
P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
3
1
3

Implementation of the conjugate gradient algorithm
in Lattice QCD on FPGA devices

Piotr Korcyl∗

M. Smoluchowski Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348
Kraków, Poland
Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
E-mail: piotr.korcyl@uj.edu.pl

Grzegorz Korcyl
Department of Information Technologies, Faculty of Physics, Astronomy and Applied Computer
Science, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland
E-mail: grzegorz.korcyl@uj.edu.pl

Results of porting parts of the Lattice Quantum Chromodynamics code to modern FPGA devices
are presented. A single-node, double precision implementation of the Conjugate Gradient algo-
rithm is used to invert numerically the Dirac-Wilson operator on a 4-dimensional grid on a Xilinx
Zynq evaluation board. The code is divided into two software/hardware parts in such a way that
the entire multiplication by the Dirac operator is performed in programmable logic, and the rest
of the algorithm runs on the ARM cores. Optimized data blocks are used to efficiently use data
movement infrastructure allowing to reach intervals of 1 clock cycle. We show that the FPGA
implementation can offer a comparable performance compared to that obtained using Intel Xeon
Phi KNL.

The 36th Annual International Symposium on Lattice Field Theory - LATTICE2018
22-28 July, 2018
Michigan State University, East Lansing, Michigan, USA.

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jagiellonian Univeristy Repository

https://core.ac.uk/display/322848665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:piotr.korcyl@uj.edu.pl
mailto:grzegorz.korcyl@uj.edu.pl

P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
3
1
3

Implementation of the conjugate gradient algorithm in Lattice QCD on FPGA devices Piotr Korcyl

1. Introduction

Field Programmable Gate Array (FPGA) devices enjoy more and more attention from the HPC
perspective in the last couple of years. Several FPGA clusters are already in operation, constructed
along two different architectural philosophies: either the FPGA devices are considered as the main
and only compute resource [1] or they are used as hardware accelerators attached to some CPU [2].
The advantages and disadvantages of both scenarios depend heavily on the memory access patterns
in the given problem being solved. In either case, the tremendous increase of available of resources
in a single FPGA device witnessed recently and new design methodologies yield a powerful can-
didate for HPC systems. Several features of FPGA are especially attractive: natural parallelism
allows to allocate many instances of a given logical component with all of them running in parallel;
multi-gigabit transceivers which are embedded within the FPGA package allow for a communica-
tion between several FPGA devices circumventing any additional hardware layer; no dependency
nor overhead imposed by the operating system; and last but not least logic resources which can be
dynamically reconfigured to accelerate another part of the algorithm. All this comes with a power
consumption two orders of magnitude smaller than current HPC compute node processors.

In this contribution we benchmark the most compute-intensive kernel in Lattice QCD, namely
the Dirac matrix multiplication on a single FPGA device. To this end we implement a simple Con-
jugate Gradient solver and use it to invert the Dirac matrix on a small lattice using a single Xilinx
ZCU102 platform. The latter possess an 4-core ARM processor which we use to run the main
program function and a programmable logic block where we implement the hardware-accelerated
Dirac matrix multiplication. In these proceedings we briefly describe the conditions which must
be fulfilled in order to fully pipeline the computations of all stencils. We also investigate the lim-
itations on the possible lattice sizes that can be analyzed on a single FPGA. Along the way we
briefly describe modern tools which allow the user to program solely in a high-level programming
language such as c++ thus considerably simplifying the effort to program the FPGA devices.

The results discussed in this contribution were described in detail in Ref. [3]. Previous, inde-
pendent efforts by other groups going in the same direction were presented at conferences in 2005
[4] and 2006 [5] by O. Callanan and recently in 2016 by T. Janson [6].

In the following section 2 we start by very briefly describing our benchmark problem, the Dirac
operator and the Conjugate Gradient algorithm, then we discuss the FPGA technology, concentrat-
ing on their possible advantages in the context of HPC in section. The results of our benchmark
tests are discuss in section 3, before the conclusions.

2. Implementation details

The Dirac operator matrix acting on a spinor vector is defined as [7]

D(m,n)AB
αβ

ψ
B
β
(n) = (mq +4)ψA

α(n)+

+
1
2

3

∑
µ=0

[
UAB

µ (n)P−µ

αβ
ψ

B
β
(n+ µ̂)+U†,AB(n− µ̂)P+µ

αβ
ψ

B
β
(n− µ̂)

]
(2.1)

with the convention that two indices are always summed over, and P±µ = 1± γµ . We exploit the
fact that due to the specific structure of the P±µ matrices, the two lower α components of the

1

P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
3
1
3

Implementation of the conjugate gradient algorithm in Lattice QCD on FPGA devices Piotr Korcyl

spinor are related to the upper two by a simple rescaling [8], hence one can halve the number of
multiplications by the U matrix.

The problem we are addressing is that of finding the solution ψ
β

B (m) given the rght-hand side
vector ηα

A (n),

DAB
αβ

(n,m)ψ
β

B (m) = η
α
A (n). (2.2)

The Dirac operator as defined in Eq. 2.1 satisfies the γ5-hermiticity, γ5Dγ5 =D†, so in order to apply
the CG algorithm one needs to solve for DD† which is hermitian and then multiply the solution by
D†. The simple conjugate gradient algorithm reads

ψ ← ψ0

r← η−Dψ

p← r
while |r| ≥ rmin do

rold ← |r|
α ← rold

|D† p|
ψ ← ψ +α p
r← r−αDD† p
β ← |r|

rold

p← r+β p
end while

The compute intensive part of the algorithm is the multiplication by D†D, out of which the
most elementary computational block is the evaluation of the single stencil, i.e. the right hand side
of Eq.(2.1) for a given value of the index n. This involves eight U matrices and eight spinor fields
from the neighboring lattice sites, which corresponds to 1536 input bytes. The U×ψ matrix-vector
multiplications require 1152 floating point operations for complex additions and multiplications.

A schematic view of the modern FPGA device is shown on the left panel of figure 1. As
already mentioned it contains a processing part (PS) which in our case is equipped with an ARM
processor, and the PL part with the programmable logic. The figure also shows the connections to
the external DDR memory. One of the key decisions from the programming point of view is the
software partitioning between the PS and PL parts. In the case of the CG algorithm there exists
a natural candidate to be accelerated in hardware, which is the vector-matrix multiplication: the
multiplication of the spinor field ψ by the Dirac operator D†D in equation 2.2. In such scenario the
main part of the CG algorithm is executed on the PS part. After each iteration the new residuum
vector is returned to the DDR where the ARM processor evaluates the vector scalar products and
the stopping criterion.

In order to easily compare the performance with the standard CPU architectures we use exclu-
sively double precision numbers. This induces a considerable increase in the cost, because large
logic resources are required to handle 64 bit arithmetics. A single addition or multiplication takes
14 clock cycles on the FPGA device used in this study. Modern GPU implementations of similar
algorithms [9] use various combinations of low precision steps (single or half) in order to increase
performance. FPGA devices offer a much broader spectrum of available fix point and floating point
arithmetics which can be tuned to optimize the performance.

2

P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
3
1
3

Implementation of the conjugate gradient algorithm in Lattice QCD on FPGA devices Piotr Korcyl

Figure 1: Left panel: schematic view at the key components of Zynq MPSoC used to transfer data between
PS and PL. Right panel: computation sequence of the stencil solver

One of the great advantages of the programmable logic implementation is that one can use
abstract types in the accelerated function without any loss of performance. Once the required data
blocks are copied from the DDR memory to the memory blocks of the device, data can be accessed
in parallel. In particular the ordering of the real and imaginary parts in memory does not longer
play a role, as all the appropriate reshufflings will be executed in hardware data routing. In practice
this allow us to work entirely with abstract types complex, su3_vector, su3_matrix and
su3_spinor, the latter being simply

struct su3_spinor {

public:

su3_vector s[4];

}

However, in order to allow the compiler to take advantage of the natural parallelism of FPGA
devices it is crucial to store data in PL in such a way that independent data is located in separate
BRAM blocks. This limitation corresponds to the fact that in a single PL clock cycle only one
memory element can be read from the BRAM block. In the computation of a single stencil one
needs eight different U matrices and we store them separately with the help of HLS pragmas such
as HLS ARRAY_PARTITION. Although this requires duplicating the amount of stored data, the
gain is considerable as thanks to that the stencil evaluation can be fully pipelined. Full pipelining
means achieving initiation interval of one clock cycle, i.e. the hardware block can accept new input
data at each clock cycle. The fixed structure of our computations, i.e. execution of exactly the
same computations for each lattice site, allows for fully a pipelined Dirac matrix multiplication, if
only enough logic resources are available on the device. Once the data is stored appropriately the
compiler parallelizes and pipelines the computations as shown on the right panel of figure 1 by the
schematic view of the logical data movement during a single stencil evaluation. The evaluation can
be naturally divided into 5 stages.

In the first stage all the necessary data is copied from the BRAM memory blocks to local
registers (declared with the ARRAY_PARTITION complete attribute). The process requires
only one clock cycle to collect all needed data. Later, in stage 2 linear combinations of input data,
8 additions and 8 subtractions of su3_vector type, are evaluated. They are all performed in

3

P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
3
1
3

Implementation of the conjugate gradient algorithm in Lattice QCD on FPGA devices Piotr Korcyl

Table 1: Resource consumption versus parallel execution.
latency interval bram dsp ff [106] lut [106] uram

142 1 508 6960 1.58 0.99 696
151 2 448 4320 0.97 0.64 696
151 2 428 3480 0.83 0.57 696
162 4 412 1740 0.47 0.35 696
250 120 1388 546 0.13 0.09 −

(76%) (21%) (24%) (34%) acc.
(95%) (21%) (31%) (40%) full

parallel, taking 14 clock cycles. The most compute intensive stage 3 involves su3_matrix and
su3_vector multiplications. In total 1152 operations on double are performed. Complete par-
allelization allows to execute them in a 5-layer operation cascade taking in total 5∗14 = 70 cycles.
Finally, at stage 4 all contributions are added up to the final result. Because of the dependencies
between consecutive partial results this creates a 4-layer operation cascade, which in total takes
57 = (4∗14)+1 clock cycles, 4 additions plus one data copy.

Overall, the kernel requires 142 clock cycles and a total of 1464 basic operations to compute
the final result since the reception of the input data. The kernel is fully pipelined: i.e. it can accept
new input data at each clock cycle and produce the results with latency of 142 cycles.

The implementation is fully scalable. If enough compute resources are available on the device,
a second instance of the hardware accelerated kernel can be instantiated. Because the computations
for each lattice site are completely independent, the set of lattice sites could thus be divided into
two parts and each of them could be associated to one of the kernels, reducing the total computation
time by a factor of two.

3. Benchmarks results

We compiled our implementation for two systems: Xilinx ZU9EG. This is the device, which
we had available, and Xilinx XCVU13P which we do not have physical access to. We used HLS
version 2018.2. We report on the number of resources used for the compilation of the entire project
in table 1. The first four entries are generated for the larger Xilinx XCVU13P device and differ by
the initiation interval shown in column 2. The latter can be controlled by HLS pragmas limiting the
number of instantiated blocks. In the last row of the table we separate resource usage gathered from
the Xilinx ZU9EG. The resource usage shows that it is possible to generate a fully pipelined kernel
capable of computing single stencil within 142 cycles and maintaining initiation interval of 1 clock
cycle. Smaller devices do not have enough internal memory resources to properly distribute array
elements for the kernel to compute new results at each clock cycle. Therefore, the memory usage
is crucial while achieving full pipelining. On ZU9EG 76% of memory is used (the rest has to be
reserved for Data Movers) but only 21% of DSP blocks, which means that most of the computing
resources are left unused due to lack of parallel memory interfaces and duplicated data units.

4

P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
3
1
3

Implementation of the conjugate gradient algorithm in Lattice QCD on FPGA devices Piotr Korcyl

Table 2: Performance in GFLOPs.
Interval Clock frequency Performance

[MHz] [GFLOPs]
1 500 676
2 500 351
4 500 179

120 150 1.82

The maximal problem size which was run on the Xilinx ZU9EG device was V = 63×8 because
of the limited memory resources available on that device. Problem sizes which were compiled for
the Xilinx XCVU13P device and fit into that device memory range from V = 84 to V = 83× 12.
The consumption of compute resources does not change as the problem size increases, only the
amount of used memory blocks increases.

The timings are collected from execution and compilation logs by inspecting the trace data
captured during algorithm execution in hardware. We count the number of cycles actually needed
for the execution of particular steps of the calculation (reading data in from DDR, evaluating all
stencils, writing data out to DDR). Assuming that the input data does not need to be loaded from
the DDR memory for each consecutive call of the accelerated function, the duration of the com-
putations can be calculated knowing the following parameters: the interval δ and latency τ of the
compute kernel, the clock frequency ν , the number of lattice sites V to be processed and the number
of FLOPs per lattice site f ,

performance =V × f ×ν/(V ×δ + τ) (3.1)

In table 2 we report on the obtained performances in GFLOPs. Maximum performance can be
achieved with the design that has the lowest initiation interval. That is possible on the XCVU13P
device with has enough memory and DSP block available. Assuming no data transfer is required
and the clock frequency is at the level of 500 MHz (kernel timing closure obtained) the generated
computing logic reaches 676 GFLOPs. The performance drops linearly with the amount of fully
utilized kernels.

Due to limited memory resources we have achieved only 1.8 GFLOPs on the available ZU09EG.
Not only high number of clock cycles for initiation interval but also lower clock frequency (Virtex
Ultrascale+ is the high-end devices family and contains URAMs) are the reason for slower design.

When the kernels have to wait until all data is transported from the DDR to PL, we achieved 1.3
GFLOPs on the available platform. The ratio between with and without data transport is strongly
dependent on the hardware infrastructure available on the FPGA chip itself and the hardware plat-
form it is mounted on. Our ZCU09EG device has 4 hardware interfaces between DDR and PL.
Using Virtex Ultrascale+ devices, one can profit from tens of embedded multigigabit transceivers
to stream data into the device. Another solution is to use a direct connection between a DDR
memory die and the logic as in Ref.[6], where the data is streamed into the programmable logic
block.

5

P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
3
1
3

Implementation of the conjugate gradient algorithm in Lattice QCD on FPGA devices Piotr Korcyl

4. Conclusion

In this contribution we have presented our implementation of the Conjugate Gradient algo-
rithm as used Lattice QCD for FPGA devices. Our hardware accelerated kernel is fully parallelized
and pipelined. We benchmarked our solution on a relatively small Xilinx evaluation board. Com-
pilation details for larger devices suggest that the obtained performance can comparable with the
one obtained on modern CPU units. We conclude therefore that FPGA devices can be considered
as a viable solution for HPC systems.

Acknowledgment

This work was in part supported by Deutsche Forschungsgemeinschaft under Grant No. SFB/TRR
55 and by the polish NCN grant No. UMO-2016/21/B/ ST2/01492, by the Foundation for Polish
Science grant no. TEAM/2017-4/39 and by the Polish Ministry for Science and Higher Education
grant no. 7150/E-338/M/2018.

The project could be realized thanks to the support from Xilinx University Program and their
donations.

References

[1] R. Kiełbik, K. Hałagan, W. Zatorski, J. Jung, J. Ulański, A. Napieralski, K. Rudnicki, P. Amrozik,
G. Jabłoński, D. Stożek, P. Polanowski, Z. Mudza, J. Kupis, and P. Panek, Aruz — large-scale,
massively parallel fpga-based analyzer of real complex systems, Computer Physics Communications
232 (2018) 22 – 34.

[2] T. Kenter, Reconfigurable Accelerators in the World of General-Purpose Computing. Universität
Paderborn, 2016.

[3] G. Korcyl and P. Korcyl, Towards Lattice Quantum Chromodynamics on FPGA devices,
arXiv:1810.04201.

[4] O. Callanan, D. Gregg, A. Nisbet, and M. Peardon, High performance scientific computing using fpgas
with ieee floating point and logarithmic arithmetic for lattice qcd, in 2006 International Conference on
Field Programmable Logic and Applications, pp. 1–6, Aug, 2006.

[5] O. Callanan, A. Nisbet, E. Özer, J. Sexton, and D. Gregg, FPGA implementation of a lattice quantum
chromodynamics algorithm using logarithmic arithmetic, in 19th International Parallel and
Distributed Processing Symposium (IPDPS 2005), CD-ROM / Abstracts Proceedings, 4-8 April 2005,
Denver, CO, USA, 2005.

[6] T. Janson and U. Kebschull, Highly parallel lattice qcd wilson dirac operator with fpgas, in PARCO,
2017.

[7] C. Gattringer and C. B. Lang, Quantum Chromodynamics on the Lattice. Springer, Berlin, Heidelberg,
3 ed., 2010.

[8] C. Tadonki, Wilson-dirac operator revisited on multicore vector computers, 09, 2016.

[9] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and C. Rebbi, Solving Lattice QCD systems of
equations using mixed precision solvers on GPUs, Comput. Phys. Commun. 181 (2010) 1517–1528,
[arXiv:0911.3191].

6

http://arxiv.org/abs/1810.04201
http://arxiv.org/abs/0911.3191

