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1. Introduction 

1.1. Pain 

The International Association for the Study of Pain (IASP) defines pain as “An unpleasant 

sensory and emotional experience associated with actual or potential tissue damage, or 

described in terms of such damage.” (IASP, 2011). The European Commission stated that in 

the European countries, there are approximately 150 million people who suffer from different 

types of pain during their life. Furthermore, pain due to musculoskeletal disorders causes 50-

60 % of inability to work resulting in combined direct and indirect costs about 240 billion € per 

year (SIP, 2018). Therefore, the adequate treatment of pain has high humanitarian and societal 

impact. To adequately approach this problem, mechanisms underlying pain 

development/sensitization in response to pathologic conditions and strategies of pain inhibition 

with reduced side effects have to be investigated. 

Pain can be broadly divided into physiological and pathological pain. Physiological pain - also 

termed nociceptive pain - functions as a warning system and protects from further tissue 

damage. Pathological pain – for example chronic neuropathic pain – may develop from a 

primary lesion or disease of the somatosensory system and is usually influenced by a variety of 

psycho-social factors (Treede, 2015a; Stein, 2018).  

Nociception is “the neural process of encoding noxious stimuli.” (IASP, 2011). Nociception 

includes the transduction of noxious stimuli into electrical signals, the transmission of these 

signals and finally the perception of these stimuli as pain (Basbaum et al., 2009). The 

transduction of a harmful stimulus is initiated by the activation of peripheral sensory neurons 

(nociceptive neurons) whose endings are equipped with many receptors/ion channels that are 

activated by stimuli like temperature, pressure or chemicals  (IASP, 2011). Painful thermal 

stimuli are transduced by several members of the transient receptor potential (TRP) ion channel 

family (see chapter 1.2.1.). Chemical stimuli such as protons activate e.g. acid-sensing ion 

channels and/or the transient receptor potential vanilloid 1 (TRPV1) (reviewed in (Gangadharan 

and Kuner, 2013). Mechano-transduction in mammals is still not fully understood. However, 

the involvement of the potassium channel family K2P (TREK-1, TREK-2 and TRAAK) and of 

PIEZO1 and PIEZO2 channels was shown. Members of the sodium channel family DEG/ENaC 

and other TRP channels were identified in invertebrates but not confirmed in vertebrates, and 

their roles are still unclear (reviewed in (Ranade et al., 2015).  
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Nociceptive neurons can be separated into unmyelinated C-fibers and thinly myelinated A�-

fibers. The cell bodies of these neurons are located in the dorsal root ganglia (DRG), and they 

project to the dorsal horn of the spinal cord, which is arranged in distinct laminae. From there, 

ascending pathways such as the spinothalamic and spinoreticulothalamic tracts transmit painful 

signals to the thalamus and brainstem. Finally, these signals are transmitted to the cortex where 

they are perceived as pain (Basbaum et al., 2009).   

1.2. Sensitization/Hyperalgesia 

Increased pain upon application of a noxious stimulus is called hyperalgesia (IASP, 2011). This 

sensitization can occur at peripheral (primary hyperalgesia), spinal (secondary hyperalgesia) 

and supraspinal (tertiary hyperalgesia)) levels of the pain pathway (Sandkuhler, 2009; 

Gangadharan and Kuner, 2013). The activation threshold of nociceptive neurons is reduced in 

response to injury or inflammation due to the sensitization of their peripheral endings. Injury 

of tissue leads to a change of the chemical milieu due to mast cell degranulation, secretion of 

mediators by inflammatory cells, and/or the activation of enzymes like cyclooxygenase-2 

(Woolf and Ma, 2007). This so called “inflammatory soup” consists of protons, adenosine 

triphosphate (ATP), kinins, prostaglandins, neuropeptides, histamine and lipids, and activates 

the respective receptors on the peripheral nerve endings. In consequence, numerous neuronal 

intracellular signaling cascades are activated resulting in increased activity of kinases like 

protein kinase A (PKA), protein kinase C (PKC), phosphoinositide-3-kinase, mitogen-activated 

protein kinases and c-Jun N-terminal kinases. These events lead to increased phosphorylation 

and functional expression of TRP and sodium channels. All these mechanisms reduce 

thresholds of neuronal activation (reviewed in (Woolf and Ma, 2007; Gangadharan and Kuner, 

2013). Peripheral sensitization is usually restricted to the site of injury (Sandkuhler, 2009). 

Central sensitization at the spinal level may outlast initial stimuli resulting in pain chronification 

and/or amplification (Sandkuhler, 2009). The activation of different ion channels (e.g. N-

methyl-D-aspartate receptor (NMDAR)) contribute to the development and maintenance of 

central sensitization. Membrane depolarization due to sustained release of excitatory mediators 

(e.g. glutamate, substance P and calcitonin gene-related peptide (CGRP)) from primary afferent 

nociceptive neurons activates calcium inward currents that maintain central sensitization 

(Latremoliere and Woolf, 2009). In addition, intracellular calcium increases via �-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), voltage-gated calcium 

channels and due to release from intracellular stores. Several metabotropic receptors such as 

B2 (bradykinin), NK1R (substance P), CGRPR (CGRP), TrkB (BDNF) can activate calcium-
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sensitive kinases that phosphorylate NMDARs and AMPARs (reviewed in (Latremoliere and 

Woolf, 2009).  

1.2.1. TRPV1  

The TRPV1 channel belongs to the TRP superfamily, which consists of seven subfamilies 

namely TRPC (“classical” or “canonical”), TRPV (“vanilloid”), TRPM (“melastatin”), TRPN 

(“NOMPC”), TRPA (“ankyrin”), TRPP (“polycystic”), and TRPML (“melastatin like”). The 

TRP family is heterologous group of cation channels that can detect thermal, chemical, and/or 

mechanical stimuli involved in the perception of pain, taste, and changes in temperature (Darre 

and Domene, 2015). They were initially identified in Drosophila melanogaster (Montell and 

Rubin, 1989; Patapoutian et al., 2009). 

Six members of the TRP family are summarized as thermo-TRPs responding to temperatures 

from noxious cold to painful heat. The TRPV1 is one of them and is mainly expressed in 

peptidergic and nonpeptidergic C- and in A�-fibres in the dorsal root, trigeminal, nodose and 

sympathetic ganglia. This channel was also detected in sensory neurons innervating bladder, 

lung and cochlea (reviewed in (Brito et al., 2014; Mickle et al., 2015). In the central nervous 

system, TRPV1 is expressed in laminae I and II of the dorsal horn of the spinal cord, in the 

brainstem, olfactory bulb and in various brain nuclei (e.g. solitary tract, caudalis, ambiguous, 

parabrachial). Furthermore, TRPV1 can be found in nonneuronal cells such as dermal cells  

(Stander et al., 2004) as well as in dental tissue, ovary and testis (reviewed in (Mickle et al., 

2015; Gouin et al., 2017). The structure of TRPV1 was determined in 2013 using electron cryo-

microscopy and confirmed the similarity to voltage gated ion channels (Clapham et al., 2001; 

Figure 1: Ribbon diagram of TRPV1’s 
atomic model showing the tetrameric 
structure (Liao et al., 2013). a and b) 
Views from the side. c) Side view of S5-
P-S6 pore with TRP domain. d) Bottom 
view of TRPV1. Reprinted by permission 
from Copyright Clearence Center: 
Springer Nature, Nature, Structure of the 
TRPV1 ion channel determined by 
electron cryo-microscopy, M. F. Liao, E. 
H. Cao, D. Julius, Y. F. Cheng, 2013. 
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Montell, 2005). Four symmetric TRPV1 monomers form a tetramer with a central ion pore 

(Figure 1).  

Each monomer displays 6 transmembrane �-helices (S1-6) spanning the lipid bilayer, 6 ankyrin 

repeats followed by a linker domain and the pre-S1 helix. Transmembrane 4 and 5 are connected 

by a S4-S5 linker. The pore helix and the pore loop are flanked by S5 and S6 followed by the   

TRP domain (Figure 2) (Cao et al., 2013; Liao et al., 2013).  

 

Capsaicin, the pungent ingredient of chili pepper, temperatures above 43° C and protons are the 

most prominent examples for TRPV1 agonists (Caterina et al., 1997; Tominaga et al., 1998; 

Mickle et al., 2015). TRPV1 activation increases intracellular calcium concentrations resulting 

in substance P and CGRP release, which leads to edema and neurogenic inflammation 

(reviewed in (Gouin et al., 2017). Furthermore, the channel plays an important role in the 

development of thermal hyperalgesia in response to inflammation or injury and is activated and 

sensitized by substances that are released from damaged tissues or the sensory neuron (reviewed 

in (Tominaga, 2006; Szallasi and Sheta, 2012; Vay et al., 2012; Gouin et al., 2017)). 

TRPV1 can be modulated by several mediators: Notably, prostaglandins, adenosine, serotonin, 

bradykinin, and adenosine ATP bind to neuronal receptors (mostly heterotrimeric guanine 

nucleotide–binding protein (G-protein) coupled receptors (GPCRs)) that in turn activate kinases 

via intracellular signaling cascades (Tominaga, 2006). Several serine and threonine kinases 

such as PKA, PKC,� calcium/calmodulin-dependent protein kinase II and Src kinase can 

phosphorylate TRPV1 resulting in enhanced responses to capsaicin and reduced activation 

thresholds in response to temperature and capsaicin (reviewed in (Vay et al., 2012)).  

In addition, TRPV1 is modulated by numerous other molecules like the protein-A kinase 

anchoring protein (AKAP) 79, which binds PKA and PKC and forms a signaling complex with 

Figure 2: Detailed structure of a 
TRPV1 monomer (Liao et al., 
2013). a) Linear diagram with 
major domains of a TRPV1 
monomer. b) Ribbon diagram 
presenting three different views 
of a monomer. Reprinted by 
permission from Copyright 
Clearence Center: Springer 
Nature, Nature, Structure of the 
TRPV1 ion channel determined 
by electron cryo-microscopy, M. 
F. Liao, E. H. Cao, D. Julius, Y. 
F. Cheng, 2013.�




�

the C-terminus of TRPV1 leading to its phosphorylation and sensitization (Zhang et al., 2008; 

Jeske et al., 2009; Vay et al., 2012; Gouin et al., 2017). PKA and Src kinase activity not only 

sensitize TRPV1 via the phosphorylation of intracellular residues, but also increase the 

expression of functional TRPV1 tetramers on the neuronal plasma membrane (Zhang et al., 

2005; Vetter et al., 2008). Continuous or repeated TRPV1 activation results in decreased 

TRPV1 responsiveness (desensitization and tachyphylaxis) due to calcineurin and calmodulin 

activity leading to TRPV1 dephosphorylation or direct inhibition by binding to the calmodulin 

bindings sites at the N-and C-termini of the channel (reviewed in (Tominaga, 2006; Gouin et 

al., 2017).  

 

1.3. Pain inhibition 

Nociceptor stimulation (e.g. in response to inflammation) activates several endogenous 

pathways in the peripheral and central nervous system that result in inhibition of pain. These 

include the release of opioid peptides and gamma-aminobutyric acid (GABA) and the activation 

of inhibitory noradrenergic and serotonergic mechanisms. Most of these mediators stimulate 

GPCRs. In sensory neurons, this leads to a reduction of excitatory neurotransmitter release and 

the opening of potassium and chloride channels resulting in hyperpolarizing inhibitory 

potentials. During later phases of tissue injury, anti-inflammatory mediators are released that 

counteract pain and inflammation (reviewed in (Stein, 2016)). Clinical pain treatment targets 

many proteins like GPCRs, ion channels and regulatory enzymes (Dray, 2009). Currently 

available classes of pain medication include opioids (which activate opioid receptors), non-

steroidal anti-inflammatory drugs (NSAIDs) (which inhibit prostaglandin synthesis), 

antidepressants (which inhibit serotonin- and noradrenalin reuptake), and anticonvulsants 

(which block calcium and/or sodium channels) (Lynch and Watson, 2006). Among them, 

opioids are the most effective pain therapeutics (Dray, 2009). 

 
1.3.1. Opioid receptors 

There are three classical opioid receptor types namely the µ- (MOR), �- (DOR), and �- (KOR) 

opioid receptor. These are activated by their endogenous ligands �-endorphin, enkephalin, and 

dynorphin, they are encoded by three different genes (Oprm1, Oprd1, and Oprk1) and are 

expressed in peripheral and central neurons, in neuroendocrine, immune, and ectodermal cells 

(Evans et al., 1992; Kieffer et al., 1992; Meng et al., 1993; Wang et al., 1993; Mollereau et al., 

1994; Stein, 2016). An additional receptor, the nociceptin receptor, is encoded by Oprl1 and 
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endogenously activated by nociceptin (Toll et al., 2016; Corder et al., 2018) The nociceptin 

receptor is not activated by low concentrations of classical opioids  

 

(Toll et al., 2016; Stein, 2018). The crystal structures of these receptors were resolved, giving 

insights into receptor/ligand interactions (Granier et al., 2012; Manglik et al., 2012; Thompson 

et al., 2012; Wu et al., 2012; Huang et al., 2015; Che et al., 2018). All four receptors belong the 

class A subgroup of GPCRs and show 60 % homology among their genes. Upon ligand binding, 

conformational changes lead to a coupling of inhibitory G-proteins at the receptors’ C-terminus. 

Thereafter, the guanosine diphosphate (GDP) bound to the �-subunit of the G-protein trimer is 

replaced by guanosine triphosphate (GTP), resulting in dissociation into G�i- and G��- subunits 

(Figure 3a). The subunits exert separate downstream effects: G�i inhibits adenylyl cyclases 

(ACs) leading to decreased intracellular cyclic adenosine monophosphate- (cAMP)-levels, 

which can lead to inhibition of excitatory membrane ion channels via activation of intracellular 

enzymes. G�� directly activates potassium channels and inhibits voltage dependent calcium 

channels. The overall result of these events is suppression of the release of excitatory 

neurotransmitters (substance P, CGRP), hyperpolarization and inhibition of neuronal 

excitability, eventually leading to analgesia (Corder et al., 2018; Machelska and Celik, 2018; 

Stein, 2018).  

All clinically relevant opioid analgesics bind to the MOR. However, they also induce several 

adverse side effects including respiratory depression, addiction, sedation, nausea,  and 

constipation, which have contributed to the high morbidity and mortality in the context of the 

opioid crisis (Stein, 2018). Most side effects are mediated by MOR-induced G-protein 

activation of central or intestinal opioid receptors. Respiratory depression is due to G��-

Figure 3: Opioid receptor 
signaling (Stein, 2016).      
a) Agonist induced G-
protein dissociation of 
opioid receptors. b) Agonist-
induced opioid receptor 
desensitization via GRK-
induced phosphorylation and 
subsequent arrestin binding. 
Republished with 
permission of ANNUAL 
REVIEWS, from “Opioid 
Receptors, C. Stein, 67, 
2016”; permission conveyed 
through Copyright Clearance 
Center, Inc. 
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mediated activation of G protein-coupled inwardly-rectifying potassium (GIRK) channels in 

the respiratory center of the brainstem. Sedation and constipation are mediated by G��-induced 

potassium channel activation and calcium channel inhibition in the hypothalamic arousal 

system and in the enteric nervous system, respectively. Nausea and vomiting are thought to be 

elicited by G�i/o- induced inhibition of the cAMP-PKA pathway and calcium channels in the 

vestibular system (reviewed in (Stein, 2016; Machelska and Celik, 2018).  

Tolerance is the diminished magnitude of a given drug effect with repeated administration of 

the same dose, or the need for higher dosages to generate the same effect (Basbaum et al., 2009; 

Stein, 2018). Tolerance can develop to all opioid-induced effects like analgesia, respiratory 

depression, nausea, sedation, and constipation. The molecular mechanisms underlying 

tolerance are not completely elucidated so far. One explanation is ligand-induced MOR 

desensitization. This involves GPCR kinases (GRKs), which phosphorylate several serine (S) 

and threonine (T) residues at the cytoplasmatic loops and C-terminus, leading to arrestin 

binding and subsequent internalization of the receptor (Figure 3b). Two amino acid sequences 

were identified to be targets for GRKs and crucial for MOR desensitization, namely 354TSST357 

and 370TREHPSTANT379 (Kliewer et al., 2019). Studies have shown that S375 and the 

hierarchical phosphorylation of the flanking residues T370, T376 and T379 by GRK2 play an 

important role resulting in �-arrestin 2 binding. This prevents further coupling of MOR to G-

proteins and leads to clathrin-induced MOR internalization followed by either receptor 

recycling or degradation. However, MOR desensitization is only one mechanism of the 

multifaceted process of tolerance development (Bohn et al., 2000; Williams et al., 2013; 

Kliewer et al., 2019).  

The selective activation of opioid receptors on peripheral sensory neurons lacks the centrally 

and intestinally mediated side effects, and can induce potent antinociception, particularly under 

pathological conditions: During tissue injury, numerous adaptations occur in the nervous, 

endocrine and immune systems (Rittner et al., 2008). For example, MOR messenger ribonucleic 

acid (mRNA) and protein expression is upregulated in a neuronal electrical activity and 

cytokine dependent manner, probably due to cytokine-induced increased opioid receptor 

transcription in the neurons innervating the inflamed tissue. Furthermore, the axonal transport 

of opioid receptors to peripheral nerve terminals and their expression on neuronal membranes 

is enhanced during injury. This was dependent on cytokines and nerve growth factor (Hassan 

et al., 1993; Jeanjean et al., 1995; Zollner et al., 2003; Mousa et al., 2007). The overall effect is 

an increased opioid receptor density and G-protein coupling in peripheral sensory neurons. In 

addition, the number of opioid receptor expressing neurons is augmented during injury (Stein 
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et al., 1990; Zhou et al., 1998; Zollner et al., 2003) and the disruption of the perineural barrier 

facilitates the access of opioid ligands to their receptors (Antonijevic et al., 1995; Rittner et al., 

2012). 

Furthermore, it was shown that the development of tolerance was reduced in inflammatory pain 

due to the continuous presence of endogenous opioid peptides and increased opioid receptor 

recycling (Stein et al., 1996; Zollner et al., 2008). Figure 4 summarizes opioid action in 

inflamed tissue. Endogenous opioid peptides (�-endorphin, enkephalin, dynorphin and 

endomorphin) are expressed  in immune cells which extravasate and accumulate in inflamed  

 

 

tissue (Stein and Machelska, 2011). The gene expression of opioid peptide precursors and of 

their processing enzymes in immune cells is upregulated during tissue injury. Cytokines, stress 

and bacteria stimulate release of opioid peptides, which then bind to peripheral opioid receptors 

and induce analgesia (Rittner et al., 2009; Stein and Machelska, 2011) (reviewed in (Stein, 

2016; 2018). 

 

 

 

Figure 4: Peripheral 
opioid action (Stein, 
2016). OP-opioid 
peptide, EO-exogenous 
opioid, OR-opioid 
receptor, NA-
noradrenaline, AR-
adrenalin receptor, IL-1-
interleukin 1, IL-1R, IL-
1 receptor, CRF-
corticotropin-releasing-
factor, CRFR-CRF 
receptor. Republished 
with permission of 
ANNUAL REVIEWS, 
from “Opioid Receptors, 
C. Stein, 67, 2016”; 
permission conveyed 
through Copyright 
Clearance Center, Inc. 
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1.4. Aim of the present work 

The overall aim of my work was to elucidate molecular mechanisms contributing to pain 

sensitization and to develop approaches to inhibit pain without inducing adverse side effects. I 

investigated the pain pathway from two perspectives: 

1. In the first part, I focused on mechanisms underlying the initiation of pain and 

sensitization. I concentrated on mechanisms that sensitize TRPV1, since this excitatory 

ion channel plays a central role during tissue injury and inflammation. 

2. In the second part, I focused on the opioid system under pathological conditions. The 

aim was to develop novel opioid analgesics, which are exclusively active in injured 

tissues and therefore do not induce common centrally or intestinally mediated side 

effects. 
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2. Results 

2.1. TRPV1 sensitization via the cAMP and PKA pathway induces pain sensitization 

TRPV1 plays a pivotal role in the sensitization to painful stimuli in pathological conditions 

(Caterina et al., 2000; Davis et al., 2000; Tominaga, 2006). We aimed to identify mechanisms 

that do not directly inhibit TRPV1 signaling but sensitize TRPV1, since it was previously 

shown that direct TRPV1 blockade can result in hyperthermia and skin burns (Woolf, 2010; 

Szallasi and Sheta, 2012; Vay et al., 2012). 

2.1.1. Modulation of Transient Receptor Vanilloid 1 Activity by Transient Receptor 

Potential Ankyrin 1 

In the following study, we investigated interactions of TRPV1 and TRPA1. 

The following text is extracted from the abstract of Spahn V, Stein C and Zöllner C. Modulation 

of transient receptor vanilloid 1 activity by transient receptor potential ankyrin 1. Mol 

Pharmacol. 2014 Feb;85(2):335-344. doi: https://doi.org/10.1124/mol.113.088997 

“Transient receptor potential vanilloid 1 (TRPV1) is a nonselective ligand-gated 

cation channel responding to noxious heat, protons, and chemicals such as 

capsaicin. TRPV1 is expressed in sensory neurons and plays a critical role in pain 

associated with tissue injury, inflammation, and nerve lesions. Transient receptor 

potential ankyrin 1 (TRPA1) is coexpressed with TRPV1. It is activated by 

compounds that cause a burning sensation (e.g., mustard oil) and, indirectly, by 

components of the inflammatory milieu eliciting nociceptor excitation and pain 

hypersensitivity. Previous studies indicate an interaction of TRPV1 and TRPA1 

signaling pathways. Here we sought to examine the molecular mechanisms 

underlying such interactions in nociceptive neurons. We first excluded physical 

interactions of both channels using radioligand binding studies. By 

microfluorimetry, electrophysiological experiments, cAMP measurements, and 

site-directed mutagenesis we found a sensitization of TRPV1 after TRPA1 

stimulation with mustard oil in a calcium and cAMP/protein kinase A (PKA) 

dependent manner. TRPA1 stimulation enhanced TRPV1 phosphorylation via the 

putative PKA phosphorylation site serine 116. We also detected calcium-sensitive 

increased TRPV1 activity after TRPA1 activation in dorsal root ganglion neurons. 

The inhibition of TRPA1 by HC-030031 (1,2,3,6-tetrahydro-1,3- dimethyl-N-[4-(1-

methylethyl)phenyl]-2,6-dioxo-7H-purine-7- acetamide, 2-(1,3-dimethyl-2,6-
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dioxo-1,2,3,6-tetrahydro-7Hpurin- 7-yl)-N-(4 isopropylphenyl)acetamide) after its 

initial stimulation (and the calcium-insensitive TRPA1 mutant D477A) still showed 

increased capsaicin-induced TRPV1 activity. This excludes a calcium-induced 

additive TRPA1 current after TRPV1 stimulation. Our study shows sensitization of 

TRPV1 via activation of TRPA1, which involves adenylyl cyclase, increased cAMP, 

subsequent translocation and activation of PKA, and phosphorylation of TRPV1 at 

PKA phosphorylation residues. This suggests that cross-sensitization of TRP 

channels contributes to enhanced pain sensitivity in inflamed tissues.” 
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2.1.2. Ankyrin-rich membrane spanning protein as a novel modulator of TRPV1-function 

in nociceptive neurons 

In the next study, we investigated an important putative interaction partner of TRPV1, namely 

ARMS. ARMS is a large adaptor protein with numerous protein-protein interaction motifs 

(Peter 2017) that is involved in neurotrophic signaling, neuronal development and homeostasis 

(Cesca 2018). Since TRPV1 and ARMS share the neurotrophic signaling pathway (Zhang et 

al., 2005; Neubrand et al., 2012) and they are co-expressed on the mRNA level in DRG neurons 

(Isensee et al., 2014), it was important to examine whether the two proteins are also co-

expressed and whether this influences TRPV1 activity.  

The following text is extracted from the abstract of Peter J*, Kasper C*, Buschow R, Hucho T, 

Stein, C Jordt SE, Brackmann M+ and Spahn V+ Ankyrin-rich membrane spanning protein as a 

novel modulator of TRPV1-function in nociceptive neurons. Eur J Pain. 2017 Jul;21(6): 1072-

1086. doi: https://doi.org/10.1002/ejp.1008 

 

“Background: The ion channel TRPV1 is mainly expressed in small diameter dorsal 

root ganglion (DRG) neurons, which are involved in the sensation of acute noxious 

thermal and chemical stimuli. Direct modifications of the channel by diverse 

signalling events have been intensively investigated, but little is known about the 

composition of modulating macromolecular TRPV1 signalling complexes. Here, we 

hypothesize that the novel adaptor protein ankyrin-rich membrane spanning 

protein/kinase D interacting substrate (ARMS) interacts with TRPV1 and 

modulates its function in rodent DRG neurons. Methods: We used 

immunohistochemistry, electrophysiology, microfluorimetry and 

immunoprecipitation experiments to investigate TRPV1 and ARMS interactions in 

DRG neurons and transfected cells. 

Results: We found that TRPV1 and ARMS are co-expressed in a subpopulation of 

DRG neurons. ARMS sensitizes TRPV1 towards capsaicin in transfected HEK 293 

cells and in mouse DRG neurons in a PKA-dependent manner. Using a combination 

of functional imaging and immunocytochemistry, we show that the magnitude of the 

capsaicin response in DRG neurons depends not only on TRPV1 expression, but on 

the co-expression of ARMS alongside TRPV1. 
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Conclusion: These data indicate that ARMS is an important component of the 

signalling complex regulating the sensitivity of TRPV1. 

Significance: The study identifies ARMS as an important component of the 

signalling complex regulating the sensitivity of excitatory ion channels (TRPV1) in 

peripheral sensory neurons (DRG neurons) and transfected cells.” 
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2.1.3. Opioid withdrawal increases TRPV1 activity in a protein kinase A-dependent 

manner 

In this study, we aimed to explore the influence of opioid withdrawal on TRPV1 channel 

activity. Withdrawal is induced when an opioid agonist is suddenly removed or its dosage is 

significantly reduced. Clinically relevant symptoms of opioid withdrawal are lacrimation, 

piloerection, yawning, myalgia, nausea, vomiting, photophobia, insomnia, autonomic 

hyperactivity, and hyperalgesia. These symptoms might be due by AC superactivation and 

subsequent cAMP overshoot (Carcoba et al., 2011; Shah and Huecker, 2019). It was previously 

shown that acute opioid administration inhibited TRPV1 activity via the cAMP/PKA pathway 

in peripheral sensory neurons (Endres-Becker et al., 2007), and that opioid withdrawal induces 

AC superactivation and increases PKA activity in the central nervous system (Sharma et al., 

1975; Nestler, 1992). Since PKA regulates and sensitizes TRPV1, we investigated the effects 

of opioid withdrawal on TRPV1 activity in peripheral neurons.  

The following text is extracted from the abstract of�Spahn V, Fischer O, Endres-Becker J, 

Schäfer M, Stein C and Zöllner C. Opioid withdrawal increases transient receptor potential 

vanilloid 1 activity in a protein kinase A -dependent manner. Pain. 2013 Apr;154(4): 598-608. 

doi: http://dx.doi.org/10.1016/j.pain.2012.12.026 

        “Hyperalgesia is a cardinal symptom of opioid withdrawal. The transient receptor 

potential vanilloid 1 (TRPV1) is a ligand-gated ion channel expressed on sensory 

neurons responding to noxious heat, protons, and chemical stimuli such as 

capsaicin. TRPV1 can be inhibited via �-opioid receptor (MOR)-mediated reduced 

activity of adenylyl cyclases (ACs) and decreased cyclic adenosine monophosphate 

(cAMP) levels. In contrast, opioid withdrawal following chronic activation of MOR 

uncovers AC superactivation and subsequent increases in cAMP and protein kinase 

A (PKA) activity. Here we investigated (1) whether an increase in cAMP during 

opioid withdrawal increases the activity of TRPV1 and (2) how opioid withdrawal 

modulates capsaicin-induced nocifensive behavior in rats. We applied whole-cell 

patch clamp, microfluorimetry, cAMP assays, radioligand binding, site-directed 

mutagenesis, and behavioral experiments. Opioid withdrawal significantly 

increased cAMP levels and capsaicin-induced TRPV1 activity in both transfected 

human embryonic kidney 293 cells and dissociated dorsal root ganglion (DRG) 

neurons. Inhibition of AC and PKA, as well as mutations of the PKA 

phosphorylation sites threonine 144 and serine 774, prevented the enhanced 
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TRPV1 activity. Finally, capsaicin-induced nocifensive behavior was increased 

during opioid withdrawal in vivo. In summary, our results demonstrate an 

increased activity of TRPV1 in DRG neurons as a new mechanism contributing to 

opioid withdrawal-induced hyperalgesia.” 
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2.2. Inhibition of injury-induced pain without side effects 

While the detailed knowledge of sensitizing mechanisms may serve as the basis for the 

development of new therapeutics, it is equally important to consider the activation of the pain 

inhibiting system. The use of opioids is limited by adverse side effects like respiratory 

depression, addiction, sedation, nausea and constipation (Benyamin et al., 2008). Current 

strategies are the development of abuse deterrent formulations, allosteric modulators, bivalent 

ligands, biased opioid ligands and the augmentation of the endogenous opioid peptide system, 

but they did not yield clinically useful analgesics so far (reviewed in (Stein, 2018). The 

following studies present a novel way to address this question via the restriction of opioid 

receptor activation to the periphery. 

2.2.1. A nontoxic pain killer designed by modeling of pathological receptor conformations 

The following text is extracted from the abstract of Spahn V*, Del Vecchio G*, Labuz D, 

Rodriguez-Gaztelumendi A, Massaly N, Temp J, Durmaz V, Sabri P, Reidelbach M, 

Machelska, H, Weber M+ and Stein C+. A nontoxic pain killer designed by modeling of 

pathological receptor confirmations. Science. 2017 Mar 3;355(6328):966-969. doi: 

https://doi.org/10.1126/science.aai8636 

 

„Indiscriminate activation of opioid receptors provides pain relief but also severe 

central and intestinal side effects. We hypothesized that exploiting pathological 

(rather than physiological) conformation dynamics of opioid receptor-ligand 

interactions might yield ligands without adverse actions. By computer simulations 

at low pH, a hallmark of injured tissue, we designed an agonist that, because of its 

low acid dissociation constant, selectively activates peripheral �-opioid receptors 

at the source of pain generation. Unlike the conventional opioid fentanyl, this 

agonist showed pH-sensitive binding, heterotrimeric guanine nucleotide–binding 

protein (G-protein) subunit dissociation by fluorescence resonance energy transfer, 

and adenosine 3�,5�- monophosphate inhibition in vitro. It produced injury-

restricted analgesia in rats with different types of inflammatory pain without 

exhibiting respiratory depression, sedation, constipation, or addiction potential.” 
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2.2.2. Analgesic effects of a novel pH-dependent �-opioid receptor agonist in models of 

neuropathic and abdominal pain 

We further investigated the selective activation of peripheral opioid receptors by our newly 

designed opioid receptor agonist (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl 

propionamide (NFEPP) in other pathological conditions such as neuropathic and abdominal 

pain. Furthermore, we explored NFEPP binding in native tissue. 

The following text is extracted from the abstract of Rodriguez-Gaztelumendi A, Spahn V, 

Labuz D, Machelska H, Stein C. Analgesic effects of a novel pH-dependent µ-opioid receptor 

agonist in models of neuropathic and abdominal pain. Pain. 2018 Nov;159(11):2277-2284. doi: 

http://dx.doi.org//10.1097/j.pain.0000000000001328 

         “Recently, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide 

(NFEPP), a newly designed �-opioid receptor (MOR) agonist with a low pKa, has 

been shown to produce injury-restricted analgesia in models of inflammatory and 

postoperative pain, without exhibiting typical opioid side effects. Here, we 

investigated MOR binding of NFEPP in brain and dorsal root ganglia, pH in 

injured tissues, and the analgesic efficacy of NFEPP compared with fentanyl in a 

chronic constriction injury model of neuropathic pain, and in the acetic acid–

induced abdominal writhing assay in rats. Binding experiments revealed 

significantly lower affinity of NFEPP compared with fentanyl at pH 7.4. In vivo, 

pH significantly dropped both at injured nerves after chronic constriction injury 

and in the abdominal cavity after acetic acid administration. Intravenous NFEPP 

as well as fentanyl dose-dependently diminished neuropathy-induced mechanical 

and heat hypersensitivity, and acetic acid–induced abdominal constrictions. In both 

models, NFEPP-induced analgesia was fully reversed by naloxone methiodide, a 

peripherally restricted opioid receptor antagonist, injected at the nerve injury site 

or into the abdominal cavity. Our results indicate that NFEPP exerts peripheral 

opioid receptor–mediated analgesia exclusively in damaged tissue in models of 

neuropathic and abdominal pain.” 
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2.2.3. Opioid receptor signaling, analgesic and side effects induced by a computationally 

designed pH-dependent agonist 

Next, we investigated another fentanyl-derivative with reduced pKa. The aim of this study was 

to examine our concept that the pKa of an opioid receptor ligand should be close to the pH of 

injured tissue to achieve analgesia selectively mediated by peripheral opioid receptors without 

producing adverse side effects.  

The following text was extracted from the abstract of Spahn V, Del Vecchio G, Rodriguez-

Gaztelumendi A, Temp J, Labuz D, Kloner M, Reidelbach M, Machelska H, Weber M, Stein 

C. Opioid receptor signaling, analgesic and side effects induced by a computationally designed 

pH-dependent agonist. Sci Rep. 2018 Jun 12;8(1):8965. doi: https://doi.org/10.1038/s41598-

018-27313-4 

        “Novel pain killers without adverse effects are urgently needed. Opioids induce 

central and intestinal side effects such as respiratory depression, sedation, 

addiction, and constipation. We have recently shown that a newly designed agonist 

with a reduced acid dissociation constant (pKa) abolished pain by selectively 

activating peripheral �-opioid receptors (MOR) in inflamed (acidic) tissues without 

eliciting side effects. Here, we extended this concept in that pKa reduction to 7.22 

was achieved by placing a fluorine atom at the ethylidene bridge in the parental 

molecule fentanyl. The new compound (FF3) showed pH-sensitive MOR affinity, 

[35S]-GTP�S binding, and G protein dissociation by fluorescence resonance energy 

transfer. It produced injury-restricted analgesia in rat models of inflammatory, 

postoperative, abdominal, and neuropathic pain. At high dosages, FF3 induced 

sedation, motor disturbance, reward, constipation, and respiratory depression. 

These results support our hypothesis that a ligand’s pKa should be close to the pH 

of injured tissue to obtain analgesia without side effects.” 
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3. Discussion 

“A life without pain is the basis for human well-being and pain therapy in the sense of pain 

reduction or inhibition is an essential human right” (Treede, 2015b). Although “a life without 

pain” is an unrealistic goal, it is certainly important to strive for sufficient pain relief without 

adverse side effects. Thus, both mechanisms of sensitization during injury and strategies to 

directly inhibit pain have to be investigated. My work addressed two components of the pain 

pathway: First, the mechanisms underlying TRPV1 sensitization, as this ion channel plays an 

important role in injury-induced hyperalgesia. Knowing these mechanisms in detail may be 

useful for the development of new pain therapeutics that reverse TRPV1 sensitization. Second, 

I investigated the development of novel opioids that exclusively activate opioid receptors at the 

site of tissue injury and do not induce side effects commonly associated with opioid treatment. 

Both strategies produced results that seem to be of clinical relevance.  

The need for safe pain therapeutics is urgent. Epidemiological studies suggest that 

approximately 20 Mio. people in Europe suffer from pain, and their quality of life is 

dramatically reduced. In addition, direct and indirect societal costs due to pain are tremendous 

(SIP, 2018). Numerous pain medications are available, but they have many sometimes life 

threatening constraints. Opioids, for example, are limited by sedation, respiratory depression, 

nausea, addiction, tolerance, and constipation. The current opioid crisis/epidemic is at least 

partially a result of inappropriate prescription/use and undervalued side effects. On the other 

hand, cyclooxygenase inhibitors induce gastrointestinal and cardiovascular side effects, and 

anticonvulsants as well as antidepressants produce sedation, ataxia and arrhythmias (Coxib et 

al., 2013; Califf et al., 2016; Spahn et al., 2017).  

3.1. Reversal of TRPV1 sensitization as a target for new pain medications 

The TRPV1 channel has been a target for development of pain therapeutics since its discovery 

in 1997, because it is crucial for the transduction of painful stimuli (Szallasi and Sheta, 2012). 

In the studies presented here, we identified interaction partners, which lead to cAMP/PKA-

dependent TRPV1 sensitization and subsequent hyperalgesia (Spahn et al., 2013; Spahn et al., 

2014; Peter et al., 2017). This knowledge could serve as a basis for new therapeutics targeting 

TRPV1 sensitization rather than aiming at the blockade of TRPV1 itself. So far, two 

mechanisms to achieve pain reduction via TRPV1 modulation have been investigated: First, 

repeated or continuous TRPV1 activation leading to nociceptor defunctionalization, and 

second, direct blockade of TRPV1 via newly synthesized TRPV1 antagonists (Szallasi and 

Sheta, 2012). TRPV1-agonist-induced defunctionalization is a result of several events. 
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Neuronal excitability is decreased via the inactivation of voltage-gated Na+ channels and direct 

desensitization of TRPV1 expressed in the plasma membrane. Additionally, high calcium 

concentrations enter the cell via TRPV1, leading to the activation of calcium-dependent 

proteases and microtubule depolymarization, which interrupts fast axonal transport (reviewed 

in (Anand and Bley, 2011)). At ultra high concentrations, the TRPV1 agonist capsaicin can 

directly inhibit electron chain transport in neuronal mitochondria resulting in neurotoxicity. 

Finally, increased intracellular chloride accumulation (accompanied by an influx of positively 

charged ions) leads to osmotic swelling. All these processes are responsible for impaired 

nociceptor functionality (Anand and Bley, 2011). Preclinical studies investigating repeated 

subcutaneous capsaicin injections demonstrated a significant reduction of pain thresholds in 

animals. However, this procedure can not be translated into clinical settings (Szallasi and Sheta, 

2012). Creams containing low concentrations of capsaicin did not show convincing results and 

were accompanied by local skin irritation (Derry and Moore, 2012; Szallasi and Sheta, 2012). 

In osteoarthritic pain, topical capsaicin application showed good efficacy and a positive safety 

profile. However, these studies have to be interpreted with caution due to their problems with 

blinding (Guedes et al., 2018). More recently, capsaicin patches were investigated in 

postherpetic neuralgia, HIV-associated neuropathy and peripheral diabetic neuropathy. 

However, systematic literature analysis revealed only “moderate quality evidence that high-

concentration (8%) capsaicin patches can give moderate pain relief,…” (Derry et al., 2017). 

The benefits for patients with HIV-neuropathy and peripheral diabetic neuropathy were minor 

(Derry et al., 2017). On the other hand, local or perineuronal injections of the TRV1 ligand 

resiniferatoxin showed promising results in animal models of inflammatory, incisional, 

neuropathic and cancer pain (Szallasi and Sheta, 2012). However, a literature search in the 

Cochrane Library indicated that resiniferatoxin treatment in painful bladder 

syndrome/interstitial cystitis was without sufficient pain relief and yielded only one ongoing 

clinical trial in patients with knee pain (Ford et al., 2016; Klincewicz, 2018).  

The other possibility is direct antagonism of TRPV1 with the intention to block the transduction 

of painful stimuli. TRPV1 antagonists showed pain-relieving actions in models of osteoarthritic 

pain, dental pain, gastroesophageal reflux-induced pain and a reduction of the severity of 

inflammatory bowel disease, mechanical bladder hyperactivity, atopic dermatitis and epileptic 

seizures (Aghazadeh Tabrizi et al., 2017). These promising preclinical (and some clinical) data 

resulted in an intense search for  TRPV1-antagonists  and in numerous clinical trials (reviewed 

in (Aghazadeh Tabrizi et al., 2017). However, most of these antagonists failed to induce pain 

relief or they induced adverse effects like burns or hyperthermia. The latter was possibly due 
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to the blockade of tonically active visceral TRPV1, which suppress the autonomic cold defense 

by thermogenesis and vasoconstriction (Romanovsky et al., 2009; Garami et al., 2018)) or 

burns, which precluded them from entering clinical phase III studies. A recent strategy is the 

development of antagonists that act via distinct molecular domains responsible for TRPV1 

activation by heat, capsaicin and protons and therefore should lack hyperthermia induced by 

full TRPV1 blockade (NEO6860). Also the development of locally restricted TRPV1 

modulators and molecules that only treat TRPV1 sensitization become more popular 

(Aghazadeh Tabrizi et al., 2017). The results of the present studies could be used for the 

development of molecules reducing TRPV1 sensitization under pathological conditions. Our 

findings that the residues S116, T144, and S774 of TRPV1 are phosphorylated by PKA or that 

TRPV1 interacts with other pain-sensitizing interaction partners (e.g. ARMS) in a cAMP/PKA 

dependent manner leading to TRPV1 sensitization, could be used for the generation of 

compounds directly shielding theses residues and therefore reversing the sensitization, but 

retaining normal channel functionality.  

3.2. Recent strategies for the development of opioids without side effects 

In the opioid field, two major concepts for the development of pain therapeutics without side 

effects are currently pursued, namely peripherally restricted opioids and “biased” agonists. 

Peripheral restriction of opioids can be achieved for example by covalent attachment of an 

opioid agonist to nanocarriers that are unable to permeate the blood brain barrier. We studied 

morphine attached to hyperbranched polyglycerol via a cleavable linker (polyglycerol-

morphine) (Gonzalez-Rodriguez et al., 2017). Exploiting its high molecular weight and 

hydrophilicity, we assumed that polyglycerol-morphine should not cross the blood brain barrier 

and that morphine should be selectively released in injured tissue. In a rat model of 

inflammatory pain, we indeed found that intravenous polyglycerol-morphine exclusively 

activated peripheral opioid receptors and induced analgesia only in the inflamed paw without 

evoking central or intestinal side effects (Gonzalez-Rodriguez et al., 2017). Another example 

is the conjugation of opioid-loaded liposomes with an antibody to intercellular adhesion 

molecule-1 to mimic the properties of immune cells invading injured tissue. Intravenous 

injection of these liposomes reduced mechanical hypersensitivity in the rat inflamed paw via 

the local activation of opioid receptors ((Hua and Cabot, 2013) reviewed in (Machelska and 

Celik, 2018).  

In contrast to these pharmacokinetic approaches, a pharmacodynamic concept is the peripheral 

restriction of opioid receptor activation based on the opioid ligand’s pKa. This strategy is based 



����

on the finding that most painful conditions like arthritis, cancer, trauma, neuropathy and surgery 

are associated with injury-induced inflammation and tissue acidification. Under such 

conditions, the expression and functionality of opioid receptors is upregulated at the site of 

injury, and their activation results in potent inhibition of neuronal excitability (reviewed in 

(Stein, 2016)). Activation of peripheral opioid receptors mediates a considerable proportion of 

opioid-induced analgesia in animals and humans, and the augmented signaling indicates 

conformational alterations of opioid receptors and/or ligands in the inflamed environment 

(Gaveriaux-Ruff et al., 2011; Weibel et al., 2013; Jagla et al., 2014; Stein, 2016). In cooperation 

with the ZUSE-Institute Berlin, we developed an innovative artificial intelligence-based design 

for peripherally acting opioids.�This strategy used computational simulations of pathological 

receptor conformations and the finding that the protonation state of a ligand is crucial for its 

activity at opioid receptors. Our data indicated that the ligand’s pKa should be close to the acidic 

pH of injured tissue, which could be achieved by fluorination of the piperidine ring of the 

standard agonist fentanyl, leading to the novel compound NFEPP. We found that NFEPP 

selectively binds and activates opioid receptors at low pH (as in peripheral injured tissue) but 

not at normal pH (as in the CNS and myenteric plexus). In animal models of inflammatory, 

incisional and neuropathic pain, NFEPP exerted analgesic effects by selective activation of 

peripheral opioid receptors in injured tissue, but did not act in healthy tissue. Consistently, 

NFEPP was devoid of typical opioid side effects such as addiction potential, sedation, motor 

impairment, respiratory depression, and constipation (Spahn et al., 2017; Rodriguez-

Gaztelumendi et al., 2018). In another study, we further developed our concept in that we 

exchanged hydrogen/fluorine in fentanyl�s ethylidene bridge leading to the compound FF3. FF3 

displayed a pKa of 7.2 and induced selective analgesia in injured tissue. However, high 

concentrations of FF3 induced sedation, motor disturbance, reward, constipation, and 

respiratory depression, leading us to the conclusion that a pKa of 7.2 is too close to physiological 

pH (Spahn et al., 2018). Overall, our results indicate that the pKa of an opioid receptor ligand 

can be used as a defining factor to predict the side effect profile of an opioid analgesic.   

The second strategy to obtain opioids without side effects under intense current debate is the 

concept of “biased” opioid agonists. This concept is based on the finding that GPCR activation 

leads to the activation of both inhibitory G-proteins and �-arrestins. Investigations of �-arrestin 

2 knockout mice revealed that morphine-induced antinociception was prolonged and 

respiratory depression was reduced, leading to the conclusion that opioid side effects are 

mediated via the �-arrestin 2 signaling pathway (Bohn et al., 1999; Raehal and Bohn, 2005; 

Schmid et al., 2017). Since this discovery, numerous studies were conducted to develop opioid 
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receptor agonists that selectively activate the G-protein, but not the �-arrestin pathway 

(“biased” agonists). One of the most promising candidates was TRV130 (oliceridin) (DeWire 

et al., 2013; Kingwell, 2015). However, a detailed analysis of the data uncovered similar side 

effect profiles of TRV130 compared to morphine (DeWire et al., 2013; Soergel et al., 2014; 

Viscusi et al., 2016; Singla et al., 2017; Negus and Freeman, 2018) (reviewed in (Machelska 

and Celik, 2018). Two subsequent phase 3 clinical studies in patients undergoing surgery 

showed effective analgesia but the respiratory safety endpoints were not achieved (FDA, 

2018a). Finally, in October 2018, the US Food and Drug Administration (FDA) voted against 

the approval of TRV130 based on an advisory committee briefing document concluding that 

TRV130 is not “safer than traditional opioids” (FDA, 2018b; a). Recently, another Gi -biased 

agonist (PZM21) was discovered (Manglik et al., 2016). However, a subsequent study trying to 

reproduce the data measured concentration-dependent Gi-activation, �-arrestin recruitment, 

respiratory depression and tolerance to antinociceptive effects, again questioning this concept 

(Hill et al., 2018). Considering the cellular signaling mechanisms underlying opioid-induced 

side effects, the results of the above studies are not surprising, since most opioid-induced side 

effects are induced by the activation of G-proteins (reviewed in (Machelska and Celik, 2018). 

Additionally, a recent study has exploited MOR tolerance and desensitization to examine biased 

signaling: Both events are associated with phosphorylation of intracellular domains of MOR 

and subsequent �-arrestin signaling (Kliewer et al., 2019). The authors created a mouse line 

where MOR is unable to recruit �-arrestin due to a series of mutations of the receptor’s C-

terminus, and therefore served as the perfect biased agonist control (Kliewer et al., 2019). In 

these animals, opioid-induced analgesia was increased, tolerance was reduced, but opioid-

induced adverse side effects were either unchanged or enhanced, leading to the conclusion that 

�-arrestin recruitment was not responsible for these side effects and questioning the concept of 

biased agonists (Kliewer et al., 2019).  

Thus, the concept of biased ligands did not result in useful novel opioid analgesics so far. On 

the other hand, additional animal and human studies on peripherally restricted opioids like 

NFEPP have to be performed to examine their potential for clinical utility. Furthermore, long-

term use and withdrawal of NFEPP have to be investigated, since opioid withdrawal can 

increase TRPV1 activity and induce hyperalgesia (see chapter 2.1.3. and (Spahn et al., 2013).  
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3.3. Concluding remarks 

In summary, pain may be treated by influencing different components of the pain pathway: 

inhibition of pain generation, inhibition of pain transmission and/or inhibition of pain 

perception. Here, we investigated two approaches that address the peripheral origin of the pain 

pathway under pathological conditions. Figure 5 summarizes both appoaches.  

 

 

 

 

 

 

 

 

 

 

 

We found that prevention of TRPV1 sensitization could be a useful strategy to eliminate 

TRPV1-induced hyperalgesia under pathological conditions. However, the translation of these 

findings into the clinical setting is still in the distant future. Further steps would be the 

identification and detailed in vitro/in vivo investigation of targets at TRPV1, which cause 

inflammation-induced TRPV1 sensitization, followed by the development and preclinical 

characterization of compounds that interfere with these targets. On the other hand, our results 

regarding the development of safer opioids already demonstrate a powerful artificial 

Figure 5: Summary of the investigated mechanisms. During inflammation, the tissue is acidified, 
NFEPP is protonated and able to bind and activate opioid receptors leading to analgesia (upper right). 
In healthy tissue, NFEPP is deprotonated and does not activate central or intestinal opioid receptors 
(upper left). During pathological conditions, PKA is highly active leading to sensitized TRPV1 and 
hyperalgesia (lower right). Under physiological conditions, PKA is mostly inactive resulting in a 
physiological TRPV1 response to painful stimuli (lower left). Reprinted adapted with permission from 
G. Del Vecchio, V. Spahn, C. Stein, Novel Opioid Analgesics and Side Effects, ACS Chem Neurosci, 
2017, 8(8):1638-1640. Copyright (2017) American Chemical Society (Del Vecchio et al., 2017). 
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intelligence-based strategy for the design of peripherally restricted opioid receptor activation 

with the lead candidate NFEPP. NFEPP was extensively and successfully tested in in vitro and 

in vivo systems, which is the basis for further exploitation and regulatory pre-clinical and 

clinical testing.   

3.4. Outlook 

Treating pain at its peripheral source is a promising strategy to induce sufficient pain relief. The 

development of new TRPV1 targets with indication for inflammatory or neuropathic pain is an 

active research field in the pharmaceutical industry. However, the clinical development of 

TRPV1 antagonists is still ongoing and examines different strategies like the route of 

administration or “partial” TRPV1 blockade. The idea of preventing inflammation-induced 

TRPV1 sensitization is relatively new and still in its infancy (Aghazadeh Tabrizi et al., 2017). 

One potential strategy based on our findings could be the development of molecules that disrupt 

the TRPV1/ARMS/PKA interaction and therefore PKA-induced TRPV1 sensitization. On the 

other hand, there were no commercially successful innovations since the late 80ies in the opioid 

analgesic field (Faria et al., 2018). This might change if novel compounds like NFEPP would 

be further developed on a commercial basis. This might be highly beneficial for many patients 

with injury-induced painful syndromes. Furthermore, the development of other peripherally 

restricted opioids with different pKa-values due to other electronegative moietie scould be of 

interest. Finally, future studies should investigate whether our concept is applicable to other 

classes of GPCRs and other types of pathological conditions.  
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4. Summary 

Currently available pain medications are limited by adverse side effects leading to enormous 

individual and socioeconomic costs. Therefore, the investigation of pathological receptor 

conformations and mechanisms involved in pain sensitization is urgently needed. I investigated 

the pain pathway from two perspectives. In the first part, I focused on mechanisms underlying 

the initiation of pain and sensitization. I concentrated on the identification of mechanisms that 

sensitize TRPV1. TRPV1 is an excitatory ion channel that plays a fundamental role in neuronal 

sensitization during tissue injury and inflammation. I found that the interaction of TRPV1 with 

other proteins like TRPA1 or ARMS leads to a cAMP and PKA dependent channel 

sensitization. The same signaling pathway is responsible for TRPV1-induced hyperalgesia 

during opioid withdrawal, leading to the conclusion that targeting PKA-induced TRPV1 

sensitization could be a strategy to circumvent TRPV1 sensitization without direct TRPV1 

blockade.  

In the second part, I concentrated on the investigation of inhibitory components of the pain 

pathway, particularly the opioid receptor system under pathological conditions. Results showed 

that decreased pH – a hallmark of tissue inflammation – can be used to design opioids that 

selectively activate opioid receptors under pathological conditions. Opioid ligands have to be 

protonated to bind and active their respective receptors. Classical opioids are protonated under 

both physiological and pathological conditions and therefore activate opioid receptors in both 

healthy and injured tissues. The reduction of the pKa of an opioid ligand close to the pH of 

inflamed tissue resulted in the selective activation of opioid receptors in injured, but not healthy 

environments. Our lead candidate NFEPP produced efficient injury-restricted analgesia in 

animal models of inflammatory, visceral, and neuropathic pain without inducing side effects 

like respiratory depression, sedation, constipation, or addiction. 
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