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Abstract
The study of neuronal interactions is currently at the center of several neuroscience big collab

orative projects (including the Human Connectome, the Blue Brain, the Brainome, etc.) which 

attempt to obtain a detailed map of the entire brain matrix. Under certain constraints, math

ematical theory can advance predictions of the expected neural dynamics based solely on the 

statistical properties of such synaptic interaction matrix. This work explores the application of 

free random variables (FRV) to the study of large synaptic interaction matrices. Besides recover

ing in a straightforward way known results on eigenspectra of neural networks, we extend them to 

heavy-tailed distributions of interactions. More importantly, we derive analytically the behavior of 

eigenvector overlaps, which determine stability of the spectra. We observe that upon imposing the 

neuronal excitation/inhibition balance, although the eigenvalues remain unchanged, their stability 

dramatically decreases due to strong non-orthogonality of associated eigenvectors. It leads us to 

the conclusion that the understanding of the temporal evolution of asymmetric neural networks 

requires considering the entangled dynamics of both eigenvectors and eigenvalues, which might 

bear consequences for learning and memory processes in these models. Considering the success 

of FRV analysis in a wide variety of branches disciplines, we hope that the results presented here 

foster additional application of these ideas in the area of brain sciences.
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I. IN T R O D U C T IO N

Contemporary neuroscience is obsessed nowadays with detailed studies of the neuronal 

connections across the entire human brain. Large scale collaborative efforts [1] including the 

BRAIN Initiative in the USA, Brainome in China, and the BlueBrain in the European Union 

were launched with the objective of mapping at different resolution the connectivity of the 

entire brain. At a certain point theory will be desperately needed to analyze these very 

large maps, describing the adjacency matrix of the brain. The present work is an attempt 

to enter in this uncharted and challenging territory.

Under certain constraints, mathematical theory can advance predictions of the expected 

neural dynamics based solely on the statistical properties of their synaptic interaction matrix. 

In that sense randomly connected networks of neurons are one of the classical tools of 

theoretical neuroscience. Only recently it was observed that the fact that the matrix of the 

synaptic connections is not normal (i.e., the matrix does not commute with its transpose), 

has dramatic consequences for the temporal dynamics of stochastic equations, which can 

mimic the dynamics of the network [2-4 ]. In particular, the work of Marti et. al [5] shows 

that increasing the symmetry of the connectivity leads to a systematic slowing-down of the 

dynamics and vice versa, decreasing the symmetry of the matrix leads to the speeding of 

the dynamics. This non-normality of the matrix not only forces matrices to have complex 

spectrum (which challenges several traditional tools of random matrix theory), but more 

importantly, its study sheds new light on the role of Bell-Steinberger [6] matrix of overlaps 

between the left and right eigenvectors of the connectivity matrix.

Contemporarily, the pivotal role of overlaps is understood in the simplest case of the evo

lution of complex Ginibre matrix - either in Smoluchowski-Fokker-Planck formalism [7, 8] 

or in Langevin formalism [9], following the pioneering paper [10, 11]. The effects of the 

overlaps of the Ginibre matrix for the temporal autocorrelation function of randomly con

nected networks was addressed analytically in the latest paper [5], confirming the numerical 

simulations in the weakly coupled regime of synaptic models.

In this paper we study the non-normality aspects of the popular model with excitatory- 

inhibitory structure [12-14], proposed by Rajan and Abbott in [15]. An important ingredient 

of this model is the introduction of the balanced condition, which stabilize the wildly fluctu

ating spectra of the network. In a later paper [16], the numerical study of the full non-linear
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dynamics in the Rajan-Abbott model has shown the emergence of a transition leading to 

synchronized (stationary or periodic) states. This phenomenon cannot be explained solely 

by the spectral features of the connectivity matrix, which motivates our study of missing 

non-spectral properties of non-normal networks, such as sensitivity to perturbations and 

transient dynamics induced by non-orthogonality of eigenvectors. Recently, it was hypoth

esized that the non-normality is universal in real complex networks [17].

Free random variables (hereafter FRV) theory is a relatively young mathematical theory, 

originating from the works of Voiculescu [18]. Partly due to the connection with large random 

matrices, it made in last decade a huge impact on physics [19], statistical inference [20], 

engineering of ICT technologies [21] and finances [22]. In brief, FRV can be viewed as 

a non-commutative probability theory for Big Data problems, where the information is 

hidden in statistical properties of eigenvalues and eigenvectors. As such, it is ideally suited 

for disentangling signals from noise in various kinds of complex systems. Another advantage 

comes form the fact, that at the operational level the formalism is simple and powerful, 

allowing very often to get results on the basis of “back-of-envelope” calculations.

From this perspective, it is rather bewildering, that FRV so far has not been broadly 

applied to the most challenging complex problem, i.e., the understanding of the brain. 

Thus, in this paper we consider FRV applications to understand the neuronal networks as 

represented by the synaptic strength matrix. Direct application of FRV not only allows us 

to recover in a straightforward way well known results in the literature [15], but also to 

address quantitatively such issues as stability of the network with respect to perturbation 

and extension the existing formalisms for the heavy-tailed distributions.

The paper is organized as follows. In Sec. II we discuss two important effects caused 

by the non-orthogonality of eigenvectors of non-normal matrices, namely high sensitivity of 

the spectra and the transient behavior of the linearized dynamics. We briefly describe free 

probability theory in Section III, showing how it allows one to calculate the spectral density 

and gives an access to the eigenvector non-orthogonality. In Section IV we reframe the 

model introduced by Rajan and Abbott in this language. Applying the theoretical toolbox 

explained in Appendices we recover and generalize their main results for the unbalanced 

network. In doing so, we uncover the analytic formulas for the one-point eigenvector corre

lation function for this model, crucial for the determining its stability. Since free random 

variables work also in the case of heavy, spectral tails [23], we also present results for the
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spectra and eigenvectors of the Rajan-Abbott model adapted for the case of the Cauchy 

noise. We successfully confirm our analytic predictions with numerical simulations.

Further, in Section V , we show explicitly that the excitation/inhibition balance condition, 

not only tames the spectral outliers, but also exerts dramatic effects on non-orthogonality 

of eigenvectors, increasing the networks’ eigenvalue condition number by several orders of 

magnitude. Section VI closes the paper with a summary of the main results and its impli

cations. It also outlines main promising directions for further studies using the presented 

formalism.

II. N O N -N O R M A L IT Y  OF S Y N A P T IC  IN T E R A C TIO N S IN N EU R AL N E T

W O R K S

Adjacency matrices of directed networks and synaptic strength matrices are non-normal. 

This influences not only their spectra, as the eigenvalues can be complex, but also has a 

strong effect on the eigenvectors. A diagonalizable non-normal matrix possesses two eigen

vectors: left and right for each eigenvalue. They satisfy eigenproblems

<Li| X  =  <Li| Xi, X  | R )  =  Xi | R ) . (1)

We use here physicists’ “bra-ket notation” , where |Ri) is a column and <Li | is a row vector. 

The scalar product is denoted as <L,i\Rj) and we define conjugated left vector |Li) =  (<Li |)*.

Eigenvectors are normalized to <Li | R j) =  5ij , but they are not orthogonal among them

selves <Ri |Rj) =  5ij =  <Li | L j). Chalker and Mehlig introduced a matrix of scalar products 

of eigenvectors [10, 11]

Oij =  <Li|Lj) <Rj|Ri). (2)

Below we describe two phenomena important in neural networks, in which the non

orthogonality of eigenvectors captured in the matrix of overlaps plays an essential role.

A . Synaptic plasticity seen as perturbations o f  a network

The synaptic strengths of real neuronal networks are not static [24]. Neural activity itself, 

in the course of time, allows neurons to form new connections, strengthening or weakening 

the existing synapses. This synaptic plasticity, on which biological learning is based, is not
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captured in many models. Nonetheless, the change of the synaptic strengths in a short time 

interval can be treated as a small additive perturbation of the initial matrix. This results 

in reorganization of the spectrum on a complex plane.

Considering the perturbation of the matrix X  by some t P , the change of the spectrum 

in the first order in t reads

SXi =  t <Li| P  ^ i )  <  e^<Li|Li) <Ri|Ri)||P||f. (3)

The inequality follows from the Cauchy inequality and ||P||F denotes the Frobenius norm 

||p ||F =  T rP P *. This inequality is saturated (equality holds) by the rank one Wilkinson 

matrix P  =  |Li) <Ri |. The inequality above shows that spectra of networks represented 

by non-normal matrices are more sensitive to changes in their connectivity. This enhanced 

sensitivity is driven by the non-orthogonality of eigenvectors. The quantity K(Xi) =  y/Oii is 

known in the numerical analysis community as the eigenvalue condition number [25, 26].

B. Eigenvector non-orthogonality in transient dynamics

Stability analysis and linear response of the dynamic systems with respect to external 

perturbations are among most popular methods of describing complex systems [36]. Let us 

consider dynamics obtained from linearization of the system in the vicinity of the fixed point

d
-  w  =  ( - ^ + x ) w  +  m) . (4)

Here £ represents the external driving. Choosing it as a “spike” |£(t)) =  8(t) |W(0)), we 

formally solve the system for t >  0

|w(t)) =  exp [(X  -  ^ )t] |w(0)). (5)

The long-time dynamics is governed by the eigenvalue with the largest real part. However,

if X  is non-normal, this analysis is incomplete. The behavior of the linearized dynamics can

be drastically different at its early stage. In particular, the system may initially move away 

from the fixed point. This sometimes invalidates the linear approximation and renders the 

fixed point unstable, even though the linearized dynamics predicts stability.

To describe this transient dynamics, we consider the squared Euclidean distance from the
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fixed point, which is the squared norm of the solution (5)

D (t) =  <W(t)|W(t)) =  e - 2>“  <w(0)| eXV *  |W(0))
N

=  £  <W(0)|Li) <Ri|Rj) <Lj|W(0)) e- 2" t+t<Ai+A. >. (6)
i,j=l

If we consider the “spike” |W(0)) as a particular versor on the N-hypersphere (real or com

plex), averaging over all directions uniformly distributed on the hypersphere leads to

D (t) =  e- 2̂ *^TreXHeXt =  e-2^  £  et(Xi+Xj)Oij . (7)
ij

We see that all elements of the overlaps of left and right eigenvectors drive the behavior 

of the squared distance. First, they enhance the contributions of the eigenmodes, which 

is responsible for amplification of the response to the external driving. Second, since the 

matrix is not diagonal, they couple different eigenmodes during the evolution. This results 

in an interference between eigenmodes, which is reflected as an oscillatory behavior of the 

squared norm of the solution (see also Fig. 7). Note that for normal matrices, such effects 

do not exist, since left and right vectors are orthogonal and the “coupling matrix” is an

identity. Recently, the transient growth was proposed as an amplification mechanism of

neural signals [2, 27, 28].

Usually the matrix X  is modeled as random. We remark that the averaging over all ini

tial conditions is equivalent to fixing an initial vector |W(0)) and averaging over the vectors 

U |W(0)), where U is uniformly distributed (according to the Haar measure) on the orthog

onal (unitary) group. This implies that if a randomness in X  is to be compatible with the 

average over initial conditions, the probability density function has to be invariant under 

unitary (orthogonal) transformations, P ( X ) =  P(U XU *).

III. T H E O R Y  OF FREE R A N D O M  VA RIAB LES

A. Spectral density and eigenvector correlations

Unitarily (and orthogonally) invariant random matrices in the large size limit are de

scribed by Free Probability. Its power relies on the easiness of obtaining analytical formulas, 

which are very good approximations even for a relatively small size of a matrix.
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An important class of matrices, the so-called bi-unitarily invariant, which generalizes the 

Gaussian distribution (described in Sec. III B) is important in the models of neural networks. 

Despite the fact that they are genuinely non-Hermitian, due to enhanced symmetry the 

spectral problem is effectively one-dimensional because the spectrum is rotationally invariant 

on a complex plane. In this case, a powerful result holds in FRV, known as the Haagerup- 

Larsen theorem [29]. It states that the radial cumulative distribution function F (r) =  

/0 2np(r')r'dr', of the ensemble X  can be inferred from the simple functional equation

SXtX(F  (r) — 1) =  ~2 (8)

where SX (z ) is so called S-transform for the ensemble X . In Appendix A we explain the 

probabilistic interpretation of S and we provide a simple example. Spectra of bi-unitarily 

invariant ensembles in large N  limit are supported on either a disc or an annulus, a phe

nomenon dubbed “the single ring theorem” [30, 31]. The inner radius of the spectrum is 

deduced from the condition F (rin) =  0 , while the outer one is given by F (rout) =  1.

The applicability of free probability to non-Hermitian matrices is not limited to spectra 

only. It gives also access to the local averages of the overlap matrix. The one-point function

[32]

O (z) =  T  / E  ^ ’ (z -  A<) (L<|L.> <R*|R.A , (9)

associated with the diagonal elements of the overlap matrix can be calculated for any type of 

unitarily invariant probability [33]. For bi-unitarily invariant ensembles it takes remarkably 

simple form [34]

O (r) =  F (r )(1 -  F (r )). (10)
nr2

The ratio of the one-point correlation function and the spectral density gives the condi

tional expectation of the squared eigenvalue condition number [34]

E (ft2(A.)|r =  |Ai|) =  N O r p ■ (11)

Recently, the two-point function associated with off-diagonal elements of the overlap 

matrix has become accessible within free probability [35].
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B. Example: G inibre-G irko ensemble

We conclude this section with an example of the above construction by considering the 

so called Ginibre-Girko matrix X , the entries of which are independently taken from the 

real/complex Gaussian distribution with zero mean and 1/N variance. According to (8) , 

we need the S-transform for X ^ X . This matrix belongs to the Wishart ensemble [37]. Its 

S-transform reads Sx tx (z) =  - +  (see Appendix A). This completes the calculation, since 

now replacing z ^  F (r) — 1 and using (8) we get

F  (r) =  r2 (12)

The spectrum is therefore uniform, p(r) =  277* * ^  =  1 , on the unit disc (F (r in) =  0, 

F (rout) =  1), reproducing Ginibre-Girko result. The eigenvector correlator comes from (10), 

O (r) =  n (1 — r2), in agreement with [10], where it was calculated using much more laborious 

techniques. In the next section, we show that the same computational simplicity is preserved 

when considering the ensembles taking into account physiological restrictions imposed on 

the neural networks models.

IV. R E F R A M IN G  R A JA N -A B B O T T  M ODEL

The strength of synapses between all pairs of N  neurons in a network is represented by the 

weighted adjacency (synaptic) matrix. Contrary to the Ginibre matrices, the structure of its 

elements is more complicated. In the minimal model [15], there are two kinds of neurons with 

a fraction /EN  representing excitatory (E ), and / / N  =  (1 — /E)N  the remaining inhibitory 

( I ) neurons. Their strengths are sampled from Gaussian ensembles, with means pi and 

variances o 2/ N , where i =  I , E . The matricial representation of the synaptic strength 

matrix reads therefore M  +  W . Here the deterministic matrix M  represents the average 

synaptic activity. In this model it is a rank one matrix with identical rows, each containing 

/ E N  consecutive means p E and followed by /  N  consecutive means p / . The random part W  

models variability across the population. It is assumed to be of the form W  =  X A , where 

X  is the Girko-Ginibre matrix and A is diagonal with its first / EN  elements equal to o E 

and last / /  N  ones equal to o/.

Several studies [14, 38] show that the amount of excitation and inhibition of a neuron 

is the same (the so-called E /I balance) even on the scale of few milliseconds [12, 13]. To
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incorporate this fact in the model, the balance condition is imposed on two levels. The 

global condition f E +  f i£ I =  0 means that neurons are balanced on average. This forces 

the last non-zero eigenvalue of M  to vanish. Even in the case of a null spectrum of M , its 

non-normal character causes the eigenvalues of M  +  X A  differ much from that of X A . As 

a result a few eigenvalues lie far beyond the spectrum of X A  [15], see Fig. 1.

The local E /I balance is imposed on this model by demanding that the sum of strengths 

coupled independently to each neuron vanishes. Mathematically, the elements within each 

row sum to zero. This condition brings the outliers back to the disc of radius R  =  

f Ia] +  f Eo2e -  now the spectra of W  and W  +  M  are identical [15], see also Fig. 1 .

A. R a jan -A bbott results from  FRV

Having known that the E /I balance causes the spectrum to be insensitive to the matrix 

of average strengths M , we consider a more general model of m  types of neurons, each with 

multiplicity f kN  and the synaptic strength variance a"^/N. The random part of the synaptic 

strength matrix can be written as W  =  X A , where X  represents Ginibre-Girko ensemble 

and A is the diagonal matrix diag(ai1 /1 N, ...,am1fmN). The multiplicities are normalized as 

E I= i f i =  1. In Appendix A, using free probability, we obtain the algebraic equation for the 

radial cumulative distribution function F (r)

m £ 2
i = ^ __________________ (13)

^  r2 -  a2(F (r) -  1) . ( )

Explicit solutions exist for m =  2, 3, 4 types of neurons, corresponding to the quadratic, cubic 

or quartic algebraic equation for F (r), but other cases are easily tractable numerically. The 

case solved by Rajan and Abbott corresponds to the quadratic equation. Solution (13) is 

also equivalent to the diagrammatic construction of [39], but more explicit. The spectrum 

is always confined within the disc of radius r^* =  r’= 1 f ia ‘E, as visible from the condition

F  (rout) =  1.

We will argue in Sec. V  that the presence of the deterministic matrix M  and the bal

ance condition exert a dramatic effect on the eigenvectors of the synaptic strength matrix. 

Knowing F (r), free probability allows us to calculate via (10) also the eigenvector correla

tion function O (r) for its random part W . In the case of the minimal model considered by
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FIG. 1. Eigenvalues and their condition numbers of the matrix of variances X A  (top left), Rajan- 

Abbott model of neural network (top right), matrix of variances with E/I balance imposed (bottom 

left) and Rajan-Abbott model with E/I balance (bottom right). The same realization of the 

Gaussian matrix X  was taken for all plots. We used parameters a/ =  0.3, aE =  0.1, f / =  0.15, 

f E =  0.85, ^/ =  0.85, /iE =  0.15. The matrix is N  =  100 in size. We observed in many realizations 

of this scenario that the outliers of the unconstrained Rajan-Abbott model have higher condition 

number than the average of eigenvalues within the circle. We impose E /I balance by subtracting 

the 1/N  of a sum of each row from any element from that row. The spectra in the panels on the 

left only slightly differ. The eigenvalues presented in bottom panels are exactly the same, but the 

presence of a highly non-normal matrix M  causes that the eigenvalues on the bottom right are 

much worse conditioned. Note the tenfold (a/N , as predicted by (20)) broader scale on the bottom 

right plot.
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Rajan-Abbott, it reads explicitly

where

(15)

This result is inaccessible within the framework of [39].

B. Heavy-tailed noise

Cauchy noise, belonging to the regime of Levy stable distributions, is used here as the 

simplest mechanism to mimic the non-Gaussianity of the realistic synaptic matrices. Since

In this case, the spectrum spreads over the whole complex plane, reflecting the large fluc

tuation of Levy type noises. In the case of more realistic Levy noises, one looses the simple 

analytic structure presented above, but the formalism stays -  the resulting equations are 

usually of transcendental type, but can be easily solved numerically.

V . N O N -N O R M A L IT Y  IN R A JA N -A B B O T T  M ODEL

(16)

(17)

Below we argue that imposing E /I balance not only confines the eigenvalues to a disc, 

but -  more importantly -  induces very strong non-orthogonality of eigenvectors. This in
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Radial density (M +)Cauchy A, E/I balance, N=500

r

FIG. 2. Cross-check of the numerical results with the analytical prediction of the spectral density 

for the Cauchy synaptic matrix.

turn causes the spectra to be highly sensitive to perturbations and strengthen the transient 

effects.

Let us assume that the matrix W  is diagonalizable. If we denote |u) =  (1 ,1 , . . . ,  1)T, the 

E /I balance is equivalent to the fact that |u) is the right eigenvector of W  to the eigenvalue 

Ai =  0. Let (Li| be the left eigenvector to this eigenvalue. For brevity we also denote 

(m| =  (p q ,. „  , p i , . . . ,  p m,. . . ,  Pro), which allow us to write M  =  |u) (m|. The spectral
fiN times fmN times

decomposition of W  reads

N
W  =  0 •|u)(Li|+ £ | R j ) Aj (Lj|. (18)

j =2

Since (m|u) =  0, (m| has a decomposition into the left eigenvectors of W , except for (L 1|,

thus (m| =  ^ j =2 (L j| a j with a j =  (m|R j). Hence, the total synaptic strength matrix is

decomposed as

n /  \
M  +  W  =  0 ■ |u) (Li| +  ^  |Rj) +  A i | „p  Aj (Lj|. (19)

j = ^  j ^

We constructed explicitly the eigenvectors of the synaptic strength matrix. The left eigen

vectors are not altered when M  is taken into consideration due to the E /I balance. The 

bi-orthogonality condition (Li |Rj) =  5ij leaves freedom of rescaling each pair of eigenvectors 

by a non-zero complex number |Rj) ^  Cj |Rj) and (Lj | ^  (Lj | c-1 . These transformations 

allow us to set the length of left eigenvectors (Lj |Lj) =  1. The diagonal elements of the new
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overlap matrix now read

j | j|

where we have used <u|u) =  N . In the large N  limit the last term will dominate. This shows 

that the condition numbers grow with the size of a matrix and the effect of the matrix of 

averages is stronger for eigenvalues close to the origin.

Analogous reasoning for the full overlap matrix leads to the conclusion that all its elements 

Oij for i, j  >  2 are affected by the E /I balance and the deterministic matrix. The dominant 

term in large N  is given by

<m|Ri) <Rj|m)
O 'j -  Oij -  N <Li|Lj)

XiXj
(21)

FIG. 3. (left) Eigenvector correlation function for the matrix of variances W with the E /I balance 

imposed. The random matrix was generated from complex and real Ginibre ensemble. The dashed 

line presents the analytical solutions from FRV. Numerical results (dots) were obtained by the 

diagonalization of 1500 matrices of size N =  1000. The discrepancies for real matrices come from 

the real eigenvalues. The fluctuations of the diagonal overlaps associated with them are so strong 

that the mean of their distribution does not exist [45]. (right) Eigenvector correlator of M  +  XA, 

where X  is complex Ginibre. The solid line presents the power-law, O(A) — |A|-2 , predicted 

by (20). In both pictures we took parameters aI =  0.4, aE =  0.1, f I =  0.25, f E =  0.75. For the 

picture on the right we also set ^E =  0.25, ^I =  0.75.

To study the statistics of the eigenvalue condition numbers, we performed numerical 

simulations by diagonalizing matrices, the random part was generated from either real or 

complex Ginibre ensemble. The eigenvector correlation function is juxtaposed with (14) from

14



distribution of On with vs w ithout M, complex

ON

FIG. 4. (left): The eigenvector correlation function of the synaptic strength matrices with E/I 

balance condition. Despite the spectra are the same, the squared condition numbers differ much. 

(right) Distribution of squared eigenvalue condition numbers of the eigenvalues of the synaptic 

strength matrix with and without constant matrix M .

Free Probability, see Fig. 3. The presence of the matrix M  and E /I balance is manifested 

in the scaling O (r) ~  r -2 for small r, as observed in Fig. 3, in accordance with (20).

There is a visible mismatch between numerics for real matrices and the results from free 

probability, particularly evident for eigenvalues with small modulus. This fact is explained 

in the light of the recent result by Fyodorov [45], where he showed that the distribution 

of the overlap for Gaussian matrices is heavy-tailed. This distribution conditioned on real 

eigenvalues of the real Ginibre is so fat-tailed that even the mean does not exist, thus O (z) 

can be considered only outside the real axis. Being aware of this fact, we have performed 

further simulations only for complex matrices which do not suffer from this problem.

We studied the effect of the deterministic matrix M  by juxtaposing the eigenvector cor

relation function in Fig. 4 and noticed the significant increase in its magnitude. This en

hancement of non-normality is visible not only on the level of mean value, but also on the 

full distribution of the overlap (see Fig. 4 (right)).

Above conclusions are strengthened by the similar study based on Cauchy synaptic matri

ces. Figure 2 shows perfect agreement of our predictions with the numerics. By construction 

of the Rajan-Abbott local condition, spectra are unchanged. This does not hold, however, 

for the squared eigenvalue condition numbers -  they dramatically increase (several orders of 

magnitude, note the scales in Figures 5 and 6) . Finally, the unperturbed eigenvector corre

lator approaches the predicted slope (compare the predicted slope 4 to the measured 3.84).
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FIG. 5. (left) Eigenvalues and their condition numbers for the synaptic matrix, the random part 

of which is generated from the matrix Cauchy distribution without (left) and with(right) the 

deterministic connection, M , reflecting Dale’s principle. Note the increase of condition numbers 

caused by an addition of M  (the scale is resized by an order of magnitude). Matrices M  and A are 

the same as in Fig. 1.

The perturbed correlator reproduces small r behavior (compare the predicted exponent 2 to 

the measured 2.03), whereas large r numerical simulations provide asymptotic slope 5.25, 

as compared to the predicted slope equal to 4.

The deterministic connections and the E /I balance causes an increase of all elements of the 

overlap matrix Oij , as eq. (21) predicts. To elucidate importance of this fact, we studied the 

squared norm of the solution to the linearized dynamics (6) with X  =  W  and X  =  M  +  W . 

This dynamics is obtained by the linearization of the model considered in [16]. Results 

presented in Fig. 7 show that the deterministic connections in the network followed by the 

E /I balance significantly enhance the norm of the solution and the transient trajectories are 

present for almost all initial conditions. This is not the case if the connections were fully 

random. Moreover, the wild oscillations of the squared norm indicate the strong interference 

between the eigenmodes.

One expects these dramatic effects to be visible in the activity of individual neurons. We 

therefore studied the temporal dynamics of the components of the vector of neural activities
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FIG. 6. Radial eigenvector correlator for Cauchy synaptic matrices. Green slope reflects the 

universal inverse squared behavior, for small r. Red slope approximates the analytic prediction 

(a =  4) for unperturbed model. Blue slope shows the numerical fit to perturbed model.

FIG. 7. Squared Euclidean distance from the fixed point in the linearized dynamics of [16]. The 

presence of M  induces strong transient behavior and wild oscillations. These effects are caused by 

the strong non-normality. Numerical results were obtained for the minimal Rajan-Abbott model. 

The matrix is of size N =  100 with the same parameters as in Fig. 1. We chose ^ =  rout +  0.02 to 

ensure stability. Each curve corresponds to a single initial condition generated randomly from the 

set of vectors of unit norm.

(5) for randomly chosen initial conditions. The results, presented in Fig. 8, show that in 

the presence of M , the neuronal activity is not only transiently enhanced, but also more 

synchronized, as observed numerically in the full dynamics in [16]. This effect persistent in 

the non-linear model is observed as transient in the linearized dynamics.
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FIG. 8. Activity of each neuron in the linearized dynamics. In the right panel we can see the onset 

of collective dynamics driven by the matrix M  and balance condition. Both simulations started 

from exactly the same initial condition randomly chosen from the N-dimensional hypersphere. 

Parameters are the same as in Fig. 7.

VI. DISCU SSION  A N D  CON CLU SION S

In this letter we explored the use of FRV in the study of large synaptic interaction 

matrices. Beside recovering in a straightforward way known results on the application of 

random matrices to neural networks, we have addressed the issue of large fluctuations, most 

probably very relevant to the dynamics of learning and memory in biological neural networks

[46]. Using recent results on the properties of eigenvectors in non-normal matrices, we have 

quantitatively linked the strength of the fluctuation of the outliers to a certain eigenvector 

correlator. We presented our analysis for the simplest Gaussian case, nevertheless we also 

pointed the way how one can consider other distributions, e.g., heavy tails. The formalism 

stays the same, perhaps the only difference (modulo easy Cauchy case which we solved here 

analytically) is that in the case of more general p d f’s one has to rely on numerical solutions.

From the present results it is clear that to understand the temporal evolution of non

normal matrix models requires considering the entangled dynamics of both eigenvectors and 

eigenvalues, contrary to the simple evolution of the spectra of normal matrices, for which 

the eigenvectors decouple in the presence of the spectral evolution [7, 8 , 47]

Our results indicate, that for the balanced networks the sensitivity of eigenvalues to addi

tive perturbation is dramatic and increases several orders of magnitude in the networks with 

heavy-tailed spectrum of adjacency matrices (small worlds). Since it is commonly accepted,
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that spike-timing-dependent plasticity in small-world networks is a hypothetical learning 

mechanism (for a recent experimental study see [48]), one may worry, how synchronization 

of the network is possible at all. We emphasize here that the E /I balance is put into this 

model by hand. In the real brain the E /I balance is maintained on the scale of hundreds of 

milliseconds [14], and periods during which the balance is violated are not longer than few 

milliseconds [12, 13]. More complete models of neural networks must incorporate the E /I 

balance as a dynamical process.

Networks adapting to the changing external conditions may change their structure in a 

controlled way. The high sensitivity of eigenvalues to these changes in this case might be 

desired, because it can facilitate the adaptation. We hypothesize that such high sensitivity 

in the models with dynamical E /I balance can emerge through a process a kind of self

regulated criticality [49]. Although the specifics of such process is not certain yet, there is 

evidence both empirical[50-53] as well as theoretical [54-56] of its plausibility. In addition, 

the connection of E /I balance with criticality was already observed at the level of neuronal 

avalanches analysis in EEG or MEG data [57].

Since the balance condition leads to a dramatic increase of eigenvector overlaps -  con

ditioning the spectra -  which further take crucial part in driving mechanisms of tempo

ral evolution of the networks, one needs a powerful, stabilizing mechanism preventing the 

transition to the chaotic behavior. Such chaotic behavior would imply sudden and drastic 

reorganization of the eigenvalues leading to unwanted dynamics of the neural network.

We envision one a priori mechanism, which can tame such a behavior -  it is the transient 

behavior. This conclusion is consistent with the model of Molino et al. [16] for non-normal 

balanced networks, who have observed synchronization inexplicable by solely spectral prop

erties of the networks. Transient behavior means that even stable trajectories may initially 

diverge before reaching the fixed point for long times. This implies that transient behavior 

is complementary to the stability analysis and may signal non-linear features already on the 

linear level [58]. Since analytic tools allowing the study of transient behavior for balanced 

networks are still missing, we have perform sample simulations, for Gaussian networks. 

Results are shown in Figures 7-8. These simulation confirm qualitatively the presence of 

transient behavior.

They raise however more quantitative questions: what are the statistical features of 

transient behavior in balanced neuronal networks? How the effects of transient behavior
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scale with the size of the network? What are the time-scales in the transient behavior? How 

does the transient behavior depend on the type of an adjacency matrix? We hope to provide 

some analytic answers to these questions in the sequel to this work. Last, but not least, 

considering the success of FRV analysis in a variety of disciplines, we hope that the ideas 

presented in this paper may trigger more interdisciplinary interactions in the area of brain 

studies.
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A  A  guide through Free Random  Variables

Free random variables can be viewed as a probability theory, where the basic random 

variable is represented by an infinite matrix. It is therefore most convenient to explain 

the cornerstones of free theory of probability using the concepts from classical theory of 

probability (CTP).

Let us consider the following problem. We have two random variables x 1 and x 2 drawn 

from independent probability distributions p i(x i) and p2(x2). The distribution of the ran

dom variable s being the sum of x 1 and x 2 reads therefore

p(s) =  J  dx1dx2p 1(x 1)p2(x2)J(s — (x 1 +  x 2)) =  J  dxp1(x)p2(s — x) (22)

One can easily unravel the convolution using the Fourier transform (characteristic function). 

Then p(k) =  J p(s)eiksds =  p31(fc)p32(fc), where pj(fc) are Fourier transforms corresponding 

to the original densities p^(x). Note that a characteristic function generates moments of 

the respective distribution. We can further simplify the problem if instead of characteristic 

functions we consider their natural logarithms 0(fc) =  lnp(k). Then we get the addition
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law, which linearizes the convolution

01+2(k) =  0 1(k) +  02 (k) (23)

Since 0 is another generating function -  this time for cumulants of the distribution -  above 

relation means simple addition of the corresponding cumulants. The algorithm of convolu

tion is therefore simple. First, knowing pi(x), we construct the 0i(k). Then we perform the 

addition law (23). Finally, we reconstruct p 1+2(s) from the 0 1+2(k), performing the first 

step in reversed order. A pedagogical and straightforward example is represented by the 

convolution of two independent Gaussian distributions N 1(0,a]i) and N2(0 ,a ‘2). First step 

shows, that in both cases only one cumulant is non-vanishing, i.e., the second one, =  af 

and k22) =  a|. The addition law and the last step of the logarithm immediately lead to the 

result, that the resulting distribution is also Gaussian, N 1+2(0, a2 =  a 2 +  a|).

In free probability, the notion of independence is replaced by the notion of freeness. Two 

large (infinite) matrices are mutually free if their eigenvectors are maximally decorrelated, 

e.g., matrices X  and U Y W , where U is the Haar measure, are free.

The role of the characteristic function is played by the complex valued Green’s function

Gx  (z ) =  /  p — ) dA (24)

where pX (A) is the average spectral density of the matrix X , playing here the role of prob

ability density function in CTP. Indeed, expanding GX (z) around z =  ro we get spectral 

moments =  /  AkpX (A)dA. Note, that knowing GX (z) we can easily reconstruct pX (A). 

Indeed,

-  n/Jim ^ G (z) L=a/ ++ =  ^ /  P(A) 1  (a  _  A)2 +  e2 dA =  /  P(A)6(A _  A)dA =  p(A' )(25)

The role of the generating function for free cumulants is played by the so-called R-transform, 

R (z) =  e  z  :1 Kkzk 1. The crucial relation between R(z) and G (z ) reads R (G (z)) +  Gzy =  z 

or G (R (z) +  1 /z )) =  z, i.e., R (z) is -  modulo the shift 1 /z  -  the functional inverse of 

the Green’s function. Let us come back to the problem of spectral addition. Imagine we 

have now the spectral measures pXi(A), corresponding to two matricial ensembles with the 

measures P (X i)dX i , where i =  1, 2. We are now asking, what is the spectral density of the 

ensemble X 1+2 =  X 1 +  X 2. This is a highly non-trivial and non-linear problem, since X 1 

and X 2 do not commute, but free calculus allows to solve this case in full analogy to CTP.
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The algorithm is as follows: First, from pi corresponding to X i we construct matching G ^z) 

and Ri (z). Then

r x 1+ x 2 =  R 1(z) +  R2(z) (26)

which supersedes (23). Finally, we proceed in reverse order, reconstructing from RXl+Xa (z) 

the Green’s function GXl+X2(z), and finally the spectral density pXl+X2(A). As an ex

ample, we consider the “Gaussian” in free theory, i.e., the spectral distribution the only 

non-vanishing cumulant of which is variance a 2. Thus R (z) =  a 2z . Reconstructing Green’s 

function gives k2G +  1 /G  =  z , with obvious solution G (z) =  -2̂2 (z — V z2 — 4a2). Taking 

imaginary part we reconstruct the celebrated Wigner semicircle p(A) =  212  V 4a2 — A2. We 

see that the addition algorithm for two free Wigner semicircles mimics precisely the addition 

algorithm of two Gaussians.

Similarly to addition, one can consider multiplication laws for random variables x 1 ■ x2. 

In CTP, such problem is unravelled with the help of Mellin transform, see e.g., [59]. In free 

calculus, the role of the Mellin transform is played by S-transform, related to R-transform 

as SX (z )R X (zSX (z)) =  1. The multiplication law reads

SXlX2 (z) =  SXl (z) ■ SX2 (z) (27)

and the algorithm for multiplication follows the one for addition. However, one should 

be aware that the product of two symmetric (hermitian) matrices may be non-symmetric 

(non-hermitian). In such a case, the eigenvalues can appear on the whole complex plane, 

and the methods of R (z) and S (z ) transforms, based on analyticity, require substantial 

modifications. Luckily, there exist one powerful case, governed by the Haagerup-Larsen 

theorem (known also as a “single ring” theorem), when analytic methods hold for complex 

spectra. If the complex matrix X  can be decomposed as X  =  P U , where P  is positive, 

U is Haar-measured and P  and U are mutually free, the spectrum on the complex plane 

has a polar symmetry and the radial distribution can be easily read out from the singular 

values of X , i.e., the real eigenvalues of X t X . In mathematics, such ensembles are known 

as R-diagonal. To infer the information about the spectra and some correlations between 

left and right eigenvectors one needs only the explicit form of SXtX (z). In the case of 

the Ginibre ensemble X  (i.e., where X ij are drawn either from real or complex Gaussian 

distributions), this is particularly easy, since matrix X ^ X  is known as a Wishart ensemble.
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To avoid obscure mathematics, let us recall that the Wishart ensemble is a free analogue 

of the Poisson distribution from classical probability [18]. This implies that all cumulants 

are the same, and if for convenience normalized to 1, its R transform is just, by definition, 

RXtX (z) =  Z  zi-1 =  . Using the above-mentioned functional relation between R

and S transform we arrive at SXtX =  p+z. Similar techniques can be applied for generic 

randomness in Rajan-Abbott type models, as we show below.

B R a jan -A bbott m odel with Gaussian noise

We use the theorem from free probability, which states that the product of R-diagonal 

operator with any operator is R-diagonal [60], therefore W  is subject to the Haagerup-Larsen 

theorem. Then W^W =  AX ^X A =  X ^ X A 2, where the last equation expresses the fact that 

the spectral properties are invariant under the cyclic permutations of matrices under the 

trace. The Green’s function (resolvent) for A2 reads therefore
m p

Ga2 (z) =  £  - f i -5  (28)
t !  z _  - i

Substituting z ^  Ra2 (z) + 1 in (28) and using the fundamental FRV relation G (R (z) +  Z) =  z 

we arrive at
m

! =  zRA2 (z) _  z- 2 +  1 (29)

Now we replace in (29) z ^  tSA2 (t) and using the relation between S and R transforms we

arrive at
m

! =  E 1 + 1 _  X  (t) (30)

We note that U - is the S-transform for the Wishart ensemble (calculated above), and the 

multiplication law gives us the final S-transform for W ^W , i.e., 1+  SA2(t) =  SXtX (t)SA2(t) =  

SWt W (t), so we arrive at
m

! +  * =  E  1 _  (  ,w ( t ) . (31)

In the last step we substitute t ^  F (r) _  1 and use the Haagerup-Larsen theorem, arriving

at
m

F (r) =  £  1 _  - 2(F (r ) _  1) / r 2. (32)
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Subtracting 1 =  Y1 i f i from both sides finally gives the solution
m -p 2

1 =  |  r2 -  a ?(F (r) -  1) ' (33)

C R a jan -A bbott m odel with Cauchy noise

FRV calculus is a powerful technique and the range of its applications is not confined to 

the basin of attraction of the Gaussian type. In particular, for random matrices X  belonging 

to the free Levy class (spectrum behaving like 1/A“ - 1), the S-transform for the Wishart- 

Levy matrix X ^ X  reads Sx tx (t) =  t(1+t) ( b) t/a, with b =  exp[in(a/2  — 1)] [61]. Stability 

index a  =  2 reproduces the Gaussian case, but a simple form can be obtained also for the 

Cauchy disorder a  =  1. In this case Sx tx  (t) =  — , and when applied to (30), yields
m

1 + 1 =  I  , c  f * 2 (34)
1 +  SW tW (t)ai

Final substitution t ^  F (r) — 1 and the use of the Haagerup-Larsen theorem gives explicit, 

linear equation for arbitrary number of types of neurons
m

F  (r) =  E  T + frfM  (35)i=1 1
Contrary to the previous case, the spectrum is unbounded and stretches up to infinity. 

Explicitly, the spectral density and the eigenvector correlator read

( ) =  1 dF  (r) =  1  ^  f i (36)
P(r) =  2nr dr =  (r2 +  a 2)2 ( )i=i v 1J

1 1 m f m f a 2
0 (r) =  F  ( r) ( i — F  (r)) =  - E  ^  E  (37)

i=i 1 j=i j

In the case of arbitrary a, resulting transcendental equations can be easily solved numerically. 

Other type of randomness of the neural networks can also be modeled, e.g., by considering 

Student-Fisher spectral distributions.
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