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When evaluators report the effects of education pro-
grams and policies on student outcomes, they typi-
cally use standardized effect sizes. This facilitates the 

comparability of results across studies, across programs or poli-
cies, and across outcome measures. But it hinders another 
important goal of research, to enable practitioners and policy-
makers to understand the real-world implications of the research 
results to their own work. Because standardized effect sizes are 
measured on an abstract scale—standard deviation units of the 
outcome measure—magnitudes are difficult to interpret. As an 
example, it may not be evident to consumers of research whether 
a program effect of 0.13 is meaningful enough that they should 
act to increase adoption of the program.

Consequently, there have been efforts to improve the usabil-
ity of research results by translating them into more readily inter-
pretable metrics. Research by Lipsey et al. (2012) is dedicated to 
this topic, offering several options for translating effects and dis-
cussing some advantages and disadvantages of each. However, 
the scope of discussion is more broad than deep—without a 
thorough exploration of tradeoffs—and refrains from normative 
statements about which translation is preferred. This article 
addresses that gap.

Translating to units of time, such as years of learning, has 
become a popular choice. We are often asked to perform this 
translation on our own study results, which we have resisted 

because of its undesirable properties. Nonetheless, others have 
gone ahead and translated our results (e.g., Childress & Amrofell, 
2017, translating Pane, Steiner, Baird, & Hamilton, 2015). A 
goal of this article is to elucidate the translation’s undesirable 
properties, most importantly that it is highly sensitive to the 
method of calculation and can produce implausible results. 
When a translation suffers from flaws such as these, it can obfus-
cate rather than clarify the research findings.

We investigate two research questions. First, among four 
translation options, which possess the best properties and should 
be pursued, and which possess the worst properties and should 
be avoided? Second, if an analyst is committed to a particular 
translation option, how sensitive are the results to how the trans-
lation is implemented, and which implementation should be 
preferred, if any?

For illustration, consider a treatment effect of 0.13 standard 
deviations. We examine translating this to (1) years or days of 
learning, e.g., 0.22 additional years of learning (Years of 
Learning); (2) benchmarking results against gaps between demo-
graphic groups, e.g., one fifth of the black/white achievement 
gap, or effect sizes measured in other studies, e.g., approximately 
the same effect as decreasing class size from 22 to 15 students 
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(Benchmarking); (3) percentile change, e.g., 6.3 percentile point 
increase (Percentiles); and (4) calculating the likelihood of scor-
ing above a reference value, such as scoring proficient, e.g., a 3 
percentage point increase in the probability of scoring proficient 
(Thresholds).

As a framework for this study, we begin by enumerating six 
desirable properties for translations. Then, using an empirical 
data set, we examine the performance of each translation option, 
as well as its sensitivity to implementation alternatives.

We are not the first to caution against translating to units of 
time (Dadey & Briggs, 2012; Dorn, 2015; Maul & McLelland, 
2013). However, the practice is still frequently requested and 
implemented, so we feel it is important to summarize the cri-
tiques in one place and add empirical insights regarding the limi-
tations and available alternatives. Given the frequency of use, we 
also discuss preferences for how to implement years-of-learning 
translation, should it be used.

There are additional issues at play, not fully addressed in this 
article. We abstract from psychometric concerns regarding test 
scaling. In particular, years of learning requires an achievement 
measure reported on a continuous developmental scale; the cre-
ation, maintenance, and application of such scales pose psycho-
metric challenges (Briggs, 2013; Dadey & Briggs, 2012; 
Martineau, 2006; Yen, 1986). There are also concerns about the 
ability of tests to measure the learning in higher grade levels; 
when students diversify course-taking it becomes more challeng-
ing for tests to accurately measure the full breadth of learning. 
We discuss one facet of this problem, but otherwise operate on 
the assumption that tests accurately capture learning. Thus, we 
start from assumptions commonly made in the wide breadth of 
program analysis investigating student achievement, namely that 
we have a measure that enables valid estimation of a program’s 
effect. We focus only on how best to translate findings from the 
standardized effect scale to more easily interpreted measures.

Desirable Properties

The driving purpose of translation is to mitigate a challenge 
faced in using research results to guide policy and practice: how 
to interpret standardized effect sizes. Clearly, one desirable prop-
erty is interpretability, but if the translation option has other 
problems, ease of interpretation may actually lead to misinter-
pretation, with consequent faulty decision-making. We investi-
gate six desirable properties of effect size translations.

1.	 Ease of interpretation. A translation option is useful only 
if it is easier for practitioners and policymakers to inter-
pret than the original standardized effect.

2.	 Transparent and valid assumptions. Assumptions underlying 
the translation should be plausible, if not formally vali-
dated, and clearly communicated with the translated results.

3.	 Added statistical uncertainty is minimized and clearly con-
veyed. The original treatment effect estimate has statisti-
cal uncertainty. Some of the translation options add 
additional uncertainty. Smaller uncertainty is preferable, 
and the uncertainty should be reported along with the 
translated result. In practice, this advice is often disre-
garded, with the original estimate’s statistical properties 

implied for the translated result. That is, if the original 
effect estimate was statistically significant, there is an 
unverified assumption that the translated effect is too.

4.	 Results are bounded within a plausible range of values. 
Some translations are ratios, with a benchmark (e.g., 
typical growth in 1 year) in the denominator. As the 
denominator approaches zero the translated metric 
increases without bound, producing either positive or 
negative results that are not credible.

5.	 Results are substantively consistent across calculation 
options. Some translations can be performed in a variety 
of ways depending on data availability or choices made 
by the analyst. If these variants do not produce consis-
tent results, substantive conclusions may depend on 
which one is used. This creates a risk that, no matter how 
rigorous the original study, interpretations could be 
manipulated by another party selecting the method most 
supportive of a particular agenda.

6.	 Does not discard useful information. If the treatment effect 
was calculated for a particular sample, but the transla-
tion only uses a small subsample, the translation may not 
generalize to the whole sample. This fact should be com-
municated along with the translated result.

Analytic Background and Translation Options

Consider an educational intervention that has potential effects on 
student learning. This learning is assumed to be captured by dif-
ferences in achievement levels between students who received the 
intervention and a comparable group of students that did not. 
The analyst standardizes the difference by dividing by the stan-
dard deviation of the outcome (Hedges, 1981). Our presentation 
adopts the convention of standardizing the outcome prior to cal-
culating the difference; the analysis and conclusions of this article 
are independent of that detail. Regardless of when the standard-
ization is carried out, where possible it should be performed 
against a broad reference population, such as national or state 
norms or a well-defined subgroup of such populations, in order 
to enhance comparability across studies with different samples.

As such, the standardized posttest score zi for student i can be 
modeled as a function of treatment status Ti, standardized pre-
test score wi, a vector of observed baseline factors Xi, (mean cen-
tered to simplify ensuing discussion) and unobserved factors εi:

z T wi i i i i= + + + +α β λ εX γγ 	 (1)

Because zi is already standardized, β is read directly as the stan-
dardized treatment effect.

For application of the methods in this article, we use data 
from an evaluation of personalized learning (Pane, Steiner, Baird, 
Hamilton, & Pane, 2017). That report provides details about 
the assessment, data structure, and analytic methods, most of 
which are omitted here for brevity. However, the following 
details are relevant.

•• The sample includes 100 schools that adopted personal-
ized learning, predominantly located in low-income urban 
areas of the United States. There are approximately 22,000 
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treatment group students, and 370,000 matched compari-
son group students, all of whom were tested in the fall 
(pretest) and spring (posttest) of the 2014–2015 academic 
year. As such, this dataset has a relatively large sample and 
can estimate treatment effects with greater precision than 
many other studies.

•• The pretest and posttest data come from Northwest 
Evaluation Association’s (NWEA) Measures of Academic 
Progress (MAP), a computer-adaptive test designed to effi-
ciently determine accurate scores across a wide range of abili-
ties from approximately kindergarten through 11th grade. 
The scores are reported on a continuous development scale.

•• Although Pane et al. (2017) modeled pretest-posttest 
growth, for the purposes of this article we use the model in 
equation 1 to estimate the treatment effect, and a sandwich 
estimator to calculate cluster-adjusted standard errors.

Other studies may employ different research designs, but the 
resulting interpretation is the same: on average, what difference 
in student achievement was induced by receiving treatment, in 
standard deviation units.

Figure 1 presents treatment effect estimates from our data, by 
grade and subject. These standardized effects may be difficult to 
interpret, especially for nontechnical audiences. For example, in 
both math and reading, the overall treatment effects for the full 
sample are 0.13 standard deviations. Both are statistically signifi-
cant; are they practically significant?

We next describe the four translation options.

Years of Learning

A popular choice for translating effect sizes is to convert to years 
(or months, weeks, days) of learning. This is estimated using the 
ratio of the treatment effect to typical growth on the same scale,

i.e., years of learning = β
α

, where β is the standardized effect

size estimated by the evaluation and α is a measure of typical 
annual growth in achievement. See the Online Appendix avail-
able on the journal website for a derivation of this ratio from the 
underlying analytic model, and elucidation of the underlying 
assumptions that both typical achievement and any incremental 
achievement due to treatment accumulate linearly over time.

There are several potential options for estimating α. One 
common approach is to use data from Bloom, Hill, Black, and 
Lipsey (2008), reproduced here as Table 1. They calculate spring-
to-spring growth by grade and subject, gathered from a set of 
standardized tests that enable growth calculations because they 
are scored on continuous developmental scales (i.e., vertically 
equated)—a feature not typically present for standardized assess-
ments administered as part of state testing programs (Briggs, 
2013).

Table 1 reveals that typical growth varies considerably across 
grade levels across the tests investigated, immediately calling into 
question the assumption that achievement grows linearly with 
time. In particular, given such variation between grades, it is 
highly unlikely that growth is constant within grades where sea-
sonality within the academic year may also affect learning rates. 
The spring-to-spring benchmarks in Table 1 may not be accurate 
estimates of α for other timespans such as fall-to-spring. Lee, 
Finn, and Liu (2018) calculate a similar table for fall-to-spring 
growth. Table 1 also shows standardized growth has a declining 
trend with increasing age, as has been widely observed (e.g., 
Dadey & Briggs, 2012). Luyten, Merrell, and Tymms (2017) 
make the further observation that not all of the measured growth 
can be attributed to schooling. That is, some of the growth 
shown in Table 1 is attributable to maturation or other out-of-
school factors, further confounding attempts to translate incre-
mental growth into incremental schooling time.

FIGURE 1. Personalized learning treatment effects, by grade and subject.
Note. Error bars represent 95% confidence interval. The confidence intervals in some cases extend beyond the viewable frame. 
Overall represents the sample-weighted average for grades 1–10, the grades for which all of the explored years-of-learning 
translation options are available. Differences in the sample and methods used in this article cause these results to differ from those 
reported in Pane et al. (2015, 2017).
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As an example of how this translation works, consider our 
fall-to-spring estimate of the effect of personalized learning for 
fourth grade reading of 0.14. Table 1 shows typical growth to be 
0.36 for spring of third grade to spring of fourth grade. Setting 
aside differences in timespan (fall-to-spring vs. spring-to-spring) 
the translation is 0.14 ÷ 0.36 = 0.39 additional years of learn-
ing, or 1.39 years of learning for a treated student in one year’s 
time. Assuming 9 months of instruction in a year, this translates 
to 3.5 additional months of learning. This could further be 
translated into weeks or days of learning.

Although it is common to use Table 1 for years-of-learning 
calculations, it was not initially presented for that purpose. 
Rather, it was one of several types of benchmarks proposed for 
gauging the practical magnitude of standardized effects (Bloom 
et al., 2008; Hill, Bloom, Black, & Lipsey, 2008). Those articles 
concluded that it is useful to apply multiple benchmarks appro-
priate for the intervention, population, and outcomes under 
study—each providing a lens for interpreting the effect. This 
perspective holds the interpretation of standardized effects as a 
multifaceted and nuanced exercise of informed judgement, a 
point at risk of being lost in the quest for simple numeric transla-
tions of standardized effects.

Notwithstanding the original intent for Table 1, we label it 
with the lead author of Bloom et al. (2008) to distinguish it from 
five other estimators of typical annual achievement growth α, 
presented here in order of increasing specificity to the sample:

•• Hanushek: The simplest translation, based on Hanushek, 
Woessmann, and Peterson (2012), estimates a scaling fac-
tor of 0.25 standard deviations per year for all grades and 
subjects.

•• Bloom: This estimator allows α to vary by grade and subject, 
however it assumes α is the same for all students and all tests 
within grade and subject, and that spring-to-spring growth 
is applicable even for studies covering other timespans.

•• MAP norms: As previously mentioned, the data in our 
study come from the NWEA MAP assessments. NWEA 

estimates national norms of fall-to-spring growth by grade 
and subject.

•• MAP conditional growth norms (CGN): NWEA also 
uses a flexible model to estimate growth conditional on 
grade, subject, and starting test score. This allows for stu-
dents with different achievement levels to have a different 
expected growth, which we average across students to 
obtain an estimate of α for our sample.

•• Average control group growth: This method calculates α 
as the average standardized score growth of comparison 
group students within the study, by grade and subject.

•• Regression adjusted: We may also recover α from the 
empirical regression. We do so by standardizing the pretest 
and posttest to the pretest mean and standard deviation, 
and mean centering all other covariates, so that α repre-
sents the change for the average untreated student, con-
trolling for observables.

The last four of these estimators rely on the pretest and post-
test coming from the same assessment with scores on a continu-
ous growth scale. Table 2 summarizes assumptions made by each 
of these variants. Generally, a choice that has fewer assumptions 
is preferable. Thus, the Bloom translation improves on Hanushek 
by allowing α to differ by grade and subject, rather than assum-
ing growth is constant across grades. However, both Hanushek 
and Bloom rely on a set of tests likely to be different than those 
used in the study at hand and measure typical growth from 
spring of one grade to spring of the next. By including the time 
off during summer, a highly studied period when learning rates 
are low or even negative (e.g., Quinn & Polikoff, 2017), these 
methods are more likely to violate the assumption of linear 
growth over time. Lee et al. (2018) estimate fall-to-spring growth 
but omit information needed to calculate standard errors.

MAP norms improve on these by using the same test and 
timespan (fall-to-spring, in our application) for α and the esti-
mated treatment effect. MAP CGN additionally controls for 
variation in starting achievement, which is important if the 

Table 1
Typical Standardized Spring-to-Spring Growth

Reading Tests Mathematics Tests

Grade Transition Mean Margin of Error Mean Margin of Error

Grade K–1 1.52 ±0.21 1.14 ±0.49
Grade 1–2 0.97 ±0.10 1.03 ±0.14
Grade 2–3 0.60 ±0.10 0.89 ±0.16
Grade 3–4 0.36 ±0.12 0.52 ±0.14
Grade 4–5 0.40 ±0.06 0.56 ±0.11
Grade 5–6 0.32 ±0.11 0.41 ±0.08
Grade 6–7 0.23 ±0.11 0.30 ±0.06
Grade 7–8 0.26 ±0.03 0.32 ±0.05
Grade 8–9 0.24 ±0.10 0.22 ±0.10
Grade 9–10 0.19 ±0.08 0.25 ±0.07
Grade 10–11 0.19 ±0.17 0.14 ±0.16
Grade 11–12 0.06 ±0.11 0.01 ±0.14

Note. Reproduced from Bloom et al., 2008, with permission.
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sample differs from the national average on baseline achievement 
because growth may be correlated with baseline achievement. 
Using average control group growth goes a step further, relaxing 
the assumption that growth is independent of other observable 
factors, by using the same comparison sample to estimate both  
α and β. Finally, the regression adjusted method controls for stu-
dent characteristics that are associated with typical growth rates.

Matters of inference are typically ignored when presenting 
years-of-learning translations, even at times incorrectly presum-
ing that statistical significance of the treatment estimator implies 
statistical significance of the years-of-learning translation. In the 
Online Appendix, we derive the standard error for the years-of 
learning estimator, which we employ throughout this article.

Figures 2 and 3 present the translations (of the effects shown 
in Figure 1) for mathematics and reading respectively, using the 
six variants of years of learning. To preserve readability, the read-
ing chart displays a range of −0.5 to +1.75 years of additional 
learning in one year, truncating many of the bars for grades 10 
and 11 where the calculation produced extreme values as low as 
−276 to as high as +37 years. In both subjects, the Bloom esti-
mate of α is unavailable for kindergarten, and MAP norms are 
unavailable for 11th grade.

Three patterns of sensitivity to grade level are evident in these 
figures. First, in the early grades the Hanushek method produces 
much larger years-of-growth estimates than the other methods; 
this pattern dissipates or even reverses in later grades, an out-
growth of the assumption that α is constant across grades. 
Second, the various methods appear to produce the most consis-
tent years-of-growth estimates in the middle grades. Finally, even 
when the various methods are most consistent, there is wide 
variation in the years-of-learning estimates. For example, in 
reading, grade 6 has the smallest range of effects: 0.15 to 0.41 
additional years of learning. Even here, the choice of method can 
have substantially different implications for the success of the 
program.

Figure 4 displays averages of these estimators across the whole 
sample for grades 1–10—the grades for which α is available for 
all calculations. Averages are calculated by weighting each grade-
level estimate by the number of treated students per grade.1

To summarize Figure 4, in both subjects, the years of growth 
estimates based on external norms (Hanushek, Bloom, and 

MAP norms) decrease when the calculation considers grade level 
and decrease further when α is derived from the same test and 
timespan as were used in the study. Once the starting achieve-
ment level of the study population is incorporated into the cal-
culation, the three remaining estimators (MAP CGN, Average 
control group growth, and Regression adjusted) produce nearly 
identical results in mathematics. However, in reading, these 
methods produce inconsistent results, influenced by extreme 
results in 10th grade.

Benchmarking

The next option we explore is benchmarking effect sizes by com-
paring them against other estimated effects. This calculates a 
similar ratio as years of learning of β

α
, but here α represents the

benchmark rather than typical growth in a year. The standard 
errors of the ratio follow a similar format as for years of learning, 
as presented in the Online Appendix.

As discussed in Lipsey et al. (2012), the benchmark can be 
internal or external to the study. For internal benchmarks, we 
might compare the effect sizes to other characteristics of the 
data, such as the baseline achievement gaps between Black and 
White students or urban and nonurban students. Table 3 dis-
plays the results.

In our data, the Black-White gap for reading is 0.59 standard 
deviations. Given the treatment effect is 0.13, the ratio is 0.22, i.e., 
the treatment effect is about one fifth of the gap. The urban-rural 
gap in reading is 0.07, meaning the treatment is 1.83 times this 
gap. However, the standard error on the urban-rural ratio is quite 
large and the confidence interval covers a wide band around zero.

For external benchmarks, Lipsey et al. (2012) explain how to 
use gaps in National Assessment of Educational Progress achieve-
ment. We can also compare to the published effects of other 
inventions. Krueger (1999) found that a decrease of class size 
from 22 to 15 students for grades K–3 increased achievement by 
0.22 standard deviations. As show in Table 3, the average treat-
ment effect of 0.25 in math in K–3 is about the same as this class 
size reduction effect; for reading, the effect of 0.17 is three-quar-
ters as large. However, the confidence intervals cover a substan-
tially larger range of ratios.

Table 2
Assumptions of Growth Scaling Options

Assumes… Hanushek Bloom MAP Norms MAP CGN
Average Control 
Group Growth

Regression 
Adjusted

… growth is constant across grades   
… growth is insensitive to the differences in 

timespan
   

… growth is constant across assessments    
… growth is independent of student’s starting 

level of achievement
    

… growth is independent of other observable 
student characteristics

     

… it is unnecessary to further control for student 
observables

      

Note. MAP = Measures of Academic Progress; CGN = conditional growth norms.
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Percentiles

Another option is to translate to percentile growth. Typically, the 
translation estimates the change in percentile rank that would 
have been experienced by the median student in the control 
group, had they received treatment. Assuming a normal distribu-
tion, growth is given by Φ β( ) − 0 5. , where Φ ⋅( )  is the standard 
normal cumulative distribution function (CDF). This is the 
most common implementation of the percentile translation, is 

among the examples given by Lipsey et al. (2012) and is the 
“improvement index” used by the What Works Clearinghouse 
(U.S. Department of Education, 2014). The online appendix 
generalizes this calculation for any point along the distribution 
(e.g., enabling calculation of the percentile gain for a first-quartile 
student), and derives the standard errors.

In this article, we adhere to using the median student as the 
reference point. We consider two versions of the percentile trans-
lation: assuming the standard normal CDF and using 
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FIGURE 2. Years-of-learning translations of treatment effects in mathematics.
Note. Error bars represent 95% confidence interval. Some confidence intervals extend beyond the viewable frame. MAP = Measures 
of Academic Progress; CGN = conditional growth norms.

FIGURE 3. Years-of-learning translations of treatment effects in reading.
Note. Error bars represent 95% confidence interval. Several bars in grades 10 and 11 as well as several confidence intervals extend 
beyond the viewable frame. For the bars extending beyond the viewable frame, for grade 10, we find Hanushek = 0.34 ± 0.31, 
Bloom = 0.44 ± 0.45, MAP National = 1.16 ± 1.32, MAP CGN = 15.89 ± 27.94, average control growth = 5.26 ± 5.19, 
Regression adjusted = 1.36 ± 2.25. For grade 11, Hanushek = -0.80 ± 0.95, Bloom = -1.06 ± 1.57, MAP CGN = 37.11 ± 
103.59, Average control growth = -275.62 ± 5171.28, Regression adjusted = -11.80 ± 47.57. MAP = Measures of Academic 
Progress; CGN = conditional growth norms.
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the empirical CDF. The empirical CDF uses a nonparametric 
estimate of the density traversed in the control group by the 
increase of score experienced by the treatment group. Intuitively, 
it just estimates the fraction of control students surpassed in the 
posttest distribution through the treatment effect. This allows 
the distribution of scores to take any shape, such as a skewed, 
bimodal, or highly kurtotic distribution.

Figure 5 presents the percentile results for mathematics and 
reading. In both subjects, the two methods yield very similar 
results and have the largest estimates in the earliest grades. In this 
dataset, the standard normal method generally estimates slightly 
smaller magnitudes than the empirical CDF method.

Thresholds

The fourth alternative translates to the change in likelihood that 
a student will attain some level of achievement. Using profi-
ciency as an example, a result of 0.05 indicates treatment induces 
a five percentage point increase in the likelihood that a student is 
rated as proficient.

Unlike the previous methods, this requires a reestimation of the 
treatment effect in a different format. We follow a similar data and 
regression set-up as for evaluating the treatment effect in standard 
deviations, except now instead of standardized posttest as the 
dependent variable we use an indicator variable for the 

FIGURE 4. Years-of-learning translations of treatment effects in mathematics and reading, aggregated across grades 1–10.
Note. Error bars represent 95 percent confidence interval. Only grades 1–10 are included because these are the grades for which all 
scaling choices are available. MAP = Measures of Academic Progress; CGN = conditional growth norms.

Table 3
Comparisons of Benchmark Translations and Standard Errors

Black/White Gap Urban/Rural Gap Class Size Reduction in Grades K–3

  Reading Math Reading Math Reading Math

Standardized effect estimate 0.13 0.13 0.13 0.13 0.17 0.25
  (0.02) (0.02) (0.02) (0.02) (0.04) (0.04)
Benchmark estimate 0.59 0.66 0.07 0.14 0.22 0.22
  (0.17) (0.16) (0.12) (0.13) (0.02) (0.02)
Translated result 0.22 0.20 1.83 0.95 0.79 1.11
  (0.07) (0.06) (3.16) (0.93) (0.18) (0.22)

Note. The standardized effect estimates are different for the class size reduction columns because we constrained the sample to grades K–3, the ones evaluated in the 
benchmark study (Krueger, 1999).
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student having a proficient score on the posttest. For our data, we 
use proficiency as defined by NWEA’s alignment with the Smarter 
Balanced Assessment Consortium standards (NWEA, 2015). In 
addition to the covariates of the model used above, we include a 
cubic in baseline scores to account for nonlinearities in those scores’ 
relationship to proficiency. The results are presented in Figure 6.

The same general trends hold, with the largest effects in the 
elementary school grades. Looking at the weighted averages, we 
find that the treatment effect for math is estimated as a 3.0 per-
centage point increase in the likelihood of scoring proficient, 
from a base of 27%, for about an 11% increase in likelihood. For 

reading, the magnitude is slightly larger at 3.2 percentage points; 
working from a base of 34% proficient, this is about a 9% 
increase in likelihood.

Comparing the Strengths and Weaknesses  
of Translation Options

We now discuss how the four translations fare on the desirable 
properties discussed above. Table 4 summarizes the strengths 
and weaknesses of each translation option across all of the desir-
able properties.

Panel A: Mathematics

Panel B: Reading
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FIGURE 5. Treatment effects translated to percentile growth.

Note. Error bars represent 95% confidence interval. Overall mathematics treatment effect, Standard Normal = 6.34 ± 1.51, 
Empirical CDF = 6.74 ± 1.65. Overall reading treatment effect, Standard Normal = 5.69 ± 1.37, Empirical CDF = 6.11 ± 1.45.
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Strengths and Weaknesses of the Years-of-Learning 
Translation

The one potential strength of the years-of-learning metric is its 
ease of interpretation. There is an intuitive appeal to a statement 
such as: treated students accomplished the equivalent of 1.33 
years of learning in the space of one year.

On the other hand, the years-of-learning translation option 
suffers from many weaknesses across the dimensions. First, the 
translation is based on a strong assumption that learning rates 

accumulate linearly over time, an assumption disproven by read-
ily available empirical data showing learning rates are highly 
dependent on student age and whether school is in session. This 
basic flaw is rarely discussed when study results are reported in 
terms of years or other units of time. As a result, research con-
sumers may not be aware of the translation’s weak empirical sup-
port and may make further extrapolations and erroneous 
interpretations to address questions of great interest, such as: If 
control students were taught 0.33 more years would they catch 
up to the treated students? How does 0.33 years translate to 

FIGURE 6. Treatment effect on likelihood of scoring proficient.

Table 4
Strengths (+) and Weaknesses (–) of Translation Options

Translation Option

Desirable Property Years of Learning Benchmarking Percentiles Thresholds

Ease of interpretation + –  
Transparent and valid assumptions – + +
Minimizes statistical uncertainty – + +
Bounded to a plausible range – + +
Consistent across calculation options – – +  
Does not discard useful information –
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actual days of instruction versus elapsed days? How does this 
translation relate to different schedules (such as year-round 
schooling versus 9-month calendars)? Does an effect of 0.33 
years imply that 33% of the annual school budget could be 
saved? Because learning time was not manipulated to estimate 
the treatment effect in years of learning, the translation does not 
provide a solid basis for inferences about how additional (or 
fewer) days of instruction would affect scores.

Further, added statistical uncertainty is typically ignored even 
though the translation often substantially increases uncertainty 
over what was present for the original treatment effect estimate. 
Poor performance is evident in our data, even though in most 
cases we are only able to estimate a lower-bound standard error. 
We find that the smallest confidence bands have a width of about 
one quarter of a year, and some exceed ±5,000 years. Indeed, 
years of learning performs the worst by far when using t statistics 
to objectively rank the translation options. The translations are 
measuring the significance of the same underlying program 
effect, so greater precision, i.e., larger t statistics, are preferred.

The years-of-learning metric also fails at being bounded 
within a reasonable set of values, because it is a ratio with a 
denominator that can in many instances be very small. Highly 
implausible results are possible, such as many multiples of a year 
or negative values. In our data for 11th grade reading, variants of 
the translation produced results between +37 to -276 years of 
learning. For comparison, percentile translation variants ranged 
from -8 to -9 for this grade and subject. Implausible results are 
not confined to our study. For example, Woodworth et al. (2015) 
reported math effects of about -180 days, or no learning over a 
180-day school year, and, in certain states, less than -180 days, 
implying learning loss over a year of schooling.

Finally, as demonstrated above, the various methods of calcu-
lating years of learning can yield substantially different results, 
an undesirable property. Analysts could select a method they 
prefer, and it may be infeasible for readers to evaluate the alterna-
tives. In our data, translations of the effect for reading, for grades 
1–10 combined, ranged from 0.23 to 1.13 years of learning, a 
difference of almost a factor of five. The ranges are even wider 
for individual grade levels. Given available data, the variant that 
makes the fewest assumptions possible should be preferred (see 
Table 2). Even within a variant (Bloom), results can depend on 
which estimates of α are applied. Lee et al. (2018) calculated two 
distinct estimates of growth per grade and subject, which differ 
from each other and from Bloom et al. (2008) by factors of 2.5 
or more in some instances—resulting years-of-learning transla-
tions would vary similarly.

Strengths and Weaknesses of the Benchmarking 
Translation

This method is susceptible to issues related to the choice of 
which benchmark to use. First, it may not help clarify whether a 
current study’s result is meaningful if readers are left with the 
question whether another study’s result is meaningful. A second 
concern is the risk of misinterpretation. If the treatment is half as 
large as the Black/White achievement gap, readers may be led to 
assume the gap could be ameliorated by another year of treat-
ment. Among the flaws of that reasoning is an assumption that 

students in subgroups experience the same gains as the average 
treated student. The method is also susceptible to cherry picking 
of benchmarks by analysts who wish to make results look more 
or less favorable to suit their own agenda, a fact mitigated some-
what by the possibility that readers could reinterpret results 
against their own preferred benchmarks. Many of these concerns 
could be avoided by offering translations relative to more than 
one benchmark and explaining the limitations of each, enabling 
research consumers to weigh which is most relevant for their 
needs. Finally, benchmarks near zero can lead to unbounded 
comparisons and very large standard errors, a concern that can 
be mitigated by analysts selecting appropriate benchmarks that 
are not near zero.

Strengths and Weaknesses of the Percentiles Translation

The percentiles translation option has several desirable proper-
ties and no strong weaknesses. First, it does not rely on strong 
assumptions. The only assumption made is that score distribu-
tions are normal, an assumption already made for standardized 
effect sizes. Where data are available, this assumption can be 
avoided by using the empirical CDF variant. However, a disad-
vantage of the empirical CDF is that it is ordinal with respect to 
scores—results are determined by the ordering of scores tra-
versed irrespective of absolute distance. In our data, the two 
CDF variants produce very similar results, a result we consider 
likely to hold in sufficiently large data samples. Second, there is 
little added statistical uncertainty. Resulting confidence intervals 
are relatively tight, and percentile conversion is the most precise 
of the four options when ranked by t statistic. Third, results are 
always bounded within a reasonable range by construction. 
Values range from positive or negative movements within a 100-
point scale. For example, movement from the median is bounded 
between ±50. In practice, the results rarely, if ever, approach 
these bounds. Finally, the results across the two versions are very 
similar, avoiding the risk of analysts selecting the one that favors 
their agenda.

Strengths and Weaknesses of the Thresholds Translation

Thresholds have several desirable properties. They do not rely on 
overly strong assumptions: translations based on an alignment 
study (as used in our example) rely on the assumptions and 
uncertainties of the alignment study; however, if the threshold is 
defined on the same test as was used in the original study this 
issue can be avoided. Thresholds also produce reasonably tight 
confidence intervals, coming in second behind percentiles in our 
ranking by t statistic. Further, while thresholds could produce 
implausible results if a linear probability model is used (possibly 
yielding probabilities outside 0–100%), this can be sidestepped 
with a nonlinear, bounded model such as a logistic regression.

Practitioners are already familiar with the proficiency catego-
ries reported for many assessments. It is relatively easy to inter-
pret an expression of how treatment affects proficiency, for 
example, raising it by 3% from a baseline of 27%. However, 
there are potential points of confusion. For example, proficiency 
may be interpreted as being “at grade level,” although this is not 
typically how cut points are determined. In fact, the cut score is 
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typically somewhat arbitrary, and even the most carefully 
designed approaches to setting cut scores have a fair amount of 
subjectivity. Finally, the use of thresholds can distort inferences 
about changes over time, as discussed in National Academy of 
Sciences, Engineering, and Medicine (2017, Chapter 6).

One problem with thresholds is that information is discarded 
by taking the continuous variable of the standardized score and 
converting it into a discrete variable. All students with scores 
above (or below) the proficiency threshold are equated, includ-
ing the top scorer and bottom scorer in the range. Additionally, 
the estimator requires that there are enough students near the 
threshold that treatment induces discernable movement across 
it. The result is a local treatment effect near the threshold that 
may not generalize for the rest of the sample. Finally, threshold 
results can vary depending on which threshold is chosen, such as 
proficient or needs improvement. These may in some cases lead to 
substantively different results.

Discussion

Table 4 summarizes the strengths and weaknesses of each of the 
translation options. Percentiles perform consistently well with 
no major problems and are our recommended choice for a more 
interpretable translation of standardized effect sizes. Percentiles 
are commonly used in education, so most research consumers 
should be familiar with the metric. As previously mentioned, it 
is also used by the What Works Clearinghouse (U.S. Department 
of Education, 2014).

Although converting standardized effect sizes in education to 
years (or months, weeks, or days) of learning has a potential 
advantage of easy interpretation, it comes with many serious 
limitations that can lead to unreasonable results, misinterpreta-
tion, or even cherry picking from among implementation vari-
ants that can produce substantively inconsistent results. We 
recommend avoiding this translation in all cases, and that con-
sumers of research results look with skepticism toward research 
results translated into units of time. If an analyst insists on trans-
lating to years of learning, we suggest using the calculation, sup-
ported by available data, that makes the fewest assumptions 
(Table 2). When growth measures are available, typical growth 
should be estimated within-sample, using the average compari-
son group growth or regression adjusted methods. When that is 
not possible, using data from Table 1 or similar is always prefer-
able to using a constant that ignores substantial variation in 
growth across grades and subjects. Standard errors or confidence 
intervals of the translated effect should always be reported, and 
readers should be warned that the translation does not support 
projections of what would happen if schooling time was increased 
or decreased. Finally, all analysts should avoid using years-of- 
learning translations when average growth is small (typically in 
the higher grades) because these situations often lead to 
unbounded, implausible results.

Notes

This work was partially supported by the Bill & Melinda Gates 
Foundation. This article was completed within the scope of the authors’ 
employment with RAND Corporation. We are grateful for feedback 

from Laura Hamilton, Mark Showalter, Brad Bernatek, John Engberg, 
Fatih Unlu, and anonymous referees.

1With a goal of calculating an average overall effect, we avoid 
methods of aggregation that would weight individuals unequally or 
mask the strong variation in α, such as precision weighting or calculat-
ing whole-sample averages of β and α before taking their ratio.
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