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Abstract 

Reproductive allocation varies greatly across species and is determined by their life-history and 

ecology. This variation is usually assessed as the number of eggs or propagules (hereafter: 

fecundity). However, in species with parental care, individuals face trade-offs that affect the 

allocation of resources among the stages of reproduction as well as to reproduction as a whole. 

Thus, it is critical to look beyond fecundity to understand the evolution of life-histories and how 

investment into different reproductive components interact with each other. Here we assessed the 

influence of species-specific traits and ecological factors on interspecific variation in reproductive 

performance at each nesting stage of 72 avian populations. Annual productivity was unrelated to 

annual fecundity. Annual fecundity correlated positively with a fast life-history pace, precociality 

and non-migratory habits, but these traits were unrelated to reproductive success. Rather, the 

breeding ecology of a species determined productivity at each stage of nesting, but did not 

influence fecundity. These results challenge prevailing theory and emphasize that conclusions of 

interspecific variation in fitness based on numbers of eggs may be equivocal. Moreover, parental 

decisions regarding reproductive allocation face diverse constraints at different stages of 

reproduction, influencing the evolution of reproductive tactics in species with parental care. 
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Introduction 

Life history theory provides a framework to understand interspecific variation in the energy 

individuals allocate to reproduction. Given that individuals have limited resources to allocate 

among growth, survival and reproduction (Williams 1966, Stearns 1992), they must trade-off the 

energy they allocate to different vital functions. Theoretical work has made great strides in 

predicting optimal allocation to reproduction under diverse conditions and life history trajectories 

across organisms and lineages (e.g., Schaffer 1974, Kozłowski 1992, Brommer 2000). 

Comparative studies of avian clutch sizes have particularly been a foundation for the investigation 

of life history evolution in general (Martin 2004, Jetz et al. 2008). Lack (1947, 1954) proposed 

that clutch size should be optimized to produce the maximum number of offspring that parents can 

raise. As allocation into the number of offspring increases, allocation per offspring decreases, 

highlighting a trade-off between maternal fecundity and the probability of juvenile survival, 

thereby stabilizing selection on offspring number (Smith and Fretwell 1974, Mangel et al. 1994). 

While fecundity is expected to correlate positively with total reproductive allocation, it is only one 

component of allocation and will depend on how parental investment into offspring affects the 

probability of juvenile survival (Morris 1987). Thus, individuals have to decide on both the total 

amount of energy allocated into a reproductive event and the distribution of that energy into each 

component of reproduction (e.g., egg production, incubation, offspring provisioning) to optimize 

their investment (Winkler and Walters 1983, Martin 2004).  

In egg-laying animals, clutch size clearly sets the upper limit for the number of successful offspring 

in a reproductive attempt, but may not reflect actual differences in realized productivity (Murray 

Jr 2000, Etterson et al. 2011). For example, most tropical birds have minimal variation in clutch 
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size from a mode of two, but there is large variation in nesting success (Skutch 1985, Martin 1996, 

Robinson et al. 2000). Field studies of individual species have demonstrated that individuals can 

trade-off their reproductive effort between stages (Heaney and Monaghan 1996, Russell et al. 

2007), supporting the view that the level of allocation at one reproductive stage does not 

necessarily translate into realized reproductive success (Murray Jr 2000). Furthermore, 

comparative work has indicated that clutch size is positively related to parental energy expenditure 

and length of the nestling period (Martin et al. 2000). These findings indicate that the 

environmental and reproductive demands at later stages of nesting can feed-back to affect the 

evolution of clutch sizes (Morris 1987).  

Many biological and ecological factors have been shown to constrain avian clutch size (Table 1). 

Considering that selection acts on individual breeders, not their nests or eggs, measures of annual 

productivity are more pertinent to demographic and evolutionary studies than those of single 

reproductive events, yet they are relatively uncommon in avian studies. Interestingly, some studies 

have demonstrated that the same factors that explain differences in clutch size can have no or 

opposing effects on annual fecundity (e.g., nest predation pressure, Table 1). Moreover, there have 

been numerous calls to extend measures of fitness in birds beyond the number of eggs (Martin 

2004, Anders and Marshall 2005, Etterson et al. 2011), yet few studies have examined sources of 

interspecific variation in the survival of eggs or dependent offspring. Those that have (see Table 

1) have been limited in their scope and only one controlled for phylogenetic non-independence 

among species (Spottiswoode and Møller 2004). Thus, to our knowledge, no comparative test of 

the factors that affect reproductive investment differentially across nest stages has previously been 

carried out.  
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Following life history theory, we expect an inverse relationship between annual fecundity and the 

probability of offspring survival across species (Morris 1987). We predict that the factors that 

positively correlate with high fecundity (see Table 1) will negatively correlate with productivity. 

For example, the low fecundity of long-lived species is expected to be balanced by a higher 

investment into parental care, resulting in a higher proportion of offspring surviving. Similarly, 

high costs of parental care are expected to foster low fecundity but high nesting success in species 

with altricial young and/or an extended association between parents and independent offspring 

(“family-living”, Drobniak et al. 2015). However, in cooperative breeders, we expect high 

fecundity and productivity, because helpers may reduce the costs of parental care (Koenig and 

Dickinson 2004). In contrast, environmental factors that are expected to have a negative influence 

on productivity, such as high nest predation rates, a narrow ecological niche, and low breeding 

latitudes, are predicted to support selection for greater fecundity. Here, we test these hypotheses 

across 72 populations of birds (N=68 species), by comparing factors which contribute to 

interspecific differences in annual fecundity, the proportions of eggs and nestlings that survive 

until the subsequent stage, and the proportion of eggs that survive to fledging. 

Material and Methods 

Data Collection 

We searched for long-term bird studies reporting mean numbers of eggs, nestlings and fledglings 

over multiple years (mean number of years: 8.05, range: 3-41 years) in a given location using 

online databases (N=58 species). In addition, we obtained data from nest card records (N=10 

species; see Table S1 in Supplementary Materials for complete data source list). For each species 

in our dataset, we collected the following life history and ecological data that have been previously 
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associated with interspecific differences in clutch size or annual fecundity: average lifespan, body 

mass, egg volume, developmental mode (precocial, altricial), social system (non-family living, 

family living, cooperative breeder), nest predation rate, nest type (open, closed), habitat niche 

breadth (generalist, specialist), latitude of the study population, and migratory habits (migratory, 

sedentary). Detailed definitions are given in the Supplementary Material. These data were taken 

from the source from which we acquired the breeding data when available, or it was obtained from 

handbooks (Maclean and Robert 1985, Cramp et al. 1994, Poole 2005, Higgins et al. 2007, Del 

Hoyo et al. 2011) or other publications (see Supplementary Material).  

We calculated the annual reproductive allocation at each nest stage of each population by 

multiplying the mean number of eggs, hatchlings, and fledglings each by the mean number of 

clutches per year. When annual numbers of clutches were not provided for a population, we 

classified them to the nearest 0.5 clutches according to reported species-level averages (following 

Martin 1995). As a measure of productivity at each nest stage, we calculated the proportion of eggs 

which hatched (hereafter called hatching success), the proportion of hatchlings which fledged 

(hereafter called fledging success), and the proportion of eggs which fledged (hereafter called 

breeding success) to denote overall success relative to initial allocation. 

Statistical Analyses 

We used a principal components analysis (PCA; package 'psych' (Revelle 2015)) to reduce the 

dimensionality of our original set of continuous predictors (lifespan, body mass, and nest predation 

rate), because traits within a species are often correlated (Stearns 1992). We relied on the 

correlation matrix among variables to generate PCA scores rather than the covariance matrix 

(Graham 2003) because the units of measurement for traits differed. The inspection of a scree plot 
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and eigenvalues (package 'nFactors' (Raiche 2010)) suggested the extraction of 2 components, 

cumulatively accounting for 76% (43 and 33%, respectively) of the total variance in the included 

variables (Table S2). The first component, labelled “pace of life”, includes adult body mass and 

lifespan. High values of this component represent large-bodied, long-lived species. The second 

component, labelled “nest predation”, loaded strongly with nest predation rate. We tested for 

multicollinearity between explanatory variables by calculating the generalized variance inflation 

factors (GVIF; package ‘car’ (Fox and Weisberg 2011)) with the full set of predictors and each 

subset of predictors after model selection. GVIF values for all predictors were less than 2.5 in all 

cases. 

We used MCMCglmm (Hadfield 2010) in R 3.1.0 (R Core Team 2014) to run phylogenetically 

controlled linear mixed models (LMM) on transformed (if necessary), scaled (to unit variance) 

and centered variables (Schielzeth 2010). Non-significant (p<0.05) fixed effect variables and their 

interactions were removed using a backward elimination procedure. We included in all models a 

maximum clade credibility supertree from the best resolved phyla-wide phylogeny (Jetz et al. 

2012). In all runs we have employed weakly informative priors for fixed effects (normal with large 

(>106) variance) and for variance components (inverse Wishart distribution for residual variance; 

parameter-expanded priors with large variance for other random effects; Hadfield 2014). Models 

were run for 200,000 iterations with a burn-in period of 25,000 iterations and thinning interval of 

100 iterations. Proper mixing of MCMC chains was confirmed by reasonable (~1,000) effective 

sample sizes of posterior distribution samples for all estimated parameters and negligible 

autocorrelations (package ‘coda’ (Plummer et al. 2008)). 
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Each model was based on the subset of species for which the respective data were available. This 

restriction had an important consequence: while all studies included here reported mean annual 

fecundity, some studies did not provide numbers for either hatchlings (N=7), fledglings (N=15) or 

both (N=6), thus reducing the data available for comparing across nest stages. Therefore, we do 

not report on the basic number of hatchlings or fledglings between species, as different subsets of 

species would be represented within each model’s results, limiting our ability to compare across 

stages. Instead, we report the ratios of values between stages (hatching success, fledging success, 

breeding success), as these models include the full set of species for which we have values of both 

stages in question and thus enable more robust comparisons. We first examined the effects of the 

explanatory variables and their interactions on annual fecundity. In addition, we tested egg 

investment in terms of body mass-adjusted annual productivity (following Sibly et al. 2012). These 

results (Table S3) were similar in direction and strength to annual fecundity. We then examined 

the relationship between the above-mentioned species and ecological traits and hatching success, 

fledging success and breeding success. Finally, we tested whether each measure of success related 

to annual fecundity in separate linear mixed models, including the measure of success as a fixed 

term. 

All analyses were based on species-typical attributes that were averaged across annual population-

level observations. To facilitate interspecific comparisons, we averaged the data into single, 

species-specific values, with the advantage that the resultant values average annual reproductive 

parameters over several years. If within-population (intraspecific) variation in reproductive 

parameters and/or environmental factors differs significantly across years, it may bias observed 

patterns of interspecific variation, so we tested inter-annual variation in breeding parameters within 

the study populations. To achieve this, we have analyzed analogous models using respective (log-
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transformed) variances (inter-annual variance in annual fecundity/nestling numbers/fledgling 

numbers) as response variables, retaining the same set of fixed-effects (with the addition of 

respective means as fixed covariates to account for possible mean-variance relationships).  

Results 

Interspecific variation in annual fecundity was best explained by life history pace, migration, 

developmental mode and an interaction between nest predation rate and developmental mode (Fig. 

1a). Annual fecundity was inversely related to life history pace and migratory habits. Precocial 

species laid more eggs than altricial species, but the developmental mode interacted with nest 

predation rate, such that precocial species had a negative relationship with nest predation rate while 

there was no significant relationship for altricial species (Fig. 1b).  

Hatching success was 0.77±0.16 (mean±SD) across studies (N=59). Variation in hatching success 

was best explained by nest predation rate, absolute latitude, and an interaction between life history 

pace and social system (Fig. 1c). Not surprisingly, hatching success decreased with increasing nest 

predation rates but increased with absolute latitude. In cooperatively breeding species, hatching 

success was lowest in species with a slow life history pace, while family living and pair breeding 

species showed no relationship between pace of life and hatching success (Fig. 1d). Fledging 

success (mean±SD = 0.72±0.22, N=44) depended on pace of life, nest predation rate, habitat use 

and absolute latitude (Fig. 1e). Species breeding at high absolute latitudes and habitat specialists 

had the greatest fledging success, while species with a high nest predation rate and a slow pace of 

life had the lowest fledging success. Breeding success (mean±SD = 0.56±0.21, N=51) was linked 

to the combined effects of habitat specialization, absolute latitude, and nest predation rate. Habitat 
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specialists, those breeding at high absolute latitudes, and those with low nest predation rates were 

most successful (Fig. 1f). 

Mean annual fecundity was unrelated to hatching success (Estimate= -0.10, 95% CI= -0.39 – 0.19, 

pMCMC=0.54), fledging success (Estimate= -0.01, 95% CI= -0.39 – 0.41, pMCMC=0.96), and 

breeding success (Estimate= -0.06, 95% CI= -0.35 – -0.18, pMCMC=0.68; Fig. 3). Between-year 

intraspecific variance in annual fecundity depended on nest type and absolute latitude. The highest 

variance in annual fecundity was found in species breeding at low absolute latitudes (Estimate= -

0.014, 95% CI= -0.024 – -0.003, pMCMC=0.018, Table S4) and open-nesting species (Fig. 2, 

Table S4). Open-nesting species also had higher between-year variance in the number of 

hatchlings (Fig. 2, Table S5) and number of fledglings (Fig. 2, Table S6).  

Discussion 

Life history theory asserts that individuals face trade-offs that affect the allocation of resources 

into reproduction and among the stages of reproduction (Williams 1966, Stearns 1976). Our results 

confirm that variation in annual fecundity correlates with key intrinsic traits of species (i.e., pace 

of life, developmental mode, migratory habits), but demonstrate that these traits are not related to 

the realized reproductive productivity (Fig. 4). Rather, ecological factors (i.e., latitude, nest 

predation rate and habitat niche breadth) determined productivity at each nesting stage (Fig. 4). 

Our results suggest that reproductive success is independent of annual fecundity (Fig. 3) and that 

the constraints to successful reproduction differ from constraints to egg production (Fig. 4). Thus, 

our hypotheses for trade-offs in allocation between nest stages were not supported. Instead, our 

results demonstrate that the factors selecting for variation in reproductive allocation vary among 
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components of reproduction, highlighting the need to assess productivity independently at each 

reproductive stage or only once offspring become independent from their parents. 

Annual fecundity 

Our analysis of annual fecundity confirms the findings of previous comparative avian studies, 

namely that a fast pace of life is a key predictor for high annual egg production (Zammuto 1986, 

Ricklefs 2000, Ghalambor and Martin 2001), and that migratory species are less fecund than non-

migratory species (Böhning-Gaese et al. 2000, Bruderer and Salewski 2009). Moreover, our results 

suggest that birds trade-off parental care with fecundity (Jetz et al. 2008, Sibly et al. 2012), as 

evidenced by the high fecundity of precocial species, but we found no relationship between 

fecundity and social system. While family living species have been previously shown to have 

lower annual fecundity than non-family living species (Drobniak et al. 2015), our results do not 

support this idea. This difference may reflect that we controlled here for a number of other species 

traits, such as lifespan and developmental mode, or reflect a lower sample size due to the multi-

year data used in the present study.  

Nest predation rates only influenced annual fecundity in precocial species. This supports the often 

dismissed (Winkler and Walters 1983, but see Arnold et al. 1987) nest predation hypothesis 

(Perrins 1977), which proposes that fecundity is particularly limited by predation pressure in 

precocial birds due to increased incubation time for the longer laying period associated with a large 

clutch. As precocial chicks evacuate the nest soon after hatching, limiting incubation time under 

high predation pressure may be a more effective response for precocial species, since only this 

phase is sensitive to whole brood loss. In contrast, it may be more advantageous for altricial species 

to increase the number of clutches, with fewer eggs in each, spreading the risk of whole-brood loss 
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across multiple breeding attempts (Martin 1995). Such an effect in altricial species would not be 

evident from our analysis of annual fecundity, in which we combined mean clutch sizes with 

annual number of clutches. 

Nesting success 

The pace of life was the only intrinsic trait that related to both fecundity and nesting success, 

however it only appeared as a significant predictor for success at the nestling stage, and only for 

cooperative breeders at the egg stage, but ultimately did not play a role in breeding success. Species 

with a slow pace of life have long developmental periods, which can expose offspring to a higher 

risk of predation and starvation. Furthermore, cooperatively breeding species tend to have greater 

within-population genetic similarity than other birds, which may result in reduced egg hatchability 

(Spottiswoode and Møller 2004). Such a deleterious effect of cooperative systems would be most 

detrimental to short-lived species, as any increase in reproductive failure could have a substantial 

impact on fitness, while in long-lived species this effect may be mitigated by a large number of 

breeding attempts (Spottiswoode and Møller 2004).  

Explanations for interspecific differences in breeding success, and how differences in breeding 

success relate to differences in fecundity, have so far received little attention. Remarkably, none 

of the intrinsic traits that influenced fecundity across species were related to breeding success (Fig. 

3). Instead, breeding success depended on the species’ breeding ecology. Unsurprisingly, a low 

nest predation rate and high absolute latitude correlated with high breeding success, and were 

important to success at both the egg and nestling stages. The seasonality of high latitudes is 

predicted to limit population density over harsh winters, which generates lower competition during 

the relatively high resource productivity of spring and summer (Ashmole 1963, Ricklefs 1980). 
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Furthermore, the habitat niche breadth appears critical in determining the relative reproductive 

success beyond hatching: habitat specialists had greater breeding success than habitat generalists, 

despite similar fecundity. This effect is puzzling, as populations of habitat specialists are declining 

at a faster rate than habitat generalists (Jiguet et al. 2007). While populations of habitat specialists 

appear more sensitive to changes in the environment (Keinath et al. 2017), our results suggest that 

their breeding success is higher compared to habitat generalists, requiring further investigation to 

understand the effect of habitat specialization on population vulnerability.  

Nest predation rates are temporally variable and sensitive to local ecological conditions at study 

sites. Thus, current estimates of nest predation may not reflect a species’ evolutionary history of 

nest predation pressure (Martin 1995). Nest type may be a better indicator of nest predation 

pressure over evolutionary time, but can also reflect other factors such as climate fluctuations, 

population density, or parasite abundance (Collias and Collias 2014). In contrast to a previous 

comparative study (Martin 1995), our results did not indicate a link between nest type and 

reproductive success. This discrepancy may reflect that the previous study was phylogenetically 

and geographically restricted to Passeriformes and Piciformes of North America. Nevertheless, 

our results show that open nests have significantly higher between-year variance of both fecundity 

and successful offspring. This finding suggests that population means of annual productivity are 

most sensitive to predation pressure in ecological time, while the evolutionary processes involved 

in determining a species’ nest type are associated with variation in productivity. Open nesting 

species have more choice in the location of their nest than closed nesting species, and this 

flexibility may be beneficial when dealing with variable environmental factors such as weather 

conditions and predation pressure (Collias and Collias 2014). However, open nests are more 

exposed to these factors than closed nests (Godard et al. 2007). Consequently, open nesting species 
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may be more sensitive to fluctuations in the environment, leading to greater interannual variation 

in reproduction. 

Trade-offs between nest stages 

Contrary to our expectations, success at either stage of nesting (and overall) was unrelated to 

annual fecundity (Fig. 3), despite a high variance of success across species. For example, species 

in our dataset with an annual fecundity between 3 and 4 eggs ranged in breeding success from 

0.38-0.86 fledglings/egg (mean±SD= 0.59±0.19, N=20). Thus, the mean yield of fledglings for 

these species differs more than twofold (range 1.2-2.8 fledglings), despite comparable fecundity. 

This result demonstrates that clutch size is not directly moderated by the probability of offspring 

survival to independence, nor vice versa, and suggests that females of most species may not be 

able to regulate clutch size according to the actual breeding conditions (Erikstad et al. 1998, but 

see Griesser et al. 2017). The inconsistency of results regarding nest success in clutch size 

manipulations within species (Dijkstra et al. 1990) further supports this view. Moreover, this result 

emphasizes that measures of fecundity relate differentially to breeding success among species and 

thus inferences of fitness based on numbers of eggs, especially in comparative studies, may be of 

limited usefulness and should be approached with care.  

Conclusions 

Across-taxa comparisons of life history strategies require that comparable measures are recorded 

among species. Yet, reproductive productivity is often measured at different stages of a 

reproductive cycle, which may differ in their selective pressures, among species. In species with 

obligate parental care, reproductive effort does not terminate until offspring attain independence 

from their parents. If the number of independent offspring varies independently of the number 
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potential offspring (fecundity), and if constraints to success after egglaying or birth differ from 

those that affect fecundity, erroneous conclusions may be drawn for explanations of general 

patterns of life history evolution.  

Our comparative study emphasizes that studies investigating measures of fitness and the evolution 

of reproductive strategies should focus on the selective pressures throughout an entire breeding 

cycle and reproductive productivity be compounded once the full effort has been invested. Ideally, 

in birds, reproductive productivity would be measured once the offspring attain independence 

rather than fledging, but we concede that it is often challenging to follow the success of fledged 

offspring in natural populations, making these data sparse. Nevertheless, our results indicate that 

intrinsic constraints best explain variation in fecundity of birds, but that the (often fluctuating) 

conditions of a species’ breeding environment is a better predictor of interspecific variation in 

reproductive productivity in ecological time. Thus, parental decisions regarding the allocation of 

effort can face diverse constraints at different stages of reproduction, likely influencing the 

evolution of reproductive tactics in species with parental care. 
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Table 1 Demonstrated relationships between reproductive traits and biological/ecological factors 

in birds. 

 

Reproductive Trait Factor Relationship Studies 
clutch size lifespan/survival short > long 1-4 
 developmental mode precocial > altricial 5, 6 
 body mass small > large 5-7 
 migration sedentary > migratory 6, 8, 9 
 absolute latitude high > low 5, 10-12 
 nest predation rare > frequent 2, 13, 14 
 nest type closed > open 2, 5, 6 
annual fecundity lifespan/survival short > long 1, 2 
 developmental mode precocial > altricial 6, 15 
 body mass small > large 6 
 migration sedentary > migratory 2, 6 
 absolute latitude none 6 
 nest predation frequent>rare 2 
 nest type closed > open 6, 13 
 social system prompt dispersal > prolonged 

parent-offspring association 
16 

hatching success nest predation rare > frequent 17 
 absolute latitude high > low 18 
 nest type closed > open 19 
 social system non-cooperative breeding > 

cooperative breeding 
20 

breeding success nest type closed > open 19 
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Figure legends 

Fig. 1: Coefficient estimates and 95% credible intervals of the estimates of phylogenetically 

controlled linear mixed models predicting reproductive performance in 67 populations of 

birds. (a) Effects on annual fecundity of predictor variables (scaled) and the significant 

interaction between nest predation rate and developmental mode. (b) Model predictions of 

the relationship between annual fecundity, nest predation, and developmental mode. (c) 

Effects on hatching success of predictor variables (scaled) and the significant interaction 

between life history pace and social system. (d) Model predictions of the relationship 

between hatching success, life history pace, and social system. (e) Effects on fledging 

success and (f) breeding success of each of the predictors (scaled). 

Fig. 2: Model predictions of the relationship between within-species between-year variance in 

number of offspring (log-transformed and scaled) and nest type at each nesting stage while 

controlling for phylogeny and mean numbers of offspring at each stage. *p=0.01, 

***p<0.001 

Fig. 3: Average annual breeding success (the proportion of eggs which fledged) was independent 

of average annual fecundity (p=0.68). 

Fig. 4: Synthesis of the factors that constrain reproductive performance at each nest stage. Intrinsic 

traits largely inhibit reproductive performance through reduced annual fecundity. 

Ecological factors primarily influence nesting success. Thick arrows represent direct 

relationships between the factor and reproductive performance; dashed arrows indicate 

interactions, where the factor only effects breeding performance in species with the 

indicated trait. 
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Fig. 1 
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Fig. 2 
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