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Abstract 49 

Intraperitoneal vancomycin is the first line therapy in the management of peritoneal dialysis-related 50 

peritonitis. However, due to the paucity of data, vancomycin dosing for peritonitis in patients on 51 

automated peritoneal dialysis (APD) is empiric and based on clinical experience rather than evidence. 52 

Studies in continuous ambulatory peritoneal dialysis (CAPD) patients have been used to provide 53 

guidelines for dosing and are often extrapolated for APD use, but it is unclear if this is appropriate.  This 54 

review summarizes the available pharmacokinetic data used to inform optimal dosing in patients on 55 

CAPD or APD. The determinants of vancomycin disposition and pharmacodynamic effects are critically 56 

summarized, knowledge gaps explored, and a vancomycin dosing algorithm in peritoneal dialysis 57 

patients is proposed. 58 

 59 
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Key words:  Automated peritoneal dialysis; continuous ambulatory peritoneal dialysis; anuria; residual 71 
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INTRODUCTION 73 

Vancomycin is often selected as empiric first line therapy for suspected Gram-positive organisms 74 

in peritoneal dialysis (PD) related peritonitis. However, data on vancomycin dosing in various PD 75 

modalities are limited, especially for automated peritoneal dialysis (APD). The paucity of well-designed 76 

pharmacokinetic studies has led to vancomycin dosing guidelines for PD patients that are based on 77 

limited information resulting in the possibility of achieving sub-or supra-therapeutic trough 78 

concentrations in this special patient population.(1) 79 

 80 

PRINCIPLES OF VANCOMYCIN THERAPY 81 

Vancomycin is a tricyclic glycopeptide antibiotic with broad spectrum activity against Gram-82 

positive bacteria. It is effective for the treatment of Gram-positive infections including peritonitis and is 83 

the drug of choice for methicillin-resistant Staphylococcus aureus (MRSA). Vancomycin is poorly 84 

absorbed following oral administration. Therefore, it is commonly administered as an intravenous 85 

infusion, except in peritoneal dialysis where the route is preferentially intraperitoneal. Approximately 86 

50% of vancomycin is protein-bound in plasma with a variable volume of distribution ranging between 87 

0.4-1 L/kg in the non-PD population.(2, 3) An initial distribution half-life ranging from 30 minutes to 1 88 

hour followed by a mean terminal elimination half-life ranging from 6-12 hours were determined 89 

following intravenous dosing in patients with normal renal function.(3) Metabolism is negligible and 90 

elimination occurs primarily through glomerular filtration, such that advanced renal disease substantially 91 

reduces the clearance of vancomycin resulting in an elimination half-life of about 7.5 days compared to 92 

4-6 hours in normal patients. This means that in patients with kidney failure, the dosing of vancomycin 93 

must be adjusted.(4, 5)  94 

The Clinical and Laboratory Standards Institute (CLSI) has established the vancomycin 95 

breakpoint for susceptible S. aureus isolates with MIC values of < 2 mg/L and intermediate or resistant 96 
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for MIC values greater than 2 mg/L.(6) Despite the CLSI defined breakpoints, treatment failure for 97 

patients infected with S. aureus and vancomycin MICs between 1-2 mg/L have been reported compared 98 

to those with lower reported MICs.(7, 8) This may be due to inappropriate selection of doses that are 99 

sufficiently high to maintain plasma concentrations that exceed the MIC. 100 

To optimize the vancomycin exposure-response relationship for efficacy during S. aureus 101 

infections, one must examine the ratio of the area under the concentration-time curve and the MIC 102 

(AUC/MIC). Vancomycin trough concentrations between 15-20 mg/L for MIC breakpoints < 1 mg/L 103 

ensures a ratio of > 400 and has been an advocated target for clinical effectiveness.(3, 9) It should be 104 

noted that goal trough values recommended by consensus guidelines for efficacy may lead to 105 

nephrotoxicity, which might be a consideration for patients on PD with residual kidney function.(10) This 106 

however, is not well studied. In practice, clinical judgement together with therapeutic drug monitoring 107 

(TDM) of steady-state vancomycin plasma concentrations is a common approach in the treatment of 108 

peritonitis in PD.  109 

 110 

PHARMACOKINETIC/PHARMACODYNAMIC MODELING AND SIMULATION 111 

Pharmacokinetic/pharmacodynamic modeling and simulation is an innovative approach that can 112 

help inform crucial decisions, such as predicting clinical endpoints of new doses and dosing regimens or 113 

optimization of drug regimens. By understanding what the body does to the drug (Pharmacokinetics) 114 

and what the drug does to the body (Pharmacodynamics), dosing regimens can be tailored to the PD 115 

population to avoid nephrotoxicity, retain antimicrobial eradication and suppressing the emergence of 116 

resistance. Regulatory authorities mandate the submission of pharmacokinetic/pharmacodynamic 117 

evaluations for drug application, which include dose evaluation in special populations. However, despite 118 

the evaluation of the need of dose adjustments for patients with end stage renal disease (ESRD) - such 119 
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as those on hemodialysis- the process is not well established for old drugs. Even in those cases when 120 

dose adjustments are proposed for patients with ESRD, there is minimal attention in patients on PD.  121 

This review aims to summarize the available evidence on vancomycin pharmacokinetic and 122 

pharmacodynamic PD-related studies, address the physicochemical and PD modality-specific 123 

considerations- with attention on APD, and highlight areas where research is needed on dosing 124 

vancomycin for PD-related peritonitis.  125 

 126 

VANCOMYCIN PHYSICOCHEMICAL PROPERTIES AND DRUG TRANSPORT ACROSS THE PERITONEUM  127 

Movement of vancomycin from the peritoneum cavity to plasma is based on Fick’s Law (figure 128 

1). Middle molecular weight solutes such as vancomycin (1,486 g/mol) are dependent on dwell time 129 

during PD for absorption into the plasma. Based upon a single dose study of six non-infected subjects on 130 

PD, vancomycin has a lower dialysate to plasma ratio than urea and creatinine at two hours.(11)  There 131 

is no correlation between vancomycin PD clearance and dialysis adequacy (Kt/V) following an 132 

intravenous dose in patients on APD.(12)  133 

Teicoplanin, a glycopeptide antibiotic with a similar molecular structure (1,564 g/mol) and 134 

spectrum of activity to vancomycin, was studied in non-infected adults on continuous ambulatory 135 

peritoneal dialysis (CAPD).(13) The absolute bioavailability (Fip) was calculated using dialysate drug 136 

concentration (corrected for amount remaining in the cavity) and drug amount sampled, which was then 137 

plotted against a total dwell time of five hours. Teicoplanin systemic bioavailability, reflecting transfer 138 

from the peritoneal space, was directly related to dwell time. Furthermore, the consistency in 139 

absorption increased with time suggesting that complete and less variable bioavailability with 140 

teicoplanin can be achieved with longer dwell times.  141 
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The rate at which vancomycin is absorbed is dependent on the permeability of the peritoneal 142 

membrane. Vancomycin intraperitoneal to systemic transfer rate increases in patients with 143 

inflammatory peritonitis.(14)  144 

 145 

VANCOMYCIN BIOAVAILABILITY DURING CONTINUOUS AMBULATORY PERITONEAL DIALYSIS 146 

Vancomycin pharmacokinetics has primarily been studied in patients on CAPD. Bioavailability 147 

studies conducted in these patients typically employ a 6-hour dwell time. The Fip, or the amount of 148 

vancomycin reaching systemic circulation from the peritoneal space relative to an intravenous dose, is 149 

approximately 50%.(15) Supporting the hypothesis of a leaky peritoneum due to membrane 150 

inflammation, patients on CAPD with peritonitis have a Fip of 70-91%.(14, 16) Bioavailability changes can 151 

also be observed with different age cohorts. For example, in a pediatric study in children aged 5-17 years 152 

old, the bioavailability was reported to be as high as about 70% in the absence of peritonitis.(17)  153 

      A summary of the absorption parameters from studies conducted in infected and non-infected 154 

patients on CAPD is depicted in table 1. The equilibration half-life describes the time allowed for drug 155 

transfer between the peritoneal space to the systemic circulation following an intraperitoneal dose of 156 

vancomycin. Following intraperitoneal dosing, vancomycin equilibration half-life in patients on CAPD 157 

without peritonitis was 2.9 hours and those with peritonitis 1.6-2.9 hours.(18-20) Assuming no 158 

differences between peritoneum transport in those with or without peritonitis and five half-lives, 159 

steady-state equilibrium between the dialytic compartment and systemic circulation would be achieved 160 

following a 10-15 hour dwell.  161 

 162 

VANCOMYCIN BIOAVAILABILITY DURING AUTOMATED PERITONEAL DIALYSIS  163 

Vancomycin possess the desired physiochemical properties as a drug candidate for 164 

intraperitoneal administration in APD patients. In addition, with its well-established stability in PD fluids, 165 
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bioavailability is adequate as long as sufficient dwelling time is allowed for drug absorption. However, 166 

the appropriate duration of the dwell time has not been well studied. Hence, it is crucial to monitor 167 

vancomycin levels frequently to adjust dosing to get therapeutic concentrations in each individual 168 

patient.  169 

 170 

VANCOMYCIN CLEARANCE DURING PERITONEAL DIALYSIS  171 

Vancomycin elimination following an intraperitoneal dose is governed by its total body 172 

clearance. Total body clearance is the sum of clearances contributed from elimination organs, mainly 173 

kidneys, in the case of vancomycin, and is defined as the volume of plasma cleared of vancomycin per 174 

time unit. Elimination processes in PD patients include those originating from residual kidney function 175 

(RKF), other non-renal sources plus the drug cleared through PD. Total body clearance is especially 176 

important as it controls the overall exposure of vancomycin for the given bioavailability achieved from a 177 

dwell. Dialytic clearance is defined as the volume of plasma that has been cleared of vancomycin (i.e. 178 

removed from systemic circulation into the peritoneal space) by PD per unit time. Figure 1 describes the 179 

various clearance processes involved in vancomycin elimination following an intraperitoneal dose. 180 

Moreover, a summary of vancomycin pharmacokinetic systemic parameters is provided in table 2. 181 

Vancomycin clearance in patients on PD differs among studies due to several factors including the 182 

presence or absence of peritonitis, presence and extent of RKF, dwell times, dialysate volume, effect of 183 

antibiotic-free PD exchanges, and age.(21)  184 

 185 

CONTINUOUS AMBULATORY PERITONEAL DIALYSIS   186 

Continuous ambulatory peritoneal dialysis typically employs short dwell times (4-6 hours), which 187 

may not be sufficient to reach equilibration between the dialysate and plasma. Studies in non-infected 188 

adult CAPD patients report dialytic clearances ranging between 1.2-2.4 mL/min, which account for 20-189 
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25% of the total plasma clearance.(15, 22, 23) In patients with peritonitis, vancomycin dialytic clearance 190 

increases to 3.8 mL/min following a less-than five-hour exchange.(24) Clearances of up to 8.5 mL/min 191 

after the first 4 hours of exchange have also been reported.(16) Vancomycin clearance through 192 

elimination from the drained peritoneal dialysate contributes to 20-70% of the total plasma 193 

clearance.(16, 24) As a consequence, vancomycin elimination half-life in the systemic circulation ranges 194 

between 66–115 hours in patients on CAPD.(22, 24-26) One major reason in the reported variability in 195 

the plasma half-life could be the difference in the sampling times which may not completely capture the 196 

decline of the plasma concentrations during the terminal elimination phase. Table 2 also includes a 197 

summary of above parameters in these patients.  198 

 199 

AUTOMATED PERITONEAL DIALYSIS  200 

Studies conducted in the APD population are only reserved to the parenteral administration of 201 

antibiotics in patients without peritonitis, yet vancomycin is primarily used to treat peritonitis and is 202 

mostly administered intraperitoneally.(27, 28) With rapid cycling, the dialytic clearance of vancomycin 203 

may be increased. Therefore, if doses and dwell times used for those on the cycler are similar to those in 204 

CAPD, the result may be sub-therapeutic levels due to frequent exchanges.  205 

To date, there has only been one study exploring intravenous vancomycin disposition in subjects 206 

on APD.(12) The primary objective was to characterize vancomycin pharmacokinetic parameters in 207 

adults without peritonitis after a single intravenous dose. Following the intravenous administration of 15 208 

mg/kg, subjects received three cycle treatments over the course of eight hours followed by two 8-hour 209 

off-cycler dwells for a total of 24 hours. A 2-liter 2.5% dextrose dialysate prescription was used during 210 

and off-cycler dwell. The plasma half-life was 11.6 hours following an on-cycler exchange consisting of 211 

three 2-hour dwells. When the same patients were removed from the cycler and allowed to dwell for 7-212 

8 hours, the plasma half-life increased to 62.8 hours. Although vancomycin was not dosed 213 
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intraperitoneally in this study, rapid decline in the plasma half-life support the contribution of APD in the 214 

removal of drug. Clearance values did not largely differ from those on CAPD. Approximately 30% of 215 

vancomycin was removed by APD relative to the total plasma clearance, which is close to the proportion 216 

reported in patients on CAPD. Although intraperitoneal vancomycin administration is recommended by 217 

guidelines in patients with PD peritonitis, this intravenous administration study provides a valuable 218 

insight towards drug clearance during APD.(29) It should be noted that intravenous administration of 219 

vancomycin may not be adequate to achieve effective antibacterial concentrations in the 220 

peritoneum.(30)  221 

The current International Society for Peritoneal Dialysis (ISPD) guideline recommends 222 

supplemental dosing in order to achieve plasma vancomycin troughs above 15 mg/L when administered 223 

intermittently. Alternatively, temporarily switching to CAPD is another option for APD patients who 224 

develop peritonitis, but is not always feasible.  In patients on APD, leveraging the long dwell to 225 

appreciate optimal vancomycin transfer is appropriate to ensure adequate time to achieve and sustain 226 

therapeutic levels.  227 

 228 

IMPACT OF RESIDUAL KIDNEY FUNCTION (RKF) AND TREATMENT OUTCOME 229 

Residual kidney function in PD patients will have a profound effect for hydrophilic drugs 230 

removed exclusively through renal filtration. Enhanced drug clearance from RKF may have implications 231 

to treatment outcomes in patients with PD-related peritonitis. Therefore, patients with greater RKF may 232 

require higher or more frequent antibiotic dosing. 233 

The importance of RKF on the outcome of PD-related peritonitis in patients treated with 234 

antibiotics has been discussed for more than ten years, but the data describing this relationship are still 235 

scarce and controversial. The ISPD 2010 update on PD-related infections has previously recommended a 236 

25% increase in antibiotic dose in patients with a daily urine output of over 100 mL.(31) This 237 
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recommendation has been removed in the updated 2016 guideline, which reflects the lack of evidence 238 

to support this empiric recommendation.(29) In a retrospective study examining the impact of RKF on 239 

vancomycin concentrations, the influence of RKF was found to not have a significant impact.(32) 240 

Vancomycin concentrations appeared lower in patients who were non-anuric across both modalities 241 

even though a 25% higher dose was administered to those with RKF. This however was concluded to not 242 

be statistically significant. Similar results have been published showing no difference in treatment 243 

outcomes in non-anuric and anuric patients treated with cefazolin and gentamicin.(33)    244 

In contrast, a recent study investigating the relationship between RKF and PD-related peritonitis 245 

treatment outcomes was able to explain treatment failures related to the remaining degree of renal 246 

function.(34) Treatment failure in those with Gram-positive and culture-negative peritonitis were found 247 

to be significantly higher for patients with a urinary creatinine clearance greater than 0-5 mL/min 248 

compared to those who were anuric. Significantly higher relapse and recurrence were observed in those 249 

patients with Gram-positive or culture-negative infections and creatinine clearances greater than 5 250 

mL/min. Cefazolin and vancomycin were the main antibiotics used in the study. These observations may 251 

be useful when attempting to understand the impact of RKF on treatment outcomes and raise the 252 

question as to whether patients with RKF greater than 5 mL/min were under-dosed with antibiotic in 253 

previous studies.  254 

In patients treated with vancomycin, RKF may account for 10-23% of the total body clearance in 255 

PD.(12, 22) Studies examining the impact of RKF on vancomycin clearance, exposure, and treatment 256 

outcomes in PD-related peritonitis are limited. Interestingly, for the subset of patients with a glomerular 257 

filtration rate greater than 5 mL/min, RKF accounted for 39-84% of the total vancomycin clearance.(12) 258 

It would appear that the impact from RKF has a substantial effect on the total clearance of vancomycin. 259 

Thus, the recent 2016 ISPD recommendation of removing the 25% dosage increase to account for RKF is 260 

unclear as most of the studies cited accounted for a dosage increase for those who were non-anuric.(32, 261 
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35) In the absence of additional studies, dosage adjustments to account for RKF may still be appropriate 262 

as there is a substantial contribution observed on the total vancomycin clearance.  For now, we can only 263 

speculate that the resulting impact in treatment failure for Gram-positive peritonitis may be associated 264 

with higher drug clearance values in patients with creatinine clearances greater than 5 mL/min.  265 

 266 

THERAPEUTIC DRUG MONITORING AND PHARMACODYNAMIC RESPONSE  267 

Vancomycin therapeutic drug monitoring is critical for patients with peritonitis and is routinely 268 

performed because 1) the concentration plays the key component for the effect and 2) the initial 269 

antibiotic dose is needed to target the maximum effect in order to allow proper eradication and 270 

prevention of resistance. Moreover, the treatment window timeframe is crucial for patients. Hence, 271 

appropriate plasma sampling during this timeframe is important, but may be difficult as the turnaround 272 

time for assay results is a rate-limiting factor in achieving desired therapeutic drug levels. Furthermore, 273 

not only is it important to ensure that the initial dose is sufficient, but also if that initial dose is able to 274 

maintain therapeutic effect throughout treatment. Yet, current clinical practice is based on empirical 275 

decisions, which may not reflect the most optimized regimen for patients on PD. 276 

The traditional role of plasma trough concentration monitoring has been conflicting in the PD 277 

population. Unlike the established optimal plasma trough levels of 10-15 mg/L for uncomplicated 278 

infections or 15-20 mg/L for complicated infections, there is substantial interpatient variability for those 279 

patients on PD.  Higher rates of PD-related peritonitis relapse have been associated with a cumulative 4-280 

week plasma trough below 12 mg/L when compared to those maintained above that threshold.(36) In 281 

this study, vancomycin was given intravenously where plasma levels were maintained above 12 mg/L 282 

rather than the current 15 mg/L recommendation by the ISPD. The type of modality did not differ 283 

among the outcome groups, however vancomycin clearance and RKF information were not reported 284 

which may have contributed to variability in the plasma concentration. On the other hand, data from a 285 
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single-center study involving 34 PD patients experiencing PD-related peritonitis showed no relationship 286 

between plasma vancomycin levels measured during the first week and PD-related peritonitis 287 

outcomes.(37) Here, CAPD was reportedly the most frequent modality (80%) used with an average 288 

residual creatinine clearance of 2.8 mL/min/1.73m2. Vancomycin was dosed based on ISPD 289 

recommendations and plasma levels were maintained above 15 mg/L. Of these 34 PD patients with 290 

confirmed Gram-positive infections, 43% of cases were associated with coagulase-negative 291 

Staphylococcus ssp. while only 11% of cases were due to MRSA. In total, although the frequency and 292 

level of vancomycin measurement was not associated with adverse clinical events during the first week 293 

of treatment, the number of patients studied may be too small to draw a firm conclusion. 294 

Pharmacokinetic sources of variability can be explained in part due to varying exchanges provided by the 295 

patient’s PD modality, impact from RKF, and peritoneum physiology affecting drug absorption. In 296 

addition, the pharmacodynamics- or bacterial susceptibility measured by its MIC- contributes to the 297 

variability in clinical response, which may not be explained due to vancomycin pharmacokinetics alone.  298 

Taken together, vancomycin shows substantial interindividual variability in clinical response for 299 

patients treated for PD-related peritonitis. Table 3 gives an overview of the 300 

pharmacokinetic/pharmacodynamic factors to be considered at the time of TDM of vancomycin in 301 

patients on both CAPD and APD regimens.  302 

 303 

CONSIDERATIONS FOR INTRAPERITONEAL DOSING   304 

Clinicians should consider dwell times that achieve substantial equilibrium between the 305 

peritoneum compartment and the systemic circulation. The reported bioavailabilities in literature are 306 

dwell-time specific and may not be applicable in all patient-specific situations. Therefore, considering 307 

the transfer half-life between the dialytic compartment and systemic circulation can be useful to 308 

understand the time that it takes to reach equilibrium (i.e., steady-state). This may take up to 15 hours 309 
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considering a transfer half-life of 3 hours.(19) In this situation, dosing during the long-dwell interval may 310 

provide adequate drug absorption to achieve therapeutic concentrations in plasma in patients on APD.  311 

The bioavailability of vancomycin significantly increases during PD-related peritonitis. Plasma 312 

concentrations as high as 40 mg/L have been reported following a 6 hour dwell using recommended 313 

intraperitoneal doses of vancomycin in PD-related peritonitis.(14, 16) Alternatively, plasma 314 

concentrations as low as 10 mg/L have been reported following a 6 hour dwell using a 500 mg 315 

intraperitoneal dose in PD-related peritonitis.(38) Regardless of the PD modality, absorption does not 316 

largely change between CAPD or APD based on the equilibration half-lives reported.(12, 19, 20)  317 

In patients with PD peritonitis on APD, doses of 15-20 mg/kg together with dwell times ranging 318 

from 10-15 hours may be more appropriate than the targeted concentration strategy mentioned above. 319 

TDM should also be performed to evaluate therapeutic and toxic concentration fluctuations and to 320 

maintain concentrations above 15 mg/L as recommended by the ISPD guidelines.  321 

 322 

FUTURE RESEARCH AND DOSING GUIDELINES IN AUTOMATED PERITONEAL DIALYSIS 323 

Empiric Gram-positive management using vancomycin for PD-related peritonitis in patients on 324 

APD is summarized in figure 2. This algorithm accounts for RKF and suggests a dosage increase of 20% 325 

for those who are non-anuric with a creatinine clearance greater than 5 mL/min based on observational 326 

outcome studies.(34) In addition, monitoring plasma vancomycin concentrations 48 hours post-dose 327 

would be appropriate based on previous experience. As such, re-dosing would be necessary to maintain 328 

the targeted 15 mg/L concentration. During this time, adjustments to antibiotic therapy should be 329 

guided by the microbiology or susceptibility report. This should be practiced together with routine TDM 330 

at appropriate sampling times to rationally select the effective dose for each patient. Pharmacometric 331 

modeling and simulation could help to increase the knowledge on vancomycin dose exposure response 332 

relationship and propose optimal dosing and TDM strategies in PD patients.  333 
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As above recommendations are based on limited evidence, dedicated studies are needed to 334 

support them. Table 4 highlights the knowledge gaps and propose future research topics to better tailor 335 

vancomycin treatments in PD patients with peritonitis. 336 

 337 

CONCLUSION 338 

Optimal dosing for vancomycin should consider both the pharmacokinetic (concentration in 339 

dialysis fluid and plasma), RKF, PD modality, and physicochemical factors (bioavailability, permeability) 340 

and pharmacodynamics (MIC and variability to the susceptibilities of the organism). Generally, 341 

vancomycin is given intraperitoneally during the long day dwell for patients on APD; this approach 342 

supports adequate equilibration during the absorption phase between dialysate and plasma to reach 343 

therapeutic levels. In addition, the impact of rapid cycling and RKF on the total body clearance has yet to 344 

be fully defined. With this in mind, TDM may be appropriate, however, there is yet to be an established 345 

protocol in PD patients with peritonitis.  As the option to temporarily switch to CAPD in APD patients 346 

who develop peritonitis may not be convenient, the need for future research on the impact of the cycler 347 

on vancomycin clearance is imperative. Upcoming studies (NCT03685747) examining the 348 

pharmacokinetic of vancomycin will address some of the knowledge gaps associated with vancomycin 349 

pharmacokinetic in patients on APD. For the moment, clinicians should consider the bioavailability, 350 

dwell time, and institutional microbiological susceptibilities when dosing vancomycin in PD. Dedicated 351 

pharmacokinetic studies in adult and pediatric patients are needed to understand vancomycin 352 

disposition in PD patients on rapid-cycling modalities. The integrated use of TDM and MICs via dosing 353 

algorithms may help improve clinical outcome.   354 

 355 

 356 

 357 
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Table 1. Vancomycin absorption parameters in adult and pediatric non-infected and PD-related peritonitis patients on peritoneal dialysis.  504 

Adults 

Infection 
Status 

Dose 
Dwell Time 

(hours) 
Bioavailability (%) Dosing 

Plasma Concentration 
Reference 

 (mg/L) 
Time of 

sampling (hour) 

Negative 
30 mg/kg 6 49 Single 24.9 6 [15] 

10 mg/kg 4 65 Single 6.3 5 [25] 

PD-
Peritonitis 

30 mg/kg 6 91 Single 40 4 [14] 

2 g 6 70 Single 39.7 6 [16] 

500 mg 6 83 Multiple 10.2 6 [38] 

15 mg/kg 4 66 Single 16.1 6 [19] 

30 mg/kg 10-12 N/A Multiple 33.8 12 [39] 

Pediatric 

Infection Dose Dwell Time Bioavailability (%) Dosing 
Plasma Concentration 

Reference 
(mg/L) 

Time of 
sampling 

Negative 550 mg/m2 6 70 Single 23.3 6 [17] 

N/A = not reported 505 

(39) 506 
 507 
 508 

 509 
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Table 2. Vancomycin distribution and clearance parameters in adult and pediatric non-infected and PD-related peritonitis patients on CAPD or 510 

APD. 511 

Adults 

Modality  Infection Status Route Vd (L/kg) 
Plasma Half-
life (hours)  

Clearance (mL/min) 
Reference 

Total Dialytic  Renal 

CAPD 

Negative 
 

IP 0.56 111 5 1.2 N/A [15] 

IV 0.73 92 6.4 1.4 0.65 [22] 

PD-Peritonitis 

IP 0.61 N/A N/A 15.7 N/A [19] 

IP 0.87 N/A 8.5 12.2 N/A [20] 

IV 0.55 104 4.1 3.8 N/A [24] 

IV 1.1 115 7.2 1.4 N/A [26] 

APD Negative IV 0.4 11.6 / 62.8a 7.4 2.1 1.7 [12] 

Pediatric 

Modality  Infection Route Vd (L/kg) Plasma   
Clearance (mL/min/1.73m2) 

Reference 
Total Dialytic  Renal 

CAPD 

Negative IP 0.48 25 

10.7 2.5 

1.4 [17] 

APD 14.9 3.1 

aHalf-life during the ambulatory CAPD portion of the study. APD = automated peritoneal dialysis, CAPD = continuous ambulatory peritoneal dialysis, 512 
N/A = not reported, Vd = volume of distribution 513 
 514 
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Table 3. Pharmacokinetic/pharmacodynamic factors for TDM consideration between CAPD and APD vancomycin regimens.  515 

Pharmacokinetic/pharmacodynamics PD components CAPD APD 

Absorption 
Dwell time ↓ Bioavailability ↑ Bioavailability 

Dosing route (IP vs. IV) Same 

Distribution 

Permeability (Peritonitis vs. 
non-peritonitis) 

Same 
Diffusion 

Protein binding 

Surface area 

Vascularity 

Elimination 

Dosing route (IP vs. IV) RKF- Drives variation in systemic circulation 

Body size & Dialysate volume Same- Patient dependent  

Dwell time ↑ Clearance ↓ Clearance 

Number of non-antibiotic 
exchanges ↓ Clearance ↑ Clearance 

Pharmacodynamics MIC/AUC Same- Susceptibility report 
APD = Automated peritoneal dialysis, AUC = area under the vancomycin plasma-concentration time curve, CAPD = continuous ambulatory 516 
peritoneal dialysis, IP = intraperitoneal, IV = intravenous, MIC = minimal inhibitor concentration, PD = peritoneal dialysis, RKF = residual kidney 517 
function 518 
 519 
 520 
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Table 4. Proposal for critical research areas to optimize vancomycin therapy in peritoneal dialysis. 521 

Proposal for Critical Research Areas of Needed Research for Vancomycin Therapy in Peritoneal Dialysis 

▪ Effect of APD on peritoneal and plasma levels during rapid cycles 

▪ Peak concentration following absorption from the long-dwell 

▪ Optimal trough concentrations associated with improved clinical outcomes and the timing of trough monitoring specific for the 
peritoneal dialysis population 

▪ Dosing regimen to achieve optimal trough concentrations 

▪ Effect of residual kidney function on vancomycin disposition and its implications on dosing 

▪ Factors affecting non-renal and non-dialytic clearance of vancomycin  

▪ Determining appropriate clinical plasma sampling time points 
APD = Automated Peritoneal Dialysis   522 

 523 

 524 

 525 

 526 

 527 

 528 

 529 
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 534 

 535 

 536 

 537 

 538 

 539 

 540 

Figure 1. Illustration of vancomycin absorption, distribution and elimination following an intraperitoneal dose. 541 

Increasing the dwell time enhances vancomycin bioavailability. Peritoneum and dialysate properties should be considered as these both affect the 542 

rate and extent of absorption following an intraperitoneal dose. Following dosing and an appreciable dwell time, vancomycin is eliminated by PD, 543 

renal, and non-renal sources. These processes make up the total body clearance of vancomycin.   544 

This illustration is a derivative of “Simple squamous epithelium”, “Arteries”, “Arterial circulation” and “Bubble” by Servier Medical Art 545 

(https://smart.servier.com/) under the Creative Commons License (CC BY 3.0).   546 

https://smart.servier.com/
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 553 

 554 

 555 

 556 

 557 

 558 

Figure 2. Proposed vancomycin dosing and monitoring algorithm in patients on automated peritoneal dialysis. 559 

Vancomycin dosing in patients on APD with peritonitis should follow the recommended 15-20 mg/kg dose administered intraperitoneally. For 560 

those who are non-anuric with creatinine clearances > 5 mL/min, a 20% increase in the calculated dose is suggested. A vancomycin level should 561 

be obtained 48 hours post-dose. Dosage adjustments and monitoring should be based on clinical response and microbiological susceptibility 562 

reports.  563 
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