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Introduction

Monocytes/macrophages belonging to the mononuclear

phagocyte system are involved in the host response against

cancer and function not only as cells presenting tumour-

associated antigens to (tumour infiltrating) T lymphocytes

but also act as cytotoxic/cytostatic effector cells. In addition,

they express surface molecules relevant for cell adhesion

and cellular interactions and regulate the functions of other

cells in the immune system. Monocytes/macrophages are

able to distinguish and kill malignant, but not normal, cells

and form the major component of the mononuclear cell

infiltrate of many tumours, as tumour infiltrating

macrophages (TIM). TIM may both inhibit and promote

tumour growth and neoangiogenesis. These opposing

activities of TIM are best explained by the “macrophage-

tumour balance” hypothesis [1]. The exact role of

monocytes/macrophages in human malignancy remains not

fully understood.

Function of monocytes in malignant diseases

Production of cytokines

Monocytes and macrophages are capable of producing

numerous cytokines, e.g. tumour necrosis factor alpha

(TNF), interleukins (IL): IL-1, IL-6, IL-10, IL-12, IL-18,

colony-stimulating factors (CSF), chemokines and cytotoxic

mediators: reactive oxygen (ROI) and nitrogen intermediates

(RNI), which appear to play an important role in the

regulation of tumour growth.

Tumour necrosis factor

TNF is produced mainly by mononuclear phagocytes and

is cytotoxic for some tumour cells. It is proinflammatory

cytokine that mediates and induces tumouricidal activity of

monocytes and stimulates its own and other cytokine

production by monocytes [2], increases their antigen presenting

capacity and upregulates HLA-DR and interferon γ receptor
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Abstract
Monocytes/macrophages play a significant role in the host’s response to tumours. This includes:

cytotoxic/cytostatic activity, presentation of tumour-associated antigens and induction of specific
anticancer response of lymphocytes. Circulating blood monocytes respond to a gradient of
chemoattractants produced by the tumour, migrate out from the blood to the tumour bed and form a large
part of the cellular infiltrate as tumour infiltrating macrophages (TIM). Monocytes and macrophages
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prostacyclins, ect.) with opposing biological activities. Consequently, TIM exhibit both tumour growth
promoting and inhibitory activities. Furthermore, tumour-derived molecules also modulate TIM activity.
In some circumstances monocytes/macrophages are involved in the metastatic process. This review
summarizes the current state of knowledge in this area indicating that in fact macrophage-tumour
interactions are quite complicated and a delicate balance exists between antitumour response and
protumour effect of TIM and the suppression of TIM activity by the tumour. The clinical implications of
these findings are also discussed.
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(IFNγ-R) expression on monocytes [3]. TNF downregulates
the monocyte CD86 costimulatory molecule expression and
mannose receptor-dependent endocytosis [4]. It also enhances
HLA-A,B,C and HLA-DR expression on tumour cells [5],
but inhibits IFNγ - induced HLA-DR exprssion on normal
differentiated cells (fibroblasts, macrophages) [6]. Tumour
cells are able to induce TNF-mRNA expression and TNF
production by human monocytes [7]. This capacity is not
limited to viable but also metabolically inactive tumour cells
and their constituents like membranes or hyaluronian [8, 9].
Several surface molecules (CD44, HLA-DR) [7] and protein
kinases: a tyrosine-protein kinases (PTK) and calcium-
phospholipid-dependent protein kinases (PKC) are involved
in signal transduction for TNF release after stimulation with
cancer cells [10]. The antitumour effect of TNF is due to its
direct cytocidal activity on tumour cells and selective damage
of endothelial cells of the tumour vasculature leading to
apoptosis and necrosis of the tumour [11-13]. The inverse
correlation between TNF-mRNA expression and
microvessels count was found in non-small lung carcinoma
[14]. TNF also induces neutrophil-mediated cytostasis of
tumour cells that is mediated by high local concentration of
hydrogen peroxide [15].

On the other hand, TNF produced by some tumour cells
may enhance tumour spread and metastatic formation by
induction of transcription of metalloproteinase (MMP)-9
gene in stromal cells of giant cell tumour of bone [16] and
proMMP-9 production in monocytes [17] that cause
degradation of extracellular matrix compounds [18]. TNF
also facilitates the adherence of tumour cells to vascular
endothelium [19, 20]. TNF receptor type I (TNFRI) is
involved in the regulation of intercellular adhesion
molecule-1 (ICAM-1), E-selectin, vascular adhesion
molecule-1 (VCAM-1) and CD44 expression on vascular
endothelial cells [21, 22] that regulate monocyte migration
from the blood vessels to the tumour site. Hence, TNF has
several opposite effects on the tumour growth and
influences the TIM-tumour balance.

Production of TNF by lipopolisaccharide (LPS)-
stimulated monocytes is reduced in colon cancer patients and
this reduction is more pronounced in Dukes’C compared to
Dukes’A and B tumour stages. This suppression is not
mediated by IL-10 and disappears following surgical resection
of the tumour [23]. On the other hand, an increased
spontaneous or LPS-stimulated production of TNF by
peripheral blood mononuclear cells (monocytes are the major
cellular source of TNF) was found in gastric cancer patients
[24]. Furthermore, serum levels of TNF are increased in all
stages of gastric cancer (our unpublished observations). An
increased serum levels of TNF are also found in patients with
hepatocellular carcinoma and metastatic liver carcinoma [25].
On the other hand, TNF is undetectable in the serum of
patients with metastatic breast carcinoma [26] and patients
with gastrointestinal cancer-associated cachexia [27]. These
and other observations suggest that TNF has no role in cancer-

related cachexia in man [24, 28] but may play a significant
role in the regulation of the inflammatory host response to the
growing tumour [29].

Interleukin-1

IL-1 activates tumouricidal activity of monocytes but
also trigger the release of IL-1 and TNF by IFNγ-primed
monocytes [30, 31]. IL-1 mimics many of the biological
actions of TNF [32] and both these cytokines act as
stimulators of IFNγ-R synthesis. IL-1 exerts cytotoxic and
cytostatic effects in vitro on several tumour cell lines [33,
34]. IL-1 and IFNγ have additive growth inhibitory effect
on colon cancer cell line [35]. 

No significant changes in the production of IL-1 by
blood monocytes from patients with untreated colorectal
[36], lung [37] or head and neck [38] cancers were observed.
However, cytoplasmatic expression of IL-1 (α and β) in
monocytes was reduced in patients with lung and colorectal
cancers [36]. The presence of IL-1 and IL-6 was detected in
the effusions from ovarian cancer [39]. Only a few patients
with metastatic breast cancer had detectable IL-1β serum
levels [26] but in patients with hepatocellular carcinoma,
metastatic liver carcinoma and gastrointestinal cancer serum
levels of IL-1 α and β were increased [25, 40]. In contrast,
no changes in serum levels of these cytokines were found
in endometrial and urinary tract cancer [41, 42], while IL-1
release in vitro by unstimulated PBMC of patients with
urinary tract cancer was decreased [42]. Hence, no consistent
results concerning the production of IL-1 are found in
different types of cancer. Moreover, IL-1 is not associated
with cancer anorexia-cachexia syndrome [28].

Interleukin-6

IL-6 is a pleiotropic cytokine produced by many
different cells, mainly monocytes/macrophages, fibroblasts
and endothelial cells. This cytokine acts on activated B cells
and induces immunoglobulin production. IL-6 is also
involved in growth, differentiation and activation of T cells.
It synergises with IL-1 in induction of IL-2 production and
IL-2 receptor (CD25) expression on T cells. IL-6 is one of
the hepatocyte stimulating factors regulating the
biosynthesis of acute phase proteins and an important
regulator of hematopoiesis [43].

IL-6 plays an important role in the pathogenesis of
plasmocytoma [44, 45]. Its increased serum level positively
correlates with severity of disease [46]. Monocytes from
patients with head and neck cancers produce an increased
amount of IL-6 [38]. Raised serum level of IL-6 is observed
in patients with pancreatic [47, 48], gastric [25] and liver
carcinomas (hepatocellular and metastatic liver carcinomas)
[25,49]. In contrast to these observations [25], we have not
found any significant changes in the serum levels of IL-6
in patients with different stages of gastric cancer
(unpublished). An increased serum level of IL-6 correlates
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with tumour progression and poor prognosis in metastatic
breast cancer [26]. IL-6 enhances acute phase response and
its serum level correlates with poor nutritional status,
impaired patient performance status and shorter survival in
lung cancer patients [50]. However, other studies revealed
no correlation between IL-6 serum levels and the presence
of the cancer anorexia-cachexia syndrome [28]. 

Interleukin-10

IL-10 downregulates antitumour activity of monocytes
by suppressing production of IL-1β and TNF and inhibits
HLA-DR expression on antigen presenting cells [51].
Although IL-10 inhibits ROI formation in activated
monocytes, it has no inhibitory effect on ROI production by
activated macrophages [52]. On the other hand, in
experimental systems, it inhibits angiogenesis and suppresses
growth and metastasis formation by human melanoma cells
[53]. An increased serum level of IL-10 in patients with
resectable hepatocellular carcinoma [49] and advanced solid
tumours [54] appears to be an independent prognostic factor
[49, 54]. Monocytes from breast cancer patients show an
increased production of IL-10 and decreased IL-12 [55]. Colon
and renal carcinoma cell lines stimulate peripheral blood
monocytes and lamina propria mononuclear cells to produce
increased levels of IL-10 [4, 56]. Tumour-cell-derived TGFβ1
and PGE2 are the potent IL-10 synthesis stimulators [56]. In
this context, it is of interest that increased serum levels of
PGE2 have been found in some types of cancers and in
Hodgkin’s disease [4, 57, 58]. However, no changes in the
serum levels of IL-10 nor its production by PBMC from
gastric cancer were found (our unpublished observations).

Interleukin-12

IL-12 has a powerful antitumour activity and is primarily
produced by monocytes/macrophages. It skews the immune
response in favour of Th1 cells that preferentially induce 
cell-mediated immunity. IL-12 acts as a growth factor for
activated NK and T cells [59] and stimulates the production
of TNF, IFN-γ, GM-CSF and IL-8 by T lymphoctes and/or
NK cells [60, 61]. IL-12 enhances its own production by
dendritic cells [61]. On the other hand, IL-12 also stimulates
the production of IL-10 by T lymphocytes [61]. Antitumour
activity of IL-12 (tumour regression or tumour growth
inhibition due to administration of IL-12) was demonstrated
in vivo using 17 different lines of transplantable murine
tumours including carcinomas, sarcomas, melanomas and
lymphomas [61, 62]. The antitumour effect of IL-12 may
be independent of NK cells, since comparable activity was
observed in NK-deficient mice [63]. Tumours undergoing
IL-12-mediated regression have large numbers of TIM [63,
64, 65]. There are three main mechanisms of antitumour
activity of IL-12: induction of CD8 cytotoxic cells,
production of IFN-γ by T and NK cells and inhibition of
neoangiogenesis [62]. 

IL-12 induces cytolytic activity of PBMC from patients
with lung cancer against lung cancer cells and Daudi
lymphoma cells [66]. However, monocytes from patients
with lung cancer show decreased production of IL-12 [66].
Also PBMC from patients with colorectal cancer show
decreased IL-12 and increased IL-10 production, the latter
known to antagonise IL-12 synthesis. The decrease in IL-
12 production is most clearly seen in advanced colorectal
cancer [67]. However, in some types of cancer, serum or
ascitic fluid levels of IL-12 are increased [68, 69]. There is
no correlation between LPS-stimulated IL-12 secretion by
blood monocytes and survival of patients with head and
neck cancer [70]. The effectiveness of IL-12 therapy was
demonstrated in several types of experimental tumours [64,
65, 71-75]. Human IL-12 is undergoing phase I clinical trial
in metastatic renal cancer and malignant melanoma [76].

Interleukin-18

IL-18 is monocyte-derived pleiotropic cytokine that
synergises with IL-12 and induces IFN-γ, IL-1β, NO
production by T lymphocytes and promotes Th1-mediated
immune response. IL-18 also enhances IL-13 production
by T and NK cells [77]. Antitumour effects of IL-18 may
also involve FasL-mediated apoptosis of tumour cells by
cytokine enhanced Fas-ligand (Fas-L) expression on NK
cells [78] and inhibition of neoangiogenesis in experimental
tumours [79]. The decreased production of this cytokine by
colon adenocarcinoma cells in comparison to normal
epithelial cells of the colon mucosa is associated with
immunosuppresion observed in colon cancer [80]. However,
our unpublished observations indicate an increased IL-18
serum level in patients with gastric cancer. 

Colony stimulating factors

G-CSF is produced primarily by activated
monocytes/macrophages and enhances the expression of
complement receptor (CR) type 1, 3, FcγRI (CD64) and
FcγRIII (CD16) on monocytes and upregulates their
tumouricidal capacity [81, 82]. M-CSF is also produced by
monocytes/macrophages and stimulates the differentiation
of monocytes and macrophages from their progenitor cells.
Its high serum levels were found in patients with breast,
endometrial and ovarian cancers and correlated with poor
prognosis [83, 84]. M-CSF is also produced by tumour
cells. Expression of M-CSF and its receptor by breast
cancer cells is associated with high macrophage infiltration
and poor prognosis [85, 86]. Monocytes from patients
undergoing GM-CSF therapy showed a significant increase
in MHC class I and II expression, production of TNF and
monocyte-mediated cytotoxicity against U937 tumour cells
[81]. GM-CSF from transfected human colon cancer cells
stimulates monocytes to secrete monocyte chemotactic
protein (MCP)-1 and induces expression of the CD11b
adhesion molecule [87]. 
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Production of reactive nitrogen intermediates

NO is involved in tumouricidal activity of
monocytes/macrophages [88, 89]. Cytotoxicity of NO is
mainly due to peroxynitrite (ONOO–) or nitrosothiols
(RSNO) production [90, 91]. Peroxynitrite causes the
inhibition of mitochondrial respiration and damage of
variety of mitochondrial components, nitrosothiols inhibit
respiratory complex I, while NO inhibits cytochrome
oxidase [91]. Furthermore, NO selectively inhibits IL-12
synthesis by activated monocytes [92, 93] and suppresses
T lymphocyte proliferation [94].

Inducible nitric oxide synthase (iNOS) is responsible for
biosynthesis of NO by monocytes. Some cytokines (IL-1β,
IFN-γ, IL-2, TNF) and LPS induce iNOS-mRNA synthesis
but not NO release by monocytes [95-98]. However, some
cancer cells may stimulate monocytes for de novo
production of NO [95]. Both iNOS-mRNA and iNOS
protein were observed in monocytes stimulated with colon
carcinoma cell line, but not with human pancreatic cancer
cell line [96]. We have recently found that following
stimulation with cancer cells, CD14+/CD16+subpopulation
of monocytes show an increased expression of iNOS protein
and release of NO in comparison to “classical” (CD14++)
monocytes [97]. Human urothelial carcinoma cell line also
fails to induce NO production by monocytes, while tumour
cells display iNOS expression and NO production in
cocultures with monocytes [98]. The above findings may
cast some doubts about the ability of monocytes to produce
NO. However, our other observations indicate the
expression of iNOS in monocytes stimulated by the
supernatants from the culture of cancer cell lines. This
phenomen is probably due to microparticles released by
tumour cells. The CD29, CD44, CD58, HLA-DR, and
MHC class I of monocytes are engaged in tumour cell-
induced production of NO [99]. The signal transduction
pathways for NO and TNF production seem to be different
as at least three protein kinases: PKC, PTK and cAMP-
dependent kinase (PKA) are involved in the induction of
NO by monocytes stimulated with tumour cells [10]. 

L-arginine is the substrate molecule for NO synthesis,
but some tumours stimulate monocytes for biosynthesis of
ornithine, a precursor for polyamine growth factors:
putrescine, spermidine and spermine [100]. Polyamines may
promote experimental tumour growth not only by increasing
proliferation of tumour cells, but also by induction of
neoangiogenesis [101]. NO is involved in apoptosis of some
cells (it promotes or inhibits apoptosis) and its effect is dose-
dependent and cell-type specific [102]. In
cholangiocarcinoma cells, NO inhibits apoptosis directly by
blocking caspse 9 activation [103]. On the other hand, the
presence of iNOS in pancreatic cancer cells positively
correlates with their apoptosis [104]. Also mononuclear cells,
including macrophages infiltrating colorectal cancer, show
both the increased apoptosis and expression of iNOS [105]. 

Production of reactive oxygen intermediates 

In man, there is no evidence for the local production of
ROI in the tumour bed. The role of ROI in the antitumour
response in human has been indirectly implicated by
observation that myeloperoxidase-deficient individuals show
an increased incidence of malignancy [106]. Patients with
renal cancer show an increased production of ROI by
peripheral blood monocytes [107]. In vitro stimulation of
monocytes with tumour cells, but not with untransformed
cells, induces the production of ROI [108]. O2

–, hydrogen
peroxide, OH*and probably hypohalites are involved in the
spontaneous cytotoxic activity of monocytes towards
tumour cells [108]. On the other hand, the significant
inhibition of ROI formation in in vitro co-cultures of
macrophages and tumour spheroids of colon carcinoma cell
lines or supernatants from cultures of tumour cells is
observed [52]. TGF-β1, IL-10 and IL-4 are not involved in
this tumour-induced suppression of ROI production [52]. It
is interesting that ROI may suppress lymphocyte and NK
cell function [109]. CD18, CD29 and CD44 adhesion
molecules are engaged in the induction of ROI production
by monocytes stimulated with cancer cells [110].
Hyaluronan, the major ligand for CD44, which is
overexpressed on many cancer cells, triggers ROI
generation by monocytes via ligation of CD44 and allows
them to distinguish cancer from non-malignant cells. On
the other hand, blocking of CD44 on monocytes by free
hyaluronan inhibits their response to tumour cells [110]. 

Production of eicosanoids

Cancer cells may affect monocytes function through
alteration of arachidonic acid (AA) metabolism and
production of eicosanoids: prostaglandins (PGs),
tromboxane, leukotriens (LTs) and hydroxyeicosatetraenoic
acid [111]. Serum level of PGE2 is increased in cancer
patients [112]. Stimulation by cancer cells induces monocyte
PGE2 production [4]. Also the level of PGs in tumour tissue
is increased [113, 114]. PGs may promote tumour cell
proliferation [115]. Blood monocytes and peritoneal
macrophages from ovarian cancer patients show enhanced
tumouricidal activity following inhibition of
cyclooxygenase. However, this has no effect on
tumouricidal activity of alveolar macrophages from lung
cancer patients [116]. Metabolism of AA occurs
preferentially via lipoxygenase pathway [117], which is not
altered in circulating monocytes or TIM in cancer patients
[116]. Antitumour activity of peritoneal macrophages is
correlated with the production of PGE2 and positively
associated with synthesis of LTC4 and LTD4 [118]. 

Chemotactic response of monocytes to the tumour

Migration of blood monocytes to the tumour bed
involves a response to a positive gradient of
chemoattractants and induces the adherence to vascular
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endothelium, emigration from the blood vessels and directed
movement within the extracellular matrix (ECM). Tumour
cells secrete chemotactic factors, such as IL-8 and monocyte
chemotactic protein-1, 2, 3 (MCP-1, 2, 3), the members of
CC chemokine family: CCL-2, CCL-8, CCL-7. These
molecules selectively attract monocytes, but not neutrophils
[119]. MCP-1 gene expression within the tumour,
predominantly in stromal cells, is correlated with the degree
of invasiveness of breast carcinomas [120] and MCP-1
expression by both tumour cells and macrophages is
positively associated with macrophages infiltration [121].
MCP-1 regulates the cell surface expression of adhesion
molecules, especially β2 integrins (CD11b/CD18 and
CD11c/CD18) on monocytes, thus facilitating their
adherence to vascular endothelium. MCP-1 also induces
production of IL-1 and IL-6 by monocytes [122]. In ovarian
cancer, MCP-1 serum level correlates with the histological
grade of the tumour and the age of patients [123]. The
production of MCP-1 by human tumours engrafted into
mice enables early recruitment of monocytes and tumour
growth inhibition [124]. 

Defective monocyte chemotaxis is observed in patients
with head and neck, lung, gastric, breast and genitourinary
cancers [125-129] and melanoma [130]. This defect is more
apparent in advanced disease and reversed by tumour
removal [125, 126, 130]. Chemokine receptor expression
is an important factor for monocyte chemotaxis. TIM
isolated from ovarian carcinoma and, to lesser extent, blood
monocytes display defective mRNA and surface expression
of chemokine receptor CCR2 (MCP-1 receptor).
Downregulation of CCR2 is largely dependent on the local
production of TNF [131]. However, monocyte chemotactic
activity and the levels of CC chemokines are higher in non-
small-cell lung cancer than in normal lung tissue [132].
Furthermore, blood monocytes from patients with breast
cancer display a higher transendothelial migration than those
from patients with benign diseases of the breast. It is not
concerned with the differences in monocytes phenotype
(HLA-DR, CD64, CD11a and CD11b expression) [133]. 

Cytotoxic activity of monocytes

Human monocytes possess high spontaneous cytotoxic
activity against malignant, but not normal, cells [134-136].
ROI, TNF and NO may act synergistically in the cytotoxic
damage of neoplastic cells. In most instances, an increased
cytotoxic or cytostatic activity of monocytes in patients with
different neoplasms, e.g. lung, breast, and gastrointestinal
cancers [137], primary and metastatic brain tumours [138],
squamous cell carcinoma [139] is observed. However, no
changes in cytotoxic activity of monocytes are observed in
patients with renal cancer [140] and non-Hodgkin’s
lymphoma [141]. A variety of agents are capable to induce
tumouricidal activity of monocytes, e.g.: LPS, IL-1, IL-2,
GM-CSF, laminin, LPS or IFNγ [142-148]. IFNγ prevents
the loss of cytotoxic activity, which occurs during monocyte

maturation to macrophages [143]. Cytotoxic potential of
monocytes is age dependent. Monocytes from aged healthy
subjects show decreased in vitro cytotoxity against tumour
cells which is associated with compromised IL-1, ROI and
RNI production [149].

Tumour cells are heterogeneous in their susceptibility
to cytocidal activity of monocytes. Human tumours of the
same histological origin are affected to different degrees by
monocytes [150] or their cytotoxic mediators [151]. The
maximal tumouricidal activity usually requires a direct
contact between monocytes and target cells [152]. It is
suggested that outer membrane phosphatidyloserine [153]
or hyaluronan [110] may be involved in the “recognition”
of tumour cells by activated monocytes [153]. 

Phenotypic characteristics of monocytes in
malignancy

Changes in monocyte function in malignant diseases are
often correlated with changes in the expression of
functionally important cell surface molecules.

FcγR1

The receptor for Fc part of IgG (FcγRI) of monocytes
is involved in antibody-dependent cellular cytotoxity
(ADCC) against tumour cells [154-156]. Its expression is
increased in patients with lung, colon [157], kidney [158]
and gastric [159] cancers but decreased in patients with
squamous cell carcinoma [139]. However, monocytes from
metastatic squamous cell carcinoma show an increased
expression of FcγRI [160]. In patients with breast cancer
the expression of FcγRI on monocytes is unchanged [161].

MHC class II

MHC class II expression is critical for antigen
presentation [161]. Furthermore, HLA-DR determinants of
monocytes play a role in signal transduction for TNF gene
activation [7] and NO production [99]. Monocytes from the
in vitro co-culture with tumour cells show significant
enhancement of HLA-DR expression [162]. Macrophages
from the cellular infiltrate surrounding tumour express an
abundant quantity of HLA class II determinants, which
suggests that they are activated in the tumour bed [163].
There is also an opposite observation that cancer cells may
induce a down-regulation of HLA-DR expression on
monocytes [4]. In patients with squamous cell and breast
carcinoma, HLA-DR expression on monocytes remains
unchanged [139, 161]. 

Subpopulations of monocytes

On the basis of CD14 expression, two main monocyte
subpopulations are distinguished. The major population that
shows an enhanced expression of CD14 antigen (CD14++

monocytes) and the minor one with a weak expression of
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CD14 and the presence of CD16 (CD14+/CD16+

monocytes). In healthy donors CD14+/CD16+ subpopulation
account for 5 +/- 3% of total monocytes. This subpopulation
appears to represent more mature monocytes [164], is the
main producer of TNF and show low or no production of
IL-10 following stimulation with LPS. Therefore,
CD14+/CD16+ subpopulation has been defined as “pro-
inflammatory” monocytes [165, 166]. CD14+/CD16+

monocytes are also defined as the subpopulation containing
dendritic cell precursors [167, 168]. The absolute number
of CD14+/CD16+ monocytes is increased in various
inflammatory diseases, like bacterial sepsis, viral infections,
major trauma [166, 169, 170] and in patients with metastatic
gastrointestinal cancers and other solid tumours [171]. We
have also observed an elevated absolute number of these
cells in the blood of gastric cancer patients (unpublished
observations). However, no changes in the expression of
CD16 on monocytes are found in patients with kidney
cancer [158]. Patients with gastrointestinal carcinoma
treated with M-CSF show a significant increase in the
percentage of CD16+ monocytes in comparsion to healthy
subjects [172]. Our unpublished observations indicate that
among all monocytes, CD14+/CD16+ cells posses the highest
antitumour activity as they are the main producers of TNF,
IL-12, NO and ROI (O2

-) and produce low levels of
immunosuppressive IL-10.

Adhesion molecules

The CD11b (CR3α chain) is an important receptor for
phagocytosis and subsequent activation of respiratory burst
in mononuclear phagocytes [173]. The interaction of CD11b
with ICAM-1 promotes attachment to endothelium and
extravasation of leukocytes [174]. CD11b molecule is lost
upon their migration to the tissues [175]. Anti-CD11b
monoclonal antibodies inhibit monocytes recruitment to
both MCP-1 producing and nonproducing human tumours
[176]. CD11b is involved in adhesion of MCP-1-stimulated
monocytes to laminin of ECM. [177]. MCP-1 induces the
expression of CD11b and CD11c and IL-1 and IL-6
production by monocytes [178]. The expression of CR3 on
monocytes from kidney, but not breast, cancer patients is
increased [179, 161]. Monocytes also express β1 integrin -
very late antigen-4 (VLA-4) and use this molecule in
interactions with activated endothelial cells [180] or with
tumour cells [181]. The decreased surface expression of
VLA-4 on monocytes is observed during tumour growth,
which suggests a reduced monocytes ability to bind ECM.

Immunoregulatory activity

The progression of malignant diseases is associated with
immune dysfunction. Different monocyte populations may
act as suppressor cells. The elevated supressor activity of
monocytes in cancer patients is related to tumour burden and
the stage of disease. The presence of activated monocytes,

which also showed an increased suppressor activity for T
cells, is associated with favourable prognosis in some
patients with gastric cancer [182]. An increased monocyte-
mediated cytostasis of lymphoid cell lines has been observed
also in breast and lung cancer patients [183]. Monocytes of
some patients with gastrointestinal cancer possess suppressor
activity as well as increased cytostatic capacity against
L1210 lymphoma cell line [184]. The question arises
whether monocyte cytostatic and suppressor activities are
interrelated and both indicate an activated state of the cell.

Tumours produce a number of factors (vascular
endothelial growth factor, VEGF, M-CSF, IL-6) that block
the differentiation of CD34+ stem cells into dendritic cells.
However, tumours may promote the altered maturation and
early apoptosis of human monocyte-derived dendritic cells.
Upregulation of surface markers (CD80, CD86, HLA-DR),
nuclear translocation of RelB and allostimulatory activity
is associated with the lack of capacity to produce IL-12 and
rapid apoptosis of monocytes [185]. Apoptosis of
monocytes is also induced during their direct contact with
cancer cells in vitro [162]. It may be one of the mechanisms
by which tumours evade the immune response of the host.
The inhibition of the cellular immune response of the host
is also due to the gangliosides shedding by the tumour cells
and its binding to leukocytes in the tumour
microenviornment [186, 187]. 

Tumour infiltrating macrophages (TIM)

Function of TIM in the tumour growth

Macrophages represent a major component of the
mononuclear cell infiltrate of tumours [163, 188, 189] and
may consists up to 80% of the total tumour mass [190].
They are located within the tumour mass (intratumourally)
or at the periphery of the tumour (peritumourally). 

The process of leukocyte migration from the circulation
into the tumour involves their interactions with vascular
endothelium, i.e. leukocyte rolling and adhesion. This may
be reduced in tumour microvessels due to decreased
expression of adhesion molecules caused by tumour-derived
angiogenic factors [191]. TIM have been demonstrated in
the stroma of numerous malignant tumours including colon
[192], breast [192, 193], skin [194], lung, ovary or thyroid
gland cancers and melanoma [195]. The number of TIM is
more increased in advanced (Duke’s C) than in early colon
cancer and in tumours expressing MHC class II molecules
[196]. The composition of the cellular infiltrate depends on
the properties of invaded tissue. The extend of TIM
infiltration in tumours of the same histological origin varies,
but the average number of TIM in particular tumour during
its growth is relatively stable. Having divergent functional
properties, TIM may modulate tumour growth by affecting
cell proliferation, vascularization (angiogenesis), stroma
formation, killing and dissolution of neoplastic cells. 
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The role of TIM in human malignancy is complex.
Experimental evidence indicates that the intratumoural as
well as peritumoural TIM limit tumour size in early stages
of tumour development [174, 176]. In colon cancer TIM
accumulate along the invasive edge, are in a direct contact
with lymphocytes and express costimulatory molecules:
CD80 (B7-1) as well as CD86 (B7-2). In contrast, the
expression of CD80 and CD86 is usually inconspicuous in
the tumour stroma [197]. These observations are in
accordance with clinicopathological observations suggesting
that peritumoural lymphocytic infiltration is a favourable
prognostic factor in colorectal cancer [198]. The large
number of CD16+ macrophages was found in renal cancer,
melanoma and colon carcinoma [188]. As these tumours
are susceptible to immunotherapy with lymphokine
activated killer cells, it may indicate that CD16+

macrophages are involved in antitumour cytotoxic response
[188]. In contrast, high TIM content within breast cancer
stroma is associated with poor prognosis. This is due to a
significant number of suppressor macrophages producing
IL-10 that decreases the expression of MHC class II
determinants and IL-2R on T cells [192]. However, no
significant difference in the spontaneous and LPS-stimulated
IL-10 production by alveolar macrophages is observed in
patients with metastatic lung cancer [199]. The presence of
iNOS was observed in TIM, especially intratumoural,
infiltrating gastric [200] and breast cancers [201, 202]. The
expression of iNOS in infiltrating cells positively correlates
with the metastasis formation in breast cancer [202].
Although TIM from ovarian and colorectal cancers show
the presence of TNF-mRNA [203, 204], the production of
proinflammatory cytokines like IL-1 and IL-6 by TIM from
ovarian cancer, upon stimulation with endotoxin, is
decreased in comparsion to monocytes from the same
patients [205]. TIM from non-small-cell lung cancer exhibit
decreased tumouricidal potential after stimulation with
different stimuli in comparsion to peripheral blood
monocytes and normal alveolar macrophages [137].

Antitumour activity of TIM is considerably decreased
in comparison to blood monocytes [206]. This indicates the
suppressive role of tumour microenvironment on TIM in
situ. In advanced stages of breast cancer, TIM may be
ineffective or even promote tumour growth [189]. It is
known that activated macrophages are able to produce
several growth factors, including: TGF-α and -β, fibroblast
growth factor (FGF), IL-1 and endothelial growth factor
(EGF). There is a positive association between the degree
of TIM infiltration and progression of breast tumours [207].
In breast cancer TIM are involved in stroma formation by
transformation into fibroblast-like cells, which produce
collagen type I [207]. Tumour may influence the activity of
TIM by modulating the binding of TIM to ECM proteins.
TIM can secrete proteases, which degrade the surrounding
tissue and could facilitate tumour cell expansion and
infiltration of the tissues. The activities of two families of

proteases: MMPs and urokinases are associated with tumour
invasiveness and are important in angiogenesis. MMPs
faciliate tumour invasion and metastasis through degradation
of ECM compounds like collagens, laminins, proteoglycans
and modulation of cell adhesion. MMPs may paradoxically
stimulate the creation of biologic active proteins including
chemotactic molecules derived from laminin-5 and
angiostatin from plasminogen [208, 209, 210]. Colorectal
cancer cells are able to stimulate monocytes production of
MMP-2 and MMP-9, and this is dependent on metastatic
potential of tumour cells. Also soluble products of metastatic
colorectal cancer cells induce the expression of MMP-9 in
monocytes [211]. The role of tissue inhibitors of MMPs
(TIMPs) in cancer is complex. They are produced both by
tumour cells and stromal fibroblasts. In experimental
tumours TIMPs reduce tumour growth, metastasis and
angiogenesis. On the other hand they may promote
tumourigenesis and cancer progression through the influence
on cell proliferation, apoptosis and MMP activity [212, 213]. 

Cell adhesion molecules are required for the cellular
interactions and development of effective immune response.
Contact between macrophages and cancer cells induces
changes in the expression of adhesion molecules on both
types of interacting cells. TIM from gastrointestinal cancers,
especially localised along the invasive edge, show the
expression of ICAM-1 (CD54) and lymphocytes from the
invasive margin express LFA-1 (receptor of ICAM-1). In
diffuse-type gastric cancer, majority of TIM are ICAM-
negative [214]. ICAM-1 expression has also been observed
on malignant cells including lymphomas [215], melanomas
[216] and carcinomas [217-220]. Its expression may be
upregulated by macrophage products: IFN-γ, TNF, IL-1α,
β, IL-6 and ROI [218, 219, 221, 222] and by interaction of
hyaluronan (present on or shed from cancer cells) with
CD44 [223]. Expression of ICAM-1 on melanoma cells is
associated with their susceptibility to monocyte cytotoxicity
[224]. LFA-1 is also present on cancer cells. The
enhancement of this molecule on cancer cells and
concomitant upregulation of ICAM-1 on monocytes occur
after coculture of these cells [162]. 

The role of TIM in neoangiogenesis

In breast cancer a significant correlation exists between
the vascular grade of the tumour, shortened patient survival
and number of TIM [190]. Several soluble products of TIM
are responsible for neoangiogenesis. These include EGF,
VEGF, FGF, platelets derived growth factor (PDGF), GM-
CSF, TGF-α and β, IL-1, IL-6 and PGs. PDGF expression
in TIM from breast cancer positively correlates with the
tumour size and microvessel count [225]. The role of VEGF
in the tumour growth is not limited to promotion of
angiogenesis as it also stimulates extravasation of plasma
fibrinogen that leads to fibrin deposition and increase of
ECM within the tumour. This in turn promotes the ingrowth
of TIM, fibroblasts and endothelial cells [226]. The release
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of VEGF is stimulated by hypoxia [227]. Thus, TIM from
avascular and necrotic areas of breast cancer display an
increased production of VEGF [228]. VEGF has also a
crucial role in carcinoma-dependent ascites formation [229].
Not only TIM but also tumour cells are able to produce
VEGF, which in turn acts as chemoattractant for
macrophages [230]. Angiogenesis is also regulated by
chemokines. ECR-CXC chemokines, including CXCL8
(IL-8), CXCL7 (NAP-2), CXCL5 (ENA-78) and CXCL1
(GROα), are a potent angiogenic factors, whereas non-
ELR-CXC chemokines such as CXCL10 (IP-10) and
CXCL9 (Mig) are angiostatic [231, 232]. Also the member
of CC chemokine family, CCL2 (MCP-1), is the angiogenic
factor that acts by augmenting both TIM accumulation and
angiogenesis [233]. 

Both tumour cells and monocytes release urokinase
plasminogen activator (uPA). It promotes angiogenesis
through plasminogen activation and degradation of stroma
components and vessel walls (probably the first step of
neoangiogenesis) [234]. Some ECM compounds after
degradation by plasmin induce angiogenesis [235]. In breast
cancer uPA is mainly localized in peripheral parts of the
tumour [236]. A specific cell surface uPA receptor (uPAR)
has been identified on human monocytes and a variety of
cancer cells. In colon adenocarcinoma, uPAR is expressed by
tumour cells and by TIM localized at the invasive edge [237],
which may facilitate tumour invasion and metastasis [238]. 

The role of TIM in metastasis formation

There is evidence that TIM are involved in the
metastatic process. The association between the presence
of large numbers of TIM and lymph node metastases in
human breast cancer has been observed [239]. Highly
invasive and metastatic tumours can secrete glycoproteins
that act as tumour-associated antigens evoking production
of antibodies that promote tumour cells invasion and
growth. It is due to activation of tumour infiltrating immune
cells and proteases secretion followed by ECM degradation
and angiogenesis [240].

Tumour invasion and metastasis formation begins from
blood vessels basement membranes degradation due to
relase of matrix metalloproteinases by tumour cells and
tumour cells activated monocytes/macrophages [241]. The
next step is the formation of emboli in the microvasculature
of different organs. PBMC form aggregates with renal
cancer cells through the Siglec7 - the receptor for
disialogangliosides, which is expressed by monocytes and
NK cells. Metastatic potential of renal cell carcinoma is
associated with the expression of gangliosides on tumour
cells [242]. Coagulation associated with metastasis
formation may also be the result of inappropriate expression
of tissue factor in monocytes. Tissue factor (CD142), the
main initiator of blood clotting, is produced by activated
monocytes [243]. Tissue factor induces thrombin and in
turn fibrin formation. Fibrin is known to stimulate the

migration of endothelial cells and thus potentiate
angiogenesis [244]. Cancer patients have higher monocyte
CD142 expression [245] that correlates with tumour
progression [246]. uPA produced by macrophages and
tumour cells, play also an important role in tissue invasion
and metastases formation [247]. High uPA levels are
correlated with high vessel density in tumour and higher
vascular invasion of tumour cells. uPA and its receptor is
localised mainly in the periphery of tumour [236, 237]. uPA
content in peripheral parts of the tumour is increased in
patients with metastases [236]. It is connected with the
proteolytic activity of plasmin on ECM, basement
membrane and vessel walls [234, 248]. Cathepsins
(lysosomal proteinases) are also involved in metastasis
formation. Their expression have been found in TIM from
bladder tumours [249] and breast cancers [250].

Some studies suggested the fusion of monocytes with
certain haematopoietic tumour cells as an important
mechanism of metastases formation [251]. Highly
metastatic variant of T cell lymphoma cell line is derived
in vitro from the spontaneous fusion of the lymphoma cells
with the host macrophages [252]. However, the mechanisms
of fusion in vivo remain unknown. TIM also participate in
the osteolysis associated with bone metastases. They are
the major cellular component of the inflammatory
infiltratrates in the bones and can release local mediators
that stimulate osteoclast activity. Moreover, they can also
resorb the bone on their own and differentiate into
osteoclast-like cells [253]. Although no data on the role of
TIM in the peritoneal dissemination of human malignancy
are available, in the murine model milky spots, which are
aggregates of macrophages, are considered to be the locus
for early peritoneal metastases formation [254, 255].

Monocytes in cancer immunotherapy

In local and systemic adoptive immunotherapy, the
autologus effector cells harvested from the blood are
activated in vitro and reinfused into the host [256-258].
Macrophages can be activated for tumour cell killing by
some immunopotentiators [259]. Antitumour activity of
monocytes may be enhanced by their incubation in the
presence of IFN-γ, LPS, GM-CSF and (OH2) VitD3 [147,
260-262]. In 1987, Stevenson et al. reported the first clinical
trial with adoptive transfer of activated macrophages. They
used IFNγ-activated macrophages for intraperitoneal
infusions in patients with colorectal cancer [263]. Adoptive
transfer of macrophages has undergone phase I clinical trials
for patients with metastatic cancer (colon, ovarian, lung,
renal, pancreatic cancer and melanoma) infused
systemically or intraperitoneally [261, 264-266]. Monocytes
differentiated in the presence of IFNγ were used for phase
II adoptive therapy of advanced colorectal cancer.
Commonly, continuous flow centrifugal leukapheresis and
counterflow centrifugal elutriation are used for monocyte



Central European Journal of Immunology 2003; 28(2)96

isolation. However, the clinical results of adoptive
immunotherapy are still controversial [264]. No significant
partial or complete responses have been reported, though
prolonged disease free intervals were observed [261, 266]. 

Monocyte cytocidal activity can be enhanced by
chemotherapeutic drugs, e.g. cisplatin [268], IFNγ and
murapeptides [269]. There is some evidence that activated
monocytes are cytotoxic to drug resistant tumour cells [270,
271]. They can also carry cytotoxic drugs and
immunomodulators [272, 273]. Immunostimulation with
IFN( may reverse monocyte deactivation in patients with
chemotherapy-induced neutropenia and the serious infections
and cause clinical improvement and increase the level of
CD14+ DR+ circulating monocytes [274]. The novel
approche is to utilize the ability of macrophages to migrate
into hypoxic areas of the tumour and use them for delivering
gene therapy [275]. However, currently adoptive therapy
with the use of monocytes/macrophages is still at infancy.
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