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ABSTRACT

In order to explore the dynamics of the human gut microbiota, we used a system of ordinary

differential equations to mathematically model the biomass of three microorganism populations:

Bacteroides thetaiotaomicron, Eubacterium rectale, and Methanobrevibacter smithii. Addition-

ally, we modeled the concentrations of relevant nutrients necessary to sustain these populations

over time. This system highlights the interactions and the competition among these species in

order to further understand their dynamics. These three microorganisms were specifically chosen

due to the system’s end product, butyrate, which aids in developing the intestinal barrier in the

human gut. The basis of the mathematical model assumes the gut acts as a chemostat, with bac-

teria and nutrients exiting the gut at a rate proportional to the volume of the chemostat, the rate

of volumetric flow, and the biomass or concentration of the particular population or nutrient. We

performed global sensitivity analysis using Sobol’ sensitivities in order to estimate the importance

of model parameters and to understand our results.
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PUBLIC ABSTRACT

Mathematical modeling represents complex systems in a concise way and can highlight its

interesting aspects. Using a system of ordinary differential equations, which is a collection of

equations that describe how fast or slow a quantity is changing in a given time frame, we can track

the quantities of interest over time. In this case, we track the fluctuations of different populations

of microorganisms in the human gut and the nutrients necessary for their survival over time. The

mass of these populations depends on a number of factors, such as how fast they are flushed out

of the gut, competition with other microorganisms for resources, and how fast they grow. All of

these factors are accounted for in the equations of our mathematical model. As we become increas-

ingly aware that the bacteria in the gut impacts on person’s overall health, it becomes increasingly

important to understand the mechanisms behind their interactions. Mathematical modeling is a

quantitative approach to understanding this complex ecosystem, which we implement through a

system of ordinary differential equations.
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INTRODUCTION

The human gut microbiota, which is the collection of microorganisms located in the stom-

ach, large intestines, and small intestines, plays an important role in sustaining overall human

health. Each individual’s gut composition is unique, and long-term dietary patterns, specifically

concerning the types and amounts of carbohydrates, proteins, and fats consumed, affect its compo-

sition (David, Maurice, Carmody, et al., 2014; Ji and Nielsen, 2015). The gut microbiota responds

rapidly to changes in diet, and this response potentially serves as an explanation for the vast di-

versity of human diets seen across regions and cultures (David, Maurice, Carmody, et al., 2014).

Based on the study conducted in David, Maurice, Carmody, et al., 2014 at Harvard University,

rapidly switching between carnivorous and herbivorous diets can cause significant changes to the

human gut microbiota, affecting the rates of carbohydrate and amino acid fermentation within the

gut (David, Maurice, Carmody, et al., 2014). The ability of the human gut microbiota to alter

rapidly based on the available sources of nutrients could be a result of selective pressures during

human evolution (David, Maurice, Carmody, et al., 2014). Because animal foods may have been

a more volatile source of nutrients, the ability for a human to rapidly switch between animal- and

plant-based food sources depending on their hunting success became advantageous for survival

(David, Maurice, Carmody, et al., 2014). The flexibility of the human diet serves as an explana-

tion as to how people can thrive on the variety of modern diets seen across regions, cultures, and

lifestyles (David, Maurice, Carmody, et al., 2014).

In addition to the need to understand the observed diversity of the human gut microbiota,

this ecosystem is especially a focus of study in disease prevention and treatment because the gut

is the only place in the body where nutrients are absorbed, and its composition can exacerbate

chronic illnesses, such as Crohn’s disease. Due to the high variability among people of gut com-

positions, however, the relation between the gut microbiota composition and its effects on overall

health and diseases has not yet been made clear by current research efforts. Consequently, a bet-

ter understanding of the microbial dynamics may elucidate their effects on diet-related diseases
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(David, Maurice, Carmody, et al., 2014).

Motivating Examples

Though the changes in the bacterial composition of the human gut microbiota have been

shown to be associated with changes in metabolism and overall health, the underlying interactions

among species within this microbiota are not yet well understood (Ji and Nielsen, 2015). To il-

lustrate the impact that the gut microbiota can have on human health and the need to improve our

understanding of this ecosystem, consider two motivating examples. Based on an experiment con-

ducted on mice at Cork Cancer Research Center, Escherichia coli and Listeria welshimeri were

shown to independently alter, either positively or negatively, the effects of several chemotherapeu-

tic drugs through enzymatic activity (Lehouritis, Cummins, Stanton, et al., 2015). As a further

extension of this research, other studies conducted on both humans and mice have shown that the

composition of the gut microbiota can affect the responses to other types of administered drugs

by influencing the host’s immune system (Guglielmi, 2018; Lehouritis, Cummins, Stanton, et al.,

2015). As an optimistic potential further direction of these findings, the composition of a pa-

tient’s microbiota could be manipulated in such a way that a drug’s positive effects are enhanced

(Guglielmi, 2018). However, because there exists a delicate equilibrium in the microbiota, alter-

ing an individual’s gut microbiota might create an increased susceptibility to other unanticipated

health problems (Guglielmi, 2018). This uncertainty stems from a collective lack of understanding

of interspecies microbial interactions, which necessitates further investigation.

To consider another example, some microorganisms are associated with the initiation and

further cultivation of cancer cells, and about 10-20% of human cancers can be linked to these mi-

crobes (Guglielmi, 2018; Whisner and Athena Aktipis, 2019). Specifically, Helicobacter pylori

has been associated with stomach cancer, and a list of nine other carcinogenic microorganisms

have been identified by the International Agency for Cancer Research (Whisner and Athena Ak-

tipis, 2019). These bacteria are able to facilitate cancer growth by creating an ideal environment

for tumors to grow through various mechanisms, such as causing cells to develop a resistance to
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anticancer drugs, inducing inflammation, or through other means (Guglielmi, 2018; Lehouritis,

Cummins, Stanton, et al., 2015). Though these identified carcinogenic microorganisms live in the

guts of a large proportion of the human population, many individuals never develop the cancers

linked to these microorganisms (Whisner and Athena Aktipis, 2019). A question that emerges as

a result of this observed behavior is: does the presence of specific surrounding substances or other

microorganisms trigger these carcinogenic microorganisms to begin, by some means, facilitating

cancer growth? Due to the seemingly vast impact that gut microorganisms can have on human

health as illustrated in the two preceding examples, this ecosystem calls for further exploration

through various approaches (Shoaie, Karlsson, Mardinoglu, et al., 2013).

Common Methods of Analysis

Common approaches to analyzing the human gut microbiota that provide an enhanced un-

derstanding of the diversity and composition of this ecosystem include, but are not limited to,

next-generation sequencing, metatranscriptomics, culturomics, and mass spectrometry analyses

(Ji and Nielsen, 2015; Kumar, Ji, Zengler, and Nielsen, 2019). However, these approaches give lit-

tle insight as to how species interact amongst themselves and with the human host (Ji and Nielsen,

2015). Mathematical modeling, on the other hand, attempts to answer such questions and can act as

a supplement to the knowledge gained from the aforementioned approaches. To name a few of its

key features and uses, mathematical models highlight specific details of interest in the system, pro-

vide a representation of reality, and reflect the goals of the research, which in a sense makes these

models subjective (Ayati, 2019). Despite the subjective nature of these models when used to under-

stand underlying truths, which might appear to be a weakness of this approach, mathematical mod-

els can nonetheless provide evidence to strengthen a hypothesis (Oreskes, Shrader-Frechette, and

Belitz, 1994) and offer guiding principles for further study of a phenomenon (Oreskes, Shrader-

Frechette, and Belitz, 1994), both of which are of much use to research.

One specific type of mathematical model used to understand biological mechanisms is a

genomic-scale metabolic model (GEM). GEMs represent the collection of biochemical reactions

3



that take place within a microorganism, which forms a metabolic network. These models incorpo-

rate genome-level information of a microorganism and provide a representation of the relationship

between genotypes and phenotypes. GEMs additionally include information about the enzymes

and genes associated with each biochemical reaction, thus providing a connection from gene to

protein to reaction to metabolite. Incorporating metabolic data into the GEM model can elicit

more specific predictions, such as the gene’s effect on a given pathway’s functionality and on the

metabolic network as a whole. However, one main challenge of implementing GEMs is the lack

of information on the strain-level information contained in metagenomic data (Kumar, Ji, Zengler,

and Nielsen, 2019).

Agent-based modeling (ABM) is another computational modeling strategy used to simulate

unique biological systems and to test the interactions among different parameters, such as the rate

of fermentation of specific microorganisms. For the purposes of studying the human gut micro-

biota, this strategy can also be utilized to further understand the interactions among gut microor-

ganisms. Additionally, ABMs are useful in studying the role of spatial dynamics within a system

in tandem with the variations in environmental conditions. Despite this modeling technique’s prac-

tical use, two of its main drawbacks are the computational intensity required to compute ABMs

and the difficulty of determining the effects of the different parameters on the ABM model. This

difficulty stems from the fact that ABM models are able to generalize behavior for the whole pop-

ulation, but fail to distinguish the effects of individual bacterium (Kumar, Ji, Zengler, and Nielsen,

2019).

With these common methods of analysis in mind, we chose ordinary differential equation

(ODE)-based modeling as the main tool for our analysis, which tracks information about biomass

and concentration levels over time rather than genomic information as in the case of GEMs. In this

so-called dynamical system approach, we can identify the system’s driving parameters and analyze

its stability. Dynamical systems models, in the context of the gut microbiota, describe production

and consumption trends for specified gut microorganisms and their metabolites over time (Kumar,

Ji, Zengler, and Nielsen, 2019). Despite the advantage of having easily interpretable terms in the
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model’s ODEs, this approach still has some key drawbacks, one of which being the determination

of unknown parameters.

In general, once a small-scale model is written and validated through experiments, the

model can be expanded to account for additional interactions. However, in the process of expand-

ing the model, the ODE system can become increasingly complex due to the addition of numerous

unknown parameters. The parameters used in these models in a biological context include substrate

conversion rates, utilization rates, and cellular death rates, which typically can be determined and

validated by laboratory experiments. Yet, some gut microorganisms are unable to be cultivated in

a laboratory setting, leaving specific information about these species’ metabolic activity unknown.

Due to the limitations of determining a large number of unknown parameters in more complex

ODE models, ODE models are limited to tracking a few species within a community, which is one

key drawback (Kumar, Ji, Zengler, and Nielsen, 2019).

Despite the practicality constraints on extending ODE-based modeling to a larger scale,

ODE models paired with other types of modeling, such as agent-based modeling, can provide

an insightful understanding of the gut microbiota’s dynamics and interactions (Kumar, Ji, Zengler,

and Nielsen, 2019). As a first step in our modeling efforts, with its limitations in mind, we consider

the ODE-based modeling approach for a small-scale system of three abundant microorganisms in

the human gut microbiota.

Small-scale Representation of The Human Gut Microbiota

In order to explore this complex ecosystem using the ODE-based modeling approach as

a preliminary step, the three microorganisms Bacteroides thetaiotaomicron, Eubacterium rectale,

and Methanobrevibacter smithii were chosen to be the focus of our model. These species represent

the three main phyla in the human gut: Bacteroidetes, accounting for 17-60% of the total biomass;

Firmicutes, 35-80% of the biomass; and Euryarchaeota (Shoaie, Karlsson, Mardinoglu, et al.,

2013). The system’s main product, butyrate, is of specific interest due to its impact in sustaining

human health. Butyrate provides energy to colonocytes, affects overall energy homeostasis, and
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inhibits histone deacetylase, which is an enzyme that directly affects colorectal cancer (Shoaie,

Karlsson, Mardinoglu, et al., 2013). Along with butyrate, other notable intermediates and products

part of this system include acetate, propionate, glutamine, carbon dioxide (CO2), hydrogen (H2),

and methane (CH4), which affect health and well-being in various ways. Acetate, propionate, and

butyrate, which are short chain fatty acids, are absorbed in the gut’s epithelial cells, thus regulating

an individual’s immune system and metabolism (Shoaie, Karlsson, Mardinoglu, et al., 2013).

Individually, acetate acts as a substrate for cholesterol synthesis and lipogenesis (Shoaie,

Karlsson, Mardinoglu, et al., 2013); propionate regulates gluconeogenesis and cholesterol synthe-

sis (Shoaie, Karlsson, Mardinoglu, et al., 2013); glutamine fuels the metabolism and maintains the

intestinal barrier (Kim and Kim, 2017); and the gases CO2, H2, and CH4 are products of bacterial

fermentation that can cause intestinal discomfort when in excess (Scaldaferri, Nardone, Lopetuso,

et al., 2013). As for the microorganisms themselves, M. smithii plays a significant role by remov-

ing hydrogen gas, which affects bacterial fermentation and energy gathering, and by producing

methane gas (Shoaie, Karlsson, Mardinoglu, et al., 2013); E. rectale produces butyrate, which is

beneficial to the gut’s epithelial cells (Shoaie, Karlsson, Mardinoglu, et al., 2013); and B. thetaio-

taomicron utilizes dietary polysaccharides and indirectly facilitates butyrate production with its

outputs (Ji and Nielsen, 2015).

In developing an ODE model to represent this small-scale system, we assume that the hu-

man gut acts as a chemostat, which is a novel approach and an assumption not implemented, to

our knowledge, in other work. In this thesis, we utilize ODE-based dynamical systems modeling

to track the changes in biomass of the three prevalent microorganisms, B. thetaiotaomicron, E.

rectale, and M. smithii, as well as their chemical inputs, intermediates, and byproducts, with the

goal of providing a better understanding of their interactions within this small-scale system.
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GRAPHICAL AND MATHEMATICAL REPRESENTATION OF THE THREE SPECIES

In order to study the interactions among the three microorganisms B. thetaiotaomicron,

E. rectale, and M. smithii, we first identified from the available literature the key metabolites of

these microorganisms that emphasize their interactions. Upon deciding the metabolites of interest,

we developed a graphical representation of this system to serve as a visual guide before creating

our ODE-based mathematical model. In this chapter, we present and explain our mathematical

formulation of this small-scale system.

Isolation of Key Factors And Graphical Representation Into a Schematic

Through GEMs and analysis of transcriptomics data of the three species B. thetaiotaomi-

cron, E. rectale, and M. smithii, many of the key underlying characteristics of each microorganism

and their interactions were revealed. GEMs utilize genomic data to represent cellular metabolism

(Ji and Nielsen, 2015), and transcriptomics analysis allows for the study of the functions of the

genes that an organism expresses (Lowe, Shirley, Bleackley, Dolan, and Shafee, 2017). Both of

these methods of study combined provide insight into the microbial interactions within this sub-

set of species in the human gut microbiome. In order to supplement the knowledge gained from

transcriptomic analysis and GEMs, we incorporate this information into our own mathematical in-

terpretation of this small-scale system using ODEs. First, we present information learned through

previous investigations of B. thetaiotaomicron, E. rectale, and M. smithii that we utilized in creat-

ing our mathematical model.

B. thetaiotaomicron is an abundant bacterial species in the human gut microbiome whose

main function is the utilization of polysaccharides (Xu, Bjursell, Himrod, et al., 2003, Ji and

Nielsen, 2015). Through polysaccharide degradation, B. thetaiotaomicron contributes to the over-

all ecosystem diversity in the colon, which is its regular environment (Adamberg, Tomson, Vija,

et al., 2014). B. thetaiotaomicron can survive solely on the uptake of carbon-rich polysaccharides

(Martens, Lowe, Chiang, et al., 2011); however, its growth is enhanced in the presence of inorganic
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ammonia due to inorganic ammonia’s contribution of nitrogen to B. thetaiotaomicron’s metabolism

(Glass and Hylemon, 1980). Through the utilization of inorganic ammonia, B. thetaiotaomicron

can synthesize all amino acids that are essential to human health (Ji and Nielsen, 2015), which

makes this bacteria a key focus of study.

The two bacterial species B. thetaiotaomicron and E. rectale exhibit complex interactions

due to their changes in gene regulation in the presence of each other. When both bacteria are

present in an environment, B. thetaiotaomicron up-regulates gene expression for starch utilization

and the degradation of specific glycans that E. rectale is unable to utilize. Simultaneously, E.

rectale down-regulates the genes associated with glycan degradation despite the fact that it cannot

grow efficiently without a carbohydrate source. Previous research on the interactions of these two

species suggests that the presence of B. thetaiotaomicron enhances E. rectale’s ability to uptake

nutrients. Despite the competition for a carbohydrate source between B. thetaiotaomicron and E.

rectale, these species are still able to coexist in the human gut (Mahowald, Rey, Seedorf, et al.,

2009).

M. smithii, which is one of the main methanogenic archaeon in the human gut, improves

the productivity of carbohydrate metabolism by utilizing H2 from E. rectale and formate from B.

thetaiotaomicron to produce methane gas. This process prevents the environment from becoming

too saturated with B. thetaiotaomicon and E. rectale’s by-products, which consequently improves

carbohydrate metabolism. Additionally, M. smithii removing H2 in this environment allows for

B. thetaiotaomicron to generate NAD+, which is used for glycolysis, a fundamental process in

producing cellular energy. Because both B. thetaiotaomicron and M. smithii benefit one another,

these two microorganisms exhibit a mutualistic relationship, further supporting the idea that these

two microorganisms can coexist in the gut (Mahowald, Rey, Seedorf, et al., 2009).

To summarize the key exchanges and interactions of the three species B. thetaiotaomicron,

E. rectale, and M. smithii: B. thetaiotaomicron converts polysaccharides to acetate, which is sub-

sequently utilized by both E. rectale and M. smithii (Shoaie, Karlsson, Mardinoglu, et al., 2013;

Ji and Nielsen, 2015; Mahowald, Rey, Seedorf, et al., 2009); E. rectale uptakes polysaccharides,
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except in the presence of B. thetaiotaomicron; B. thetaioaomicron synthesizes amino acids from

inorganic ammonia, specifically glutamine, which are then utilized by E. rectale (Ji and Nielsen,

2015); the substrates produced from B. thetaiotaomicron breaking down polysaccharides is ulti-

mately converted into CO2 and H2 (Adamberg, Tomson, Vija, et al., 2014); and E. rectale converts

acetate to CO2 and H2, which is utilized by M. smithii (Shoaie, Karlsson, Mardinoglu, et al., 2013;

Ji and Nielsen, 2015). Two end products of the system are butyrate, produced by E. rectale, and

methane, produced by M. smithii (Shoaie, Karlsson, Mardinoglu, et al., 2013; Ji and Nielsen,

2015).

Though the metabolic pathway of B. thetaiotaomicron converting inorganic ammonia to

amino acids enhances the rate at which this bacteria uptakes polysaccharides, we decided to ex-

clude this pathway from our analysis, under the assumption that amino acids will be sufficiently

present in the gut over time in order maintain the polysaccharides utilization rate at a mean value.

This assumption can only be made for individuals with a healthy gut microbiota. An implementa-

tion of this model considering this pathway for individuals with a deficiency in amino acids can be

considered in the future. While there are many more pathways to consider involving these microor-

ganisms and their interactions with others in the system, we narrowed our focus to this subsystem,

which can be further expanded in the future.

The information known about these three species’ interactions was translated into our own

graphical representation, shown in Figure 1. This schematic highlights the competition among

these species, specifically between E. rectale and M. smithii and between B. thetaiotaomicron and

E. rectale. Generally, multiple species within a community can grow and compete for a single

supply of carbon, which suggests that the genes required to metabolize carbon are present in many

members of the community, rather than a single best competitor (Goldford, Lu, Bajie, et al., 2018).

A hypothesis presented in Goldford, Lu, Bajie, et al., 2018 regarding this phenomenon suggests

that competing species can coexist in the gut microbiome because these microbes tend to secrete

substances that are subsequently utilized by other competing microbes, which is the case for M.

smithii and E. rectale (Goldford, Lu, Bajie, et al., 2018). Though these two species compete for
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Figure 1: Graphical representation of the interactions of the three species, B. thetaiotaomicron,
E. rectale, and M. smithii, and their metabolites. Each microorganism or substance given a letter
is included in the mathematical model equations in Section 2.2. This figure was developed from
information presented in Ji and Nielsen, 2015, Shoaie, Karlsson, Mardinoglu, et al., 2013, and
Adamberg, Tomson, Vija, et al., 2014.

the acetate produced by B. thetaiotaomicron, E. rectale contributes to M. smithii’s metabolism by

producing CO2 and H2. Although this interaction may seemingly place M. smithii at a metabolic

advantage over E. rectale, both species are able to coexist in the human gut microbiome, providing

supporting evidence of the hypothesis presented in Goldford, Lu, Bajie, et al., 2018.

Additionally, Figure 1 shows both B. thetaiotaomicron and E. rectale uptaking polysaccha-

rides, suggesting a potential competition for this resource; however, E. rectale shifts from uptaking

polysaccharides to utilizing amino acids, such as glutamine, when B. thetaiotaomicron is present.

This behavior suggests that B. thetaiotaomicron is a better competitor for this resource by some

mechanism (Ji and Nielsen, 2015).

Translation of a Graphical Model To a Dynamical System

The key assumption underlying our mathematical model is that the human gut can be

thought of as a sort of chemostat, which is illustrated in Figure 2. An actual chemostat is a labora-

tory device used in the simulation and ecological study of populations, which provides an idealized
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representation of naturally occurring phenomena (Smith and Waltman, 2008). Though the condi-

tions of a chemostat are simplified and controlled in a laboratory setting, a chemostat can be useful

in the study of population dynamics and the underlying mechanisms of interactions among popu-

lations (Smith and Waltman, 2008). The simple chemostat model is a first step in developing an

initial theoretical framework, which then can be refine by more complex approaches (Smith and

Waltman, 2008).

Figure 2: Diagram of a chemostat. A solution of nutrients enters the chemostat at a constant rate
and concentration, which is then thoroughly mixed within the vessel in the culture solution. The
output of the chemostat is the well-mixed solution, which exits the vessel at the same rate at which
the nutrient solution enters the system (Smith and Waltman, 2008). A constant volume of the
well-mixed solution is maintained within the chemostat.

In constructing a simple chemostat model, we assume that the contents of the vessel are

well-mixed, the rate at which liquid enters the system equals the rate at which the well-stirred

contents leave the compartment, and that other significant factors potentially affecting growth,

such as temperature, are held constant (Smith and Waltman, 2008). While the baseline assumptions

underlying the single chemostat model are biologically unrealistic in general, the inconsistencies

with reality that arise with these assumptions can be alleviated by a more complex implementation

of this type of model that relaxes these assumptions. Additionally, the general idea of thinking

of the human gut as a single chemostat can be extended in future implementations to a multi-

compartmental chemostat model, where each compartment represents a connected physiological

structure of the human gut, such as the stomach and intestines. However, for the purposes of
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evaluating the efficacy of a simplistic model before considering more complex implementations,

we retain these assumptions and focus on evaluating a single-chemostat model.

Figure 3: Graph of the value of the Monod form as the concentration of a substance increases.
When the values of the concentration are low, this formulation assumes that populations depen-
dent on this substance are not able to reach their maximum growth rate; instead, this population’s
growth rate is scaled down proportional to the value of the Monod form. As the availability of
this substance increases, the value of the Monod form asymptotically approaches 1, which means
an adequate concentration of the substance is available for the dependent population to grow at its
maximum birth rate.

An additional underlying assumption of our model commonly seen in other modeling liter-

ature is that microorganisms grow at a rate following the Monod form

βX

(
u

u+ γ

)
X ,

where βX is the maximum birth rate of population X , u is the concentration of the nutrient popula-

tion on which X’s growth depends, γ is the Michaelis-Menten constant, and X is the concentration

of the microorganism (Smith and Waltman, 2008). The constants βX and γ can be experimentally

determined, where γ is measured as the additional mass created by an organism divided by the

total utilized mass of the nutrient (Smith and Waltman, 2008). Figure 3 provides a graphical rep-

resentation and explanation of the fractional term u/(u+ γ) in the Monod form, and this term is

subsequently denoted as Ψγ(u) in our model as specified in equation (3).
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Microorganism Equations

dB
dt

= βBΨγp(p)B−qB (1a)

dE
dt

=
[
βE1Ψγa(a)+βE2

(
1−ΨγB(B)

)
Ψγp(p)

]
E−qE (1b)

dM
dt

=
[
βM1Ψγa(a)+βM2Ψγh(h)

]
M−qM (1c)

Metabolite Equations

da
dt

= βaΨγp(p)B−qa− [µa,EE +µa,MM]a (2a)

dh
dt

= βh1Ψγa(a)E +βh2Ψγp(p)B−qh−µh,MhM (2b)

d p
dt

= βpq(cos(t)+1)3−qp− [µp,BB+µp,EE]p (2c)

Additional Terms

Ψγ(u) =
u

u+ γ
(3)

q =
V
Q

(4)

The microorganism equations detail the rates of change overtime for the three species B.

thetaiotaomicron in (1a), E. rectale in (1b), and M. smithii in (1c), which depend on the availability

of necessary nutrients and the rate at which these microorganisms are flushed out of the system.

Our model assumes that there is a high enough rate of turnover of fluids in the human gut such

that these microorganisms are almost always flushed out of the system before their life expectancy,

so death terms are neglected in these three equations. All three microorganism equations are
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constructed in the same general format:

∆i = Pi j−Fi,

where ∆i is the rate of change of biomass for microorganism i, Pi j is the rate at which microorgan-

ism i proliferates based on the availability of substance j, and Fi is the rate at which microorganism

i is flushed out of the gut. In all three microorganism equations, the term Fi is the biomass of the

given population multiplied by the constant q. The fixed quantity q is interpreted as the rate at

which the contents of the gut leave the system as expressed in equation (4), where V is the volume

of the chemostat and Q is the rate of volumetric flow within the chemostat (Smith and Waltman,

2008). The rate at which biomass increases or decreases for a given microbial population, however,

depends on the specific set of substances each species metabolizes.

In the case of B. thetaiotaomicron in equation (1a), an increase in its biomass depends

on the amount of polysaccharides p, as well as its birth rate βB. E. rectale is a microorganism

with more complex interactions with B. thetaiotaomicron, which led to the intricacy of equation

(1b). In order for E. rectale to grow in biomass, acetate or polysaccharides need to be present

in the ecosystem (Shoaie, Karlsson, Mardinoglu, et al., 2013). We assume that E. rectale has

different maximum growth rates depending on each nutrient, leading us to split βE into three

different, related constants. Because E. rectale shifts to uptaking inorganic ammonia when B.

thetaiotaomicron is present, we included the term
(
1−ΨγB(B)

)
to reflect this shift. Equation (1c)

for M. smithii is more simplistic compared to E. rectale. M. smithii depends on the presence of

acetate and the gases CO2 and H2, which are both incorporated in the standard Monod form. Again,

we assume that M. smithii grows at different maximum growth rates in the presence of only one of

these metabolites, which lead to the separation of βM into the constants βM1 and βM2 .

The metabolite equations detail the rates of change over time for the intermediate substances

produced and consumed by these three species, where the concentrations are tracked for acetate

in equation (2a), CO2 and H2 in equation (2b), and polysaccharides in equation (2c). These con-
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centrations depend on the rate at which these metabolites are produced by the microorganisms or

enter into the system, the rate at which they are flushed out of the system, and the rate at which

they are consumed by surrounding microorganisms. All five metabolite equations are constructed

in the general format:

∆ j = Pi j−Fj−Ci j,

where ∆ j is the rate of change of metabolite j’s concentration, Pi j is the rate at which metabolite j

is produced by microorganism i or enters the system, Fj is the rate at which metabolite j is flushed

out of the chemostat, and Ci j is the rate at which the metabolite j is consumed by microorganism i.

In each of the metabolite equations, the parameter µx,Y is the rate at which substance x is utilized

by species Y .

Equations (2a) and (2b) clearly reflect the schematic represented in Figure 1. An increase in

acetate depends on the concentrations of B. thetaiotaomicron and polysaccharides and an increase

in the gases CO2 and H2 depends on the concentrations of B. thetaiotaomicron, E. rectale and

acetate. A decrease in the concentration of acetate depends on the rate at which E. rectale and M.

smithii uptake acetate and the total concentration leaving the system, and a decrease in CO2 and

H2 depends on the rate at which M. smithii uptakes these gases and the total concentration of these

gases leaving the system.

Polysaccharides enter the human gut through diet, so we accounted for their addition to the

gut through a sinusoidal function,
(
cos(t)+1

)3. This function attempts to account for the duration

of time in between meals through the period of the curve. In addition, this function is defined to be

a smooth curve to illustrate the gradual breakdown of food and release of nutrients in the gut. The

amplitude of this term is scaled based on the parameters βp and q.

In our model, many of the parameter values are unknown or cannot be determined experi-

mentally. In order to estimate these parameters mathematically, we searched for data tracking the

biomass changes of B. thetaiotaomicron, E. rectale, and M smithii in order fit our model to this

data with the goal of estimating these parameters. This system, however, does not account for all

possible parameters that could potentially affect the fluctuations in biomass or substrate concentra-
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tion. Though a more complex implementation of this model could account for additional species

and their interactions with the members of our system, we limited ourselves to the three microor-

ganisms B. thetaiotaomicron, E. rectale, and M. smithii. The number of species and metabolites

considered can be expanded in future implementations.
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DATA EXTRACTION AND PARAMETER ESTIMATION

In order to estimate our full model parameters, we identified data in the literature that is

relevant to our system. From our literature scan, we were able to obtain longitudinal data on

an experiment involving B. thetaiotaomicron and its substrates, presented in Adamberg, Tomson,

Vija, et al., 2014. However, similar longitudinal data on all three species B. thetaiotaomicron, E.

rectale, and M. smithii is not openly available in the published literature to our knowledge. Despite

the lack of longitudinal data, we were able to extract a single set of data points for the full system

including all three species and their relevant substrates from Shoaie, Karlsson, Mardinoglu, et al.,

2013. Given these constraints, we present estimates of the parameters in our model to a low degree

of precision.

Reduced Model Parameter Estimation

Table 1 presents data found in Adamberg, Tomson, Vija, et al., 2014. The experiment

conducted in this paper focused on a subset of our full system by only considering the metabolism

of B. thetaiotaomicron with the substrates H2, CO2, acetate, and polysaccharides. We utilized

this data for parameter determination and estimation by condensing our model to only include B.

thetaiotaomicron and its substrates.

0 hrs 24 hrs 72 hrs

Polysaccharides (mM) 16.12 11.93 2.95

H2 (mL) 0 0.0045 0.0051

CO2 (mL) 0 0.0588 0.154

Acetate (mM) 0 3.296 7.46

Biomass (gDW) 2.34×10−5 1.306×10−4 2.897×10−4

Table 1: Table for experimental results with data for polysaccharides, H2, CO2, acetate, and the
biomass of B. thetaiotaomicron in a medium initially containing with 20 amino acids across distinct
time points. Only the bacterial species B. thetaiotaomicron was present in the medium. The data
contained in this table is originally from Adamberg, Tomson, Vija, et al., 2014.

The subsystem isolating B. thetaiotaomicron’s metabolism is illustrated in Figure 4. Based
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on this graphical representation, we extracted the reduced system from our full model in equations

(1) and (2), producing the reduced system of ODEs in equations (5). Any terms or equations in

our full model that are dependent on E. rectale and M. smithii’s presence were removed in this

reduction. Additionally, terms related to chemostatic flow were removed because the experimental

data in Table 1 was collected in a closed system, rather than an open system like a chemostat.

Lastly, we removed any terms that account for an input of polysaccharides because only a specified

initial amount was placed in the experimental device for B. thetaiotaomicron to consume over time.

Figure 4: Graphical representation of a subset of B. thetaiotaomicron’s metabolism, including the
utilization of polysaccharides and the production of acetate, CO2, and H2. This diagram is based
on information presented in Adamberg, Tomson, Vija, et al., 2014.

dB
dt

= βBΨγp(p)B (5a)

da
dt

= βaΨγp(p)B (5b)

dh
dt

= βh2Ψγp(p)B (5c)

d p
dt

=−µp,BBp (5d)

By fitting our reduced model to the collected data in Table 1, we estimated the model pa-

rameters using the Julia packages DiffEqParamEstim and Optim with the goal of utilizing these

results to inform our full model parameter estimation. We ultimately chose the simulated anneal-

ing method to apply to our optimization problem because this method can be used to approximate

the global optimum. In an attempt to test the performance of other optimization methods, we also
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applied the conjugate gradient descent and the Nelder method to our problem, but found that these

methods did not improve our model’s fit to the data compared to the simulated annealing method

for our specific problem.

In the first step of finding a roughly optimal solution for our reduced model’s parameters,

we first chose an arbitrary vector of initial values for these parameters. Because we did not have

prior knowledge of the expected values of these parameters other than that they are positive, we

chose arbitrary values in the hopes that the simulated annealing method would output a solution

in the correct direction of the globally optimal solution. Once we chose these arbitrary initial

values, we used the DiffEqParamEstim and Optim packages in order to obtain the optimal results

given by the simulated annealing method. The results produced from this constrained optimization

given our initial guess of parameter values allowed us to achieve a seemingly local optimum for

the system. We utilized this output by adjusting the output parameter values ourselves in order

to further reduce the residuals. Using this new set of parameters, we reran the optimization once

more in the hopes of producing a better fit to the data.

This approach proved to be useful because the model fit noticeably improved after our

alterations. Figures 5, 6, and 7 show the solutions to our system of ODEs using our final set

of roughly optimized parameters in Table 2 based on the data in Table 1. Though the output

of the simulated annealing algorithm produced many more significant digits for these parameter

estimates than is shown in Table 2, we limited these results to one significant digit in order to

reflect our uncertainty with the precision of these estimates, especially due to the sparsity of this

data.

βa βB βh2 γp µpB

2000 0.08 50 10 200

Table 2: Table of fitted parameter values for equations (5) based on the experimental data in Table
1.
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Figure 5: Plot of the solutions to equation (5a) and the observed data for B. thetaiotaomicron over
the time interval 0 to 72 hours.

Figure 6: Plot of the solutions to equations (5b) and (5d), as well as the observed data for acetate
and polysaccharides over the time interval 0 to 72 hours.

20



Figure 7: Plot of the solutions to equation (5c) and the observed data for CO2 and H2 over the time
interval 0 to 72 hours.

Full Model Parameter Estimation

Due to limitations in availability of data for our full model containing the three species

B. thetaiotaomicron, M. smithii, and E. rectale simultaneously, we are not able to estimate the

remaining model parameters to the same degree of confidence as we were with our reduced system.

In our literature review, however, we were able to obtain a single set of endpoint data values for

an experiment found in Shoaie, Karlsson, Mardinoglu, et al., 2013 conducted on all three species.

Given the lack of available longitudinal data for this biological system, we assume that this data,

shown in Table 3, are the center values of the oscillations for each substrate or biomass quantity.

One complication that arises from using this data is that the total biomass for all three species was

experimentally measured as a single quantity, which is another factor that further contributes to our

uncertainty in our full model parameter estimates. To circumvent this limitation, we fit the model

parameters to produce numerical solutions with average biomass concentrations that roughly sum

to the biomass quantity given in Table 3. The parameter estimates obtained in the previous section

on our reduced model, including some manual adjustments, allowed us to provide rough estimates
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of the remaining parameters in our full model.

Polysaccharides (µM) 32.06

H2 (µM) 0

CO2 (µM) 7.96

Acetate (µM) 9.71

Biomass (gDW) 0.001412

Table 3: Table of experimental data presented in Shoaie, Karlsson, Mardinoglu, et al., 2013 of
the microorganisms B. thetaiotaomicron, E. rectale, and M. smithii and their substrates CO2, H2,
acetate, and polysaccharides. The biomass measurement is a combination of the biomass of the
three microorganisms.

Through manually fitting the model parameters to the data shown in Table 3, we obtained

rough estimates of our model’s parameters, which are shown in Table 4. The general approach

we took in estimating these parameters given the lack of longitudinal data was to first utilize the

information gained from estimating our reduced model parameters, shown in Table 2. We treated

the parameter estimates obtained from the reduced model as initial parameter values that could be

adjusted as needed, rather than a fixed quantity. This choice was made because the experiments

conducted to produce the data given in Tables 1 and 3 were performed under different experimental

conditions, such as the temperature of environment and the medium the culture grew in, which are

factors that could potentially impact the estimates of these parameters.

For the remaining parameters in the model which we lacked experimental data to inform our

initial choice of parameter values, we assigned arbitrary values that were of the same magnitude as

similar parameters that we estimated in the reduced model. After assessing the fit of the numerical

solutions to the data using our initial set of parameter estimates, these estimates were iteratively

adjusted in order to reduce the error between the center value of the numerical solution’s oscilla-

tions and the data value given in Table 3. The resulting parameter estimates based on implementing

this approach are given in Table 4. In order to reflect our uncertainty in these parameter estimates,

we limited these estimates to one significant figure. In specific cases, we ultimately maintained

the two significant figures in some parameter estimates due to the resulting improvements in the
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model fit.

βa 1.0×107 βh2 33,000 γB 10 µhM 40

βB 1.2 βM1 0.8 γh 150 µpB 200,000

βE1 0.8 βM2 0.5 γp 400 µpE 5,000

βE2 0.6 βp 10,000 µaE 25,000 q 0.05

βh1 150 γa 200 µaM 50,000

Table 4: Table of fitted parameter values for equations (1) and (2) based on the experimental data
in Table 1.

Using the set of parameter estimates in Table 4, the solutions to our full model are given in

Figures 8, 9, 10, and 11. These plots show the solutions to our full system of ODEs in equations (1)

and (2) from 1,000 to 1,100 hours. This time range was selected in order to allow for a sufficient

amount of time to pass in order for the system to converge to an oscillatory steady state. The

center values of the oscillations are represented by dotted lines in each plot. In Figures 9, 10,

and 11, the data values given in Table 3 are superimposed on their respective plots as dashed

lines in order to provide a visual representation of the error between the center of the oscillatory

steady state and the observed data. Despite some error in the center value of the ODE solutions

compared to the data, the observed data values for acetate, polysaccharides, and the gases CO2 and

H2 are contained in the oscillation range of the ODEs’ numerical solutions, so we conclude that

our parameter estimates sufficiently fit the data.
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Figure 8: Plot of the solutions to equations (1a), (1b), and (1c) using the observed data in Table 3
over the time interval 1,000 to 1,100 hours. Based on Table 3, the sum of the three species’ biomass
should be 0.001412 gDW. The middle of the solutions to the ODEs using the parameter estimates
in Table 4 for all three species sums to 0.000925 gDW, resulting in an error of −0.000487 gDW.

Figure 9: Plot of the solutions to equation (2a) using the observed data in Table 3 over the time
interval 1,000 to 1,100 hours. Based on Table 3, the center of acetate’s oscillations should be 9.71
µM. The middle concentration of the ODE solutions for acetate is 10.47 µM, resulting in a 0.76
µM error.
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Figure 10: Plot of the solutions to equation (2b) using the observed data in Table 3 over the time
interval 1,000 to 1,100 hours. Based on Table 3, the center of CO2 and H2’s oscillations should
be roughly 7.96 µM. The middle concentration of the ODE solutions for CO2 and H2 is 7.80 µM,
resulting in a −0.16 µM error.

Figure 11: Plot of the solutions to equation (2c) using the observed data in Table 3 over the time
interval 1,000 to 1,100 hours. Based on Table 3, the center of polysaccharides’ oscillations should
be roughly 32.06 µM. The middle concentration of the ODE solutions for polysaccharides is 29.50
µM, resulting in a −2.56 µM error.
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Figure 12: 3D phase plane diagram of the solutions to our full model in equations (1) using the
parameter estimates in Table 4. The three bottom plots show the 2D projections of the pairs (B,
M), (B, E), and (E, M).

In order to further visualize the convergence of the solutions to our full model’s system

of ODEs, we produced a 3D phase plane in Figure 12 of the three species B. thetaiotaomicron

(B), E. rectale (E), and M. smithii (M). The solutions to the system of ODEs in equations (1) are

plotted from 0 to 6,000 hours. By testing various time endpoints and plotting the solutions on a

3D phase plane, we obtained graphical results that showed no changes compared to our plot in

Figure 12. With these results, we conclude that the solutions to our ODE system reach a steady

state. Reaching a steady state for a system of ODEs with a specific parameter set is an important

result to achieve because it illustrates that the solutions to this system are able to maintain plausible

biomass or substrate concentrations over time.
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SENSITIVITY ANALYSIS

Based on the fitted parameter values and the available data from the literature, we analyzed

our model’s sensitivity to its parameters. The value of sensitivity analysis in understanding our

results is one reason we used baseline parameters with one or two significant digits. In order to

identify the parameters in the model that have the greatest effect on the model output, we conducted

sensitivity analysis on our reduced and full model by computing the first- and total-order effects

based on Sobol’ indices.

Sensitivity analysis can be defined as the study of how uncertainty in the model input prop-

agates into uncertainty in the model output (Saltelli, Ratto, Andres, et al., 2008). Once parameters

are determined, or estimated along with their errors by one of various methods like simulated

annealing or the Levenberg-Marquardt method, sensitivity analysis can be used to identify the

driving parameters of the system that contribute to the most variability in the model’s output.

Overall, sensitivity analysis tests the robustness of the model, identifies if the model relies on weak

assumptions, and allows for model simplification (Saltelli, Ratto, Andres, et al., 2008).

Local vs. Global Sensitivity

Local sensitivity analysis explores the changes in model output based on small, incremental

changes to the model inputs, centered around a baseline value. Generally, local sensitivity analysis

gives a measure of the partial derivatives of the model with respect to each input. This approach is

best utilized when there is little uncertainty around model parameters or initial conditions. How-

ever, in the context of systems biology and in the case of our mathematical model, the assumption

of minimal uncertainty in parameters and initial conditions is not feasible. Due to the vast uncer-

tainty and variability of model parameters relating to biological systems, analyzing the behavior

of the model output around a single value in the parameter space is not useful in exploring the

model’s overall behavior (Marino, Hogue, Ray, and Kirschner, 2009).

Instead, we utilized global sensitivity analysis in order to identify the driving parameters
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of our model. In this framework, which utilizes Monte-Carlo (MC) methods, each parameter

is assigned a probability density function (pdf) based on a priori information known about the

parameter. Samples are drawn from the pdfs to evaluate the overall model output. In the case

where there is no a priori information about the model parameter, a non-informative distribution

is assigned to the parameter, commonly a uniform distribution that spans a large range values in

the parameter space. On the other hand, if there is some biological knowledge in the literature

about the parameter, especially an expected value, a more informative distribution can be assigned

to the parameter, such as a normal distribution centered around the expected value. Samples pulled

from each parameter’s assigned distribution can be generated completely randomly or through

quasi-random sampling strategies that aim to explore the entire parameter space, such as Latin

hypercube sampling (LHS) and sampling from low-discrepancy sequences (Marino, Hogue, Ray,

and Kirschner, 2009). The set of parameter samples based on the specified number of simulations

are then used to evaluate the model, each producing an output value. With these computed values

for the model output, sensitivity indices can then be computed.

Because our model is nonlinear, implementations of global sensitivity analysis methods for

linear relationships like the partial rank correlation coefficient (PRCC), the Pearson correlation co-

efficient (CC), and standardized regression coefficients (SRC) would not be useful. Consequently,

we employed the Sobol’ method, a variance-based decomposition method. The extended Fourier

amplitude sensitivity test (eFAST) method, which quantifies each parameter’s frequency strength

from the model input to the output, is also a reliable approach to conducting sensitivity analysis on

a nonlinear model (Marino, Hogue, Ray, and Kirschner, 2009).

Sobol’ Sensitivities

Sobol’ indices are a MC variance-based approach to calculating all first-order and total-

effects indices in a model with k parameters. These sensitivity indices are computed based on

model evaluations for N simulations. Algorithm 1 outlines the general method of computing both

indices, and has a computational cost of N(k+2) runs. The algorithm input N is chosen based on
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the number of parameters in the model; more parameters in the model require more model sim-

ulations. In Algorithm 1, a matrix of quasi-random numbers is generated from each parameters’

pre-specified distribution. In order to improve the sensitivity estimates, the values tested for each

parameter in the model are drawn from quasi-random number generators. Because randomly gen-

erated numbers tend to cluster together and leave detectable gaps of unsampled space, a stratified

sampling approach is recommended to test values that span the entire parameter space. Quasi-

random numbers relieve the issue of unsampled gaps in the parameter space by partitioning this

space into equal subintervals and randomly sampling points within those subintervals, which are

then used in sensitivity calculations. With more than one point randomly sampled from each subin-

terval, unbiased estimates of the mean and variance can still be obtained (Saltelli, Ratto, Andres,

et al., 2008). Though the use of quasi-random numbers from a given distribution is not necessary,

we incorporate this approach into our computations.

The formula presented in Saltelli, Ratto, Andres, et al., 2008 defines the first order Sobol’

sensitivities as

Si =
V [E(Y |Xi)]

V (Y )
=

1
N ∑y( j)

A y( j)
Ci
− 1

N2 ∑y( j)
A ∑yB

1
N ∑

(
y( j)

A

)2
− f 2

0

, (6)

where

f 2
0 =

(
1
N

N

∑
j=1

y( j)
A

)2

,

and the Sobol’ total-effect indices are defined as

STi = 1− V [E(Y |X−i)]

V (Y )
= 1−

1
N ∑y( j)

B y( j)
Ci
− f 2

0

1
N ∑

(
y( j)

A

)2
− f 2

0

. (7)

In equations (6) and (7), A and B are N× k matrices of simulated values from each param-

eter’s pre-specified distribution using a low-discrepancy sequence; Ci, where i = 1, . . . , k, is a

N× k matrix where every element of Ci is the matrix B, except column i of Ci is replaced with

column i of matrix A; and yA, yCi , and yB are N× 1 vectors of the model outputs produced from

the simulated parameter values in matrix A, Ci, and B, respectively (Saltelli, Ratto, Andres, et al.,
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2008).

The total effect of parameter Xi, where i = 1, . . . , k, in a model can be interpreted as the

sum of its main effect in addition to all higher-order interaction terms. Given a parameter Xi, if

STi − Si ≈ 0, this result suggests that the higher-order effects are not important in explaining the

overall variance in the model output. If for a given parameter Xi, the main effect Si is close to

0, this result is insufficient to conclude that the parameter is non-influential. However, STi = 0 is

a necessary and sufficient condition to deduce that parameter Xi is non-influential, meaning this

parameter can be fixed to any value in its distribution and have a negligible effect on the variance

of the model’s output (Saltelli, Ratto, Andres, et al., 2008). Theoretically, 0≤ Si, STi ≤ 1 for each

parameter, and 0 ≤ ∑
k
i=1 STi ≤ 1. However, due to error in estimation for each sensitivity index in

practice, Si and STi can be computed to be slightly negative, and ∑
n
i=1 STi can slightly exceed 1. An

increased number of simulations N in computing these indices may reduce these errors.

Using Algorithm 1 in Appendix A, we wrote a function in Julia v1.1.1 that computes the

first-order and total-order Sobol’ indices for a given ODE-based model for each parameter-variable

combination, which is included in Appendix C. To compute the first- and total-order Sobol’ indices

for our reduced model parameters, we specified prior distributions for each parameter from which

to draw samples. Using the inverse transform sampling method, parameter samples are initially

drawn from a quasi-random number generator on the interval [0,1]. Because the result of this draw

is a value between 0 and 1, it can be interpreted as a probability. This probability p is then input

into the inverse of the cumulative distribution function (cdf) of the given parameter distribution X

in order to produce a value x∗ in the parameter distribution’s domain. This transformation can be

denoted as F−1
X (p)≡ x∗, where F−1

X is inverse of the cdf of the distribution for parameter X . The

resulting value x∗ is then used as a simulated parameter value for the sensitivity calculation of the

Sobol’ indices (Devroye, 1986).
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First- And Total-order Sobol’ Indices For The Reduced Model Parameters

In order to specify the distribution of our model’s parameters, we first considered the domain

of each parameter. All parameters in our reduced model can reasonably take on positive values, so

we restricted our consideration to parameter distributions defined on the positive number line. Due

to its positive, continuous domain, we chose the Gamma(k, θ ) distribution as the general form of

our specified parameter distributions, whose pdf is parameterized as

f (x) =
1

Γ(k)θ k xk−1e−
x
θ , x > 0,

where k > 0 is the shape parameter, and θ > 0 is the scale parameter. Using the results of our

parameter estimation in Table 2, we defined the mean of the Gamma distributions to be equal to the

estimates we obtained from our parameter estimation. Because we obtained one set of parameter

estimates for our reduced model, we are not able to obtain an informed variance on our parameter

distributions. In order to reflect our minimal knowledge of the true parameter values, we define the

variance of these Gamma distributions to be large in order to test a wide range of parameter values

in our sensitivity calculations, which are specified in Table 5.

k θ Mean Variance

βa 2000 1 2000 2000
βB 0.01 8 0.08 0.64
βh 50 1 50 50
γp 10 1 10 10

µpB 200 1 200 200

Table 5: Table of defined parameter distributions for the parameters in our reduced model, includ-
ing the mean and variance of the distribution.

The first- and total-order results of the sensitivity analysis of the parameters in our reduced

model are presented in Tables 6 and 7. Based on the small changes observed from the first-order

sensitivities compared to the total-order sensitivities, we can conclude that higher order parameter

interactions do not significantly contribute to the variance of the model outputs, so these higher
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B a h p

βa 0.000 0.003 0.002 0.003
βB 0.995 0.838 0.572 0.891
βh 0.000 0.000 0.304 0.000
γp 0.000 0.120 0.080 0.064

µpB 0.000 0.025 0.017 0.034

Total 0.995 0.982 0.974 0.992

Table 6: Table of first-order sensitivity indices based on equation (6) for our reduced model in
equations (5) using N = 218 simulations.

B a h p

βa 0.003 0.003 0.002 0.002
βB 1.000 0.856 0.596 0.898
βh 0.002 0.001 0.318 0.000
γp 0.003 0.133 0.092 0.072

µpB 0.002 0.030 0.021 0.035

Total 1.010 1.012 1.028 1.007

Table 7: Table of total-order sensitivity indices based on equation (7) for our reduced model in
equations (5) using N = 218 simulations.

order interactions can safely be ignored. From the sensitivity results, it can be concluded that the

parameter βB is influential on the variance of the model outputs due to βB’s high sensitivity indices

for all outputs. An unexpected result based on these indices is that the variable p is more sensitive

to changes in the parameter γp, the Michaelis-Menten constant in the Monod form, than µpB, the

rate B. thetaiotaomicron consumes polysaccharides. Though γp explains more variance in p than

µpB, the first- and total-order effects for this parameter are relatively low compared to the main

effects of parameter βB, which appears to be the driving parameter of this subsystem. Overall, the

results obtained in Tables 6 and 7 are generally unsurprising and intuitive. With these parameter

estimates and Sobol’ indices in mind, we then utilized this information in our full model to conduct

a sensitivity analysis of all nineteen parameters.
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First- And Total-order Sobol’ Indices For The Full Model Parameters

In order to specify distributions for each parameter in the full model, we first set all but

one parameter to a Gamma(k,θ ) distribution since we expect all of these parameters to be strictly

positive. The parameter q was not set to a Gamma(k,θ) distribution, but was instead specified as a

Beta(5,95) distribution. Though the support of this distribution restricts the samples to the interval

[0,1], we deemed this option to be more appropriate due to the Gamma(0.025, 2.0) distribution’s

heavy right-skewness and tendency to sample infinitesimally small, unlikely values.

We implemented a similar approach in specifying each k and θ as in the reduced model; the

mean of each parameter’s distribution was set to be equal to our estimated value in Table 4. The

variance was specified to be equal to two times the estimated parameter value. We chose this value

for the variance in order to cover a wide range of sample values for our sensitivity analysis due to

a large uncertainty in our parameter estimates. Table 8 shows the values of k, θ , and the mean and

variance of each parameter distribution. With these specified parameter distributions, samples were

pulled using a low-discrepancy sequence, and these samples were then used to calculate the first-

and total-order Sobol’ indices for each model parameter and output. The results of our sensitivity

analysis are given in Tables 10 and 11 in Appendix B.

Computing the first- and total-order Sobol’ sensitivities for our full model using the pa-

rameter distributions specified in Table 8 proved to be somewhat computationally intensive due

to the amount of time needed to solve our ODE system. In order to mitigate the computational

time required to solve our full ODE system for a total of N = 218 simulations, we utilized The

University of Iowa’s Argon HPC Cluster by submitting our computational jobs in batches. To run

our computations concurrently, the simulations were split into twenty-one cases. Each of these

twenty-one matrices consisted of 218 rows, where each row is a vector of simulated values for each

model parameter. These values were stored in the matrices A, B, C1, ...,C19, which correspond to

lines 2 and 5 in the Algorithm 1 included in Appendix A. These matrices of simulated parameter

values were then input into our full ODE system, resulting in another set of twenty-one matrices,

each with dimensions 218×6, containing our full ODE model’s endpoint solutions. Implementing
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k θ Mean Variance

βa 5.00×106 2.00 1.00×107 2.00×107

βB 0.60 2.00 1.20 2.40
βE1 0.40 2.00 0.80 1.60
βE2 0.30 2.00 0.60 1.20
βh1 75.00 2.00 150.00 300.00
βh2 1.67×104 2.00 3.33×104 6.67×104

βM1 0.40 2.00 0.80 1.60
βM2 0.25 2.00 0.50 1.00
βp 5.00×103 2.00 1.00×104 2.00×104

γa 100.00 2.00 200.00 400.00
γB 5.00 2.00 10.00 20.00
γh 75.00 2.00 150.00 300.00
γp 200.00 2.00 400.00 800.00

µaE 1.25×103 2.00 2.50×104 5.00×104

µaM 2.50×104 2.00 5.00×104 1.00×105

µhM 20.00 2.00 40.00 80.00
µpB 1.00×105 2.00 2.00×105 4.00×105

µpE 2.50×103 2.00 5.00×103 1.00×104

α β Mean Variance

q 5.00 95.00 0.05 4.70×10−2

Table 8: Table of specified distributions for the parameters in our full model, including the mean
and variance of each distribution. The parameters whose distribution is specified with k and θ

follow a Gamma(k,θ ) distribution. The parameter q, however, follows a Beta(α,β ) distribution.

line 6 of Algorithm 1 in Appendix A results in these (218× 6) matrices of model solutions. The

total amount of computational time needed in order to produce these solutions was roughly two to

five hours, which would have taken between 42 to 105 hours if done in series.

Using our code in Appendix C to produce the first- and total-order Sobol’ indices for our

full ODE model, we obtained the results seen in Appendix B. Based on Table 10 of the first-order

Sobol’ indices, βB is an influential parameter for B. thetaiotaomicron’s output variance; βE2 for E.

rectale’s variance; βM2 for M. smithii’s variance; no first-order parameter for acetate’s variance; βB

and βM2 for CO2 and H2’s variance; and βB for polysaccharides’ variance. Based on Table 11 of the

total-order Sobol’ indices, βB is an influential parameter for B. thetaiotaomicron’s output variance;

βE2 and βB for E. rectale’s variance; βM2 , q, and βB for M. smithii’s variance; βB, βE1 , βE2 , βM1 ,
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βM2 , and q for acetate’s variance; βB, βE2 , βM1 , βM2 , and q for CO2 and H2’s variance; and βB, βE2 ,

and q for polysaccharides’ variance. Based on the changes in the estimated indices from first-order

to total-order indices, there appears to be a higher-order interaction among model parameters for E.

rectale’s, M. smithii’s, acetate’s, CO2 and H2’s, and polysaccharides’ output variance. Overall, the

two main driving parameters of the ODE model appear to be βB and q. Because these parameters

are identified to be sensitive to input perturbations, careful attention needs to be given to estimating

these parameters and reducing the error of their estimates in future efforts.

Some results seen in these tables are unsurprising: the birth rates of the microorganisms

affect the variation in their biomass and the concentration of the substances they produce and/or

consume. Additionally, the γ parameters are insignificant in affecting the variation in model output,

which is to be expected. These unsurprising results provide evidence to support our mathematical

model as a hypothesis. On the other hand, some results were unexpected, such as the total-order

Sobol’ indices results in Table 11 for acetate and polysaccharides summing to be greater than the

theoretical maximum sum of 1. In order to investigate whether this discrepancy was due to a

failure to sufficiently converge, a total of N = 219 simulations were run, again using the standard

algorithm in Appendix C, resulting in a new set of first- and total-order Sobol’ indices. These

results showed an insignificant change compared to the previous estimates, so we concluded that

these results can be attributed to an issue other than a lack of convergence. Based on Iooss and

Prieur, 2019, observing Sobol’ indices whose sum is greater than 1 is evidence of correlated inputs

in the model. From the results in Table 11, there appears to be correlation among parameters when

computing the output variance of acetate and polysaccharides due to their large total-order sum.

35



CONCLUSIONS AND FURTHER DIRECTIONS

The human gut microbiota has received much consideration in the recent published liter-

ature, reflecting its growing importance in understanding human health. Our specific method of

study for this ecosystem was to mathematically model the population dynamics of a small subset

of microorganisms commonly contained in the human gut using a system of ordinary differen-

tial equations. This method of analysis supplements other common approaches, such as GEMs

and ABMs, which do not consider information at the strain-level as our model does (Kumar, Ji,

Zengler, and Nielsen, 2019). The combination of these approaches provides insight into the dy-

namics of the human gut microbiota, driving further research directions. Based on the information

complied about these three species from the available literature, we created a deterministic mathe-

matical model in order to help organize, clarify, and concatenate existing knowledge. To this end,

we suggest and illustrate that a mathematical representation similar to those of chemostats is a

natural way to capture the inflow and outflow in the gut.

The three species chosen to be the focus of the model, B. thetaiotaomicron, E. rectale, and

M. smithii, play an important role in polysaccharide degradation and the production of buyrate,

which both aid in the human gut’s ability to absorb nutrients through the epithelial cells (Shoaie,

Karlsson, Mardinoglu, et al., 2013). The system of the three microbial species has been consid-

ered in previous works, such as Shoaie, Karlsson, Mardinoglu, et al., 2013 and Ji and Nielsen,

2015, which largely informed our knowledge of this system. Based on information complied on

these species from the available literature, we created a system of ODEs that tracks the population

changes over time in order to obtain a model with a parameter set that achieves a nontrivial, oscil-

latory steady state. By creating a mathematical model based on the interactions of these species,

we have analyzed their interactions and identified aspects of this system that should be further

explored through empirical investigation.

Due to the limited availability of data for a more rigorous parameter estimation, our sensi-

tivity analysis took on additional importance. Through the results of the sensitivity analysis using
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first- and total-order Sobol’ indices, we more narrowly identified specific links in the microbial

food web that would be fruitful targets for additional empirical work. Specifically, we identified

the parameters βB, βE1 , βE2 , βM1 , βM2 , and q as being largely significant in contributing to the vari-

ance of the model output, including higher-order interactions among these parameters. With these

results, we suggest that estimates of these significant parameters be obtained through laboratory

experimentation in order to capture these values to a higher degree of precision and accuracy.

These significant β parameters correspond to the growth rates of the three microorganisms

when supported on a medium containing specific nutrients. Experiments should focus on culti-

vating these microorganisms in isolation in germ-free mice, as done previously in the experiment

found in Shoaie, Karlsson, Mardinoglu, et al., 2013, with only one nutrient. Despite the fact that

these microorganisms are able to be cultured in isolation of other microorganisms, they may not be

able to be sustained on one single nutrient, but rather require the presence of additional substrates.

In this case, nonlinear effects from these secondary nutrients would factor in to the resulting es-

timates of the growth parameters. Table 9 provides a general outline of the the specific nutrient

and microorganism necessary to estimate each parameter. For example, βB can be experimentally

estimated by cultivating B. thetaiotaomicron in a medium containing only polysaccharides. The

remaining parameters given in Table 9 can be estimated with similar experiments. Additionally,

experiments approximating the rate of flow of the digestive system’s fluids would largely inform

the estimate for the true value of q.

Parameter Microorganism Nutrient

βB B. thetaiotaomicron polysaccharides
βE1 E. rectale acetate
βE2 E. rectale polysaccharides
βM1 M. smithii acetate
βM2 M. smithii CO2 and H2

Table 9: Table of microorganism growth rate parameters suggested to be estimated experimentally.

Due to the possibility of correlation among model parameters, variance-based sensitivity

analyses specifically for correlated parameters should be explored and applied to this system, such
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as the methods discussed in Iooss and Prieur, 2019 and Rabitz, 2010. In regards to specifying the

prior distributions on parameters, further analyses should include testing differing prior parameter

distributions in order to compute the Sobol’ indices, especially to explore the amount of variability

in results based on the chosen parameter distributions (Saltelli, Ratto, Andres, et al., 2008).

As another further extension of the work compiled in this thesis, our main suggestion is to

collect further longitudinal data on this biological system, including all three species B. thetaio-

taomicron, E. rectale, and M. smithii and its relevant substrates. With this experimental data, more

precise estimates of the model parameters can be achieved if the previously suggested experiments

prove to be infeasible or too costly. With this approach, particular attention can be paid to estimat-

ing the parameters that were identified as sensitive by the Sobol’ indices.

Additionally, further extensions of our model may include relaxing some of the simplistic

and potentially biologically unrealistic assumptions of a general chemostat model. Specifically,

the rate of volumetric flow through the chemostat can be generalized to reflect aspects of the

natural flow of the gut, such as periodically restricted flow, and the framework of a single vessel

representation can be extended to consider additional compartments. Aside from the assumptions

of a simple chemostat model, future implementations of a similar model can account for absorption

rate of substrates within the gut, which is especially important to consider for substances like

amino acids. With these potential improvements of our baseline model, additional aspects about

the dynamics of this biological system can be uncovered, and these improvements to our model

could fuel further research directions related to this system.
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APPENDIX A: ALGORITHM FOR FIRST- AND TOTAL-EFFECT SOBOL’ INDICES FOR

MODEL PARAMETERS

Algorithm 1: First- and total-effect Sobol’ indices for model parameters

Result: S: k×R matrix of Sobol’ indices for every parameter k and for each result R.

Input: f : model with R outputs; N: number of simulations; k: number of parameters; idx: 1

for first-order effects, 0 for total-order effects.

1 M← Generate an N×2k matrix using a quasi-random number generator from each

parameter’s underlying distribution;

2 A← M[N,1 : k]; B← M[N,(k+1) : 2k];

3 S← initialize a k×R matrix;

4 for i = 1, . . . , k do

5 Ci← B, except replace the ith column with the ith column of A;

6 yA← f (A); yB← f (B); yCi ← f (Ci);

7 if idx == 1 then

8 S← Compute first-order Sobol’ indices based on equation 6;

9 else

10 S← Compute total-order Sobol’ indices based on equation 7;

11 end

12 end

13 Return S
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APPENDIX B: TABLES OF FIRST- AND TOTAL-ORDER SOBOL’ INDICES FOR MODEL

PARAMETERS

B E M a h p

βa 0.00 0.00 0.00 0.00 0.00 0.00
βB 0.98 0.02 0.01 0.02 0.37 0.13
βE1 0.00 0.00 0.00 0.04 0.00 0.00
βE2 0.00 0.82 0.01 0.02 0.10 0.03
βh1 0.00 0.00 0.00 0.00 0.00 0.00
βh2 0.00 0.00 0.00 0.00 0.00 0.00
βM1 0.00 0.00 0.04 0.04 0.06 0.00
βM2 0.00 0.00 0.65 0.02 0.17 0.00
βp 0.00 0.00 0.00 0.00 0.00 0.00

γa 0.00 0.00 0.00 0.00 0.00 0.00
γB 0.00 0.00 0.00 0.00 0.00 0.00
γh 0.00 0.00 0.00 0.00 0.00 0.00
γp 0.00 0.00 0.00 0.00 0.01 0.00

µaE 0.00 0.00 0.00 0.00 0.00 0.00
µaM 0.00 0.00 0.00 0.00 0.00 0.00
µhM 0.00 0.00 0.00 0.00 0.00 0.00
µpB 0.00 0.00 0.00 0.00 0.00 0.00
µpE 0.00 0.00 0.00 0.00 0.00 0.00

q 0.00 0.01 0.02 0.07 0.02 0.09

Total 0.99 0.85 0.74 0.23 0.75 0.24

Table 10: Table of model parameters’ estimated first-order Sobol’ indices for each output, B, E,
M, a, h, and p, using N = 218 simulations. These indices were calculated based on equation (6).
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B E M a h p

βa 0.00 0.00 0.00 0.00 0.00 0.00
βB 0.99 0.13 0.11 0.33 0.56 0.80
βE1 0.00 0.01 0.00 0.56 0.01 0.04
βE2 0.01 0.97 0.04 0.22 0.18 0.49
βh1 0.00 0.00 0.00 0.00 0.00 0.00
βh2 0.00 0.00 0.00 0.00 0.00 0.00
βM1 0.00 0.00 0.05 0.58 0.10 0.01
βM2 0.00 0.00 0.88 0.19 0.25 0.00
βp 0.00 0.00 0.00 0.00 0.00 0.00

γa 0.00 0.00 0.00 0.00 0.00 0.00
γB 0.00 0.00 0.00 0.00 0.00 0.00
γh 0.00 0.00 0.01 0.00 0.00 0.00
γp 0.01 0.01 0.00 0.00 0.01 0.00

µaE 0.00 0.00 0.00 0.00 0.00 0.00
µaM 0.00 0.00 0.00 0.00 0.00 0.00
µhM 0.00 0.00 0.04 0.01 0.00 0.00
µpB 0.00 0.00 0.00 0.00 0.00 0.00
µpE 0.00 0.00 0.00 0.00 0.00 0.00

q 0.01 0.05 0.11 0.62 0.17 0.72

Total 1.02 1.17 1.25 2.48 1.29 2.09

Table 11: Table of model parameters’ estimated total-order Sobol’ indices for each output, B, E,
M, a, h, and p, using N = 218 simulations. These indices were calculated based on equation (7).
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APPENDIX C: JULIA CODE FOR FIRST- AND TOTAL-ORDER SOBOL’ INDICES

" " "

s o b o l ( f , N , u0 , t span , t , k , θ , i n d e x = " f i r s t −o r d e r " )

C r e a t e s a m a t r i x o f Sobo l ’ s e n s i t i v i t i e s where each row c o n t a i n s

t h e s e n s i t i v i t y i n d i c e s f o r a parame te r a c r o s s d i f f e r e n t model

o u t p u t s .

f − s y s t e m o f ODEs

N − number o f s i m u l a t i o n s ( can vary from hundreds t o t h o u s a n d s )

u0 − v e c t o r o f i n i t i a l c o n d i t i o n s f o r ODE

t s p a n − t i m e span

k − v e c t o r o f s c a l e p a r a m e t e r s from Gamma( ki ,θi ) f o r a l l

model p a r a m e t e r s

θ − v e c t o r o f shape p a r a m e t e r s from Gamma( ki ,θi ) f o r a l l

model p a r a m e t e r s

i n d e x − d e f a u l t i s t h e f i r s t o r d e r index , b u t can t a k e on t h e

o t h e r v a l u e " t o t a l −o r d e r "

t − s p e c i f i e d t i m e i n t s p a n t o e v a l u a t e each model v a r i a b l e

" " "

u s i n g Sobol

u s i n g D i s t r i b u t i o n s

f u n c t i o n s o b o l ( f , N, u0 , t s p a n , k , θ , i n d e x = " f i r s t −o r d e r " ,

t = 5 )

K = l e n g t h ( k )
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vars = l e n g t h ( u0 )

# quas i−randomly s e l e c t e d p o i n t s

S = z e r o s (N, 2∗K)

s = SobolSeq (2∗K)

θ = [ θ ; θ ]

k = [ k ; k ]

S = z e r o s (N, 2∗K)

f o r sim in 1 :N

S [ sim , : ] = next ! ( s ) ’

f o r p a r a m e t e r in 1 :2∗K

S [ sim , p a r a m e t e r ] = q u a n t i l e (Gamma( k [ p a r a m e t e r ] ,

θ [ p a r a m e t e r ] ) , S [ sim , p a r a m e t e r ] )

end

end

A = S [ : , 1 :K] # a c c o u n t s f o r h a l f o f t h e random sample

B = S [ : , (K+ 1 ) : 2∗K] # a c c o u n t s f o r second h a l f o f t h e

# random sample

sums = z e r o s ( 4 , vars )

ya = solveODE ( f , u0 , vars , t s p a n , t , A, N)

yb = solveODE ( f , u0 , vars , t s p a n , t , B , N)

sumC = z e r o s (K, vars ) # ( parameter , v a r i a b l e )

f o r p in 1 :K # i t e r a t e s t h r o u g h chang ing one column o f C a t

# a t i m e ( p a r a m e t e r s )
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C = Ci ( p , A, B)

yc = solveODE ( f , u0 , vars , t s p a n , t , C , N)

f o r v in 1 : vars

i f i n d e x == " f i r s t −o r d e r "

sumC [ p , v ] = yc [ : , v ] ’∗ya [ : , v ] / N

e l s e

sumC [ p , v ] = yc [ : , v ] ’∗yb [ : , v ] / N

end

end

end

s e n s = z e r o s (K, vars ) # ( parameter , v a r i a b l e )

f o r v in 1 : vars

sums [ 1 , v ] = ya [ : , v ] ’∗ya [ : , v ] / N

# sum ( ya ^ 2 ) / N

sums [ 2 , v ] = ( sum ( ya [ : , v ] ) / N)^2 # [ sum ( ya ) / N]^2

sums [ 3 , v ] = sums [ 1 , v ] − sums [ 2 , v ]

# denomina tor f o r s e n s i t i v i t y c a l c u l a t i o n

sums [ 4 , v ] = sum ( yb [ : , v ] ) ∗ sum ( ya [ : , v ] ) / N. ^ 2

# sum ( ya )∗ sum ( yb ) / N^2

f o r p in 1 :K

i f i n d e x == " f i r s t −o r d e r "
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s e n s [ p , v ] = ( sumC [ p , v ] − sums [ 4 , v ] ) / sums [ 3 , v ]

e l s e

s e n s [ p , v ] = 1 − ( sumC [ p , v ] − sums [ 2 , v ] ) / sums [ 3 , v ]

end

end

end

re turn s e n s # m a t r i x o f s e n s i t i v i t y i n d i c e s

end

48



" " "

Ci ( i , A , B )

C r e a t e s a new m a t r i x C by r e p l a c i n g t h e i t h column o f m a t r i x B

w i t h t h e i t h column o f m a t r i x A .

i − column number t o be changed i n m a t r i x B

A − m a t r i x c o n t a i n i n g h a l f o f t h e pseudo−random samples

B − m a t r i x c o n t a i n i n g t h e o t h e r h a l f o f t h e pseudo−random

sample s

" " "

f u n c t i o n Ci ( i , A, B)

C = z e r o s ( s i z e (B ) )

f o r j in 1 : s i z e (A) [ 2 ]

i f j == i

C [ : , i ] = A [ : , i ]

e l s e

C [ : , j ] = B [ : , j ]

end

end

re turn C

end
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" " "

solveODE ( f , u0 , vars , t span , t , M, N)

S o l v e s t h e s y s t e m o f ODEs f and c r e a t e s a m a t r i x o f model

e v a l u a t i o n s f o r each s i m u l a t i o n and o u t p u t v a r i a b l e . Each row

c o r r e s p o n d s t o model s o l u t i o n s a t a g i v e n t i m e t f o r one

s i m u l a t i o n .

f − s y s t e m o f ODEs

u0 − v e c t o r o f i n i t i a l c o n d i t i o n s f o r t h e ODEs

v a r s − number o f o u t p u t v a r i a b l e s

t s p a n − t i m e span

t − s p e c i f i e d t i m e i n t s p a n t o e v a l u a t e each model v a r i a b l e

M − m a t r i x w i t h rows as parame te r v a l u e s and columns as

s i m u l a t i o n s

N − number o f s i m u l a t i o n s ( can vary from hundreds t o t h o u s a n d s )

" " "

f u n c t i o n solveODE ( f , u0 , vars , t s p a n , t , M, N)

y = z e r o s (N, vars ) # ( s i m u l a t i o n , v a r i a b l e )

f o r sim in 1 :N

p = M[ sim , : ]

p rob = ODEProblem ( f , u0 , t s p a n , p )

s o l = s o l v e ( prob )

f o r v a r i a b l e in 1 : vars

y [ sim , v a r i a b l e ] = s o l . u [ t ] [ v a r i a b l e ]

end
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end

re turn y # m a t r i x o f model o u t p u t s

end
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