 0.41 475 

0.75 121 0.59 471 

1.24 150 0.74 358 

1.53 182 0.89 350 

1.99 191 0.94 283 

3.05 204 1.00 197 

3.96 198 0.97 147 

5.16 189 0.93 108 

5.98 128 0.63 62.8 
       

a Identifies chord rotation, CR, associated with peak force for each step (two cycles per step) of the loading protocol. 
 Chord Rotation, CR, is defined as the relative lateral displacement between end blocks divided by the beam clear 
 span and correcting for rotation of the bottom and top blocks. 
b Vmax is the maximum measured shear force per loading direction. 
c K is calculated using V/ (CR· ln), where ln is the clear span of the beam measured from the top of the bottom block to 
 the bottom of the top block (Figure 4.1). 
d Ke corresponds to the secant stiffness at V = 0.75Vmax, based on linear interpolation. 
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Table E.6 – Secant stiffness from measured shear-chord rotation envelope for CB2D during 
negative chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, 
CR a Shear, V V/Vmax 

b
 

Secant Stiffness, 
K c 

Shear at 
0.75Vmax

 CR at 0.75Vmax
 Ke

 d 

% kips  kips/in. kips % kips/in. 
       

-0.22 -51 0.26 685 

-146 -1.10 405 

-0.28 -60 0.31 632 

-0.48 -88 0.45 547 

-0.74 -115 0.59 457 

-0.99 -141 0.72 416 

-1.44 -171 0.88 349 

-1.93 -191 0.98 291 

-2.96 -194 1.00 193 

-4.45 -189 0.97 125 

-5.21 -174 0.90 98.4 

-5.94 -60 0.31 29.6 
       

a Identifies chord rotation, CR, associated with peak force for each step (two cycles per step) of the loading protocol. 
 Chord Rotation, CR, is defined as the relative lateral displacement between end blocks divided by the beam clear 
 span and correcting for rotation of the bottom and top blocks. 
b Vmax is the maximum measured shear force per loading direction. 
c K is calculated using V/ (CR· ln), where ln is the clear span of the beam measured from the top of the bottom block to 
 the bottom of the top block (Figure 4.1). 
d Ke corresponds to the secant stiffness at V = 0.75Vmax, based on linear interpolation. 
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Table E.7 – Secant stiffness from measured shear-chord rotation envelope for CB2AD during 
positive chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, 
CR a Shear, V V/Vmax 

b
 

Secant Stiffness, 
K c 

Shear at 
0.75Vmax

 CR at 0.75Vmax
 Ke

 d 

% kips  kips/in. kips % kips/in. 
       

0.24 52 0.23 633 

171 1.39 415 

0.46 86 0.38 548 

0.71 113 0.50 469 

0.97 150 0.66 454 

1.41 186 0.81 388 

2.11 214 0.93 298 

3.24 229 1.00 208 

3.81 227 1.00 176 

5.06 221 0.97 129 
       

a Identifies chord rotation, CR, associated with peak force for each step (two cycles per step) of the loading protocol. 
 Chord Rotation, CR, is defined as the relative lateral displacement between end blocks divided by the beam clear 
 span and correcting for rotation of the bottom and top blocks. 
b Vmax is the maximum measured shear force per loading direction. 
c K is calculated using V/ (CR· ln), where ln is the clear span of the beam measured from the top of the bottom block to 
 the bottom of the top block (Figure 4.1). 
d Ke corresponds to the secant stiffness at V = 0.75Vmax, based on linear interpolation. 
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Table E.8 – Secant stiffness from measured shear-chord rotation envelope for CB2AD during 
negative chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, 
CR a Shear, V V/Vmax 

b
 

Secant Stiffness, 
K c 

Shear at 
0.75Vmax

 CR at 0.75Vmax
 Ke

 d 

% kips  kips/in. kips % kips/in. 
       

-0.24 -52 0.22 643 

174 -1.47 374 

-0.45 -87 0.38 575 

-0.70 -116 0.50 490 

-1.03 -148 0.63 423 

-1.54 -185 0.80 354 

-2.03 -203 0.87 293 

-3.07 -225 0.97 216 

-4.73 -232 1.00 145 

-5.14 -201 0.86 115 
       

a Identifies chord rotation, CR, associated with peak force for each step (two cycles per step) of the loading protocol. 
 Chord Rotation, CR, is defined as the relative lateral displacement between end blocks divided by the beam clear 
 span and correcting for rotation of the bottom and top blocks. 
b Vmax is the maximum measured shear force per loading direction. 
c K is calculated using V/ (CR· ln), where ln is the clear span of the beam measured from the top of the bottom block to 
 the bottom of the top block (Figure 4.1). 
d Ke corresponds to the secant stiffness at V = 0.75Vmax, based on linear interpolation. 
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Table E.9 – Secant stiffness from measured shear-chord rotation envelope for CB3D during 
positive chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, 
CR a Shear, V V/Vmax 

b
 

Secant Stiffness, 
K c 

Shear at 
0.75Vmax

 CR at 0.75Vmax
 Ke

 d 

% kips  kips/in. kips % kips/in. 
       

0.19 51 0.19 804 

205 1.39 442 

0.27 61 0.22 660 

0.48 91 0.33 560 

0.75 132 0.48 519 

0.96 162 0.59 496 

1.49 217 0.79 428 

1.98 243 0.89 363 

3.34 265 0.97 233 

5.01 274 1.00 161 

5.02 249 0.91 146 

5.78 254 0.93 129 
       

a Identifies chord rotation, CR, associated with peak force for each step (two cycles per step) of the loading protocol. 
 Chord Rotation, CR, is defined as the relative lateral displacement between end blocks divided by the beam clear 
 span and correcting for rotation of the bottom and top blocks. 
b Vmax is the maximum measured shear force per loading direction. 
c K is calculated using V/ (CR· ln), where ln is the clear span of the beam measured from the top of the bottom block to 
 the bottom of the top block (Figure 4.1). 
d Ke corresponds to the secant stiffness at V = 0.75Vmax, based on linear interpolation. 
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Table E.10 – Secant stiffness from measured shear-chord rotation envelope for CB3D during 
negative chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, 
CR a Shear, V V/Vmax 

b
 

Secant Stiffness, 
K c 

Shear at 
0.75Vmax

 CR at 0.75Vmax
 Ke

 d 

% kips  kips/in. kips % kips/in. 
       

-0.19 -47 0.18 728 

-200 -1.27 468 

-0.26 -62 0.23 692 

-0.49 -98 0.37 589 

-0.73 -140 0.53 563 

-0.98 -172 0.64 517 

-1.57 -227 0.85 424 

-2.14 -252 0.94 346 

-3.00 -263 0.99 258 

-3.93 -267 1.00 200 

-4.98 -264 0.99 156 

-5.38 -116 0.43 63.0 
       

a Identifies chord rotation, CR, associated with peak force for each step (two cycles per step) of the loading protocol. 
 Chord Rotation, CR, is defined as the relative lateral displacement between end blocks divided by the beam clear 
 span and correcting for rotation of the bottom and top blocks. 
b Vmax is the maximum measured shear force per loading direction. 
c K is calculated using V/ (CR· ln), where ln is the clear span of the beam measured from the top of the bottom block to 
 the bottom of the top block (Figure 4.1). 
d Ke corresponds to the secant stiffness at V = 0.75Vmax, based on linear interpolation. 
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Table E.11 – Unloading stiffness calculated from measured shear versus chord rotation for CB1 
during positive chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, CR a CR at Zero Shear, CR0 b Shear, V c Unloading Stiffness, Ku d 

% % kips kips/in. 

    
0.16 0.00 35.6 646 

0.22 -0.01 54.3 688 

0.35 0.00 86.2 740 

0.56 0.03 129 708 

0.73 0.08 149 676 

0.97 0.25 151 622 

1.79 0.86 165 519 

2.97 1.65 170 381 

3.66 2.22 170 348 

4.80 3.16 171 305 

5.63 4.02 169 307 
    

a CR corresponds to peak chord rotation during second cycle to a target chord rotation. 
b CR0 corresponds to chord rotation at zero shear after unloading from CR. Calculated based on a linear interpolation 
between chord rotations at ±5 kips (±22 kN). 
c V corresponds to peak chord rotation, CR. 
d Ku is calculated using V/((CR - CR0) ln), where ln is the clear span of the beam measured from the top of the bottom 
 block to the bottom of the top block (Figure 4.1). 
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Table E.12 – Unloading stiffness calculated from measured shear versus chord rotation for CB1 
during negative chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, CR a CR at Zero Shear, CR0 b Shear, V c Unloading Stiffness, Ku d 

% % kips kips/in. 

    
-0.15 -0.03 -36.4 894 

-0.22 -0.03 -53.9 829 

-0.35 -0.04 -86.6 827 

-0.60 -0.07 -132 740 

-0.69 -0.09 -136 670 

-1.10 -0.36 -166 661 

-1.93 -0.94 -182 540 

-2.96 -1.69 -173 402 

-3.91 -2.45 -171 345 

-4.92 -3.42 -174 342 

-5.73 -4.24 -159 315 
    

a CR corresponds to peak chord rotation during second cycle to a target chord rotation. 
b CR0 corresponds to chord rotation at zero shear during unloading from CR. 
c V corresponds to peak chord rotation, CR. 
d Ku is calculated using V/((CR - CR0) ln), where ln is the clear span of the beam measured from the top of the bottom 
 block to the bottom of the top block (Figure 4.1). 
 

  



E-14 

Table E.13 – Unloading stiffness calculated from measured shear versus chord rotation for CB2 
during positive chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, CR a CR at Zero Shear, CR0 b Shear, V c Unloading Stiffness, Ku d 

% % kips kips/in. 

    
0.28 0.03 54.3 628 

0.57 0.12 89.7 592 

0.83 0.12 117 490 

1.22 0.25 148 449 

1.43 0.18 151 356 

2.15 0.55 192 354 

2.88 0.85 193 279 

4.06 1.76 190 242 

5.23 2.39 187 194 
    

a CR corresponds to peak chord rotation during second cycle to a target chord rotation. 
b CR0 corresponds to chord rotation at zero shear during unloading from CR. 
c V corresponds to peak chord rotation, CR. 
d Ku is calculated using V/((CR - CR0) ln), where ln is the clear span of the beam measured from the top of the bottom 
 block to the bottom of the top block (Figure 4.1). 
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Table E.14 – Unloading stiffness calculated from measured shear versus chord rotation for CB2 
during negative chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, CR a CR at Zero Shear, CR0 b Shear, V c Unloading Stiffness, Ku d 

% % kips kips/in. 

    
-0.19 0.03 -52.2 684 

-0.48 -0.01 -89.1 554 

-0.76 -0.07 -118 502 

-1.00 -0.02 -144 429 

-1.26 -0.08 -141 353 

-1.54 0.10 -161 287 

-2.08 0.03 -176 246 

-3.16 -0.46 -188 205 

-4.47 -1.50 -182 180 
    

a CR corresponds to peak chord rotation during second cycle to a target chord rotation. 
b CR0 corresponds to chord rotation at zero shear during unloading from CR. 
c V corresponds to peak chord rotation, CR. 
d Ku is calculated using V/((CR - CR0) ln), where ln is the clear span of the beam measured from the top of the bottom 
 block to the bottom of the top block (Figure 4.1). 
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Table E.15 – Unloading stiffness calculated from measured shear versus chord rotation for 
CB2D during positive chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, CR a CR at Zero Shear, CR0 b Shear, V c Unloading Stiffness, Ku d 

% % kips kips/in. 

    
0.26 0.04 51.4 670 

0.33 0.04 57.6 600 

0.51 0.07 78.3 525 

0.84 0.15 106 456 

1.02 0.06 141 432 

1.66 0.20 173 348 

1.97 0.19 177 292 

3.05 0.63 185 224 

4.20 1.21 188 185 

5.13 1.98 165 154 

6.22 3.29 61 61 
    

a CR corresponds to peak chord rotation during second cycle to a target chord rotation. 
b CR0 corresponds to chord rotation at zero shear during unloading from CR. 
c V corresponds to peak chord rotation, CR. 
d Ku is calculated using V/((CR - CR0) ln), where ln is the clear span of the beam measured from the top of the bottom 
 block to the bottom of the top block (Figure 4.1). 
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Table E.16 – Unloading stiffness calculated from measured shear versus chord rotation for 
CB2D during negative chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, CR a CR at Zero Shear, CR0 b Shear, V c Unloading Stiffness, Ku d 

% % kips kips/in. 

    
-0.21 -0.02 -46.9 716 

-0.27 -0.01 -56.5 652 

-0.48 -0.03 -86.1 562 

-0.76 -0.02 -120 480 

-1.02 -0.12 -132 435 

-1.48 -0.18 -161 362 

-1.98 -0.33 -173 308 

-3.01 -0.72 -183 236 

-3.94 -1.02 -164 165 

-4.24 -2.34 -126 194 

-6.09 -3.70 -31.4 39 
    

a CR corresponds to peak chord rotation during second cycle to a target chord rotation. 
b CR0 corresponds to chord rotation at zero shear during unloading from CR. 
c V corresponds to peak chord rotation, CR. 
d Ku is calculated using V/((CR - CR0) ln), where ln is the clear span of the beam measured from the top of the bottom 
 block to the bottom of the top block (Figure 4.1). 
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Table E.17 – Unloading stiffness calculated from measured shear versus chord rotation for 
CB2AD during positive chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, CR a CR at Zero Shear, CR0 b Shear, V c Unloading Stiffness, Ku d 

% % kips kips/in. 

    
0.30 0.03 59.9 656 

0.50 0.04 87.0 555 

0.69 0.01 115 498 

0.95 0.02 144 454 

1.69 0.20 200 394 

2.03 0.28 192 323 

2.81 0.54 185 241 

3.82 0.86 213 212 

3.64 2.67 154 469 
    

a CR corresponds to peak chord rotation during second cycle to a target chord rotation. 
b CR0 corresponds to chord rotation at zero shear during unloading from CR. 
c V corresponds to peak chord rotation, CR. 
d Ku is calculated using V/((CR - CR0) ln), where ln is the clear span of the beam measured from the top of the bottom 
 block to the bottom of the top block (Figure 4.1). 
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Table E.18 – Unloading stiffness calculated from measured shear versus chord rotation for 
CB2AD during negative chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, CR a CR at Zero Shear, CR0 b Shear, V c Unloading Stiffness, Ku d 

% % kips kips/in. 

    
-0.29 -0.04 -62.5 739 

-0.48 -0.06 -89.3 636 

-0.73 -0.14 -114 572 

-1.06 -0.23 -143 510 

-1.64 -0.29 -183 402 

-2.17 -0.44 -199 340 

-2.94 -0.71 -201 265 

-4.81 -1.99 -213 222 
    

a CR corresponds to peak chord rotation during second cycle to a target chord rotation. 
b CR0 corresponds to chord rotation at zero shear during unloading from CR. 
c V corresponds to peak chord rotation, CR. 
d Ku is calculated using V/((CR - CR0) ln), where ln is the clear span of the beam measured from the top of the bottom 
 block to the bottom of the top block (Figure 4.1). 
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Table E.19 – Unloading stiffness calculated from measured shear versus chord rotation for 
CB3D during positive chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, CR a CR at Zero Shear, CR0 b Shear, V c Unloading Stiffness, Ku d 

% % kips kips/in. 

    
0.19 0.00 46.9 719 

0.30 0.02 60.7 647 

0.47 0.04 87.5 596 

0.74 0.05 128 551 

0.96 0.05 158 515 

1.50 0.10 209 437 

2.07 0.23 237 380 

3.33 1.02 240 305 

4.11 1.37 220 236 

5.21 1.95 249 224 

6.54 3.88 63.0 70 
    

a CR corresponds to peak chord rotation during second cycle to a target chord rotation. 
b CR0 corresponds to chord rotation at zero shear during unloading from CR. 
c V corresponds to peak chord rotation, CR. 
d Ku is calculated using V/((CR - CR0) ln), where ln is the clear span of the beam measured from the top of the bottom 
 block to the bottom of the top block (Figure 4.1). 
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Table E.20 – Unloading stiffness calculated from measured shear versus chord rotation for 
CB3D during negative chord rotations (1 kip = 4.45 kN, 1 kip/in. = 0.175 kN/mm) 

Chord Rotation, CR a CR at Zero Shear, CR0 b Shear, V c Unloading Stiffness, Ku d 

% % kips kips/in. 

    
-0.19 -0.01 -47.3 756 

-0.26 -0.00 -58.1 663 

-0.47 -0.00 -97.0 612 

-0.73 -0.05 -137 600 

-0.99 -0.09 -167 547 

-1.52 -0.14 -209 443 

-2.11 -0.26 -232 368 

-2.99 -0.48 -248 290 

-4.05 -1.01 -255 246 

-4.97 -1.77 -245 225 
    

a CR corresponds to peak chord rotation during second cycle to a target chord rotation. 
b CR0 corresponds to chord rotation at zero shear during unloading from CR. 
c V corresponds to peak chord rotation, CR. 
d Ku is calculated using V/((CR - CR0) ln), where ln is the clear span of the beam measured from the top of the bottom 
 block to the bottom of the top block (Figure 4.1). 
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Table F.1 – Database of diagonally reinforced coupling beam specimens (1 in. = 25.4 mm, 1 ksi 
= 6.89 MPa, 1 psi = 0.00689 MPa, 1 kip = 4.45 kN) 

Reference Specimen ID  
(as stated) b (in.) h (in.) 𝒍𝒍𝒏𝒏 (in.) 𝒍𝒍𝒏𝒏

𝒉𝒉
 

Diagonal Reinforcement 

No. a  db (in.) fy (ksi) 

Paulay and Binney (1974) 

316 6.00 31.0 40.0 1.29 4/3 b 0.875/1.0 b 41.8/41.7 b 

317 6.00 31.0 40.0 1.29 4/3 b 0.875/1.0 b 44.4/39.2 b 

395 6.00 39.0 40.0 1.03 4/3 b 0.875/1.0 b 37.6/41.9 b 

Shiu, Barney, Fiorato, and Corley 
(1978) 

C6 4.00 6.67 16.7 2.50 1/2 b 0.5/0.375 b 59.2/70.7 b 

C8 4.00 6.67 33.3 5.00 1/2 b 0.5/0.375 b 62.8/82.5 b 

Tassios, Moretti and Bezas (1996) 
CB-2A 5.12 19.7 19.7 1.00 4 0.375 73.1 

CB-2B 5.12 11.8 19.7 1.67 4 0.375 73.1 

Galano and Vignoli (2000) 
P07 5.91 15.7 23.6 1.50 4 0.375 82.2 

P12 5.91 15.7 23.6 1.50 4 0.375 82.2 

Gonzalez (2001) K 12.0 17.5 48.0 2.74 4 1.18 67.4 

Kwan and Zhao (2002) CCB11 4.72 23.6 27.6 1.17 6 0.315 75.0 

Canbolat, Parra and Wight (2005) Specimen 1 7.87 23.6 23.6 1.00 4 0.50 65.0 

Fortney, Rassati, and Shahrooz 
(2008) 

DCB-1 10.0 14.0 36.0 2.57 4 1.00 62.6 

DCB-2 10.0 12.0 36.0 3.00 4 0.875 69.2 

Naish, Fry, Klemencic, and Wallace 
(2013) 

CB24D 12.0 15.0 36.0 2.40 6 0.875 70.0 

CB33D 12.0 18.0 60.0 3.33 6 0.875 70.0 

CB24F 12.0 15.0 36.0 2.40 6 0.875 70.0 

CB33F 12.0 18.0 60.0 3.33 6 0.875 70.0 

CB24F-RC 12.0 15.0 36.0 2.40 6 0.875 70.0 

CB24F-PT 1.20 15.0 36.0 2.40 6 0.875 70.0 

CB24F-1/2-PT 12.0 15.0 36.0 2.40 6 0.875 70.0 

Han, Lee, Shin, and Lee (2015) 
SD-2.0 9.80 20.7 41.3 2.00 4 0.875 63.5 

SD-3.5 9.80 11.8 41.3 3.50 4 1.00 64.1 

Lim, Hwang, Cheng, and Lin 
(2016) 

CB30-DA 11.8 19.7 59.1 3.00 4 1.27 67.4 

CB30-DB 11.8 19.7 59.1 3.00 4 1.27 67.4 

Lim, Hwang, Wang, and Chang 
(2016) 

CB10-1 9.80 19.7 19.7 1.00 4 1.00 70.4 

CB20-1 11.8 19.7 39.4 2.00 4 1.128 67.6 

Poudel (2018) CB1A 10.0 18.0 34.0 1.89 6 0.875 63.0 

Current study 

CB1 10.0 18.0 34.0 1.89 6 0.875 63.0 

CB2 10.0 18.0 34.0 1.89 4 0.75 128 

CB2D 10.0 18.0 34.0 1.89 4 0.75 128 

CB2AD 10.0 18.0 34.0 1.89 4 0.75 128 

CB3D 10.0 18.0 34.0 1.89 6 0.75 128 
a Number of bars in each diagonal group. 
b Diagonal groups had different reinforcement detailing. 
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Table F.1 (continued) 

Reference Specimen ID  
(as stated) 

Longitudinal Reinforcement Transverse Reinforcement 

No db (in.) fy (ksi) Condition db (in.) fy (ksi) s (in.) 

Paulay and Binney (1974) 

316 4 0.500 46.8 Cutoff - - - 

317 4 0.250 - Cutoff 0.250 - 4.0 

395 4 0.250 - Cutoff 0.250 - 4.0 

Shiu, Barney, Fiorato, and Corley 
(1978) 

C6 4 D-3 wire 71.4 Cutoff D-3 wire 71.4 1.3 

C8 4 D-3 wire 71.0 Cutoff D-3 wire 71.0 1.3 

Tassios, Moretti and Bezas (1996) 
CB-2A 8 0.250 40.7 Developed 0.250 40.7 2.0 

CB-2B 8 0.250 40.7 Developed 0.250 40.7 2.0 

Galano and Vignoli (2000) 
P07 6 0.250 82.2 Developed 0.250 82.2 5.0 

P12 6 0.250 82.2 Developed 0.250 82.2 4.0 

Gonzalez (2001) K 4 0.44 - Developed 0.44 - 4.0 

Kwan and Zhao (2002) CCB11 4 0.315 75.0 Developed 0.315 50.2 2.4 

Canbolat, Parra and Wight (2005) Specimen 1 10 0.250 - Developed 0.250 - 3.0 

Fortney, Rassati, and Shahrooz 
(2008) 

DCB-1 4 0.750 60.7 Developed 0.375 60.6 3.0 

DCB-2 4 0.750 66.9 Cutoff 0.250 66.9 2.0 

Naish, Fry, Klemencic, and Wallace 
(2013) 

CB24D 10 0.250 70.0 Cutoff 0.375 70.0 2.5 

CB33D 12 0.250 70.0 Cutoff 0.375 70.0 2.5 

CB24F 10 0.375 70.0 Cutoff 0.375 70.0 3.0 

CB33F 12 0.375 70.0 Cutoff 0.375 70.0 3.0 

CB24F-RC 10 0.375 70.0 Cutoff 0.375 70.0 3.0 

CB24F-PT 10 0.375 70.0 Cutoff 0.375 70.0 3.0 

CB24F-1/2-PT 10 0.375 70.0 Cutoff 0.375 70.0 6.0 

Han, Lee, Shin, and Lee (2015) 
SD-2.0 14 0.500 73.4 Cutoff 0.500 73.4 4.7 

SD-3.5 10 0.500 73.4 Cutoff 0.500 73.4 4.3 

Lim, Hwang, Cheng, and Lin (2016) 
CB30-DA 4 0.500 63.9 Developed 0.375 68.9 5.9 

CB30-DB 10 0.375 68.9 Developed 0.375 68.9 3.9 

Lim, Hwang, Wang, and Chang 
(2016) 

CB10-1 10 0.375 - Developed 0.500 67.9 3.9 

CB20-1 10 0.500 72.8 Developed 0.500 72.8 3.9 

Poudel (2018) CB1A 8 0.375 63.0 Cutoff 0.375 68.0 3.0 

Current study 

CB1 8 0.375 63.0 Cutoff 0.375 68.0 3.0 

CB2 8 0.375 63.0 Cutoff 0.375 68.0 3.0 

CB2D 8 0.375 63.0 Developed 0.375 68.0 3.0 

CB2AD 8 0.375 63.0 Developed 0.375 68.0 3.0 

CB3D 8 0.375 63.0 Developed 0.375 68.0 3.0 
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Table F.1 (continued) 

Reference Specimen ID  
(as stated) Conf. Type 𝒔𝒔

𝒅𝒅𝒃𝒃
�𝒇𝒇𝒚𝒚
𝟔𝟔𝟔𝟔

 
𝑨𝑨𝒔𝒔𝒉𝒉,𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩

 𝑨𝑨𝒔𝒔𝒉𝒉,𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝑨𝑨𝒔𝒔𝒉𝒉,𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐩𝐩𝐩𝐩⁄  

(width) (depth) (width) (depth) 

Paulay and Binney (1974) 

316 Full (min. reinf.) - - - - - 

317 Diag. 3.80 0.007 0.005 0.450 0.290 

395 Diag. 3.70 0.007 0.005 0.610 0.390 

Shiu, Barney, Fiorato, and Corley 
(1978) 

C6 Full 3.70 0.013 0.007 3.90 2.21 

C8 Full 3.90 0.013 0.007 2.93 1.66 

Tassios, Moretti and Bezas (1996) 
CB-2A Diag. 5.80 0.014 0.014 1.54 1.54 

CB-2B Diag. 5.80 0.014 0.014 1.66 1.66 

Galano and Vignoli (2000) 
P07 Full 15.6 0.004 0.001 0.50 0.16 

P12 Diag. 12.5 0.007 0.007 0.99 0.99 

Gonzalez (2001) K Diag. 3.60 0.016 0.016 1.12 2.25 

Kwan and Zhao (2002) CCB11 Diag. 8.4 0.023 0.011 2.32 1.16 

Canbolat, Parra and Wight (2005) Specimen 1 Diag. 6.20 0.008 0.008 1.03 1.03 

Fortney, Rassati, and Shahrooz 
(2008) 

DCB-1 Diag. (at ends) 3.10 0.015 0.017 1.78 2.09 

DCB-2 Diag. 2.50 0.010 0.012 0.93 1.09 

Naish, Fry, Klemencic, and Wallace 
(2013) 

CB24D Diag. 3.10 0.016 0.022 1.84 2.50 

CB33D Diag. 3.10 0.016 0.022 1.84 2.50 

CB24F Full 3.70 0.012 0.011 1.31 1.23 

CB33F Full 3.70 0.012 0.011 1.31 1.26 

CB24F-RC Full (with RC slab) 3.70 0.012 0.011 1.23 1.16 

CB24F-PT Full (with PT slab) 3.70 0.012 0.011 1.24 1.17 

CB24F-1/2-PT Full (with ½ PT slab) 7.40 0.006 0.005 0.64 0.60 

Han, Lee, Shin, and Lee (2015) 
SD-2.0 Full 5.50 0.015 0.009 1.95 1.13 

SD-3.5 Full 4.50 0.017 0.018 2.12 2.29 

Lim, Hwang, Cheng, and Lin (2016) 
CB30-DA Diag. 4.90 0.005 0.005 0.70 0.70 

CB30-DB Full 3.30 0.008 0.006 1.13 0.85 

Lim, Hwang, Wang, and Chang 
(2016) 

CB10-1 Full 4.30 0.018 0.011 2.69 1.66 

CB20-1 Full 3.70 0.014 0.011 1.55 1.18 

Poudel (2018) CB1A Full 3.50 0.009 0.009 1.09 1.12 

Current study 

CB1 Full 3.50 0.009 0.009 1.09 1.12 

CB2 Full 5.80 0.009 0.009 0.91 0.93 

CB2D Full 5.80 0.009 0.009 1.03 1.07 

CB2AD Full 5.80 0.009 0.009 1.16 1.20 

CB3D Full 5.80 0.009 0.009 1.05 1.08 
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Table F.1 (continued)      

Reference Specimen ID  
(as stated) 𝒇𝒇𝒄𝒄𝒄𝒄 (psi) 

𝑽𝑽𝐩𝐩𝐞𝐞𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐞𝐞𝐩𝐩𝐞𝐞𝐜𝐜 (kips) 𝒗𝒗𝐩𝐩𝐞𝐞𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐞𝐞𝐩𝐩𝐞𝐞𝐜𝐜  
(�𝒇𝒇𝒄𝒄′ , psi) 

Chord Rotation (%) 

- + - + capacity 

Paulay and Binney (1974) 

316 4800 124 151 11.7 0.9 6.1 3.5 

317 7350 120 130 8.2 6.2 3.8 5.0 

395 5150 120 146 8.7 1.0 5.8 3.4 

Shiu, Barney, Fiorato, and Corley 
(1978) 

C6 2600 13 13 9.8 6.1 6.1 6.1 

C8 3450 6 8 4.8 6.6 6.6 6.6 

Tassios, Moretti and Bezas (1996) 
CB-2A 4150 54 63 9.8 4.4 4.5 4.4 

CB-2B 3800 30 38 10.2 5.0 5.1 5.0 

Galano and Vignoli (2000) 
P07 7850 52 56 6.6 4.1 4.1 4.1 

P12 6050 53 56 7.5 2.5 3.9 3.2 

Gonzalez (2001) K 5150 221 206 14.6 6.6 8.2 7.4 c 

Kwan and Zhao (2002) CCB11 5500 74 78 9.1 5.3 5.4 5.3 

Canbolat, Parra and Wight (2005) Specimen 1 5950 95 106 7.1 4.0 3.5 3.8 d 

Fortney, Rassati, and Shahrooz 
(2008) 

DCB-1 5550 124 142 13.7 4.0 4.0 4.0 

DCB-2 8000 90 93 8.7 10.0 10.0 10.0 

Naish, Fry, Klemencic,and Wallace 
(2013) 

CB24D 6850 150 159 10.7 8.0 8.0 8.0 

CB33D 6850 118 121 6.7 6.0 7.0 6.5 

CB24F 6850 171 151 11.5 8.0 10.0 9.0 

CB33F 6850 115 124 6.9 8.0 8.0 8.0 

CB24F-RC 7300 190 191 12.4 10.0 10.0 10.0 

CB24F-PT 7250 200 212 13.8 8.0 8.0 8.0 

CB24F-1/2-PT 7000 180 190 12.6 8.0 8.0 8.0 

Han, Lee, Shin, and Lee (2015) 
SD-2.0 6400 251 245 15.5 5.2 6.2 5.7 

SD-3.5 6400 113 114 12.3 9.9 10.1 10.0 

Lim, Hwang, Cheng, and Lin (2016) 
CB30-DA 5750 150 151 8.6 8.0 7.7 7.8 

CB30-DB 5550 157 164 9.4 8.0 7.5 7.7 

Lim, Hwang, Wang, and Chang 
(2016) 

CB10-1 5000 315 325 23.8 5.8 5.8 5.8 

CB20-1 7600 241 230 11.9 7.3 7.3 7.3 

Poudel (2018) CB1A 6400 244 240 17.5 6.3 6.0 6.2 

Current study 

CB1 6000 184 182 13.2 6.3 8.0 7.1 

CB2 7200 192 207 13.6 4.5 5.6 5.1 

CB2D 6300 194 204 14.3 5.3 5.3 5.3 

CB2AD 5650 234 228 17.4 5.5 5.1 5.3 

CB3D 6200 268 275 19.4 5.0 6.3 5.6 
c Average of chord rotation attained in one loading direction and chord rotation corresponding to peak shear force in 
 the other loading direction. 
d Average of maximum chord rotations attained in two directions, though in one direction shear force was less than 
 80%. 
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Table F.1 (continued)    

Reference Specimen ID  
(as stated) 

Axial Restraint Included in Derivation of Eq. 5.2 

(Y/N) (Y/N) Reasons for Exclusions 

Paulay and Binney (1974) 

316 N N No systematic loading protocol 

317 N N No systematic loading protocol 

395 N N No systematic loading protocol 

Shiu, Barney, Fiorato, and Corley 
(1978) 

C6 N N Small scale specimens 

C8 N N Small scale specimens 

Tassios, Moretti and Bezas (1996) 
CB-2A N Y  

CB-2B N Y  

Galano and Vignoli (2000) 
P07 Y N 𝑐𝑐 𝑑𝑑𝑏𝑏⁄  more than 6.0 

P12 Y N 𝑐𝑐 𝑑𝑑𝑏𝑏⁄  more than 6.0 

Gonzalez (2001) K Y Y  

Kwan and Zhao (2002) CCB11 N N 𝑐𝑐 𝑑𝑑𝑏𝑏⁄  more than 6.0 

Canbolat, Parra and Wight (2005) Specimen 1 N Y  

Fortney, Rassati, and Shahrooz 
(2008) 

DCB-1 N N Diagonal confinement at ends only 

DCB-2 N Y  

Naish, Fry, Klemencic, and Wallace 
(2013) 

CB24D N Y  

CB33D N N Test was terminated early due to actuator limitations 

CB24F N Y  

CB33F N Y  

CB24F-RC N N Specimen with slab 

CB24F-PT N N Specimen with slab 

CB24F-1/2-PT N N Specimen with slab 

Han, Lee, Shin, and Lee (2015) 
SD-2.0 Y N Stiff axial restraint 

SD-3.5 Y N Stiff axial restraint 

Lim, Hwang, Cheng, and Lin (2016) 
CB30-DA N Y  

CB30-DB N Y  

Lim, Hwang, Wang, and Chang 
(2016) 

CB10-1 N Y  

CB20-1 N Y  

Poudel (2018) CB1A Y N Stiff axial restraint 

Current study 

CB1 N Y  

CB2 N Y  

CB2D N Y  

CB2AD Y Y  

CB3D N Y  
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