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Abstract 

Human lungs single cell RNA sequencing data from healthy donors (elderly and young; GEO 

accession number GSE122960) were analyzed to isolate and specifically study gene 

expression in alveolar type II cells. Co-localization of ACE2 and TMPRSS2 enables SARS-CoV 

2 to enter the cells. Expression of these genes in the alveolar type II cells of elderly and 

young patients were comparable and therefore do not seem to be responsible for worse 

outcomes observed in COVID-19 affected elderly. In cells from the elderly, 263 genes were 

downregulated and 95 upregulated. SOD3 was identified as the top-ranked gene that was 

most down-regulated in the elderly. Other redox-active genes that were also 

downregulated in cells from the elderly included ATF4 and M2TA. ATF4, an ER stress 

sensor that defends lungs via induction of heme oxygenase 1. The study of downstream 

factors known to be induced by ATF4, according to Ingenuity Pathway AnalysisTM, 

identified 24 candidates. Twenty-one of these were significantly downregulated in the cells 

from the elderly. These downregulated candidates were subjected to enrichment using the 

Reactome Database identifying that in the elderly, the ability to respond to heme 

deficiency and the ATF4-dependent ability to respond to endoplasmic reticulum stress is 

significantly compromised. SOD3-based therapeutic strategies have provided beneficial 

results in treating lung disorders including fibrosis. The findings of this work propose the 

hypotheses that lung-specific delivery of SOD3/ATF4 related antioxidants may work in 

synergy with promising anti-viral drugs such as remdesivir to further improve COVID-19 

outcomes in the elderly. 
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Introduction 

The human lung alveolar epithelium is mainly composed of types I/II alveolar cells and 

macrophages. In contrast with alveolar cells type I, alveolar cells type II are capable of 

giving rise to both type II and type I alveolar cells (18). Alveolar type II cells serve many 

critical functions including production of pulmonary surfactant, stabilization of airway 

epithelial barrier, local immune defense, and airway regeneration following injury. As one 

of few cells in the human body that co-expresses angiotensin-converting enzyme 2 (ACE2) 

receptor and the TMPRSS2 protease, required for attachment and cellular entry of COVID-

19, alveolar type II cells are readily targeted by coronavirus 2 (SARS-CoV 2) (8). Coronavirus 

disease 2019 (COVID-19) is an emerging respiratory disease caused by SARS-CoV 2. Most 

COVID-19+ patients exhibit mild to moderate symptoms, with ~10% developing acute 

respiratory distress syndrome (ARDS) which is the leading cause of mortality among these 

patients (9). Histopathologic changes of the lungs related to COVID-19 include diffuse 

alveolar damage, chronic inflammatory infiltrates and intra-alveolar fibrinous exudates 

(30). The severity of symptoms and mortality of elderly patients are higher than those of 

younger patients (14).  

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are known to be 

produced by cells of the innate immune system and others in response to viral infection 

(11). ROS/RNS are directly implicated in lung fibrosis and declining lung function (5). 

Antioxidant enzymes such lecithinized superoxide dismutase (SOD) have proven to be 

useful in patients suffering from lung fibrosis (25). There is substantial literature 

demonstrating a causative role of ROS/RNS in the development of lung fibrosis (21). In 

virus-induced lung disease, antioxidant treatment attenuated lung inflammation and 

airway hyper-reactivity (3). In this work, we utilized single-cell sequencing data from 

elderly and younger humans to specifically study alveolar type II cells to identify genes that 

are most profoundly affected as a function of age. Such effort was intended at developing 

novel hypothesis to understand why lungs of the elderly are more severely affected in 

COVID-19.   
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Results 

Human lungs single cell RNA sequencing (scRNA-seq) data from four healthy donors (9,783 

cells from old-age group, 57 and 63 years old, and 8,501 cells from young-age group, 22 

and 29 years old; GEO accession number GSE122960) were analyzed (20). Analysis of 

scRNA-seq data generated thirteen clusters visualized using t-Distributed Stochastic 

Neighbor Embedding (t-SNE). Such clustering was based on a non-linear dimensionality 

reduction technique for embedding high dimensional data with the objective of 

visualization in low-dimensional space. As depicted in Figure 1A, these clusters include 

epithelial cells (alveolar type II cells), macrophages in different states, epithelial cells 

(alveolar type I cells), monocytes, B cells, T cells/ NK cells, endothelial cells and stem cells. 

SingleR package in R (1), in conjunction with the Human Primary Cell Atlas (HPCA) dataset, 

was used to identify alveolar type II cells from the total lung cell population. These cells 

heavily expressed the characteristic surfactant protein C gene (Sup Fig 1A, B). Genes of this 

particular alveolar type II cell cluster were analyzed for differential expression as a function 

of aging (Figure 1B). Co-localization of ACE2 and TMPRSS2 enables SARS-CoV 2 to enter the 

cells(8). Expression of these genes in the alveolar type II cells of old and young patients 

were comparable (Figure 1C) and therefore do not seem to be responsible for worse 

outcomes in COVID-19 affected elderly. Compared to that in alveolar type II cells from 

younger donors, in cells of older donors 263 genes were differentially downregulated and 

95 genes were upregulated (adjusted p-value <0.05 and 10% log fold change; Figure 1D, 

Sup Table 1). SOD3 was identified as the top-ranked (by log of fold-change) gene that was 

most down-regulated in alveolar type II cells (Sup Table 1). This observation piqued our 

interest in other genes with known redox functions. Other genes with known redox-based 

functions that were also downregulated in alveolar type II cells of elderly lung donors 

included Activating Transcription Factor 4 (ATF4) and Metallothionein 2A (M2TA) (Figure 

2A-C). Additional studies to look for SOD3-interacting genes, as predicted by String 

database (String version 11.0), recognized the following: SOD2, Catalase (CAT), Glutathione 

Peroxidase 1 (GPX1), GPX2, GPX3, GPX5, GPX7, GPX8, Antioxidant 1 Copper Chaperone 

(ATOX1), and ATPase Copper Transporting Alpha (ATP7A) (Sup Fig 2A, B). Among these 

candidates, GPX1 was the only gene that was differentially low in expression in cells from 
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elderly donors (Sup Fig 2B, Sup Table 1). Viral infection is known to employ ER stress to 

cause lung fibrosis(12). ATF4, an ER stress sensor that can defend lungs via induction of 

heme oxygenase 1, was downregulated in alveolar type II cells of the elderly (Figure 2B). 

Study of downstream factors that are known to be induced by ATF4, according to 

Ingenuity Pathway AnalysisTM, identified 24 candidates. Twenty-one of these 24 were 

significantly downregulated in the alveolar type II cells of the elderly (Figure 2C). The 

downregulated candidates were subjected to pathway enrichment using the Reactome 

Database. These analyses identified that in the elderly, the ability to respond to heme 

deficiency and the ATF4-dependent ability to respond to endoplasmic reticulum stress is 

significantly compromised (Figure 2D, Table 1). 

Discussion 

At the time of this reporting, of 13,130 COVID-19 deaths (of reported death from all causes 

582,565 on April 19, 2020) in the United States as reported by the Center for Disease 

Control, 13,001 decedents were of age 35 or above representing 99% of all COVID-19 

deaths. Decedents aged 55 years or above account for 91% of all COVID-19 deaths (19). 

The younger donors of this study were both below 30 while the elderly donors were both 

above 55 (19).  Briefly, the SARS-CoV 2 virion contains four proteins: spike, envelope, 

membrane, and nucleocapsid; and a single-stranded RNA. The virion binds to ACE2 

receptor located on alveolar type II cells making these cells a target for infection. Once 

SARS-CoV 2 has attached to these receptors, the TMPRSS2 protease cleaves the spike 

protein to expose a fusion peptide which helps the virus enter the cell (8). This enables the 

virions to release their RNA into infected cells. Co-expression of ACE2 and TMPRSS2 on 

type II cells makes them a preferred site for SARS-CoV 2 attachment, entry and replication 

(16). In late stages of the severe form of COVID-19, cytokine storm has been evident (17). 

Under these conditions, when the inflammatory system has gone awry in COVID-19 

unrelated pathologies, there is ample evidence of oxidative stress (15). Findings of this 

work, involving an unbiased query of differentially expressed genes specifically in alveolar 

type II cells of the human lung, point towards specific elements of the antioxidant defense 

system that are weakened as a function of age. SOD3-deficient mice develop severe lung 

damage in the presence of normal oxygen tension along with marked inflammatory cell 
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infiltration and alveolar hemorrhage (6). In the lungs, extracellular SOD3 is primarily 

expressed in bronchial and alveolar type II epithelial cells, alveolar macrophages, and 

pulmonary endothelial cells (4). Importantly, SOD3 mRNA expression in alveolar cells 

correlates with locally secreted enzyme activity defending functional significance of 

observed changes in gene expression (27). With SOD3 as the top-ranked candidate, this 

work identifies specific component of the alveolar cell antioxidant defense systems which 

are weakened in response to aging. Evidence in the current literature shows that SOD 

administration can decrease the severity of respiratory illness (7). Intravenous SOD 

administration in rabbit models reversed allergic emphysema (2). SOD-based therapies 

have also shown encouraging results in managing infectious diseases by improving host 

immune responses. Melon SOD restored CD4+/ CD8+ ratio in cats infected with feline 

immunodeficiency virus (28). Cu/Zn-SOD significantly inhibited HIV replication(13). Cu/Zn-

SOD inhalation protected murine lungs against pulmonary emphysema by decreasing ROS 

levels and pro-inflammatory cytokines expression (26). A limited-scale prospective double-

blinded controlled trial NCT04323228 is about to start recruiting to test the effect of an 

antioxidant oral nutrition supplement in SARS-CoV 2 positive cases. All of these above-

mentioned studies are preliminary at best and may help lay the foundation for a more 

serious effort testing whether lung-specific delivery of SOD3 related antioxidants may 

work in synergy with promising anti-virals such as remdesivir (NCT04323761) to further 

improve COVID-19 outcomes in the elderly.  

Innovation 

For the first time, single cell RNA sequencing data of the human lungs have been studied 

as a function of age to reveal that weakening of specific components of the antioxidant 

defense system of the alveolar type II cells from elderly donors should be tested for a 

mechanistic connection of COVID-19 severity outcomes.  

Notes 

Data acquisition. Primary single cell RNA sequencing data were obtained from the GEO 

database (http://www.ncbi.nlm.nih.gov/geo; accession number GSE122960). Authors of 

the published study studying lung fibrosis performed single cell RNA sequencing on eight 

http://www.ncbi.nlm.nih.gov/geo
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healthy donor lungs and nine lungs from patients with pulmonary fibrosis (20). Four 

samples were chosen from the healthy donor lungs in which two of them were 57 and 63 

years old and the other two samples were from donors who were 22 and 29 years old. All 

four donors were females, non-smokers and African American. 

Processing of raw data and quality control. All analyses were performed using Seurat 

package (v.3.1.1) in R (v.3.3.5) (22). The initial dataset contained 20,163 cells from four 

lung samples (2 young and 2 elderly). Gene expression values were log normalized using 

10,000 transcripts per cell as scaling factor. Canonical correlational analysis was performed 

to integrate all four samples to identify the shared cell types using the top 2000 highly 

variable genes. Cells expressing less than 200 or more than 5000 genes, as detected, were 

excluded. Further filtering was performed to exclude cells that contain more than 15% of 

their reads from mitochondrial encoded genes. Cells with total number of counts between 

2000 and 25000 were kept for downstream analysis. After the filtration step, 18,284 cells 

(9,783 from elderly and 8,501 from young donors) were maintained for downstream 

analysis. Principal component analyses were performed and the first 15 principal 

components were chosen for clustering.  

Determination of cell-type identity. To identify cluster identity, SingleR package in R was 

used to calculate the similarity between each cluster and the Human Primary Cell Atlas 

(HPCA) dataset(1). In addition, differential gene expression was performed between each 

cluster and the rest of the cells to identify cluster markers and further identification of the 

cluster identity using known markers from the literature. 

Differential gene expression analysis was performed for alveolar type II cells (cluster zero) 

to compare between young and old-age group using Wilcox-Rank Sum test with adjusted p 

value less than 0.05. To avoid detection of genes only altered in one sample of either 

group, four additional comparisons were performed (each sample with the 2 samples from 

the other group). The genes which were not simultaneously upregulated or downregulated 

and in at least three such comparisons were excluded. 

Ingenuity upstream regulator analysis in Ingenuity Pathway Analysis. IPA (23,24,29) was 

used to identify the cascade of upstream transcriptional regulators that can explain the 
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observed gene expression changes in the dataset. This approach is based on prior 

knowledge of expected effects between transcriptional regulators and their target genes. 

Two statistical measures (an overlap p-value and an activation z-score) were computed for 

each potential transcriptional regulator. The activation z-score was used to infer likely 

activation states of upstream regulators based on comparison with a model that assigns 

random regulation directions. 

Pathways enrichment. Reactome database (10) was used for enrichment of ATF4 

downstream targets which were found to be downregulated in alveolar type II cells in the 

cells from the elderly. 
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Abbreviations 

ARDS  acute respiratory distress syndrome 

COVID-19 Coronavirus disease 2019 

ROS reactive oxygen species 

RNS reactive nitrogen species 

SARS-CoV 2 severe acute respiratory syndrome coronavirus 2 

SOD  superoxide dismutase 

 ATF4  activating transcription factor 4 
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Figure Legends: 

Figure 1: Identification of thirteen distinct clusters within the lung tissue with unique 

markers for each. (A) t-distributed stochastic neighbor embedding (t-SNE) projection of the 

filtered data (18,284 cells; 8501 young; 9783 old). Each cell is represented as dot. (B) tSNE 

clustering of the epithelial, alveolar type II cells, cells showing clear separation between 

the cells from young and old group. (C) Expression level of ACE2 (top) and TMPRSS2 

(bottom) in alveolar type II cells. (D) Heatmap of the top differentially expressed genes 

between young and old lung alveolar type II cells (log fold change ± 0.4). Rows represent 

genes and columns represent cells. 

https://www.liebertpub.com/action/showImage?doi=10.1089/ars.2020.8111&iName=master.img-034.jpg&w=315&h=336
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Figure 2. Downregulation of SOD3 and ATF4 in alveolar type II cells of lungs from elderly 

donors (A) tSNE plots showing SOD3 and (B) ATF4 expression level between young and old 

age-group in (top) all the 13 clusters and (bottom) in alveolar type II cells. (C) Heatmap of 

the downstream targets of ATF4. Rows represent genes and columns represent cells. (D) 

Pathways enrichment for ATF4 downstream targets which are downregulated in elderly. 

Circles represent genes and diamonds represent the enriched terms. 

https://www.liebertpub.com/action/showImage?doi=10.1089/ars.2020.8111&iName=master.img-037.jpg&w=308&h=374
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Table 1. Reactome pathways enrichment for the downregulated genes among ATF4 

downstream targets in alveolar type II cells from elderly. Pathways with adjusted p-value 

<2E-6 are shown. 

Pathway name Reactions found/ Total 

reactions 

FDR adjusted p-value 

Response of EIF2AK1 (HRI) to heme 

deficiency 

18/ 20 1.41E-14 

PERK regulates gene expression 9/ 11 8.72E-12 

Response of EIF2AK4 (GCN2) to 

amino acid deficiency 

13/ 16 4.01E-10 

ATF4 activates genes in response to 

endoplasmic reticulum  stress 

7/ 7 9.39E-09 

Cellular responses to external stimuli 33/ 258 1.47E-08 

Unfolded Protein Response (UPR) 10/ 94 8.23E-08 

Cellular responses to stress 27/ 227 1.03E-06 

FDR: false discovery rate 

EIF2AK1: Eukaryotic Translation Initiation Factor 2 Alpha Kinase 4 

HRI: heme regulated inhibitor 

GCN2: General Control Nonderepressible 2 




