
De-anonymization of Dynamic Online Social
Networks via Persistent Structures

Tianchong Gao∗, Feng Li∗
∗Indiana University-Purdue University Indianapolis, Indianapolis, IN, U.S.A.

tgao@iupui.edu, fengli@iupui.edu

Moreover, OSN data is time variant although existing de-
anonymization attacks mainly focus on the static graphs.
For example, Facebook periodically releases their up-to-date
OSN data, and the adversary sequentially add his/her new
knowledge to the auxiliary graph. Researchers also designed
de-anonymization attacks to dynamic OSNs. However, most
of these mechanisms use the same methods that are used in
de-anonymization attacks upon static data. Here, a time-series
graph is considered as a combination of pieces of graphs [2].
Then the method to de-anonymize dynamic graphs is merely
to sequentially de-anonymize static graphs, and then combine
the results together. These mechanisms cannot use time to
conduce de-anonymization. Therefore, the de-anonymization
attacks upon dynamic OSN data may face the same problems
that are faced when trying to de-anonymize static OSN data.

As mentioned above, the main challenge in de-anonymizing
dynamic OSNs is that how to extract the time variant in-
formation and how to employ this kind of information in
de-anonymization. Unlike other kinds of data, e.g., tuples
of records in database, OSN data has a more complex data
structure. Adding/deleting edges should not be viewed as
simply changing pieces of edge records, without analyzing the
changing impact to topology information. In this paper, we
apply persistent homology to give the topology description
of the time-series graphs. In particular, persistent homology
can extract the persistency of hole structures under different
dimensions and under different time slices [3, 15]. Persistent
homology barcodes show the birth time and death time of
the holes. We examine the similarities between holes in two
time-series graphs, instead of individually considering the
similarities between nodes in each piece of graph. If two holes
match with each other, we use the nodes on the holes as seeds
to further grow the node mapping, until two time-series graph
are mapped.

The main contributions of our work are as follows:
• We probabilistically model the ability of adversaries to

get the true relationships, which is realistic in real-world
cases.

• We apply persistent homology to capture the persistent
structures in dynamic graphs, to extract the time variant
topology information.

• We introduce a seed-and-grow algorithm to map nodes
in dynamic graphs, considering both structural similarity
and attribute similarity.

• We experimentally analyze the scheme with real-world
datasets and show the proposed scheme obtaining high
accuracy in de-anonymization.

Abstract—Service providers of Online Social Networks (OSNs)
periodically publish anonymized OSN data, which creates an
opportunity for adversaries to de-anonymize the data and iden-
tify target users. Most commonly, these adversaries use de-
anonymization mechanisms that focus on static graphs. Some
mechanisms separate dynamic OSN data into slices of static
graphs, in order to apply a traditional de-anonymization attack.
However, these mechanisms do not account for the evolution of
OSNs, which limits their attack performance.

In this paper, we provide a novel angle, persistent homology,
to capture the evolution of OSNs. Persistent homology barcodes
show the birth time and death time of holes, i.e., polygons, in
OSN graphs. After extracting the evolution of holes, we apply
a two-phase de-anonymization attack. First, holes are mapped
together according to the similarity of birth/death time. Second,
already mapped holes are converted into super nodes and we
view them as seed nodes. We then grow the mapping based on
these seed nodes. Our de-anonymization mechanism is extremely
compatible to the adversaries who suffer latency in relationship
collection, which is very similar to real-world cases.

Index terms—Dynamic online social networks; de-
anonymization; persistent homology.

I. INTRODUCTION

With the development of online social networks (OSNs),
many service providers, e.g., Facebook and Twitter, release
their OSN data to researchers and third-parties. This data can
be used to recommend friendships, feed advertisements, and
analyze the behaviors of communities. However, attackers can
also use the OSN data to capture more sensitive information
of the target users.

The attack upon the OSN data, i.e., the de-anonymization
of published OSN data, mainly focuses on identify the target
users in the released graphs. The adversaries can build an
auxiliary graph with their background knowledge. Then the
task of finding t he t arget u sers i s t ransformed i nto a graph
mapping problem. If the adversaries successfully map the
nodes from their auxiliary graph into the nodes in the released
graph, they can take advantage of the information in the
released OSN, e.g., the relationships in the graph and the salary
amounts in the profile.

Some existing de-anonymization mechanisms examine both
the structure similarity and the attribute similarity of nodes
from two graphs [7, 11].. These mechanisms choose seeds
that have high similarities. They first map t he seeds and then
map their neighbors. However, the structure change, which is
introduced by both errors in adversaries’ background knowl-
edge and the noise injected by anonymization mechanisms,
greatly affects the performance of existing de-anonymization
attacks [4].__

This is the author's manuscript of the article published in final edited form as:
Gao, T., & Li, F. (2019). De-Anonymization of Dynamic Online Social Networks via Persistent Structures. ICC 2019 - 2019 IEEE International Conference
on Communications (ICC), 1–6. https://doi.org/10.1109/ICC.2019.8761563

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/322846894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ICC.2019.8761563

Meaning Symbol
Node u, v, P -Y

Latency of attacker’s information collection α
Error of attacker’s information collection β

Structure similarity Ms

Attribute similarity Ma

Neighbor degree list NDL
Cost function C

Weight w
Mapped neighbors N1

Un-mapped neighbors N0

TABLE I: Symbol table

II. THREAT MODEL

For reference, some important symbols used in this paper
are given in Table I.

In this paper, an OSN is modeled by a time-series graph
G = (V,E). E is the set of vertices, where each node is a
user in the OSN. E is the set of edges, where each edge is
a relationship between two users. We measure both the acti-
vate/deactivate behaviors of friendships, like follow/unfollow,
add/remove a friend, retweet/ignore contents. These behaviors
are modeled as edge addition/deletion in the time-series graph.

Being a time-series graph, G also equals to a sequence of
static graphs, i.e., G = {G1, G2, ..., Gn}, where Gi is the
graph in i-th epoch. There are two main graphs considered in
our scheme, GA and GB . GA is published by the OSN service
provider. GB is built by the attacker with his/her background
knowledge. The procedure of the published graph GA and
the background knowledge graph GB . Our de-anonymization
attack can be summarized as a procedure of mapping nodes be-
tween GA and GB . After successfully mapping the nodes, the
attacker can utilize the information in GA to enhance his/her
background knowledge, i.e., collect more private information
about the users.

However, the mapping task has two major challenges. First,
the service provider does not directly release the graph. The
service provider not only removes the identities in each static
graph, but also perturb the graph before releasing. In the
original graph, because new links may form and old links
may drop, the self mapping of GA is as hard as the de-
anonymization work between two static graphs.

Second, the attacker cannot have perfect background knowl-
edge graph, which is reflected in GB . In this paper, we model
the shortfall of the attacker’s background knowledge by two
factors: latency and unknown. Latency means that for some
relationships forming/dropping in epoch i in the original OSN,
the attacker knows this relationship is forming/dropping in
epoch j, where j > i. Unknown means the attacker always
have wrong information about some specific relationships. Par-
ticularly, if an edge is added/deleted in GAi , GBj adds/deletes
that corresponding edge with probability p.

p = 1− β · exp−α·(j−i), j > i. (1)

Two scaling parameters, α and β, represent the similarity
between GA and GB . α ∈ [0,∞) shows the latency of the
attacker to collect the information. If α = ∞, the attacker
instantly collects the edge forming/dropping information. β
shows the error of the attacker’s collected information. If β =
0, there are no unknown relationships to the attacker. Having

Algorithm 1 Self mapping

Input: Two neighboring slices of GA, GAi and GAi+1.
Output: A node mapping between users in GAi and GAi+1.

1: Set GL = GAi , GR = GAi+1,
2: In GL and GR, both select k users with highest degree

values as seeds,
3: for each pair of seeds u and v do
4: Compute similarity score M1 = M1

s + θM1
a ,

5: end for
6: Exhaustively search mapping results to get max

∑
u,vM

1,
7: for each pair of seeds u and v do
8: Compute similarity score M2 = M2

s + θM1
a ,

9: end for
10: loop
11: Pick a node u with the BFS algorithm,
12: Find the best match nodes v with maxM2.
13: end loop

an edge forming in epoch i1 and dropping in i2, the existing
probability of this edge in epoch j is

p =

β, j ∈ [0, i1),
1− β · exp−α·(j−i1), j ∈ [i1, i2),
β ·
(
exp−α·(j−i2)− exp−α·(j−i1)

)
, j ∈ [i2,∞).

(2)

III. DE-ANONYMIZATION ATTACK SCHEME

Given two dynamic graphs GA and GB , our goal is to
map the nodes between GA and GB . The general idea of the
scheme is to use the persistent structures as seeds in mapping.
Our scheme has the following steps:

1) Self mapping: Having GA = {GA1 , GA2 , ..., GAn }, if the
node identifiers are not retained in GA, we map the nodes
between the series GA.

2) Persistent structure extracting and mapping: We extract
the barcode and the corresponding structures of GA and
GB . Then for each persistent structure in GA, we try to
find a similar structure in GB .

3) Match growing: After getting the pairwise persistent
structures between GA and GB , we use the persistent
structures as seeds to grow node mapping.

A. Self mapping
In some cases, the time-series graph is anonymized and then

published by the OSN provider. The adversaries cannot have
coherent identities of users in each epoch. Hence, we need to
first mapping nodes of graphs in different epochs in GA.

The process of self mapping a dynamic graph is similar
to the process de-anonymization process with static graphs.
Particularly, we sequentially de-anonymize the graphs GA1 with
GA2 , GA2 with GA3 , and so on. For each mapping, we perform
a two-stage de-anonymization attack in Algorithm 2 [10]. The
general idea of Algorithm 2 is that the pop stars are more
difficult to hide during anonymization than common users.
Moreover, there is low probability that these popular users are
newly added/deleted in OSNs.

In the two graphs GL and GR, e.g., GA1 and GA2 in the
dynamic graph, we first choose k nodes with the highest

TABLE II: Example of calculating the optimal matching cost C

NDL(u) 5 3 0
NDL(v) 4 2 1
Costs -1 -1 +1

degree. To each pair of nodes, which chosen from GL and
one chosen from GR, we calculate a similarity score M . The
similarity score considers both the structure similarity Ms and
the attribute similarity Ma.
Ms is based on the cost C of optimally matching two

neighbor degree lists (NDLs) [12]. Specifically, for the chosen
node in GL, we first get its neighbor list and the corresponding
degrees. Then we construct the NDL of that node and compare
it with the NDL of the node in GR. Finally, we calculate Ms.

Ms(u, v) = −C(NDL(u),NDL(v)), u ∈ GL, v ∈ GR.
(3)

See Table 1 for an illustration of calculating costs to
determine Ms. If, for example, the node u in GL has two
neighbors with degrees 3 and 5, and the node v in GR has
three neighbors with degrees 1, 4, and 2, then we can use the
method shown in Table II to calculate the cost C. First, we
transform the two NDLs into decreasing order and add 0 to
make them having the same length. Second, we calculate the
differences between the two bits in the same position. Third,
we get the total cost C, which is the sum of the absolute values
of all costs. In this example, C equals 3 and Ms = −3.
Ma is the similarity of two users’ attributes. We use the

Jaccard index to measure the two sets of attributes A(u) and
A(v).

M1
a (u, v) =

A(u) ∩A(v)

A(u) ∪A(v)
. (4)

Then we have M1 = M1
s + θM1

a , where θ is a scaling pa-
rameter to balance structure similarity and attribute similarity.
After getting the similarity score for top-k users, we assign
a bipartite matching process to obtain the maximum sum of
scores. Because the k users only occupy a very small part of
the graph, we can exhaustively search all matching pairs to get
the optimal result. We set a threshold Mt in order to prevent
mismatching, in the case that some seeds in GL are not seeds
in GR. If the similarity score M < Mt, that pair is eliminated.

After matching the seeds of GL and GR, we further grow
the user mapping based on these seeds. Similarly, each pair
of nodes, except the seeds, have a similarity score M2 =
M2
s + θM2

a . While the attribute similarity is the same as the
one in Equation 4, the structure similarity score considers the
current and potential matching pairs. Specifically, each node
has two sets: N1 shows the mapped neighbors, and N0 shows
the unmapped neighbors. The similarity score is given by both
the mapped neighbors (with Jaccard index) and unmapped
neighbors (with elements count).

M2
s (u, v) =

N1(u) ∩N1(v)

N1(u) ∪N1(v)
− ||N0(u)| − |N0(v)||

max(N0(u), (N0(v)))
. (5)

In the example of Fig. 1, we have two pairs of already
mapped nodes, U − R and P − S. Consider the structure
similarity between Q and T : we have N1(Q) = {U,P},

U P

Q

W R S

T

(a) Graph GL

U P

Q

W R S

T

(b) Graph GR

Fig. 1: Example of growing mapping

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

��� ��� ��� ���

���

��

� � � �

��

(a) Time-series graph GA and its barcode

R

S

P

Q

U

GB1 GB2 GB3 GB4

Time

H1

1 2 3 4

R

S

P

Q

U

R

S

P

Q

U

R

S

P

Q

U

H0

(b) Time-series graph GB and its barcode

Fig. 2: Example of hole mapping

N0(Q) = ∅, N1(T) = {R}, N0(T) = {W}. Then the
similarity score is M2

s (Q,T) = 1
2 −

1
1 = −0.5.

After getting the similarity scores for all pairs of users,
we need to do another round of bipartite matching to get
the optimal mapping result. However, the searching space is
almost all the users (except the seeds), which is much larger
than seed mapping. Hence, we implement a heuristic searching
method based on the breadth-first-search (BFS) algorithm. We
set the seeds as the first layer of the tree to do BFS. The
intuition of our algorithm is that the users neighboring the
seeds should map with each other first to grow the mapping
result.

B. Persistent structure extracting and mapping

Persistent homology is a utility metric that summarizes the
graph in multi-scales. Persistent homology is presented in the
form of barcodes [3]. In OSN graphs, a H1 hole is a polygon
with at least 4 sides. A polygon with at least 4 sides implies
that all nodes on the polygon have at least one node which is
not directly connected, while the triangles have all nodes pair-

�

�

�

�

	�
	�
	�

���
�����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���
�����

��
�	

�

�

���� �

Fig. 3: Example of converted graph G̃A

wisely connected. Persistent homology barcodes can capture
the birth time and death time of these polygons.

Fig. 2 gives a simple example of hole mapping. GA has a
hole from GA2 to GA3 . Then its barcode has an H1 bar [1, 2).
GB has a hole from GB2 to GB4 . Then its barcode has an H1 bar
[1, 3). If the two holes match each other, the nodes along the
hole, {P,Q,R, S}, are successfully mapped. Also, the node
outside the hole, e.g., U in the example, can find its mapping
with the help of the seed nodes on the hole. In the example, the
barcode is not perfectly matched. However, this scenario also
occurs in real-world cases because the adversaries’ relationship
building or breaking information may have errors. With the
help of persistent homology, we can extract the similarity over
several continuous time periods.

Each persistent structure has three important features: the
number of nodes involved in the structure, birth time, and
death time. When we map the persistent structures, each
structure is combined into a super node. We assign a weight w
on each edge. There are two kinds of edges in the converted
graph: (1) edges between two super nodes, and (2) edges
between a simple node and a super/simple node. Hence the
weights also have two meanings. On the first kind of edge,
the weight shows the distance between two super nodes. On
the second kind of edge, the weight shows the connectivity
of the two nodes. Finally, we have the converted graph G̃A

based on the original graph GA.
For example, Fig. 3 shows a converted graph G̃A and its

original time-series graph GA. In the converted graph G̃A,
the node P with label ‘4, [2, 3)’ means that it is a super-
node containing the persistent structure with 4 nodes, and the
persistent structure exists from time 2 to time 3. The node R
with label ‘1,NA’ means that it is a simple node. The edge
P-Q has a weight w = 2 because the two persistent structures
have the minimum distance 2 in all static graphs of GA. The
edge P-R has a weight w = 1.33, which equals to the total
number of edges, which is (1+1+2), divided by the number of
time slots, which is 3. This weight shows that on the average
1.33 edges exist between the two nodes in all time slots.

After getting the converted graph, we map the nodes accord-
ing to this graph. Specifically, we first map super nodes in this
graph as seeds, then we grow the map. When we map super

Algorithm 2 Seed and grow mapping with weight

Input: Two weighted graph G̃A and G̃B

Output: A node mapping result between users in G̃A and G̃B
1: —————————Seed mapping————————–
2: Set GL = G̃A, GR = G̃B ,
3: In GL and GR, both select k users with highest degree

values as seeds,
4: for each pair of seeds u and v do
5: Compute similarity score M3

6: end for
7: for each pair of seeds u and v with the highest M3 do
8: Exhaustively search mapping results to get maxM4,
9: end for

10: ——————————Growing—————————–
11: for each pair of simple nodes u and v do
12: Compute similarity score M5 = M5

s + θM1
a

13: end for
14: loop
15: Pick a node u with the BFS algorithm,
16: Find the best match nodes v with maxM5

17: end loop

nodes, we temporarily discard all simple nodes and related
edges, e.g., solid edges in G̃A in Fig. 3.

The mapping of super nodes has the following steps:
1) We divide the super nodes into groups according to the

first number on their label (which indicates the number
of nodes involved).

2) For nodes in the same group, we calculate the dissimilar-
ity, which equals the differences among birth times and
death times. We have

M3 =

 −∞, if birthGA > birthGB
,

or deathGA > deathGB
.

−(∆birth+ ∆death), otherwise.
(6)

Then each possible mapping pair has a similarity score.
3) Begin with a mapped pair with the highest M3, we

iteratively try to map other nodes to get the maximum
M4, so we have

M4 =
∑

all pairs

M3 · exp−w . (7)

where w is the distance weight.
4) Then we change the initial mapping of step 3 to another

pair, choosing the pair with the second highest M3, as
we get the maximum M4. We repeat this step and record
the best initial mapping and the following mapping.

Because the persistent structures with different sizes have
a low probability to of showing the same group of users, we
divide the super nodes into groups in step 1. Step 2 ensures
that two persistent structures have a probability of mapping
together when they have similar birth times and death times,
but the existence periods are not required to be exactly the
same. Hence, even if some relationship information is not
expediently collected by the adversary, our mapping algorithm
still has the chance to map the persistent structures together.

W SR

T

PU

Q

1 2 2

1.2 1.5 1.2 1.3

(a) Graph GL

W SR

T

PU

Q

1 2 2

1.2 1.5 1.2 1.3

(b) Graph GR

Fig. 4: Example of growing mapping with weighted edges

Note that if the adversary has incorrect information of edge
addition or deletion, which happens in the true case of an
OSN, we do not map the persistent structures together.

The intuition behind step 3 is that we need to take the
distance of persistent structures into consideration. The farther
the distance, the less impact the structure has upon central
mapping. However, the best M4 calculated in step 3 is only
meaningful to the initial mapping. It may be locally optimal
result. Hence, in step 4 we iteratively change the initial
mapping pair and get the best mapping result. In real cases,
the initial mapping pairs may be the persistent structures with
the same sizes and existence periods. So we need to test all
possibilities when initial mapping has M3 = 0. Although the
final result may not be the globally optimal result, different
initial pairs help our heuristic algorithm get better performance
without an exhaustive search.

C. Match growing
In the match-growing process, we need to map the simple

nodes with the help of persistent structures. Moreover, we need
to differentiate the nodes inside each persistent structure. First,
the whole graph G̃A should be recovered, which means the
simple nodes, solid edges, and the connectivity weights are
back.

Compared the match-growing process discussed in Section
III-A, the match growing here needs to consider the weights,
i.e., the connectivities, between the simple nodes and the super
nodes. Each pair of simple nodes has a similarity score M5 =
M5
s + θM1

a . The attribute similarity is the same as the one in
Equation 4, and the structure similarity is given by

M5
s (u, v) =−

∑
N(u),N(v) ∆w∑

N(u) w +
∑
N(v) w

− ||N0(u)| − |N0(v)||
max(N0(u), (N0(v)))

.

(8)

The first item, based on ∆w, shows the dissimilarity of weights
between mapped seeds. The second item is the same as the
one in Equation 5, which shows the unmapped neighbors.

IV. EXPERIMENT

In this section, we evaluate our de-anonymization algorithm
with a real-world dataset, Facebook wall network [6, 13]. This
dataset collects users’ posts to other users’ walls on Facebook
from 2005 to 2009. The nodes of the network are Facebook
users, and each edge means one post. Since users may write
multiple posts on a single wall, the dataset collects each post
and its timestamp. Fig. 5 shows the number of edges in each
month.

Fig. 5: Number of edges in each month

Fig. 6: Mapping accuracy with different α, β = 0.2

In our evaluation, we consider a post as a linking relation-
ship between two users. And we combine time slices into time
periods. If two users do not post anything in one time period,
we consider their relationship to be broken in this time period.
Here we set the length of time period to three months, which
is a reasonable length to measure a relationship. Also, three-
month period divides the whole time series graph into 17 time
periods, which means the time series graph sequentially has
17 static OSN graphs. There are 46k users and 274k edges
in the dataset among all time periods. We combine the whole
dataset into a dynamic graph to capture the birth and death
information of persistent structures.

For the purpose of comparison, we reimplement a baseline
de-anonymization attack described in [2]. In the baseline
approach, the mapping probabilities of node pairs are indi-
vidually calculated in each graph slices. Then, Ding et al.
combined these probabilities and calculated the product of
these values to find the most similar nodes. In the presented
results, the baseline approach and the proposed persistent
homology based approach are marked as ‘Baseline’ and ‘PH-
based’, respectively.

We examine the effectiveness of our algorithm when the
attacker cannot have update information about relationships
and his/her information has some error. In our model, we
use the parameter α to represent the latency of attacker’s
knowledge, and we use β to represent the error in attacker’s
knowledge. First, we fix the value of β to 0.2, which means
the attacker can only get 80% of correct information in the
end, even without considering the latency. It is more likely
to the real scenarios that the attacker has limited ability in

Fig. 7: Mapping accuracy with different β, α = 1

collecting information. We get the highest mapping accuracy
when α = 10, and the mapping accuracy is 89.44%. When
alpha equals 0.01, 0.1, 1, and 10, the mapping accuracy of
the proposed method is 66.0%, 69.5%, 71.0%, and 89.4%,
respectively. The mapping accuracy of the baseline approach
is 0.2%, 7.8%, 9.6%, and 28.8%, respectively.

We can find that higher the α, higher the accuracy.
Timely collect information helps the attacker successfully de-
anonymize the users in our scheme. However, the latency of
the adversaries’ ability to capture information does not affect
the mapping accuracy very much. Since most of the late edge
addition/deletion in GB will be corrected in the following time
periods, our algorithm checks similarity between persistent
structures in different time periods. Unlike other algorithms,
which are required to precisely map edges in each time, our
algorithm has the ability to capture the similarities among
different time periods. Hence, our algorithm is robust to late
edge addition/deletion.

Then, we also fix the latency parameter α to 1, and test
our de-anonymization scheme with various amount of error
information. Fig 7 shows the mapping accuracy with different
β. We get the highest mapping accuracy when β = 0.1, and the
mapping accuracy is 99.58%. When β equals 0.2, 0.3, 0.4, and
0.5, the mapping accuracy of the proposed method is 70.98%,
59.11%, 54.90%, and 26.56%, respectively. The mapping
accuracy of the baseline approach is 12.2%, 9.6%, 6.3%,
6%, and 3.7%, respectively. We find that the error amount
in adversaries’ background knowledge largely impacts the de-
anonymization ability of the adversaries. If the adversaries
can capture the true information of edge addition/deletion, our
algorithm is able to capture the persistent structures and de-
anonymize the users.

V. RELATED RESEARCH

Graph matching is widely used in OSN de-anonymization
[9]. In graph matching, sometimes attackers choose high simi-
larity nodes to help them applying a seed-based attack [1, 14].
These seed-based attacks huge success in de-anonymizing
static graphs [5]. Existing seed-based attacks give us guidance
about the seed and grow process, and considering structure
similarity and attribute similarity together. However, when
analyzing dynamic OSN de-anonymization, how to combine
information from variant time slices data together to find the
seeds becomes a big challenge.

Existing de-anonymization attack to dynamic OSNs naively
combine slices of graphs. In [2], the overall probability of
mapping two nodes is the product of mapping probabilities in
all time-series graphs. In [8], the similarity of path building
time is analyzed to map two nodes together. Although these
attacks embed some temporal features in de-anonymization,
there is not enough temporal information to describe the
evolution of OSNs, especially when the OSN graphs are
complex.

VI. CONCLUSION

In this paper, we propose a new de-anonymization algorithm
to deal with the dynamic OSNs. We introduce the persis-
tent structures to capture the edge addition/deletion among
different time periods. Our algorithm can map two similar
persistent structures without having the same edge building
time. The evaluation result shows the effectiveness of our
algorithm, especially when the adversaries have less incorrect
information.

REFERENCES
[1] Dalal Al-Azizy, David Millard, Iraklis Symeonidis, Kieron O-Hara,

and Nigel Shadbolt. A literature survey and classifications on data
deanonymisation. In International Conference on Risks and Security
of Internet and Systems, pages 36–51. Springer, 2015.

[2] Xuan Ding, Lan Zhang, Zhiguo Wan, and Ming Gu. De-anonymizing
dynamic social networks. In Global Telecommunications Conference
(GLOBECOM 2011), 2011 IEEE, pages 1–6. IEEE, 2011.

[3] Robert Ghrist. Barcodes: the persistent topology of data. Bulletin of the
American Mathematical Society, 45(1):61–75, 2008.

[4] Shouling Ji, Weiqing Li, Prateek Mittal, Xin Hu, and Raheem A Beyah.
Secgraph: A uniform and open-source evaluation system for graph data
anonymization and de-anonymization. In USENIX Security Symposium,
pages 303–318, 2015.

[5] Shouling Ji, Weiqing Li, Shukun Yang, Prateek Mittal, and Raheem
Beyah. On the relative de-anonymizability of graph data: Quantification
and evaluation. In Computer Communications, IEEE INFOCOM 2016-
The 35th Annual IEEE International Conference on, pages 1–9. IEEE,
2016.

[6] Jrme Kunegis. KONECT – The Koblenz Network Collection. In Proc.
Int. Conf. on World Wide Web Companion, pages 1343–1350, 2013.

[7] Huaxin Li, Qingrong Chen, Haojin Zhu, Di Ma, Hong Wen, and
Xuemin Sherman Shen. Privacy leakage via de-anonymization and
aggregation in heterogeneous social networks. IEEE Transactions on
Dependable and Secure Computing, 2017.

[8] Jun Long, Lei Zhu, Zhan Yang, Chengyuan Zhang, and Xinpan Yuan.
Temporal activity path based character correction in heterogeneous
social networks via multimedia sources. Advances in Multimedia, 2018,
2018.

[9] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social net-
works. In Security and Privacy, 2009 30th IEEE Symposium on, pages
173–187. IEEE, 2009.

[10] Wei Peng, Feng Li, Xukai Zou, and Jie Wu. A two-stage deanonymiza-
tion attack against anonymized social networks. IEEE Transactions on
Computers, 63(2):290–303, 2014.

[11] Jianwei Qian, Xiang-Yang Li, Chunhong Zhang, Linlin Chen, Taeho
Jung, and Junze Han. Social network de-anonymization and privacy
inference with knowledge graph model. IEEE Transactions on Depend-
able and Secure Computing, 2017.

[12] Matthias Studer and Gilbert Ritschard. What matters in differences
between life trajectories: A comparative review of sequence dissimilarity
measures. Journal of the Royal Statistical Society: Series A (Statistics
in Society), 179(2):481–511, 2016.

[13] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P. Gum-
madi. On the evolution of user interaction in Facebook. In Proc.
Workshop on Online Social Networks, pages 37–42, 2009.

[14] Yazhe Wang and Baihua Zheng. Preserving privacy in social networks
against connection fingerprint attacks. In Data Engineering (ICDE),
2015 IEEE 31st International Conference on, pages 54–65. IEEE, 2015.

[15] Xiaojin Zhu. Persistent homology: An introduction and a new text
representation for natural language processing.

