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ISOGENIES OF PRYM VARIETIES

ROBERTO LAFACE - CÉSAR MARTÍNEZ

We prove an extension of the Babbage-Enriques-Petri theorem for
semi-canonical curves. We apply this to show that the Prym variety of
a generic element of a codimension k subvariety of Rg is not isogenous
to another distinct Prym variety, under some mild assumption on k.

1. Introduction

LetRg denote the moduli space of unramified irreducible double covers of com-
plex smooth curves of genus g. Given an element π : D→C in Rg, we can lift
this morphism to the corresponding Jacobians via the norm map

Nmπ : J(D)→ J(C).

By taking the neutral connected component of its kernel, we obtain an abelian
variety of dimension g−1 called the Prym variety attached to π .

In this note, we study the isogeny locus in Ag−1 of Prym varieties attached
to generic elements in Rg; that is, principally polarized abelian varieties of di-
mension g− 1 which are isogenous to such Prym varieties. More concretely,
given a subvariety Z of Rg of codimension k and a generic element π : D→C
in Z , we prove that the Prym variety attached to π is not isogenous to a distinct
Prym variety, whenever g≥max{7,3k+5}, see Theorem 3.2.
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This result can be seen as an extension of the analogue statements for Jaco-
bians of generic curves proven by Bardelli and Pirola [1] for the case k = 0, and
Marcucci, Naranjo and Pirola [2] for k > 0, g ≥ 3k+ 5 or k = 1 and g ≥ 5. In
the latter, to prove the case g ≥ 3k+ 5, they use an argument on infinitesimal
variation of Hodge structure proposed by Voisin in [1, Remark (4.2.5)] which
allows them to translate the question to a geometric problem of intersection of
quadrics. In doing so, they give a generalization of Babbage-Enriques-Petri’s
theorem which allows them to recover a canonical curve from the intersection
of a system of quadrics in Pg−1 of codimension k. The strategy we follow to
prove Theorem 3.2 is an adaptation of these techniques to the setting of Prym
varieties. We are also able to give an extension of Babbage-Enriques-Petri’s
theorem for semicanonical curves in a similar fashion as in [2], see Proposi-
tion 2.2. Our result generalises the one by Lange and Sernesi [3] for curves
of genus g ≥ 9, since it recovers a semicanonical curve of genus g ≥ 7 from a
system of quadrics in Pg−2 of codimension k, g≥ 3k+5.

2. Intersection of quadrics

Let C be a smooth curve. Given a globally generated line bundle L ∈ Pic(C),
we denote by ϕL : C→ PH0(C,L)∗ its induced morphism. If L is very ample,
we say that ϕL(C) is projectively normal if its homogeneous coordinate ring is
integrally closed; or equivalently, if for all k ≥ 0, the homomorphism

Symk H0(L)−→ H0(L⊗k)

is surjective.
We also recall that the Clifford index of C is defined as

min{deg(L)−2h0(C,L)+2},

where the minimum ranges over the line bundles L∈ Pic(C) such that h0(C,L)≥
2 and h0(C,ωC⊗L−1)≥ 2. Its value is an integer between 0 and bg−1

2 c, where
g is the genus of the curve.

Let C be of genus g and with Clifford index c. For any non-trivial 2-torsion
point η in the Jacobian of C, we call ωC⊗η a semicanonical line bundle of C
whenever it is globally generated, and we denote by ϕωC⊗η : C→ Pg−2 its asso-
ciated morphism. In that case, we call its image Cη := ϕωC⊗η(C) a semicanoni-
cal curve. The following is a result of Lange and Sernesi [3], and Lazarsfeld [4]:

Lemma 2.1. If g≥ 7 and c≥ 3, then ωC⊗η is very ample and the semicanon-
ical curve Cη is projectively normal.
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Furthermore, Lange and Sernesi prove that Cη is the only non-degenerate
curve in the intersection of all quadrics in Pg−2 containing Cη if c > 3, or c = 3
and g≥ 9, see [3]. The following proposition generalises this result for a smaller
family of quadrics.

Proposition 2.2. Let C be a curve of genus g and Clifford index c, and η be
a non-trivial 2-torsion point in J(C). Let I2(Cη) ⊂ Sym2 H0(C,ωC⊗η) be the
vector space of equations of the quadrics containing C, and K ⊂ I2(Cη) be a
linear subspace of codimension k. If g≥max{7,2k+6} and c≥max{3,k+2},
then Cη is the only irreducible non-degenerate curve in the intersection of the
quadrics of K.

Notice that for k = 0, this proposition extends the result of Lange and Ser-
nesi [3] to the cases when c = 3 and g = 7 and 8. We refer to Remark 2.3 for a
brief discussion on a simplified version of the following proof in this case.

Proof. We start by assuming that there exists an irreducible non-degenerate
curve C0 in the intersection of quadrics

⋂
Q∈K Q ⊂ PH0(C,ωC⊗η)∗, which is

different from Cη . In particular, we can choose k+1 linearly independent points
in
⋂

Q∈K Q such that xi 6∈Cη for all i. By abuse of notation, we denote also as xi

the representatives in H0(C,ωC⊗η)∗. We define L ⊂ Sym2 H0(C,ωC⊗η)∗ as
the linear subspace spanned by xi⊗ xi.

Let R = I2(Cη)/K and R′ = Sym2 H0(C,ωC⊗η)/K. By Lemma 2.1 and the
fact that g≥ 7 and c≥ 3, we have that Cη is projectively normal. Hence, we can
build the following diagram:

0

��

0

��

0 // K

��

// I2(Cη)

��

// R // 0

Sym2 H0(C,ωC⊗η)

��

Sym2 H0(C,ωC⊗η)

��

0 // R // R′

��

// H0(C,ω⊗2
C )

��

// 0

0 0

where the last row is obtained by applying the snake lemma to the first two rows.
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By dualizing this diagram, we get

0

��

0

��

0 // H0(C,ω⊗2
C )∗ = H1(C,TC)

��

// R′∗

��

// R∗ // 0

Sym2 H0(C,ωC⊗η)∗

��

Sym2 H0(C,ωC⊗η)∗

��

0 // R∗ // I2(Cη)
∗

��

// K∗

��

// 0

0 0

Notice that Q(α) = 0 for every α ∈ L and every Q ∈ K. Therefore, L⊂ R′∗

Since dim(L) = k+ 1 and dim(R) = k, there is a non-trivial element α ∈ L∩
H1(C,TC). By the isomorphism H1(C,TC) ' Ext1(ωC,OC), there is a 2 vector
bundle Eα associated to α satisfying the following exact sequence:

0−→OC −→ Eα −→ ωC −→ 0. (1)

The cup product with α is the coboundary map H0(C,ωC)→ H1(C,OC). By
writing the element α = ∑

k+1
i=1 aixi⊗ xi, we have

Ker(·∪α) =
⋂

i | ai 6=0

Hi,

where Hi = Ker(xi). After reordering, we may assume that x1, . . . ,xk′ are the
points such that ai 6= 0, for some k′ ≤ k + 1. This means that there are g−
k′ linearly independent sections in H0(C,ωC) lifting to H0(C,Eα). Denote by
W ⊂ H0(C,Eα) the vector space generated by these sections, and consider the
morphism ψ : ∧2W → H0(C,ωC) obtained by the following composition:

∧2W −→∧2H0(C,Eα)−→ H0(C,detEα) = H0(C,ωC).

The kernel of ψ has codimension at most g, and the Grassmannian of the de-
composable elements in P(∧2W ) has dimension 2(g−k′−2). Since g > 2k+5
by hypothesis, we have that their intersection is not trivial. Thus, take s1,s2 ∈
H0(C,Eα) such that ψ(s1∧ s2) = 0. They generate a line bundle Mα ⊂ Eα and
h0(C,Mα)≥ 2. Take Qα the neutral component of the quotient Eα/Mα , and Lα

the kernel of Eα → Qα , then we obtain the following exact sequence:

0−→ Lα −→ Eα −→ Qα −→ 0. (2)
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Notice that Mα ⊂ Lα , hence h0(C,Lα) ≥ 2. Moreover from (1) and (2), we
obtain ωC ' detEα ' Lα ⊗Qα , which implies that Qα ' ωC⊗L−1

α . We have
the following diagram:

0

��

Lα

��

0 // OC //

$$

Eα

��

// ωC // 0

ωC⊗L−1
α

��

0

Assume that OC → ωC⊗L−1
α is 0. Then the section of Eα that represents

OC→ Eα would be a section of Lα , in particular, a section in W . Since the sec-
tions in W map to sections of ωC, this contradicts the exactness of the horizontal
sequence. So OC→ ωC⊗L−1

α is not 0 and the h0(C,ωC⊗L−1
α )> 0.

If h0(C,ωC⊗L−1
α )≥ 2, we have that

c≤ deg(Lα)−2h0(C,Lα)+2. (3)

Moreover, h0(C,Lα) + h0(C,ωC ⊗ L−1
α ) ≥ h0(C,Eα) > dim(W ) = g− k′ and,

using Riemann-Roch we obtain that 2h0(C,Lα)≥ deg(Lα)+2−k′. Combining
this with (3), we obtain that c≤ k′ ≤ k+1 which contradicts our hypothesis on c
(c≥ k+2). Hence, h0(C,ωC⊗L−1

α ) = 1.
Write ωC⊗L−1

α 'OC(p1+ · · ·+ pe), where e = deg(ωC⊗L−1
α ). Notice that

h0(C,Lα)≥ g− k′ and deg(Lα) = 2g−2− e. Using Riemann-Roch, we get

g− k′ ≤ h0(C,Lα) = h0(C,ωC⊗L−1
α )+2g−2− e− (g−1) = g− e.

So e≤ k′.
By (2), we have that Lα ' ωC(−p1− ·· ·− pe). Moreover, the sections of

Lα lie in W , and by construction of W we have that H0(ωC(−p1−·· ·− pe))⊂
Ker(·∪α) = ∩i|ai 6=0Hi. Therefore, by dualizing this inclusion, we obtain that

〈x1, . . . ,xk′〉C ⊂ 〈p1, . . . , pe〉C. (4)

Let γ : N0→C0 be a normalization. For any generic choice of k+1 points
xi ∈ N0, we can repeat the construction above for γ(x1), . . . ,γ(xk+1), and we can
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assume that k′ and e are constant. We define the correspondence

Γ =
{
(x1 + · · ·+ xk′ , p1 + · · ·+ pe) ∈ N(k′)

0 ×C(e)
η ,

such that 〈γ(x1), . . . ,γ(xk′)〉C ⊂ 〈p1, . . . , pe〉C
}
.

Observe that Γ dominates N(k′)
0 , so e ≤ k′ ≤ dimΓ. In addition, the second

projection Γ→C(e)
η has finite fibers, since both curves are non-degenerate. This

implies that dimΓ≤ e, and so we have k′ = e. Since k′ ≤ k+1≤ g−3, by the
uniform position theorem we have that the rational maps

C(k′) 99K Sec(k
′)(Cη)⊂G(e−1,Pg−2),

N(k′)
0 99K Sec(k

′)(N0)⊂G(e−1,Pg−2),

are generically injective. This gives a birational map between C(k′)
η and N(k′)

0 . In
particular, it induces dominant morphisms JCη → JN0 and JN0→ JCη . There-
fore, g(Cη) = g(N0) and by a theorem of Ran [5], the birational map C(k′)

η 99K

N(k′)
0 is defined by a birational map between Cη and N0. By composing it with

the normalization map γ , we obtain a birational map

ϕ : Cη 99KC0,

that defines the correspondence Γ; that is 〈ϕ(x1), . . . ,ϕ(xk′)〉 = 〈x1, . . . ,xk′〉 for
generic elements x1 + . . .+ xk′ ∈ C(k′)

η . This implies that ϕ is generically the
identity map over Cη . Thus Cη = C0, which is a contradiction and ends the
proof.

Remark 2.3. The proof of Corollary 3.1 can be simplified for the case K =
I2(Cη), that is k = 0. Under this assumption, we only consider one point x 6∈Cη ,
and k′= e= 1. Therefore, the inclusion (4) already implies the equality Cη =C0.

3. Main theorem

An element in Rg can be identified with a pair (C,η), where C is a complex
smooth curve of genus g, and η is a non-trivial 2-torsion element in the Jacobian
of C. This allows us to consider Rg as a covering of the moduli spaceMg of
complex smooth curves of genus g. It is given by the morphism

Rg −→Mg, (C,η) 7−→C,
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which has degree 22g−1. Thus, a generic choice of an element in a subvariety
Z ⊂Rg is equivalent to a generic choice of a curve C in the image of Z inMg,
and any non-trivial element η ∈ J(C)[2].

The following result is a direct consequence of Proposition 2.2 and it is the
version of Babbage-Enriques-Petri’s theorem that we use in the proof of the
main result in this article.

Corollary 3.1. Let (C,η) be a generic point in a subvariety Z of Rg of codi-
mension k. Let I2(Cη) ⊂ Sym2 H0(C,ωC⊗η) be the vector space of the equa-
tions of quadrics in Pg−2 containing Cη . Let K ⊂ I2(Cη) be a linear subspace
of codimension k. If g ≥ max{7,3k+ 5}, then Cη is the only irreducible non-
degenerate curve in the intersection of the quadrics of K.

Proof. Let Mc
g be the locus in Mg corresponding to curves with Clifford in-

dex c. ThenMc
g is a finite union of subvarieties ofMg, where the one of higher

dimension corresponds to the curves whose Clifford index is realized by a g1
c+2

linear series, see [7]. By Riemann-Hurwitz, the codimension inMg of the com-
ponent of the curves with a g1

c+2 linear series is

3g−3− (2g−2c+2−3) = g−2c−2.

If k = 0, a generic curve in Mg has Clifford index c ≥ 3, because g ≥ 7. As
when k > 0, since g≥ 3k+5, we obtain

k ≥ g−2c−2≥ 3k+5−2c−2 = 3k−2c+3,

and thus c≥ k+2. The corollary follows by applying Proposition 2.2.

Let Ãg
m

be the space of isogenies of principally polarized Abelian vari-
eties of degree m (up to isomorphism); that is the space of classes of isogenies
χ : A −→ A′ such that χ∗LA′

∼= L⊗m
A , where LA (respectively LA′) is a principal

polarization on A (respectively A′). There are two forgetful maps to the moduli
space Ag of p.p.a.v. of dimension g

Ãg
m

ϕ

||

ψ

""

Ag Ag,

(5)

such that ϕ(χ) = (A,LA) and ψ(χ) = (A′,LA′). These maps yield the following
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commutative diagram,

T[χ]Ãg−1
m

dϕ

xx

dψ

&&

T[A]Ag−1
λ // T[A′]Ag−1.

(6)

where all maps are isomorphisms.

Theorem 3.2. Let Z ⊂Rg be a (possibly reducible) codimension k subvariety.
Assume that g ≥ max{7,3k+ 5}, and let (C,η) be a generic element in Z . If
there is a pair (C′,η ′) ∈ Rg such that there exists an isogeny χ : P(C,η) −→
P(C′,η ′), then (C,η)∼= (C′,η ′) and χ = [n], for some n ∈ Z.

Proof. Suppose that (C,η) is generic inZ . By the assumption on g, the Clifford
index of a generic element of Z is at least three (as shown in the proof of Corol-
lary 3.1). However, by [8], if the Clifford index of a curve C is c ≥ 3, then the
corresponding fiber of the Prym map is 0-dimensional, i.e. dimP−1(P(C,η)) =
0. Therefore, the restriction of the Prym map to Z ,

P|Z : Z −→Rg −→Ag−1,

has generically fixed degree d onto its image, for some d ∈ N. So, by the
genericity of the pair (C,η), we can assume that (C,η) lies in the locus of
Z where P|Z is étale. This gives the isomorphisms of the tangent spaces

TP[(C,η)]P(Z)∼= T[C,η ]Z and TP[(C,η)]P(Rg)∼= T[C,η ]Rg. (7)

Let us assume that the locus of curves inRg whose corresponding Prym va-
riety is isogenous to the Prym variety of an element inZ has an irreducible com-
ponentZ ′ of codimension k. By [6], since k < g−2, we have End(P(C,η))∼=Z.
Suppose that we are given an isogeny χ : P(C,η) −→ P(C′,η ′); then, it must
have the property that the pull-back of the principal polarization Ξ′ is a multiple
of the principal polarization Ξ on P(C,η), say χ∗Ξ′ ∼= Ξ⊗m, for some m ∈ Z.

For such m, we have the diagram of forgetful maps as in (5) with g− 1 in
place of g. We can find an irreducible subvariety V ⊂ Ãg−1

m
which dominates

both P(Z) and P(Z ′) through ϕ and ψ respectively. SettingR := ϕ−1(P(Rg))
andR′ := ψ−1(P(Rg)), we have the inclusion V ⊂R∩R′.

For a generic element χ : P(C,η) −→ P(C′,η ′) in V , the diagram (6) be-
comes

T[χ]Ãg−1
m

dϕ

ww

dψ

''

T[P(C,η)]Ag−1
λ

∼=
// T[P(C′,η ′)]Ag−1.
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In addition, T[P(C,η)]Ag−1 ∼= Sym2 H0(P(C,η),TP(C,η)) ∼= Sym2 H0(ωC ⊗ η)∗.
By looking at dϕ , and the isomorphisms in (7), we see that we have the fol-
lowing diagram of tangents spaces and identifications:

T[χ]V

∼=
��

� � // T[χ]R

∼=
��

� � // T[χ]R+T[χ]R′ �
�

// T[χ]Ãg−1
m

∼=
��

T[C,η ]Z �
�

// TC,η ]Rg
� � // T̄ �

�
// Sym2 H0(ωC⊗η)∗

where the vertical arrows are dϕ .
By the Grassmann formula, dim T̄ ≤ 3g−3+ k. Set

K(Cη) := ker
(

Sym2 H0(ωC⊗η)−→ T̄ ∗
)
.

It is a subspace of the space of quadrics containing the semicanonical curve Cη .
Notice that codimI2(Cη ) K(Cη) ≤ k. By repeating the above argument with ψ

in place of ϕ , we get the corresponding inclusion of vector spaces K(C′
η ′) ⊂

I2(C′η ′), and by using the (canonical) isomorphism λ above, we get a (canonical)
isomorphism K(Cη)∼= K(C′

η ′).
A closer look at λ : T[P(C,η)]Ag−1 −→ T[P(C′,η ′)]Ag−1 reveals that this map

is induced by the isogeny χ : P(C,η) −→ P(C′,η ′). In fact, one has that d0χ :
H0(ωC⊗η) −→ H0(ωC′ ⊗η ′) is an isomorphism, and λ is induced by it. This
means that d0χ induces an isomorphism of projective spaces PH0(ωC⊗η)∗−→
PH0(ωC′⊗η ′)∗, which sends quadrics containing C′

η ′ to quadrics containing Cη ,
by means of λ . By using Lemma 3.1, we get that Cη

∼= C′
η ′ , and thus C ∼= C′.

This gives us the following commutative diagram

C

∼=
��

� �
ϕωC⊗η

// Cη
� � //

∼=
��

PH0(ωC⊗η)∗

∼=
��

C′ �
� ϕ

ωC′ ⊗η ′
// C′

η ′
� � // PH0(ωC′⊗η ′)∗

from which we deduce that (C,η)∼= (C′,η ′). Indeed, pulling back hyperplanes
to C and C′, yields an isomorphism ωC′ ⊗η ′ ∼= ωC⊗η , from which it follows
that η ∼= η ′. The isogeny is necessarily of the form [n], for some n ∈ Z, because
End(P(C,η))∼= Z.
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