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This article reports the development of Monte Carlo simulations of the J-PET detector using the Geant4 toolkit
aimed at serving as a foundation for testing the time-reversal symmetry in the decay of ortho-Positronium (o-Ps)
atoms. In order to observe asymmetries in time-reversal, it is important to understand the physical proper-
ties of the signal candidates (o-Ps → 3γ) recorded by the detector setup. The simulations aim at replicating
the experimental procedure of producing meta-stable triplet states of positronium and testing the T-symmetry
using symmetry-odd operators with the Jagiellonian-Positron Emission Tomograph (J-PET) detector.
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1. Introduction

Discrete symmetries and their conservations have
played a fundamental role in exploring particle physics.
Classical physics has taught us the demand for con-
servation laws to be invariant under reversal of time.
The demonstration of the mirror symmetry being vi-
olated by the weak interaction was the first discovery
in this domain [1]. So far, there has not been any exper-
imental evidence of a violation of these discrete symme-
tries in the charged leptonic sector [2–5]. The Jagiellonian
Positron Emission Tomograph (J-PET) is the first PET
scanner making use of plastic scintillators [6, 7], which
is capable of positronium imaging [8, 9] as well as test-
ing discrete symmetries in the decay of positronium
atoms [10]. This experiment aims at producing the triplet
state of a positronium to test the symmetry by apply-
ing the time-reversal operator [10]. As a foundation to
these studies, this article describes J-PET-Geant4,
which is a program designed to run Monte Carlo sim-
ulations of the J-PET detector created using the Geant4
toolkit.

2. Time-Reversal Symmetry

Time reversal symmetry violations have not been ob-
served in purely leptonic systems, so far [2–5]. The Stan-
dard Model predicts photon-photon or weak interac-
tion to both give rise to phenomena mimicking a vio-
lation of the symmetry in the order of 10−9 (photon-
photon interaction) and 10−13 (weak interactions), re-
spectively [3, 4, 11–13]. There is a difference of about
6 orders of magnitude between the present experi-
mental upper limit and the standard model predic-
tions [5, 14, 15]. Discrete symmetries were proposed
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TABLE I

Discrete symmetry odd-operator constructed using
the momentum direction of the primary annihilation pho-
tons (ki) and the secondary scattered annihilation pho-
tons (k′

i) from the decay of o-Ps. The vector (εi) is
constructed as the cross product of the momentum di-
rection of the primary photon (ki) and its corresponding
secondary scattered photon (k′

i). The descending mo-
mentum of the three annihilation photons are denoted
by | ki |>| kj |>| kk |.

Operator C P T CP CPT
εi · kj + − − − +

to be tested with the ortho-Positronium (o-Ps) system
by determining the expectation value of the symmetry
odd-operator [10]. The symmetry-odd operator εi · kj is
constructed using the most-probable linear polarization
vector:
εi = ki × k′i, (1)

where ki is the momentum directions of the primary anni-
hilation photon and k′i is the momentum direction of its
corresponding secondary scattered annihilation photon.
The observation of a non-zero expectation value of this
operator would imply non-invariance of a given symme-
try. Symmetries for which the given operator is odd can
be tested at the J-PET system. This concerns, namely,
P, T, and CP symmetries (marked “ − ”) as showcased
in Table I [10].

3. Monte-Carlo Simulation

The J-PET detector consists of 192 plastic scintil-
lator strips 500 × 19 × 7 mm3 in size, as shown in
Fig. 1a [16]. Those strips form three concentric layers,
i.e., 48 modules arranged as a cylinder with a radius of
425 mm, 48 modules arranged as a cylinder with a ra-
dius 467.5 mm, and 96 modules as a cylinder with ra-
dius 575 mm. Only the most probable decay of o-Ps into
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Fig. 1. (a) Transverse view of the simulated J-PET
detector with a metallic chamber placed in the center
of the detector geometry.(b) Side view of the metallic
chamber (grey cylindrical tube) holding a β+ source
(red) in the center with XAD-4 porous polymer cov-
ering the source (yellow).

Fig. 2. (a): The spectrum shows the distribution of
annihilation positions of the produced signal candidates
using the J-PET-Geant4 simulations. (b) Projection of
the spectrum on the left-panel.

three photons
(
BR(o-Ps → 4γ/o-Ps → 3γ) < 2.6× 10−6

at 90% C.L. [3, 10]
)
is implemented in the J-PET-Geant4

simulator [17]. Since the aim of this research is testing
T-symmetry at the sensitivity level of 10−4, the less fre-
quent decays of o-Ps are neglected. These annihilation
gamma quanta are required to be co-planar in the Center

Fig. 3. (a) Distribution of angles between the regis-
tered annihilation photons from the decay of o-Ps→ 3γ.
(b) Energy spectrum of annihilation photons from o-Ps
→ 3γ events.

of Mass (CM) frame in order to conserve momentum [18].
The β+ source is placed in a metallic chamber covered
in XAD-4 porous polymer in order to aid the production
of ortho-Positronium atoms [16]. A geometrical model
(as shown in Fig. 1) replicating the experimental setup
was employed to set up the Monte Carlo simulations.
The distribution of annihilation positions of the gener-
ated signal events are shown in Fig. 2.

The generation of signal candidates is validated by
observing the distribution of the relative angles be-
tween the three registered annihilation photons as shown
in Fig. 3a, and the distribution of the photon energies
of the registered signals in the J-PET detector as shown
in Fig. 3b.

4. Conclusion

The production of the J-PET Monte Carlo simula-
tions using the Geant4 toolkit lays a foundation for test-
ing the time-reversal symmetry in the decay of ortho-
Positronium atoms. The Monte Carlo simulation pro-
gram designed for the J-PET detector created in Geant-4
is an open-source code [20]. The simulation program
is versatile and applicable to various experiments per-
formed with the J-PET detector. The J-PET simulation
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program is compatible with the J-PET framework soft-
ware, which can, therefore, be used to reconstruct Monte
Carlo data with exactly the same procedure as for ac-
tual experimental data. Hence, a direct comparison of
measurements and simulations is allowed [21].

In order to experimentally observe violation of
the time-reversal symmetry, it is important to sim-
ulate signal events to predict their behaviour in ab-
sence of any violation. The simulations were performed
to replicate the experimental procedure of producing
ortho-Positronium atoms. The simulation also tests
the T-symmetry using one of the symmetry-odd oper-
ator with the simulated Jagiellonian-Positron Emission
Tomograph (J-PET) detector.
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