
Implementing SoftBound on Binary Executables

c©2019

Ruturaj Kiran Vaidya

Submitted to the graduate degree program in Electrical Engineering and Computer Science and
the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the

degree of Master of Science.

Committee members

Dr. Prasad Kulkarni, Chairperson

Dr. Drew Davidson

Dr. Alex Bardas

Date defended: November 8, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/322850611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The Thesis Committee for Ruturaj Kiran Vaidya certifies
that this is the approved version of the following thesis :

Implementing SoftBound on Binary Executables

Dr. Prasad Kulkarni, Chairperson

Date approved: November 8, 2019

ii



Abstract

Though languages like C and C++ are known to be memory unsafe, they are still used widely in

industry because of their memory management features, low level nature and performance benefits.

Also, as most of the systems software has been written using these languages, replacing them

with memory safe languages altogether is currently impossible. Memory safety violations are

commonplace, despite the fact that that there have been numerous attempts made to conquer them

using source code, compiler and post compilation based approaches.

SoftBound is a compiler-based technique that enforces spatial memory safety for C/C++ pro-

grams. However, SoftBound needs and depends on program information available in the high-level

source code. The goal of our work is to develop a mechanism to efficiently and effectively imple-

ment a technique, like SoftBound, to provide spatial memory safety for binary executables. Our

approach employs a combination of static-time analysis (using Ghidra) and dynamic-time instru-

mentation checks (using PIN). SoftBound is a pointer based approach, which stores base and bound

information per pointer. Our implementation determines the array and pointer access patterns stat-

ically using reverse engineering techniques in Ghidra. This static information is used by the Pin

dynamic binary instrumentation tool to check the correctness of each load and store instruction

at run-time. Our technique works without any source code support and no hardware or compiler

alterations are needed. We evaluate the effectiveness, limitations, and performance of our imple-

mentation. Our tool detects spatial memory errors in about 57% of the test cases and induces about

6% average overhead over that caused by a minimal Pintool.
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Chapter 1

Introduction

Low level languages like C and C++ are popular amongst developers for their memory management

and control capabilities, closeness to the system, high portability and excellent performance ben-

efits. However, these languages are well known for lack of memory safety and prone to memory

corruption attacks, which can not only leak program information, but also can take control of the

whole system. High level languages like Java can be used instead, because of their advantages

such as type safety, garbage collection, etc. But the advantages of C and C++ over high level lan-

guages make them more popular in several application domains. Also, most of system software,

compilers, database software have been written in these low level languages and replacing these

languages with relatively safe high level languages in the near future is likely impossible.

Memory safety can be classified into two types - spatial safety and temporal safety. Spatial error

is invoked by overflowing assigned object (e.g. buffer overrun) and temporal error is invoked by

accessing unallocated memory (reusing a deallocated object). Ensuring spatial as well as temporal

memory safety is important to provide complete memory safety. Attacks are crafted by leveraging

memory safety vulnerabilities in low level languages. These attacks got popularity when Morris

Worm (Spafford, 1989) was introduced and are still relevant today, evident by the introduction of

more recent Heartbleed bug (buffer underflow) (Durumeric et al., 2014) and several other similar

attacks. Diverse efforts have been established to provide memory safety in low level languages, at

source code, compiler, operating system and hardware level [(Nagarakatte et al., 2009), (DISKIN

& Intel, 2011), (Dhurjati & Adve, 2006), (Dhurjati et al., 2006), (Lattner & Adve, 2005), (Ruwase

& Lam, 2004), (Akritidis et al., 2009), (Hasabnis et al., 2012), Necula et al. (2002), (Jim et al.,

2002), (Devietti et al., 2008), (Austin et al., 1994), (Patil & Fischer, 1995), (Yong & Horwitz,
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2003), (Xu et al., 2004), (Nagarakatte et al., 2012), (Nagarakatte et al., 2014), (Simpson & Barua,

2013), (Das et al., 2019), (Serebryany et al., 2012), (Kuznetsov et al., 2014), (Nagarakatte et al.,

2010), (Nagarakatte et al., 2015), (Oleksenko et al., 2017)], although none is perfect.

This work introduces a novel approach that ensures spatial safety in compiled binaries using

static analysis (also, reverse engineering techniques) and dynamic instrumentation. Our implemen-

tation requires no source code support and it takes only raw binary as an input. Static analysis is

used to predict the variable (array or pointer) accesses and dynamic instrumentation is used to add

run time checks. Our implementation requires no changes in source code, compiler software or op-

erating system software. The implementation is based on SoftBound approach, which is a pointer

based technique used to provide spatial safety, although softbound requires compiler support and

thus source code as an input (Nagarakatte et al., 2009). We assume that the binary is compiled by

keeping the debugging information (this helps us our static analysis step). We use NSA’s Ghidra

tool for static analysis (and reverse engineering) and Intel’s Pin framework for dynamic instrumen-

tation. SARD benchmarks (Metrics & Evaluation, 2010) are used to test the effectively (detection

and overhead) of our work.

The rest of the thesis is arranged as follows. Chapter 2 gives background information about

memory errors, softbound technique, analysis and instrumentation frameworks used. Chapter 3

discusses our implementation in details, Chapter 4 presents our experimental results, Chapter 5

presents related and future work and Chapter 6 gives the conclusion.
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Chapter 2

Background

2.1 Memory Errors

Languages like C and C++ lack type safety and memory safety which leads to memory corruption

errors like stack-based buffer overflow (CWE-121, 2019), heap-based buffer overflow (CWE-122,

2019), double free (CWE-415, 2019), use after free (CWE-416, 2019), etc. Memory errors are

nothing but the malicious attacks incurred by utilizing the process memory to change the program

behavior. Using memory errors, an attacker can change the flow of code and direct it to the attacker

specified location, such as shell code, either directly or using gadgets (small instruction chucks)

present in the memory to craft malicious attacks. There are a number of solutions proposed to

mitigate these vulnerabilities and to ensure memory safety, but none of them are perfect. For

example, a well known technique like address space randomization (ASLR) (Pax, 2019) can also be

exploited, as shown by Strackx et al. (Strackx et al., 2009), Shacham et al. (Shacham et al., 2004)

and others. (Szekeres et al., 2013) explains different types of memory errors and effectiveness

of their defense mechanisms in details. The program is considered memory safe, if not a single

memory related attack is possible. Michael Hicks (Hicks, 2014) explains the formal definition of

memory safety.

Memory errors can be categorized into two types. One being spatial memory errors and other

being temporal memory errors (Szekeres et al., 2013). By using these two kinds of errors, the at-

tackers can formulate the initial steps for an attack. For example, attackers can overflow the buffer

(spatial errors) or they can use the uninitialized memory by dereferencing invalid pointers (tem-

poral errors). Using these methods they can read or write memory locations to perform malicious
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char *p = malloc(10);
for (int i = 0; i < 15; ++i)
{

*(p + i) = i + 65;
printf("%c\n", p[i]);

}

Figure 2.1: Spatial Memory Safety Violation

char *p = malloc(10);
free(p);
for (int i = 0; i < 10; ++i)
{

*(p + i) = i + 65;
printf("%c\n", p[i]);

}

Figure 2.2: Temporal Memory Safety Violation

activities (for e.g. one can overwrite the saved eip to change the control flow of code to a malicious

location). Hence, spatial and temporal memory safety is required to stop these violations (Payer,

2017). Consider an example of spatial memory safety violation in Fig. 2.1. A character pointer p

has been assigned a memory of 10 bytes. Hence, every valid memory access must be within the

bounds of that pointer’s assigned memory object, which is 10 bytes from the address of pointer p.

As the pointer points out of the bounds of the allocated object, there is clearly an invalid access

(both read and write) and therefore a spatial safety violation exists in this case. An example of

temporal memory safety violation is shown in Fig. 2.2. The pointer p has been assigned a memory

object of 10 bytes. But, the pointer has been freed (and consequently the memory object has been

deallocated) before the access. This is an example of use after free (CWE-416, 2019) vulnerability.

Now, the memory object is no longer associated with the pointer and dereferencing such invalid

memory is a memory violation. Both spatial and temporal memory safety is important to ensure

the program safety. Our implementation currently deals with only spatial memory safety viola-

tions and is based on the SoftBound technique (Nagarakatte et al., 2009). The following section

describes the SoftBound technique in detail.
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2.2 The SoftBound Technique

The SoftBound (Nagarakatte et al., 2009) technique is a software based defense mechanism against

spatial memory errors. It is a compiler based technique and no source code changes or hardware

support is necessary for its implementation. It uses pointer based approach, storing base and bound

metadata associated with pointers in a disjoint metadata structure. For e.g., for dynamic memory

allocations like p = malloc(10), the base is assigned to the value of heap pointer returned by

Malloc function, i.e. p and bound is assigned to p+10. On every pointer load and store, checks get

added to inspect whether the pointer accesses are within the bounds. For e.g.:

// Check if the pointer if within the bounds

if ((pointer < pointer_base) || (pointer+size > pointer_bound))

abort();

// pointer load

a = *pointer;

Here, the size is the size of the pointer on stack. Check has been added before pointer load

to verify whether the pointer access is withing the bounds. Hence, in this way spatial memory

protection can be provided. Other features of this technique are metadata propagation, disjoint

metadata structure, pointer bounds narrowing, etc. Although our implementation is based on the

SoftBound technique, we don’t apply compiler transformation techniques (used in SoftBound), as

our implementation deals with securing ELF binaries. Therefore, we have to rely on static analysis

and dynamic instrumentation frameworks.

2.3 Static Binary Analysis and Dynamic Binary Instrumentation Frame-

works

Static and dynamic checks can be added at source code level (i.e. by transforming the source code

in to a secure format), during compilation, after linking or during execution (dynamic instrumenta-

tion) (Luk et al., 2005). We assume that we only get the executable as an input (and not the source
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code). Hence, in our case, it can either be done statically by analyzing binary or dynamically

during the run time. There are numerous analysis and instrumentation techniques that are being

used to inspect code, add new code, modify existing program or change the control flow, analyse

the performance of the program, etc. The following sub-sections explain about well known static

binary analysis and dynamic instrumentation frameworks.

2.3.1 Dynamic Binary Instrumentation Framework

Dynamic instrumentation techniques are used to add instrumentation at run time. They use pro-

filing information (dynamic) to analyze binary, which is not available (and possible) in case of

static analysis tools (for e.g. variables depend on user input). They can be used for taint analysis,

double free detection, control flow modification, data and instruction modification, memory leak

detection, etc. (DISKIN & Intel, 2011), using instrumentation and analysis. PIN (Luk et al., 2005),

DynamoRio (Bruening et al., 2003), Valgrind (Nethercote & Seward, 2007) and Frida (Kalleberg

& Ravnås, 2016) are some of the prominent dynamic instrumentation techniques/ frameworks

available today in the market. We use PIN framework to detect spatial errors using dynamic in-

strumentation techniques.

2.3.1.1 PIN Framework

PIN (Luk et al., 2005) is an instrumentation platform, which can be used to analyze the binary

dynamically. It uses JIT (Just In Time) based compilation techniques to instrument binaries at run

time. Its implementation is based on the ATOM model (Srivastava & Eustace, 1994), where the

instrumentation routine is used to determine the places in the code to be analyzed and the analysis

routine actually analyzes the procedural information. Pin tool is written in C++ (about 99%) and

assembly (about 1%) and is compatible across multiple architectures (Though, the source code

is private). PIN has an architecture independent API, but the architecture specific details can be

accessed with ease. Using this API, "instrumentation tools" or "PIN tools" can be built in C/C++

to add instrumentation, to modify and analyze binaries. Another advantage of PIN is that, it can be
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attached to (and detached from) the running process as well (using "Ptrace" technique). PIN can

be used to analyze the binary, simply by the following command:

pin -t yourtool.so -- yourbinary

Here, "pin" is the PIN framework (an executable), "yourtool.so" is the PIN tool and "yourbinary"

is the binary to be analyzed. Hence, as the user runs PIN, three binaries run together - PIN frame-

work, Pintool (instrumentation tool written by the user) and the binary to be analyzed. They also

share the same address space (but they have their own copies of libraries, i.e. the libraries are

not shared). Every time PIN is run, the PIN framework translates the input code using dynamic

(JIT) compilation. The code which gets executed is always the translated code and not the original

code. The instrumentation is added by Pintool during the translation, and hence the translated code

contains instrumentation (only if it has been added previously). The instrumentation and analysis

routines are defined in the Pintool. Translated code is stored in the code cache, which can be used

to run the frequently executed code, without any need of re-translation. Code cache improves the

overall performance.

An example Pintool (based on a similar example given in the PIN user guide (Intel, 2019))

is shown in Fig. 2.3. It counts the total number of instructions executed by instrumenting at the

instruction level granularity. As seen in the example code, the function Instruction is equiva-

lent to the instrumentation routine and the function docount is equivalent to the analysis routine,

according to the ATOM model.

2.3.2 Static Binary Analysis and Reverse Engineering Tools

Static binary analysis is analyzing binaries without executing them. Frameworks like Ghidra (Na-

tional Security Agency ghidra, 2019), Radare2 (radare, 2019), Binary Ninja (binaryninja, 2019),

Hopper (hopperapp, 2019), IDA pro (hex rays, 2019), etc. use reverse engineering techniques to

explore binary information. Some of them are open source, while others are closed source. They

make use of symbol information in present in an executable to make their analysis better. In our

implementation, we use Ghidra, along with PIN.
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#include "pin.H"

// Instructions count is kept here
static UINT64 icount = 0;

// docount is called before every instruction gets executed
// This is equivalent to the analysis routine in the ATOM model
VOID docount()
{

icount++;
}

// Call for every new instruction
// This is equivalent to the instrumentation routine in the ATOM model
// This can be used to decide when to add an analysis routine
VOID Instruction(INS ins, VOID *v)
{

// Insert a call to docount before every instruction
INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount, IARG_END);

}

int main(int argc, char * argv[])
{

// Initialize pin
PIN_Init(argc, argv);
// This function adds instrumentation for every detected instruction
INS_AddInstrumentFunction(Instruction, 0);
PIN_StartProgram();
return 0;

}

Figure 2.3: A Simple Pintool To Count Total Number Of Executed Instructions
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Figure 2.4: Ghidra - Graphical User Interface

2.3.2.1 Ghidra Framework

Ghidra is NSA’s (National Security Agency) reverse engineering framework, released recently on

April 4, 2019. It is primarily written in Java and supports multiple operating systems such as

Windows, Linux and MacOS. It can be run in GUI (graphical user interface) as well as command-

line mode. An example window of Ghidra in GUI mode (using eclipse) is shown in Fig. 2.4.

Ghidra comes with a number of tools, which offer disassembly, decompilation, scripting, code

modifications, data type management and plenty of other analysis. Scripting is currently supported

in Java and Python languages with the availability of a rich API. Custom scripts can be run pre-

analysis or post-analysis. Ghidra also supports multi-user environment which is a good option for

users who would like to work in team on a same project.

9



Chapter 3

Implementation

The goal of this work is to ensure the security of binaries from memory safety violations. In

particular, our work is focused on adding a spatial memory safety protection, as discussed before.

We use Intel’s Pin tool interface and NSA’s Ghidra interface to implement our technique. Intel’s

Pin tool provides an application programming interface (API) to analyze the binary using dynamic

instrumentation. National Security Agency’s (NSA) Ghidra is a reverse engineering framework,

which also provides an extensive application programming interface (API). Our implementation

consists of two parts. One of them is the "Pintool", built in C++ using Intel Pin framework, which

is used to add run time checks using dynamic binary instrumentation techniques. This tool keeps

bounds information per pointer/array in a structure and add validity checks according to accesses.

Pintool takes an input that is statically generated by using Ghidra interface. This script is the other

part of our technique. This script analyses the binary, that is compiled using gcc debug flag (thus

keeping debugging information) and fetches the required information by reverse engineering the

binary (which is then fed to the Pintool). We assume that the source code is not available for us to

analyze, and our implementation only considers the symbol information from the binary (compiled

using gcc debug flag) for the analysis (this information makes the analysis better). The remaining

chapter talks about our implementation in details.

3.1 Script Using Ghidra API

First part of our implementation is this Ghidra script, which gets the information from the elf

binary compiled using gcc debug flag -g. This flag retains the symbol or debugging information in

10



for(int i=0 ; i<N ; i++)
array[i] = N;

4004a8 jmp 4004ba <main+0x24>
4004aa mov eax,DWORD PTR [rbp-0x4]
4004ad cdqe
4004af mov edx,DWORD PTR [rbp-0x8]
4004b2 mov DWORD PTR [rbp+rax*4-0x30],edx
4004b6 add DWORD PTR [rbp-0x4],0x1
4004ba mov eax,DWORD PTR [rbp-0x4]
4004bd cmp eax,DWORD PTR [rbp-0x8]
4004c0 jl 4004aa <main+0x14>

Figure 3.1: Array Stores Using A For Loop

the executable in the form of dwarf (debugging with attribute record formats (Eager et al., 2007))

format (We assume that the binaries to be protected are pre-compiled in this way, so that they retain

the debugging information, which improves the precision of static analysis done by Ghidra). As

described before, Ghidra can be run in GUI (graphical user interface) or in CLI (command line)

mode. Ghidra is being shipped with analyzeHeadless tool (shell script), which can be used to

run Ghidra in the command line mode. Ghidra comes with a rich API, which can be used to write

scripts in Java or in Python 2.7, to analyze the information generated by reverse engineering the

executable. Our implementation uses Python 2.7 for convenience and simplicity.

The Ghidra script fetches all the local (i.e. variables present on stack) and global (i.e. the

variables in data and/or bss section) variables, their details and the important assembly instructions

related to their use (access instructions). For example, consider a part of C code and corresponding

x86-64 assembly instructions for that part in Fig. 3.1. As seen from this example, it is clear

that the destination operand in the instruction at the location 4004b2 belongs to an array array[].

Hench, we mark the "instruction owner" of the instruction at 4004b2 as array[]. Consider another

example in Fig. 3.2. In this case, the instruction at 40049a belongs to array b, the instruction at

4004a5 belongs to the pointer ptr, and the instruction at 4004b0 belongs to the scalar c, based

on the addresses (relative to the base pointer) in the destination operand. Now, consider the code

c = *(ptr + 10); in C, assembly instructions from the location 4004a9 to 4004b0 represent

that part. Here, the pointer ptr is overflowing the array b, and hence we should check the source

operands of the instructions to determine the invalid accesses. Notice that the pointer is being
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moved to the register rax at location 4004a9 and then after some arithmetic, there is an invalid

access of the pointer at the location 4004ad. To catch such invalid accesses, we have implemented

a analysis algorithm, which keeps track of the registers (the register in which the pointer address

is first copied, in this case, location 4004a9) and contains this pointer location value (note that

the value of the pointer location present in register rax can be moved to (say) register rcx, which

then can be used to overflow the array). Then, it checks for all the register loads of the registers

containing the pointer location. Thus, in this case, the "instruction owner" of the instruction at

4004ad is determined as the pointer ptr. "Instruction owner" is nothing but the variable defined

in C code.

Fig. 3.3 shows the output of Ghidra script (including comments) after analysing the example

program shown in Fig. 3.2. The output is in text format and is fed to the PIN tool. This output

file from the Ghidra script contains addresses mapped to their "instruction owners" (listed under

"addresses") (these addresses determine which instructions are to be analysed), function local vari-

ables (listed under "locals"), static variables (these go in the data or bss sections and defined under

the function name-spaces) (listed under "namespace") and global variables (these go in the data

or bss sections and defined under the global name-space) (listed under ".global"). Note that the

"instruction owner" is nothing but the variable, which is related to the specific instruction, accord-

ing to our technique as explained before. Ghidra determines the variable names using debugging

(symbol) information, or it assigns random names, if the debugging (symbol) information is not

available. Local variables (or "instruction owners") are associated with the metadata, like owner

name (stored as functionname_variablename format if local to a function or .global_variable for-

mat if defined globally), position on the stack relative to rbp, size and owner type. Variables (or

instruction owners) defined in the "data" or "bss" are associated with their static address, instead

of position on the stack relative to rbp and rest of the metadata is same. This example has no static

variables defined which are local to the function (hence, nothing is listed under "namespace").

Also, notice the pointer global_PTR___gmon_start___00600ff listed under ".global", it is a

symbol produced by Ghidra API and is a false positive. But, it would not affect our implementa-
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int main()
{

int b[5];
b[0] = 1;
int *ptr = b;
int c = *(ptr + 10);
return 0;

}

400496 push rbp
400497 mov rbp,rsp
40049a mov DWORD PTR [rbp-0x20],0x1
4004a1 lea rax,[rbp-0x20]
4004a5 mov QWORD PTR [rbp-0x8],rax
4004a9 mov rax,QWORD PTR [rbp-0x8]
4004ad mov eax,DWORD PTR [rax+0x28]
4004b0 mov DWORD PTR [rbp-0xc],eax
4004b3 mov eax,0x0
4004b8 pop rbp
4004b9 ret

Figure 3.2: Invalid Pointer Access

tion, as it has not been accessed anywhere in the code. Removing such false positives is left for the

future work. Also, we store local variables in functionname_variablename format and global vari-

ables .global_variable format, just to distinguish between same variable names across functions

and global scope. Note that Ghidra assigns different names to the variables defined inside the same

function but with different local scopes. For e.g. for the following code:

int main()

{

{

int c;

c = 8;

}

int c = 5;

return 0;

}

Ghidra distinguishes between different "c"s, by inferring them as c and c_1. Hence, we don’t have

to set naming conventions to distinguish between those two.
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1 // Number of functions
main // Function name

addresses // Function addresses and instruction owner information
40049a main_b
4004a1 main_b
4004b0 main_c
4004a5 main_ptr
4004ad main_ptr

locals // Function local variables
-32 array main_b 20
-12 scalar main_c 4
-8 pointer main_ptr 8

namespace // Static variables local to the function

.global // Global variables
6295544 pointer .global_PTR___gmon_start___00600ff8 8

Figure 3.3: Output of Ghidra tool after analysing the code in Fig. 3.2

3.2 Pintool

As mentioned before, this tool is one of the important parts of our implementation. We use this

to detect the actual spatial memory safety violations i.e. the overflow attacks, using dynamic in-

strumentation. Static binary information generated using our Ghidra script is fed to the Pintool,

to determine dynamic checks for possible variables according to their access instructions in the

assembly code. First, the Pin tool associates instruction address to their instruction owners and

stores them in a map structure (which stores instruction address as a key and an object containing

corresponding instruction owner metadata as a value). Because of the map structure, it becomes

easier and quicker to access the instruction owner and other metadata during instruction instrumen-

tation. Bounds information is stored per instruction owner in a global map structure. The idea is to

create a structure, that is similar to that used by the SoftBound technique. This structure stores the

base and bounds of each instruction owner, which can be used to validate accesses when needed.

Base and bound are the actual locations on the memory. Base is the base pointer at the location of
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the assigned object and bound is base pointer plus size of the object. We categorize the instruction

owners as scalar, array and pointer. But, validation checks are not added for scalar loads and stores

as it is redundant.

Image and instruction instrumentation is used to implement the detection mechanism. Image

instrumentation is required to add instrumentation for routines (for e.g. Malloc, Calloc,etc.) and

instruction instrumentation is required to add instrumentation for instructions which are mapped

with corresponding instruction owners as shown in Fig. 3.3. Now, consider the code in Fig. 3.2, it is

an example of invalid pointer access (out of bounds of the allocated object). Fig. 3.4 shows points at

which the checks get added in assembly, which can be visualized as the corresponding checks in the

source code. Checks are nothing but analysis routines called by instruction instrumentation routine.

Notice that the instruction addresses detected by Ghidra (Fig. 3.3) are 5 in total and we have added

only 3 checks. The reason is that we ignore instructions with lea opcode (load effective address)

(instruction at 4004a1) and instructions related to scalar loads and stores (instruction at 4004b0),

as they are not required for our implementation. Using Pin API, checks can be added before and

after the instruction once it has been detected by the instruction instrumentation routine. In this

case, checks are added just before the instructions to be analyzed (in this case - 40049a, 4004a5

and 4004ad) to prevent the invalid access. As the execution starts the first instruction detected is

the instruction at 40049a. Pintool adds an analysis routine just before the instruction. First, the

routine detects its instruction owner by querying the hash map using instruction address (40049a)

(which returns an object containing the owner metadata). Second, it checks if the owner name is

present in the global map structure (and hence owners are renamed by function_variablename or

.global_variablename convention, as described before) which contains bounds information. If not,

it calculates the bounds (using instruction owner metadata) and adds the bounds information into

the global map, with owner as a key. The calculation is as follows:

|----> lower_bound = rbp - 32

main_b |

|----> upper_bound = rbp - 32 + size = rbp - 32 + 19
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Note that all the values are in decimal. As this is the first occurrence of main_b, the bound in-

formation is added into the global map. Third, it checks if the access is within the bounds as

follows:

if (access < lower_bound || access > upper_bound)

abort;

In this case, access is rbp - 32 (which is nothing but rbp - 0x20 in hex). Note that, in this

case the address is relative to rbp, but this may not be true in other cases. For example, in case of

malloc, the addresses are stored on heap and in case of static variables rip relative addressing is

used, unlike rbp relative addressing in case of local variables. Hence, in those cases the bounds

checks would be similar, but bound calculation changes. The bound calculation in the case of

variables in data section is as follows:

|----> lower_bound = address

main_owner |

|----> upper_bound = address + size

Here, address is the static address of the variable. This is the reason why, in case of static or global

variables, we store static address in the metadata, unlike relative to rbp in case of local variables,

as described before. Back to our example - after the bounds check, the execution moves on to the

next instruction (4004a5). Here, pointer ptr is being assigned the address of b (tool does this,

by finding the contents of the register, which is the address of an array). Hence, ptr acquires the

bounds of array b. This is similar to the pointer assignment in SoftBound.

SoftBound supports pointer metadata propagation, i.e. it propagates the pointer bounds infor-

mation whenever pointers are passed to a different function. SoftBound transforms the function in

such a way that, it passes the bounds information as function arguments. Our implementation also

supports transfers or propagation of the bounds information, similar to the SoftBound approach but

by using a different strategy. It does this in the following way. Figure Fig. 3.5 presents the bounds

propagation technique. In the function "main", the location of array b is moved in the register rdi
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int main()
{

int b[5];
// Check-1
b[0] = 1;
// Check-2
int *ptr = b;
// Check-3
int c = *(ptr + 10);
return 0;

}

400496 push rbp
400497 mov rbp,rsp
// Check-1 //
40049a mov DWORD PTR [rbp-0x20],0x1
4004a1 lea rax,[rbp-0x20]
// Check-2 //
4004a5 mov QWORD PTR [rbp-0x8],rax
4004a9 mov rax,QWORD PTR [rbp-0x8]
// Check-3 //
4004ad mov eax,DWORD PTR [rax+0x28]
4004b0 mov DWORD PTR [rbp-0xc],eax
4004b3 mov eax,0x0
4004b8 pop rbp
4004b9 ret

Figure 3.4: Invalid Pointer Access (with checks)

(instruction at 4004c6) and the function foo gets called. Then, in the function foo, the value of rdi

(which is nothing but the location of array b) is assigned to the pointer ptr (instruction at 40049a)

(Note that, according to x86-64 - linux calling convention first six arguments are passed through

registers and rest of them are pushed on the stack). Hence, pointer ptr acquires the bounds of array

b. Next, pointer ptr is assigned to pointer x (at instruction 4004a2) and x acquires the bounds of

pointer ptr and thus eventually acquiring the bounds of array b. Pointer x is then used to overflow

the assigned object (instruction at 4004aa). Hence, a validity check can be added there. It is to be

noted that our implementation doesn’t support pointer bounds narrowing, but we keep it as a future

work. Above discussed implementation details can be visualized from Fig. 3.6.
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void foo(int *ptr)
{

int* x = ptr;
int y = *(x+5);

}

int main()
{

int b[5];
b[0] = 1;
foo(b);
return 0;

}

<foo>:
400496 push rbp
400497 mov rbp,rsp
40049a mov QWORD PTR [rbp-0x18],rdi
40049e mov rax,QWORD PTR [rbp-0x18]
4004a2 mov QWORD PTR [rbp-0x8],rax
4004a6 mov rax,QWORD PTR [rbp-0x8]
4004aa mov eax,DWORD PTR [rax+0x14]
4004ad mov DWORD PTR [rbp-0xc],eax
4004b0 nop
4004b1 pop rbp
4004b2 ret

<main>:
4004b3 push rbp
4004b4 mov rbp,rsp
4004b7 sub rsp,0x20
4004bb mov DWORD PTR [rbp-0x20],0x1
4004c2 lea rax,[rbp-0x20]
4004c6 mov rdi,rax
4004c9 call 400496 <foo>
4004ce mov eax,0x0
4004d3 leave
4004d4 ret

Figure 3.5: Bounds propagation

Figure 3.6: Implementation Details
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Chapter 4

Experiments

In this section, we describe the implementation details and the experimental results obtained after

running the benchmark tests. This helps us evaluating the effectiveness of this technique.

4.1 Experimental Setup

All the experiments are performed on a 64-bit Intel Xeon processor with little-endian architec-

ture and x86 instruction set. Fedora 28 is used as an operating system with kernal version 5.0.9-

100.fc28.x86_64. It is to be noted that Java is needed to install the Ghidra software as shown in

the documentation (ghidra sre.org, 2019). Ghidra script is written using python and GNU compiler

collection is required for running PIN software, designing the Pintool and for the benchmark suite.

The implementation details with version information are shown in Table 4.1.

Tool Version Details

Operating System Fedora release 28

Kernel version 5.0.9-100.fc28.x86_64

GNU compiler collection (gcc and g++) 8.3.1

Intel PIN pin-3.7-97619-0d0c92f4f

Ghidra 9.0.3-DEV

Java JDK 11.0.2

Python 2.7

Table 4.1: Implementation Details
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To test our implementation, we used SARD - 81 and SARD - 89 test suites (Refer - (Black,

2017) (Metrics & Evaluation, 2010)) and our own test cases. SARD - 81 has 5 cases and all of them

are with buffer overflows. SARD - 89 suite has 291 cases, each having a combination of tests with

and without buffer overflows (1164 cases in total). These test cases manifests the vulnerabilities

including CWE-119 (CWE-119, 2019) and CWE-121 (CWE-121, 2019). CWE-119 being the top

weakness in the "2019 CWE Top 25 Most Dangerous Software Errors"(cwe.mitre.org, 2019) list.

We have also created about 50 test cases with overflows, but we do not include those in the results,

as those test cases are not standardized. SARD cases consist of buffer overflows with and without

using library functions. Note that these test cases only consist of C programs.

4.2 Overflow Detection

In this section, we will discuss about the detection effectiveness of our technique. The end goal

of this work is to detect all kinds of memory errors, including spatial memory errors and temporal

memory errors. Currently, our technique is focused on providing spatial safety, as discussed earlier.

We tested our implementation using SARD benchmarks as discussed before. In case of SARD -

81 benchmark suit, 2 out of 5 tests are passed and in case of SARD - 89 suit, 664 out of 1164 tests

are passed. This can be visualized from figures Fig. 4.1 and Fig. 4.2. Hence, about 57% test cases

are passed. It should be recalled that all the test cases in SARD - 81 suit show buffer overflows,

but SARD - 89 has a combination of tests with and without buffer overflows. 291 of 1169 (i.e.

5 from SARD - 81 and 1164 from SARD - 89) test cases are without overflows. The cases with

buffer overflow include overflow by small, medium and large quantity. Also, these cases consist of

buffer overflows using library functions, for e.g. using malloc and without using library functions,

for e.g. using arrays.

Table 4.2 shows reasons of case failures and the number of failed cases per reason for both

SARD - 81 and SARD - 89 benchmarks (i.e. considering 1169 cases in total). Overflows using

library functions such as strcpy, strncpy, shmat, getcwd, memcpy are undetected, as library func-

tions are not currently supported (although we manually detect malloc, calloc, realloc, fgets, gets
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Figure 4.1: Overflow Detection - SARD - 81

Figure 4.2: Overflow Detection - SARD - 89
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Reason Number of Test Cases

Ghidra script failed to detect 446

Pintool failed to detect 9

String copy (strcpy and strncpy) functions 25

Shared memory Operation (shmat) function 4

Get current working directory (getcwd) function 3

Copy memory area (memcpy) function 12

Threading 4

Table 4.2: Case Failure Details (SARD - 81 and SARD - 89)

and free). Multi threading is not yet supported and we keep this as a future work. Pintool failed

to detect 9 of the cases. This is because certain instructions or pattern of instructions are not being

analysed by our Pintool and this can be avoided by carefully modifying the algorithm for those

particular cases and other edge cases that may occur. Lastly, there are 446 cases - a significant

amount of cases, that are not detected by Ghidra script (Note that these cases may contain library

functions, but there may not be a direct impact of library functions on the detection mechanism).

The reasons for that include:

• The location of array access instruction is not detected.

• The location of array access instruction is detected incorrectly.

• The owner is not detected.

• The owner size is detected incorrectly.

The problems in detecting locations of array accesses occur primarily ("primarily", because we

observed this in most of the cases) because Ghidra framework’s internal algorithms failed to deter-

mine it. This may also happen if our algorithm fails to conduct further analysis at run time. For e.g.

consider a c program and corresponding assembly in Fig. 4.3. Looking only at the assembly code,

it is difficult to predict if the instruction at location 4004ee belongs to array b1 or if it belongs to

array b2. As seen from the example code, array b2 clearly overflows and hence the code prints 1 as
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#include <stdio.h>
int main()
{

int b1[5];
int b2[10];
b2[15] = 1;
printf("%i\n", b1[3]);
return 0;

}

4004e6 push rbp
4004e7 mov rbp,rsp
4004ea sub rsp,0x50
4004ee mov DWORD PTR [rbp-0x14],0x1
4004f5 mov eax,DWORD PTR [rbp-0x14]
4004f8 mov esi,eax
4004fa mov edi,0x400590
4004ff mov eax,0x0
400504 call 4003f0 <printf@plt>
400509 mov eax,0x0
40050e leave
40050f ret

Figure 4.3: Ambiguous Array Access

an output. For the above code, Ghidra predicts the owner of the location 4004ee incorrectly, as b1

(i.e. it predicts incorrect instruction owner, consequently affecting our technique). Fig. 4.4 gives

actual examples from SARD benchmarks (Refer - (Black, 2017) (Metrics & Evaluation, 2010)),

which fail to detect the array access instructions. In the program on the left, the array access in-

struction is falsely predicted as accessed by a scalar and not by an array (and thus the existence of

scalar in the code is predicted falsely). In the program on the right, the array access instruction is

not detected and hence no owner is assigned to this instruction, which leads to overflow detection

failure. We also observed that the access location is mostly detected if the array is indexed using a

variable. The chances of detecting the access locations of overflowed arrays become dimmer if the

they are indexed using raw numbers (the ones that overflow). As most of cases in SARD suits are

close to the ones shown in Fig. 4.4, the failure percentage is higher than expected. Fig. 4.4, Fig. 4.5,

Fig. 4.6, Fig. 4.7, Fig. 4.8, Fig. 4.9 and Fig. 4.10 show examples of each of the above discussed

cases (actual examples from SARD benchmarks (Refer - (Black, 2017) (Metrics & Evaluation,

2010))).
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int main(int argc, char *argv[])
{

char buf[10];
/* BAD */
buf[10] = ’A’;
return 0;

}

int main(int argc, char *argv[])
{

char buf[10];
/* BAD */
buf[4105] = ’A’;
return 0;

}

Figure 4.4: Ghidra Script detection failure (example is Taken from SARD suit (Metrics & Evalua-
tion, 2010))

int main(int argc, char *argv[])
{

int i;
char buf[10];
i = 9;
/* OK */
(buf + i)[0] = ’A’;
return 0;

}

Figure 4.5: Pintool detection failure (example is Taken from SARD suit (Metrics & Evaluation,
2010))

#include <string.h>
int main(int argc, char *argv[])
{

char buf[10];
/* BAD */
strcpy(buf, "AAAAAAAAAAAAAAAAA");
return 0;

}

Figure 4.6: String Copy (strcpy) (example is Taken from SARD suit (Metrics & Evaluation, 2010))
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#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <assert.h>
#include <stdlib.h>
int getSharedMem()
{

return (shmget(IPC_PRIVATE, 10, 0xffffffff));
}
void relSharedMem(int memID)
{

struct shmid_ds temp;
shmctl(memID, IPC_RMID, &temp);

}
int main(int argc, char *argv[])
{

int memIdent;
char * buf;
memIdent = getSharedMem();
assert(memIdent != -1);
buf = ((char *) shmat(memIdent, NULL, 0));
assert(((int)buf) != -1);
/* BAD */
buf[17] = ’A’;
shmdt((void *)buf);
relSharedMem(memIdent);
return 0;

}

Figure 4.7: Shared Memory Operations (shmat) (example is Taken from SARD suit (Metrics &
Evaluation, 2010))

#include <unistd.h>
int main(int argc, char *argv[])
{

char buf[10];
/* BAD */
getcwd(buf, 18);
return 0;

}

Figure 4.8: Current working directory (getcwd) (example is Taken from SARD suit (Metrics &
Evaluation, 2010))
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#include <string.h>
int main(int argc, char *argv[])
{

int copy_size;
char src[4106];
char buf[10];
memset(src, ’A’, 4106);
src[4106 - 1] = ’\0’;
copy_size = -1;
if (copy_size <= (int)(sizeof buf))
{

/* BAD */
memcpy(buf, src, copy_size);

}
return 0;

}

Figure 4.9: Copy memory area (memcpy) (example is Taken from SARD suit (Metrics & Evalua-
tion, 2010))

#include <pthread.h>
void * thread_function1(void * arg1)
{

char buf[10];
/* BAD */
buf[4105] = ’A’;
pthread_exit((void *)NULL);
return 0;

}
int main(int argc, char *argv[])
{

pthread_t thread1;
pthread_create(&thread1, NULL, &thread_function1, (void *)NULL);
pthread_exit((void *)NULL);
return 0;

}

Figure 4.10: Threading (pthread) (example is Taken from SARD suit (Metrics & Evaluation,
2010))
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4.3 Run Time Overhead

The run time overhead is also one of the important factors to determine the effectiveness of the

mechanism. We used same benchmark suits (SARD) as mentioned in the previous section, to

measure the overhead. Fig. 4.11 and Fig. 4.12 show overhead analysis of SARD - 81 and SARD

- 89 suits (Fig. 4.13 shows the zoomed in version of Fig. 4.12). We divide the analysis into 3

different tests - test1, test2 and test3. Where test1 calculates the time taken by raw binary to run

(i.e. without any tool), test2 calculates the run time of binary if run using a minimal Pintool (a tool

with no instrumentation - Fig. 4.15) and test3 computes the time taken by binary if run using our

Pintool. We run each test (test1, test2 and test3) 15 times on all the benchmark cases and took the

average of those 15 runs for each case. From Fig. 4.11 and Fig. 4.12 it can be seen that our tool adds

a big amount overhead, although considering the minimal tool’s overhead, it can be concluded that

significant amount of this overhead incurred by pin framework itself (i.e. PIN startup overhead).

Fig. 4.14 shows average overhead of the 3 tests. Considering the average overheads, we observed

about large overhead, but most of the overhead is PIN startup overhead. It will have a negligible

effect if measured against bigger programs, as PIN uses code cache, it doesn’t have to translate

the frequently executing code. By comparing run times of our implementation and the minimal

Pintool example, it can be inferred that our implementation adds about 6.15% overhead. This is

due to the inclusion of instrumentation routines in our tool, unlike the minimal Pintool.
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Figure 4.11: Overhead Analysis - SARD - 81

Figure 4.12: Overhead Analysis - SARD - 89
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Figure 4.13: Overhead Analysis - SARD - 89 (zoomed)

Figure 4.14: Average Overhead
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#include "pin.H"
int main(int argc, char * argv[])
{

// Initialize pin
PIN_Init(argc, argv);

// Start the program, never returns
PIN_StartProgram();

return 0;
}

Figure 4.15: Minimal Pintool
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Chapter 5

Related and Future Work

This section discusses the work which has been done in the past, which is related to the goal of

this work. This is not limited to the similar techniques used, but also includes a broad overview

of memory safety techniques in general. This section also discusses the future work to be done to

improve the effectiveness of this technique.

5.1 Related Work

Memory safety violations is one of the oldest issues in programming and computing. These vio-

lations occur due to lack of memory safety in languages like C and C++. Buffer overflow vulnera-

bilities get popularity when Morris Worm (Spafford, 1989) is introduced in 1988 and the overflow

attacks are still relevant till this date. There are a number of defences have been proposed to de-

fend against memory attacks (like buffer overflow), for e.g. stack canaries, ASLR, non executable

memory, PIE (position Independent Executable), re-randomization techniques, etc. make the at-

tack using buffer overflow very difficult. But, even combination of these defenses can still be

circumvented.

Laszlo Szekeres et al. (Szekeres et al., 2013) explain the type of attacks and the phases in which

these attacks can be exploited, memory safety being first and one of the important phases. To pro-

vide complete memory safety, spatial as well as temporal memory safety should be provided. In

this section, we will only consider the work related to provide protection against memory safety

attacks. Numerous approaches have been proposed to provide memory safety against vulnerabili-

ties in low level languages. Memory safety approaches can be categorized as object based, pointer

31



based and tripwire approaches. Now, we look at some of the popular spatial and complete memory

safety approaches.

5.1.1 Work Focused On Providing Spatial Safety (Primarily)

Richard W. M. Jones and Paul H. J. Kelly (Jones & Kelly, 1997) propose a compiler based tech-

nique, which does pointer and array bounds checking, without changing pointer representation.

Dhujrati et al. (Dhurjati & Adve, 2006) propose an improved version of Kelly’s technique. They

use a technique called automatic pool allocation (Lattner & Adve, 2005), which is based on mem-

ory partitioning. SAFECode (Dhurjati et al., 2006) is another object based approach (improved

version of their previous work). It guarantees some from of spatial and temporal safety. CCured

(Necula et al., 2002) ensures type safety in C programs by categorizing pointers into different types

(safe pointer, sequence pointer and dynamic pointer) and adding the checks accordingly, either dur-

ing compile time or during run time. Hence, to keep pointer metadata, it needs to extend the pointer

structure (fat pointers). It requires to convert C program into CCured representation and thus it re-

lies on source code. Ruwase et al. proposes a compiler based technique called CRED (Ruwase

& Lam, 2004) which dynamically detects the buffer overflows. Baggy bounds checking (Akritidis

et al., 2009) is an object based technique, which utilizes allocation bounds instead of object bounds.

Light weight bounds checking or LBC (Hasabnis et al., 2012) is another spatial memory error de-

tection technique, which provides better performance than the Baggy Bounds checking technique.

Hardbound (Devietti et al., 2008) is a combination of software and hardware techniques which

ensures complete spatial safety. In this approach, the software (compiler or run-time system) al-

locates pointer bounds and the hardware checks for valid pointer accesses and propagates bounds

metadata if necessary. SoftBound (Nagarakatte et al., 2009) is a compiler based technique which

enforces complete spatial safety, without any hardware support. The basic idea of our work is

based on SoftBound approach, as explained before. AddressSanitizer (Serebryany et al., 2012) is a

trip-wire technique which detects buffer overflows and use-after-free errors. Code-pointer integrity

(Kuznetsov et al., 2014) prototype enforces spatial safety, though it is primarily made to defend
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against control flow hijack attacks. Intel MPX (Oleksenko et al., 2017) is a recent work by Intel.

It provides spatial safety using hardware assistance.

5.1.2 Work Focused On Providing Complete Memory Safety

SafeC (Austin et al., 1994) is a fat pointer approach, which provides both spatial and temporal

safety. Patil et al. Patil & Fischer (1995) propose a memory safety (spatial plus temporal) tech-

nique using shadow processor. The idea is to use one processor to execute the program and the

other (shadow) to monitor that program. Cyclone (Jim et al., 2002) is another fat pointer based

approach, which is source code dependent. Cyclone is a C dialect which transforms C code in

Cyclone code and uses static analysis and/or adds dynamic checks to ensure safety. It also detects

temporal memory errors like dangling pointers. Yong et al. (Yong & Horwitz, 2003) propose a

memory safety approach using static code analysis and instrumentation techniques. Xu et al. (Xu

et al., 2004) present a memory safety approach which requires source code transformation to add

dynamic checks. Watchdog (Nagarakatte et al., 2012) and WatchdogLite (Nagarakatte et al., 2014)

ensure spatial and temporal memory safety using hardware assistance. One more approach from

Nagarakatte et al. called SoftBoundCETS (Nagarakatte et al., 2015) is focused on providing com-

plete memory safety. It combines SoftBound approach (for spatial safety) and CETS approach

(for temporal memory safety) (Nagarakatte et al., 2010) to achieve complete safety. MemSafe

(Simpson & Barua, 2013) is a compiler based technique which provides complete memory safety.

SHAKTI-MS (Das et al., 2019) is a light-weight processor made to offer spatial and temporal

safety in C programs. The idea is store pointer metadata on stack, to remove the need of external

table (like shadow table) and to reduce access overhead. There are a number of approaches which

are only focused on providing complete temporal safety (and not spatial safety), but we will not

cover those approaches here.
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5.2 Future Work

In this section, we discuss multiple future research directions and things that need to be improved.

We take inspiration from related studies to improve our technique.

Temporal Safety

The end goal of our work is to provide complete memory safety, but our technique currently focuses

on providing spatial safety only. Ensuring temporal safety and eventually providing complete

memory safety will be the principle future direction. It is important to provide complete memory

safety to make low level languages safe from memory corruption attacks. One way to provide

temporal safety is to extend this work on the basis of SoftBoundCETS (Nagarakatte et al., 2015)

technique. They use lock and key metadata with pointers along with the pointer bounds metadata.

Hence lock, key and bounds information are propagated together. Key is the unique allocation

identifier coupled with each memory allocation and lock is the pointer to a memory location. The

access is valid if key and the value at the location pointer by lock matches. Key and lock provides

temporal safety, while bounds metadata provides spatial safety.

Completeness

As discussed before in the experiments section, about 57% test cases are passed and hence about

43% cases failed. But, most of this cases are failed due to incapability of Ghidra to predict the

correct owner access information. Ghidra has just been open sourced and it is still in the process

of improvement. Therefore, instead of totally relying on Ghidra algorithm, certain instruction

pattern recognition or machine learning techniques can be used to learn the instruction patterns,

detect correct owners, accesses and consequently improve the detection algorithm of our script.

Completeness is necessary to remove false positives and detect all the true positives that may

remain undetected.
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Optional Debugging Information

Our implementation currently requires program to be compiled by keeping the debugging informa-

tion, i.e. program must be compiled with -g flag (when compiled using gcc). This helps keeping a

lot of information from source code (for e.g. exact variable names). Ghidra tool prediction works

better given that this information is present. It is not always possible for the developer to compile

the program keeping the debugging information, mainly for the reasons such as code privacy, size

requirements, etc. and the binary is mostly optimized for performance, security, privacy, size re-

strictions, etc. reasons. Also, already compiled binaries and binaries from unknown authors restrict

the requirement of keeping debugging information. It is interesting to see how much information

can be extracted from the binary which does not contain any symbol information or which has

been heavily optimized.

Overhead Reduction and SPEC Benchmark Checks

It can be observed that, our Pintool incurs about 6% of overhead on top of the overhead incurred

by a minimal Pintool. We will use longer running benchmarks from the SPEC suite to assess

the overhead compared to a native execution. It is also important to check if any reduction in

the overall overhead is possible by tweaking our Pintool program to decrease the instrumentation

checks. For e.g. instrumentation can be added only for store instructions to check for possible

buffer overrun. If possible, other instrumentation tools can also be considered.

Other Improvements

Pointer bounds narrowing and arbitrary or guileful type casts check are also important, but we have

not taken those into consideration in our work and will be one priority in our future work consid-

erations. Our work is currently limited to x68-64 architecture and have not been implemented for

other architectures. To increase the reach of this technique, it can definitely be made to support

other architectures.
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Chapter 6

Conclusion

We propose a novel approach which employs spatial safety in compiled binaries, with no source

code support and no changes in compiler or operating system software. Our approach is based

on SoftBound technique, which stores bounds metadata per instruction owner. Instruction owner

and their access instruction information is predicted by using reverse engineering techniques. In-

struction owner is nothing but variable (e.g. pointer) defined in actual source code (determined by

reverse engineering). Instrumentation checks are added on every load and store instructions and

checks are made based on the bounds information of that instruction owner, which is associated

with the instruction. Instruction owner information is determined using static analysis and reverse

engineering techniques, and run time checks are added using dynamic instrumentation techniques.

We use Ghidra for static analysis and Pin framework to add dynamic instrumentation. Our tech-

nique was able to detect about 57% of test cases with about 6% overhead on top of minimal Pintool

overhead. In future work section, we propose work needed to increase the detection percentage to

further improve this technique.
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