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Abstract   

The brain is an organ that performs a variety of intricate functions. Specifically, the brain has an 

amazing ability to recover the complexities of a speech signal within a mixture of sounds. The 

process of extracting the speech signal from background noise, however, is not necessarily 

straightforward or easy. Previous studies have developed the concept of “listening effort” as an 

umbrella term to include all cognitive demand listeners confront to understand speech. From a 

clinical standpoint, this term suggests that accuracy measurements alone are not sufficient, and a 

supplementary assessment of how hard a client must try in order to understand speech (especially 

when the speech is degraded due to background noise) must be conducted. Current research 

emphasis is on the post-speech-time compensatory processes in recovering speech cues. 

However, in this study, we claim pre-speech-time attentional processes also create a source of 

listening effort. To support this idea, we measured the cortical, behavioral, and pupillary 

responses of 19 normal-hearing participants to SiN conditions when speaker-identity cues were 

provided before speech. We found that such speaker-identity cues significantly increased alpha 

oscillations in fronto-temporal cortex during post-cue pre-target time. Cortical evoked responses 

to target speech exhibited significantly greater amplitude in the cued condition, indicating 

speaker-identity cues enhance attentional processes. Grand-mean pupil dilation was larger in the 

cued condition, albeit the difference was not significant. The speaker-identity cues did not alter 

accuracy significantly, which guaranteed that our comparisons on pupil and EEG responses were 

not affected by the ratio of correct trials in across-trial averages. Combining these results, we 

claim that listening effort is not always an inherently bad, fatiguing process, but rather, includes 

top-down brain mechanisms that help listeners better attend to a target speech signal in 

background noise.  



 3 

Introduction 

Understanding unclear speech is an ability that is critical for successful communication in 

our increasingly noisy, imprecise world. The clarity of a speech signal may become greatly 

compromised in environments with a high level of background noise. In listeners with hearing 

loss in noisy environments, the speech signal received is initially degraded by hearing loss or the 

limitations of a hearing device, and is further degraded by the background noise. As a result, 

individuals with hearing loss report high levels of fatigue and strain when listening to speech-in-

noise (Finke, Büchner, Ruigendijk, Meyer, & Sandmann, 2016; Ohlenforst et al., 2017).  

The ability to understand speech-in-noise is not only affected by the degradation of 

bottom-up acoustic cues, but also by top-down cognitive processes (Strait & Kraus, 2011). 

“Listening effort” is a loosely defined term that describes the top-down processes of listening as 

“the deliberate allocation of mental resources to overcome obstacles in goal pursuit when 

carrying out a task (Pichora-Fuller et al., 2016).” While bottom-up acoustic cues cannot 

necessarily be adjusted in a certain listening environment, the cognitive processes behind 

effortful listening are an area researchers seek to further characterize in order to address the age-

old problem of listening fatigue and decreased accuracy in speech-in-noise conditions. This field 

of research aims to determine if being provided additional acoustic features of speech before 

physically hearing the noisy speech may help to improve accuracy and relieve listening effort. 

Researchers are conducting theoretical research to establish the neural correlates of listening 

effort, so that ultimately this knowledge may be applied in a clinical setting as an objective 

assessment or treatment tool for subjective reports of listening fatigue (Dimitrijevic, Smith, 

Kadis, & Moore, 2019).      
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Theoretical framework of attention and effort suggested by Kahneman (Kahneman, 1973) 

has served as a widely-accepted basis for the current model of cognitive effort. In this model, the 

term ‘effort’ is used interchangeably with the term ‘attention,’ and is explained to be an 

objective, cognitive attentional-effort (Bruya & Tang, 2018). The model outlines that allocation 

of attentional-effort changes with task difficulty, momentary intentions, and capacity limitations 

in the model. A feedback loop instantaneously directs the allocation of attentional-effort as a task 

unfolds. The allocation of attentional-effort is an involuntary process when performing a task, 

however, an individual retains the choice to discontinue partaking in the task at any point. In this 

instance, an individual can choose to allocate less effort, and therefore, suffer a decrease in 

performance. Conversely, allocating any more effort than demanded of the task is not possible. 

Lastly, Kahneman suggests that time-pressure is an important determinant of attentional-effort 

allocation in that it causes a sudden, increased allocation of attentional-effort to meet task 

demands (Kahneman, 1973, Chapter 2).  

The attentional-effort required to understand speech-in-noise can be categorized as 

endogenous, externally-directed attention because inward attentional-effort is being applied to 

outward stimuli in a listener’s adverse listening environment (Strauss & Francis, 2017). When 

listening to speech in a noisy background, the listener must first detect the sound, which 

immediately undergoes an initial grouping process based on spatial and temporal aspects of the 

signal. In the grouping process the speech stream is extracted from the background noise. 

Ascending the perception hierarchy, attentional-effort will now be allocated in the ensuing step, 

figural emphasis. At this level, the figure (speech) and ground (background noise) become 

distinct, and attentional-effort will affect which aspects of the figure get emphasized and further 

processed. The allocation of attentional-effort in this step is determined by innate dispositions to 
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physical characteristics of the stimuli, collative factors of the stimuli, and selective intentions of 

the listener. Kahneman highlights studies demonstrating the deployment of attentional-effort 

during figural emphasis in the visual modality. Subjects showed improved accuracy scores when 

they were cued before the trial to pay attention to a designated object. In this way, certain 

features of a stimulus can be cued for emphasis during the figural emphasis stage of perception 

(Kahneman, 1973, Chapter 5).   

Selective attention is a key process within figural emphasis. Kahneman explains, “It is 

reasonable to describe selective attention as a consistent emphasis on a class of perceived objects 

or perceived events in preference to others.” It can be modulated to encoding of spatial and non-

spatial acoustic features (Lee et al., 2012), reshape receptive fields in the primary auditory cortex 

(Fritz, Elhilali, David, & Shamma, 2007), and can be enhanced with stimulus continuity (Best, 

Ozmeral, Kopco, & Shinn-Cunningham, 2008). Work by Holmes et al. (E. Holmes, Kitterick, & 

Summerfield, 2018) demonstrated that endogenous preparatory auditory attention to a pre-target 

visual cue builds over time and reaches optimal configuration when the cue-target period was at 

least 2,000 ms. Further, accuracy in target selection improved as cue-target intervals neared 

2,000 ms. 

The effects of attentional-effort have primarily been studied using indirect measures such 

as pupillometry, subjective measures, and accuracy. The physiological measure of pupillometry 

has been used as an index of the effort exerted during a task, under the consensus that a larger 

pupil dilation indicates a more effortful task (Ohlenforst et al., 2017; Winn, Edwards, & 

Litovsky, 2015; Winn, Wendt, Koelewijn, & Kuchinsky, 2018), although pupillometry alone 

cannot reveal underlying neural substrates of effort that change quickly over time.  



 6 

It has also been shown that a more direct measure, EEG, is sensitive to the allocation of 

attentional-effort across time. The amplitude of N1 and P2 event-related potential (ERP) 

components becomes greater when the sensory input is attended, and  becomes smaller when the 

same input is ignored (Hillyard, Hink, Schwent, & Picton, 1973). Such modulation of N1-P2 

amplitude is a consequence of attentional effort (Deng, Reinhart, Choi, & Shinn-Cunningham, 

2019; Hansen & Hillyard, 1980). Further studies have shown that induced activity, especially in 

the alpha band, is indicative of effort (Dimitrijevic et al., 2019; Strauß, Wöstmann, & Obleser, 

2014). Measures such as EEG and pupillometry can track cortical responses to stimuli across 

time and are used in this study to measure the allocation of attentional-effort across a time course 

of noisy speech.  

Currently, the literature is rich with studies exploring attentional-effort in the visual 

modality, but less is known about the neuromodulation of attentional-effort in the auditory 

modality, specifically during a preparatory period following an auditory cue. Therefore, the aim 

of this study was to more concisely characterize the neural correlates of attentional-effort when 

pre-stimulus auditory cueing was provided. In this study, the allocation of attentional-effort was 

measured at the preparatory and target speech intervals when an auditory cue indicating speaker-

identity was provided before the presentation of speech-in-noise. It was hypothesized that, in the 

cue-target interval, more effort (resulting in larger induced EEG activities) would be present 

when a speaker-identity cue was provided than when no cue was provided. We also hypothesized 

that, as the consequence of greater attentional effort, the cued condition would exhibit larger N1-

P2 ERPs at the onset of the target speech in noise and smaller pupil dilations than when no cue 

was provided. Lastly, we hypothesized that accuracy would be greater when a cue was provided. 
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 The pre-registration form for this experiment, which includes hypotheses, planned 

analyses, exclusion criteria, and sample size justification, can be found at: 

https://aspredicted.org/49e98.pdf 
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Methods 

Stimuli  

The stimulus words-in-noise in this study were selected from the Iowa Test of Consonant 

Confusion (ITCC) (A. Holmes, Geller, Schwalje, Choi, & McMurray, 2020). The ITCC is a 

four-alternative forced choice (4AFC) recognition task composed of 120 unique CVC rhyming 

keywords in confined “sets”, or groups of four words with which they are always presented (e.g. 

ball, fall, shawl, and wall appear as choices when each word serves as the keyword). It is a 

phonetically-balanced, difficulty-balanced, and closed-set list. 

 The ITCC offers two male and two female voices for each test item. For this study, a 

female-voiced list and a male-voiced list were selected. The ITCC words were presented in 

multi-talker babble as the background noise with a fixed signal-to-noise-ratio(SNR) of 0 dB. The 

stimulus was presented in the sound field at 75db SPL.  

 

Participants 

Subjects with normal hearing and normal or corrected-to-normal vision were recruited through a 

mass email and by word of mouth from a population of students at a large Midwestern 

university. All subjects were volunteers who provided written informed consent and were 

compensated for their participation. Our screening criteria required each participant to i) be a 

native English speaker, ii) report no hearing threshold > 25dB at any tested frequency between 

250 and 8000Hz during a hearing screening, iii) have no reported history of ADHD, brain injury, 

neurological conditions, or taking psychoactive medications (e.g., SSRIs). After the screening, 

22 subjects participated in the experiment. After data collection, 3 subjects were excluded based 

on the following exclusion criteria: i) does not complete the entire experiment, ii) excessive data 
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loss or artifacts (20% percent missing data), iii) speech-in-noise accuracy below 50% at 0 dB 

SNR. Finally, data from 19 subjects were used for further analyses. Participants (7 men, 12 

women) had a mean age of 23 years old. The target sample size was determined by power 

analysis based on the pilot data. This study was approved by the University of Iowa Institutional 

Review Board.  

 

Equipment   

Subjects were fit with a 64 channel EEG cap from the BioSemi ActiView system. The Polhemus 

Patriot 3D scanner system was used to record the position of each electrode on individual 

listeners’ heads. Subjects performed the task in a sound-treated, electrically shielded booth. The 

room was bright enough to ensure baseline pupil sizes were small. Subjects were seated in a 

wooden chair at a table, with the computer screen 90 centimeters in front of them at eye level. 

Their head was stabilized in a table-mounted chinrest 60 centimeters from the Eyelink 1000 

desktop eye-tracker. Subjects responded to the task on a keypad that contained only keys 

denoting 1-4. The placement of the keys was manipulated by experiments so they formed a 

single horizontal row. Sound was presented from a single loudspeaker (model #LOFT40, JBL) 

placed 1 meter from the subject at a 0° azimuth angle. The task was implemented using Matlab.  

 

Procedure 

Scalp electrical activity (EEG) was recorded during the SiN task at a 2048 Hz sampling rate in 

the BioSemi ActiView system. Trigger signals were sent from Matlab to the BioSemi ActiView 

acquisition software. Sixty-four active electrodes were placed according to the international 10-

20 configuration. Electrode positions on each listener’s head were measured using Polhemus 

Patriot 3D scanner. Offset voltages were kept below 30mV. 
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The pupil data were collected with an EyeLink Duo. The distances and settings for the 

eye-tracking equipment were based on recommendations from the EyeLink 1000 Plus manual. 

Participants rested their chin in a chin-rest mount during the task to reduce movement. Eye-

tracking data were collected at 500 Hz in monocular mode for the better-calibrated eye. Pupil 

tracking was set as ellipse and diameter. A standard nine-point calibration and validation was 

completed with drift correction every 30-50 trials. Calibration standards implemented were that 

average error was <0.30° and <1.00° max error. 

 In this task participants were asked to respond to a speech-in-noise task with which word 

they think they heard spoken in the noise. The two conditions in this study were cued speaker-

identity and non-cued speaker-identity. In the cued condition, a cue phrase was spoken by either 

a single male or female voice, and that same voice spoke the following target word-in-noise. In 

the non-cued condition, a cue phrase was spoken by both the male and female voices at the same 

time, but only one speaker, either male or female, spoke the following target word-in noise.  

 Each participant was presented with each of the 120 items twice during the task: once in 

the cued condition and once in the non-cued condition. Within the cued condition, speaker-

identity was counterbalanced across participants so that each item had been cued by the male 

speaker and the female speaker. 

 Figure 1 represents the trial structure. Each trial began with the presentation of a fixation 

cross (‘+’) on the screen to which listeners were asked to fix their gaze throughout the trial to 

minimize eye-movement artifacts. The task began with the cue phrase “choose the word,” which 

enabled listeners to acquaint to the identity (or lack of identity) of the target word speaker and 

predict the timing of next acoustic event – the noise onset. After fixed-duration silence (3 

seconds) that followed the cue phrase, multi-talker babble noise started and continued for 3 
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seconds. The target word was presented in the noise 2 seconds after the onset of the noise. The 

composite auditory stimulus (noise + word) was followed by a 3 second silent retention period to 

account for the sluggish pupil response. After the brief silent retention period, four foils were 

presented on the monitor, and subjects were instructed to select the word they heard using the 

keypad.  

 No feedback was given to subjects at the end of a trial. The next trial began 1 second 

after the button press. They had 10 seconds to respond before the trial advanced with no 

response. Subjects completed 240 trials with an optional break every 30 trials to prevent fatigue.  

 

 

Figure 1: Trial structure of cued and non-cued conditions  
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Pre-Processing  

Pupillometry 

Pre-processing of the pupil data was done in R using the gazeR package (Geller, Winn, Mahr, & 

Mirman, n.d.). Trials with more than 20% data loss due to blinks and participants with more than 

20% trial loss in either cueing condition were excluded. First, blinks were identified and 

extended 100 ms prior to and 100 ms after the period of missing data, and were then linearly 

interpolated. Next, a five-point moving average was used to smooth the data. The smoothed data 

was then normalized with subtractive baselining (Reilly, Kelly, Kim, Jett, & Zuckerman, 2019). 

The baseline for each trial was the median value of the 500 ms immediately preceding the 

beginning of the stimulus. Lastly, the data were time-binned to 50ms bins, reducing the sampling 

frequency from 500 Hz to 100 Hz. 

 

EEG 

The recorded EEG data from each channel were bandpass filtered from 1 to 20 Hz using a 2048-

point FIR filter. Epochs were extracted twice per trial. The first epoch was taken from -500 ms to 

2 s relative to the auditory cue onset. The second epoch started 500ms prior to noise onset and 

ended 5s after. After baseline correction using the average voltage between -200 and 0 ms, 

epochs were down-sampled to 256 Hz.  

Eye blink-related artifacts were removed by signal space projection based on independent 

component analysis. After rejecting noisy epochs that exceeds 70µV instantly, 61 to 119 trials 

(mean 111 trials) were averaged to obtain event-related evoked potentials. 
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Accuracy 

Accuracy of target word-in-noise identification was measured across the cued and non-cued 

condition. Responses were marked correct if the target foil was correctly identified from the four 

options, and responses were marked incorrect if any of the other three foils were selected. 
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Results 

Effect of Auditory Cueing on Accuracy  

Accuracy in determining the target word-in-noise was measured as the percent of correct 

responses out of all responses. A paired t-test revealed that there was no significant effect 

(p=0.253) of auditory speaker-identity cueing on accuracy of speech-in-noise identification 

(Figure 2). A ceiling effect was present (mean percent correct 79.83%, standard deviation 5.20% 

in cued condition and mean 79.02%, standard deviation 4.48 in non-cued condition). Given that 

the speaker-identity cues did not alter accuracy significantly, it is guaranteed that our 

comparisons on pupil and EEG responses were not affected by the ratio of correct trials in 

across-trial averages. 

 

Figure 2: Effect of auditory cueing on identification of the target word-in-noise 
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EEG Analysis  

Analysis across the time course from 0.5 seconds prior to noise onset (NO) to the retention 

period revealed 1) induced activities emerging from ~0,4 seconds prior to NO and 2) typical 

evoked ERPs at the onset (0s) and offset (3s) of the complex stimulus (Figure 3)(Figure 4). 

 

 

Figure 3: Spectrograms and topographies of induced activities. Statistically significant differences in alpha (~10Hz) 
band activity is found in post-cue, pre-stimulus period in frontal electrodes (i.e., stronger alpha in the cued 

condition, corrected p-values < 0.05 from paired t-test). 
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In the post-cue pre-stimulus period (i.e., -0.3 to 0.0 seconds in Figure 3 spectrograms), 

stronger alpha-band (~10Hz) induced activity was found at frontal electrodes when a cue was 

presented (paired t-test, FDR-corrected p < 0.05 in 21 out of 64 electrodes in both left and right 

frontal area: See t-value and p-value topographies at the bottom panel of Figure 3). 

An additional ERP occurred at the onset of the target word-in-noise (Figure 4). The 

auditory N1 ERP component in the cued condition occurred at 2.25 s (i.e., ~250ms after target 

word onset) while the P2 ERP component was observed in both cued and un-cued conditions at 

2.43 s (i.e., ~430ms after target word onset). The N1-P2 amplitude was stronger in the cued 

condition than the non-cued condition (paired t-test, t(18) = 3.40, p=0.0032) as shown in Figure 

5. The average N1-P2 amplitude in the cued condition was 0.97µV compared to 0.27µV in the 

non-cued condition.  

 

Figure 4: Evoked response potential across trial time course from noise onset to retention period. Expected ERPs at 
stimulus onset and offset were observed at 0s and 3s. Additional ERP to target-word-in noise observed at 2.3s 

represented by the highlighted portion of the time course. N1-P2 shown for cued condition in blue and non-cued 
condition in red.    
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Figure 5: Difference in N1-P2 amplitude between cued and non-cued conditions. N1-P2 amplitude was stronger in 
the cued condition represented by blue lines (two-sided paired t-test, t(18) = 3.40, p=0.0032).  

 

Pupillometry Analysis  

Figure 6 presents the grand averaged pupillary time course from -100 ms before noise onset until 

the end of the trial. Looking at mean percent change in pupil size from baseline across that time 

region, no significant difference was observed between the cued and non-cued conditions, t(18) 

= 0.48, p = .638.  

Figure 6: Mean percent pupil change from baseline at -100 ms before noise onset until the end of the trial. No 
significant difference was found between the cued and non-cued condition. 
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Figure 7: Pupil size percent change (from baseline) across the time course. The pink line indicates the percent pupil 

size change during the cued condition, and the dashed red line indicates the percent pupil size change during the 
non-cued condition. No significant difference was found (p=0.98).  
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Discussion 

Results from this study revealed that speaker-identity auditory cueing is a source of preparatory 

attentional-effort, as indicated by increased induced activities during the cue-target interval in the 

cued condition (Figure 3). This preparatory attentional-effort in the cue-target period was shown 

to have an effect on later processing, causing a greater N1-P2 amplitude at the onset of noisy 

speech in the cued condition than the non-cued condition, indicative of increased attentional-

effort (Figure 5). Surprisingly, the accuracy of identifying speech-in-noise was not improved by 

providing an auditory speaker-identity cue (Figure 2).  

Results confirmed our hypotheses stating that providing an auditory cue will cause the 

allocation of attentional-effort before a stimulus is presented and will further increase attentional 

effort at the onset of noisy speech. These findings align with current work being done in the field 

of auditory selective attention and effort. Holmes et.al, 2018, suggests that auditory selective 

attention builds over time in the cue-target interval, which was demonstrated in this study by the 

induced activities occurring in the cue-target interval (Figure 3). The induced activities during 

this task occurred in the alpha band, which corroborates findings by Dimitrijevic et al, 2019, 

showing that greater oscillatory power change in the alpha band occurs in an attentive versus 

passive listening condition. Work by Best et al., 2008, shows that selective auditory attention can 

be enhanced by continuity of the target voice during successive stimulus presentations. This 

supports our finding of increased attentional-effort at the noisy speech in the cued condition 

because attention was enhanced as the target voice remained the same from the cue.  

Findings from the current study contribute to the elaboration of Kahneman’s widely-

accepted model of perception and attention (Kahneman, 1973). This study has shown that 

auditory cueing does have an effect on the allocation policy of attentional-effort during the 
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figural emphasis stage of perception. The attentional-effort allocated to the figure is determined 

by physical aspects of the stimulus—featural speaker-identity information, as well as intentions 

of the listener—wanting to understand the speech. 

 While accuracy differences between conditions were not found, this may further 

demonstrate the capacity limitations in the model of attentional-effort. With subjects scoring at 

~80% accuracy on average, it is possible that minimal attentional-effort was required of subjects 

to complete this task. Given that the brain cannot allocate more effort than what is required of the 

task, it is possible that allocation of objective attentional-effort was not large enough to tax the 

capacity or further cause listener fatigue and accuracy differences. For this reason, future studies 

would utilize a more difficult SNR to eliminate ceiling effects. An alternate interpretation for the 

lack of accuracy differences could be due to the difference in sensitivity of the measures used. 

EEG is able to measure precisely time-locked cortical responses to stimuli, whereas accuracy 

simply measures an indirect behavioral response to the entire trial which may not be entirely 

reflective of the cognitive processes occurring.  

Our hypothesis that smaller pupil dilation would be present after the target speech was 

not supported, and this has been similarly attributed to sensitivity of the measure to listening 

effort in this task. Pupillometry is an indirect measure of listening effort with a slow temporal 

response, so perhaps it was unable to reflect each stage of cognitive processing as the trial 

progressed. In an alternative hypothesis, we propose that pupil dilation is reflective of the sum of 

the preparatory attentional effort and the post-speech-time compensatory effort, while those two 

sources of effort are inconsistently modulated by the speaker-identity cueing. Previous studies 

have found little correlation between EEG and pupillometry measures during listening effort 

tasks, and suggest that these measures may reflect different cognitive processes involved in 



 21 

listening effort (Miles et al., 2017)(McMahon et al., 2016). This finding can be applied to the 

current study by attributing the insignificant pupillometry results to being a consequence of 

different cognitive processes occurring during the listening effort task.  

The results of this study are limited by the small sample size. Underpowered analyses 

may have contributed to the insignificant pupillometry and accuracy results. Another limitation 

in this study was the SNR used. Future studies would utilize a more difficult SNR to reduce 

ceiling effects by taxing the attentional-effort capacity, without being so difficult the subject 

voluntarily withdraws effort. Task design would be adjusted to account for differences in 

temporal responses of pupillometry and EEG measures; thus, contributing to the expanding 

research field regarding best practices for measuring listening effort and teasing apart the various 

underlying cognitive processes.  

The current task utilized a complex word-in-noise stimulus, but it would be worthwhile to 

utilize a greater structural level, such as a phrase- or sentence-in-noise, to make these research 

results more ecologically valid and applicable to a clinical population. Including a subjective 

measure of listening effort in later research will also be key in associating theoretical research of 

objective attentional-effort with the subjective listening effort of clinical populations. Future 

overall aims for this line of work include creating objective clinical assessment and treatment 

tools that validate the subjective listening experiences of nearly 37.5 million US adults reporting 

some degree of hearing loss (NIH, 2018). 
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