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Abstract

Introduction

Outbreaks of communicable diseases in hospitals need to be quickly detected in order to

enable immediate control. The increasing digitalization of hospital data processing offers

potential solutions for automated outbreak detection systems (AODS). Our goal was to

assess a newly developed AODS.

Methods

Our AODS was based on the diagnostic results of routine clinical microbiological examina-

tions. The system prospectively counted detections per bacterial pathogen over time for the

years 2016 and 2017. The baseline data covers data from 2013–2015. The comparative

analysis was based on six different mathematical algorithms (normal/Poisson and score

prediction intervals, the early aberration reporting system, negative binomial CUSUMs, and

the Farrington algorithm). The clusters automatically detected were then compared with the

results of our manual outbreak detection system.

Results

During the analysis period, 14 different hospital outbreaks were detected as a result of con-

ventional manual outbreak detection. Based on the pathogens’ overall incidence, outbreaks

were divided into two categories: outbreaks with rarely detected pathogens (sporadic) and

outbreaks with often detected pathogens (endemic). For outbreaks with sporadic patho-

gens, the detection rate of our AODS ranged from 83% to 100%. Every algorithm detected 6

of 7 outbreaks with a sporadic pathogen. The AODS identified outbreaks with an endemic

pathogen were at a detection rate of 33% to 100%. For endemic pathogens, the results var-

ied based on the epidemiological characteristics of each outbreak and pathogen.
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Conclusion

AODS for hospitals based on routine microbiological data is feasible and can provide rele-

vant benefits for infection control teams. It offers in-time automated notification of suspected

pathogen clusters especially for sporadically occurring pathogens. However, outbreaks of

endemically detected pathogens need further individual pathogen-specific and setting-spe-

cific adjustments.

Introduction

Outbreak detection of infectious disease is an important area of hospital infection control. It

is crucial to detect outbreaks as quickly as possible to limit, through early interventions, the

potential for adverse outcomes in affected patients. Technical limitations pose a challenge for

establishing a real-time detection system and early recognition of outbreaks [1–3]. In most

cases, prospective outbreak detection relies on manual review of pooled microbiological

results. This approach is currently being used successfully for rare multidrug-resistant organ-

isms (MDRO)[3]. However, due to the higher number of susceptible organisms in comparison

to MDROs, this approach not correlate with the expected outbreak risk in hospitals, but

remains widely established as a result of an expected outbreak in hospitals, but remains widely

established as a result of the high positive predictive value of very rare pathogens (e.g. with

antimicrobial resistance) [4, 5]. The strength of this practical approach lies in the high positive

predictive value of very rare pathogens (e.g. with antimicrobial resistance) [4, 5]. When limited

human and laboratory resources are taken into consideration, the resulting low number of

false positive results makes this outbreak detection manageable.

The increasing digitalization of hospital data offers increasing opportunities for prospective

data analyses in modern hospitals [6]. This data can be used to systematically screen for unex-

pected increases in pathogen detection and thereby make automated outbreak detection sys-

tems possible, even for common pathogens [4, 7]. A challenge in finding valuable solutions

forautomated outbreak detection systems (AODS) is the comparability of the different analytic

approaches [3]. In order to assess and compare, a universally agreed on definition of “out-

break” as a gold standard is needed, but is currently still lacking [8, 9].

In this work, our aim was to develop an AODS and to compare its results with our manual

approach. Our AODS is based on mathematical methods and the source data was taken from

real life hospital data.

Method

Our AODS is based on regular, computer-based, automated screening and systematic analyses

of routinely collected microbiological laboratory and patient location data. In this work, we

tested various methods of statistical analysis and compared them to the results of our current

manual practice for outbreak detection.

Databases

The databases derived from real-time diagnostic results of the microbiology laboratory of

Charité Universitätsmedizin Berlin. Taken as a whole, the hospital has more than 3,000 beds

but is divided into three spatially separated hospital campuses. The individual campuses work

mostly independently of each other and exchange patients only irregularly.
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The period of the series of new outbreaks investigated in this paper ranged from 01/01/

2016 until 12/31/2017. The manual detection of outbreaks occurred prospectively. Each

outbreak investigated occurred during this time. The corresponding outbreak records were

reported in such a way that the outbreak was at the mid-point of the datasets. Each set con-

tained data for a 12 month period. Thus, it was possible to show data before and after the

outbreak. Furthermore, the algorithms utilized by our AODS used historical databases from

the same laboratory that cover a 3-year time span from 01/01/2013 and 31/12/2015. The his-

torical databases were necessary to determine the baseline detection frequency of each patho-

gen. Only in this way could the AODS determine a suspicious change in pathogen detection

frequency during the period in question. Data that included the following 11 species was ana-

lyzed: the Acinetobacter baumannii group (A. baumannii, A. pittii und A. nosocomialis), Citro-
bacter spp., Clostridium difficile, Enterococcus faecium, Enterobacter spp., Escherichia coli (only

3GCREB und CRE), Klebsiella spp., Pseudomonas aeruginosa, Salmonella spp., Serratia spp.,

and Staphylococcus aureus. Daily microbiological laboratory data was compiled over a 14-day

period. A 14-day period was used because our physicians hold team meetings on a weekly

basis to discuss the data from the previous 14 days. This period, which was set by the physi-

cians, is based on transmission time. [10]

These pooled results were defined as a time interval.

The Institutional Review Board ‘Ethikkommission der Charité—Universitätsmedizin Ber-

lin’ waived the requirement for data that is collected in alignment with the German Protection

Against Infection Act. The data at hand serves explicitly for infection control purposes within

the scope of this regulation.

Outbreak definitions

Established outbreak definition. In order to assess the results of our AODS, we com-

pared the results to those of our manual outbreak detection system. The established system

is comprised of pathogen-based daily manual review of bacteriological clinical and screen-

ing results as well as of information on infected patients collected by trained infection con-

trol physicians on their regular clinical rounds and is focused on MDROs. Whenever a

suspicious increase of a certain pathogen is detected, our infection control physicians evalu-

ate the likelihood of an outbreak. This begins with a review of the clinical and epidemiologi-

cal data on the patients in question. If the likelihood of an outbreak remains high, further

microbiological examinations are performed. This includes the collection of clinical micro-

biological material, the screening of patients in question as well as environmental examina-

tions. A molecular biological assessment is later performed on the pathogens collected for

clonality. If this is the case we consider an outbreak to be verified; if not the cluster is con-

sidered a false alarm. The outbreak investigation is conducted by at least one infection con-

trol resident and is supervised by an infection control attending physician. In addition,

several infection control nurses provide basic clinical data and collect the microbiological

samples.

AODS outbreak definition. For the analysis of the AODS, datasets were divided into

endemic and sporadic pathogens, based on the frequency of detection per time interval.

The riteria for “endemic” was met, when the pathogen was detected in more than 33% of

analyzed time intervals. The definition “sporadic”, in contrast, was used for pathogens that

were detected in less than 33% of analyzed time intervals. (Fig 1) An aberration was defined

as a certain number of pathogens above the endemic level (marked as a colored bar in all

figures). An endemic level for each database was determined by the algorithms mentioned

above.
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In order to develop an AODS with few false positive alarms, we specified a definition

for ‘relevant outbreak alarm’ with a high positive predictive value (PPV). Every alarm was

considered clinically relevant for datasets of sporadic pathogens. Such pathogens are rarely

seen, hence relevant and false positive alarms are rare and no correction for specificity

was necessary. Repeated detection of rare pathogens in different patients is, therefore,

associated with ad hoc high positive predictive value. In order to ensure a timely alarm, the

first (manually detected) outbreak time interval also needed to have triggered an AODS

alarm.

Datasets of endemic pathogens are substantially more complicated. They are associated

with a high likelihood of false positive alarms which would result in too much work in compar-

ison to the additional benefit for the daily routine. In order to correct for this lack of specificity,

we determined that a method is appropriate if 50% or less of the time intervals outside the out-

break were detected as aberrations. This eventually eliminates methods which have too many

alarms. In addition, the timeliness of the alarm was ensured by an additional requirement. As

with sporadic datasets, the first time interval of the manually detected outbreak needed to have

triggered an AODS alarm. For datasets of endemic pathogens, only the combination of these

two requirements led to the conclusion. AODS detected the same outbreak as the manual out-

break detection.

Algorithmic methods

There are five established categories of algorithms used to detect outbreaks. We utilized algo-

rithms from three of these categories: prediction intervals, statistical process control, and sta-

tistical modeling. To predict intervals, we used normal distribution prediction intervals

(PI-NV), Poisson distribution (PI-POI), and score prediction intervals (PI-SCORE) [11]. As

methods of statistical process control, we used the early aberration reporting system (EARS)

Fig 1. Classification of outbreaks into two types. Datasets with endemically detected pathogens and datasets with

sporadic pathogens. In the endemic dataset at least one pathogen occurred more than 30% of the time. In the sporadic

dataset at least one pathogen occurred 30% or less of the time.

https://doi.org/10.1371/journal.pone.0227955.g001
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[12, 13] and negative binomial CUSUMs (NBC) [14]. For statistical modeling, we used the Far-

rington algorithm [15]. A more detailed description can be found in the supplement.

SatScan [16] based on temporal scan statistics was not used for several reasons. Our system

was planned as a daily routine tool for infection control professionals. Furthermore, the tech-

nical requirements in our hospital led us to create an intranet application. Therefore, we cre-

ated a graphical web user interface. At the time we developed our automated outbreak

detection system, Satscan did not provide such a solution.

Previous publications have described the feasibility of machine learning for outbreak detec-

tion [17]. The method employed by Miller et al. required the measurement of pathogen simi-

larity, e.g. whole genome sequencing. Unfortunately, this data was not routinely available in

our hospital during the study period.

All 6 algorithms were used simultaneously. An aberration was detected if the number of iso-

lates exceeded the threshold calculated by the 6 algorithms. Whether an outbreak was identi-

fied correctly depended on the pathogen (endemic or sporadic). A detected aberration was

considered genuine, if it fulfilled the AODS outbreak definition from the section before. To

compare the algorithm we calculated the “detection rate by the algorithms”, i.e. “correct identi-

fied outbreaks” divided by “all datasets” multiplied by 100.

All analyses were conducted in R [18]. The function “algo.farrington”was used from the

package surveillance [19].

Results

Our infection control team detected 14 outbreaks in the two years analyzed (Table 1 and S1–

S12 Figs). Seven outbreaks were found in datasets of pathogens classified as endemic (short

endemic datasets), seven in datasets of sporadic pathogens (short sporadic datasets). The 14

outbreaks include six different bacterial species overall. The shortest outbreak duration was a

single time interval (14 days), the longest 17 time intervals (238 days). In median, an endemic

outbreak lasted 3 time intervals (mean: 6.14 time intervals) and a sporadic outbreak lasted in

median 2 time intervals (mean: 2.00 time intervals).

The respective courses of an endemic and sporadic pathogen are shown in Fig 2. Each bar

represents the pathogens detected in one time interval. White bars indicate that no aberration

was found, colored bars that an aberration was found. The AODS-calculated thresholds are

shown as dotted lines in the figures. The blue boxes show the time frame of the outbreak by

the manual method.

For the endemic dataset shown, a pathogen was found in almost every time interval (24 of

27). For the sporadic dataset at least one pathogen occurred in four time intervals.

The first bar in the outbreak of the endemic dataset was detected as an aberration by 5 of 6

algorithms. This met the first criterion for “outbreak was found” for an endemic dataset. For 3

of the 6 algorithms (POI-PI, SCORE-PI and Farrington algorithm) almost all bars outside the

blue box indicate an aberration. This violates the second criterion for the outbreak definition

of an endemic dataset. Hence, the endemic outbreak was detected by only two algorithms

(NBC and NV-PI).

All endemic outbreaks were detected by normal distribution prediction interval (Table 2).

Poisson prediction interval, score prediction interval, and negative binomial CUSUMs

detected 6 of 7 outbreaks. Early aberration reporting system detected 5 of 7 outbreaks and the

Farrington algorithm detected 1 of 7 outbreaks.

Almost every first time interval in an endemic outbreak was detected, except in 4 cases. In 9

of 42 cases of endemic outbreak, the algorithms detected too many false alarms. Six of them

resulted from use of the Farrington algorithm.
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Every algorithm except negative binomial CUSUMs detected all sporadic outbreaks

(Table 3).

Discussion

When analyzing routine diagnostic microbiological data, automated outbreak detection sys-

tems (AODS) offer the means of screening for outbreaks of both common as well as sporadic

pathogens[4]. In this work, our aim was to assess an AODS we developed for our hospital. The

main approach was to compare our established manual outbreak detection system with the

AODS under real-life conditions.

Sporadic vs. endemic

Based on a rough epidemiological pattern, we defined two types of outbreak analyses: one for

pathogens detected sporadically [7, 11] and one for pathogens with high frequency of detec-

tion. We termed such pathogens endemic pathogens. These pose a relevant detection problem

as they often produce false positive alarms leading to a high risk of pseudo-outbreaks [20]. In

contrast, in the case of sporadically detected pathogens, the positive predictive value of an out-

break alarm is very high. If very rare pathogens are detected in multiple patients in a closed

space (e.g. particular ward) within a short time (e.g. one month), an epidemiological correla-

tion is highly likely. In this case, no complicated algorithmic analysis is necessary. The benefit

of an automated system, then, lies in its immediate alarm. With endemic pathogens, outbreak

investigations require close cooperation with the respective clinical department.

Table 1. Overview of manually detected outbreaks in 2016 and 2017. Endemic outbreaks are indicated by Arabic numerals, sporadic outbreaks by Roman numerals.

Outbreak Pathogen Drug

Resistance

Start Time Interval1 of

the outbreak

End Time Interval1 of

the outbreak

Number of Isolates

(involved in outbreak)

Time intervals with >

= 1 isolates

Type of

dataset

1 Enterococcus
faecium

VRE 9 20 7 22 Endemic2

2 Enterococcus
faecium

VRE 9 18 17 25 Endemic2

3 Staphylococcus
aureus

13 14 6 24 Endemic2

4 Clostridium difficile 14 14 2 15 Endemic2

5 Clostridium difficile 14 14 2 15 Endemic2

6 Enterococcus
faecium

VRE 14 16 10 22 Endemic2

7 Enterococcus
faecium

VRE 6 22 9 23 Endemic2

I Klebsiella spp MDR 13 14 3 4 Sporadic3

II Klebsiella spp MDR 14 16 6 6 Sporadic3

III Escherichia coli XDR 13 16 3 3 Sporadic3

IV Klebsiella spp 14 14 8 7 Sporadic3

V Acinetobacter
baumannii

XDR 13 15 3 5 Sporadic3

VI Clostridium difficile 14 14 3 7 Sporadic3

VII Clostridium difficile 14 14 2 4 Sporadic3

VRE, vancomycin-resistant enterococci. MDR, multidrug-resistant. XDR, extensively drug-resistant.
1Time interval equals 14 days.
2 Eendemic = Isolates found in more than 1/3 of time intervals investigated.
3 Ssporadic = Isolates found in 1/3 time intervals or less.

https://doi.org/10.1371/journal.pone.0227955.t001
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Microbiological detection of these common pathogens rarely triggers suspicion of an outbreak

based on the recurrence of the pathogen. However, it must be assumed that most outbreaks

occur with common pathogens. Hence, it is very likely that there is a large reporting bias favor-

ing outbreaks with rare or MDR pathogens [21]. Highly discriminatory molecular analytical

methods, e.g. whole genome sequencing, offer a possible future solution since pathogens can

be quickly evaluated if suspicious clusters occur [22]. Unfortunately, for the time being these

Fig 2. Two examples of outbreaks detected manually vs. outbreaks detected by AODS. Left: Outbreak in an endemic

dataset (outbreak 2, vancomycin-resistant E. faecium). Right: Outbreak in a sporadic dataset (outbreak I, Klebisella spp.,

MDR). Depicted is the course of pathogen detection on the ward during a year when an outbreak was manually detected.

The manually detected outbreak is in the center and is indicated by a light blue box. Each bar represents the number of

pathogens detected per time interval (14 days). If a bar is colored, an algorithm detected an aberration. Shown are the results

for all six algorithms (top down in different colors): normal prediction interval, Poisson prediction interval, score prediction

interval, early aberration report system, negative binomial CUSUMs, and the Farrington algorithm.

https://doi.org/10.1371/journal.pone.0227955.g002
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methods are time consuming, expensive, and require specialists trained in bioinformatics.

Therefore, they are not currently available as routine diagnostic methods at most hospitals and

often are applied only in situations where there exists high risks of further transmission or to

patient health.

Outbreaks of sporadically detected pathogens

All outbreaks with sporadic pathogens were detected by 5 of 6 algorithms. NBC missed an

XDR E. coli- and XDR A. baumannii outbreak. In order to provide the infection control team

with a real benefit in terms of reaction time, our definition of detection required an alarm at

the beginning of the outbreak. Even though the XDR A. baumannii outbreak was eventually

detected, it happened only after a significant delay of more than one month (S4 Fig). The XDR

E. coli outbreak was not detected by NBC at all (S2 Fig). In contrast to our results, Watkins

et al. showed that NBC provides better detection rates and fewer false alarms than others, e.g.

EARS [13]. Another simulation study demonstrated the superiority of NBC to EARS [23].

Those studies, however, tested NBC for natural outbreaks of disease syndromes with a high

number of patients, as in natural outbreaks of viral diseases[13]. It is questionable if the cir-

cumstances of these studies are can be compared to our setting (hospital ward, bacterial patho-

gen, low number of cases). Further studies are needed to assess the detection detection rates of

these algorithms, in particular NBC, for outbreaks in hospital wards with sporadic bacteria.

Outbreaks of endemic pathogens

Concerning outbreaks of endemic pathogens, the algorithm’s ‘normal distribution prediction

interval’ was superior to all others and detected every outbreak, whereas Farrington performed

worst.

Table 2. Detection rate for endemic datasets, stratified by results from the 6 algorithms used. The detection rate is shown for each algorithm (columns) and each out-

break (rows).

Normal

dirstribution

prediction

interval

Poisson

dirstribution

prediction

interval

Score

prediction

interval

Early

aberration

reporting

system

Negative

Binomial

Cusums

Farrington Detection Rate of the outbreak

FF L50 FF L50 FF L50 FF L50 FF L50 FF L50

Outbreak 1

(VRE)

X X X X X X X X X X X 83%

Outbreak 2

(VRE)

X X X X X X X X 33%

Outbreak 3

(Staphylo-coccus aureus)

X X X X X X X X X X X X 100%

Outbreak 4

(CDIF)

X X X X X X X 50%

Outbreak 5

(CDIF)

X X X X X X X X X X X 83%

Outbreak 6

(VRE)

X X X X X X X X X X X 83%

Outbreak 7

(VRE)

X X X X X X X X X X 83%

Detection rate of the alorithms 100% 86% 86% 71% 86% 14%

FF (First Found), first outbreak time interval detected as aberration. L50,�50% of the time intervals outside the outbreak were detected as aberration. X, the condition

FF or L50 was met. An outbreak detection required that both conditions be met. Coloured background indicates that the outbreak was detected by our Automated

Outbreak Detection System. VRE Vancomycin resitant Enterococci. CDIF Clostridum difficile.

https://doi.org/10.1371/journal.pone.0227955.t002
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Despite Farrington’s detection of 6 of 7 outbreaks, it produced too many false alarms. Our

results concerning the Farrington algorithm stand in contrast to the published literature which

report good performance by regression models like Farrington, e.g. in public health in France

[24]. However, Farrington was designed to adjust for seasonality, which does not apply in our

datasets. Moreover, regression models like Farrington do not perform well for small outbreaks

(low number of patients) like those in our hospital and in most other hospital settings [25].

Previously it was shown in a simulation study that Farrington has a low sensitivity [26]. There-

fore, it is possible that the Farrington algorithm alone should not be the algorithm of choice

for regular hospital outbreaks.

Poisson distribution, score distribution prediction interval as well as NBC performed simi-

larly well and showed weaknesses only regarding a VR-E. faecium outbreak. In comparison,

EARS missed one additional outbreak, one of two C. difficile outbreaks. The VR-E. faecium
outbreak missed occurred during an increase in VR-E. faecium incidence that was slow overall.

This most likely led to an increase in false alarms in Poisson distribution and score distribu-

tion. NBC, however, reacted to this increase with fewer false alarms (higher specificity) but

triggered the alarm with an unacceptable delay of more than 1.5 months after the outbreak

onset.

Moreover, it should be acknowledged that in several respects, outbreaks with VRE are

outstanding examples of infection control practice. First, VR-E. faecium is currently a very

common pathogen with significantly increasing incidence [27] in Germany. In our datasets

comprise four different outbreaks which represent the highest prevalence (up to 14 different

Table 3. Detection rate for sporadic datasets, stratified by results from the 6 algorithms used. The detection rate is shown for each algorithm (columns) and each out-

break (rows).

Normal dirstribution

prediction interval

Poisson dirstribution

prediction interval

Score prediction

interval

Early aberration

reporting system

Negative

Binomial

Cusums

Farrington Detection Rate of

the outbreak

FF FF FF FF FF FF

Outbreak I

(MDR Klebsiella

spp.)

X X X X X X 100%

Outbreak II

(MDR Klebsiella

spp.)

X X X X X X 100%

Outbreak III

(XDR Escherichia

coli)

X X X X X 83%

Outbreak IV

(Klebsiella spp.)

X X X X X X 100%

Outbreak V

(XDR Acinobacter

baumanii)

X X X X X 83%

Outbreak VI

(CDIF)

X X X X X X 100%

Outbreak VII

(CDIF)

X X X X X X 100%

Detection rate of

the alorithms

100% 100% 100% 100% 71% 100%

FF (First Found), first outbreak time interval was detected as aberration. L50,�50% of the time intervals outside the outbreak were detected as aberration. X, the

condition FF was met. Coloured background indicates that the outbreak was detected by our Automated Outbreak Detection System. MDR multidrug resistant. XDR

extensivily drug resistant. CDIF clostridium difficile.

https://doi.org/10.1371/journal.pone.0227955.t003
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patients per time period). Second, different VRE isolates from hospital clusters are often

not distinguishable using commonly available molecular methods [28]. Moreover, because

enterococci are ubiquitous bacteria, transmission routes are highly complex and include

various modes of introduction between different hospitals and wards, especially oncology

wards with continually returning VRE patients [28, 29]. This eventually leads to low posit-

ive predictive value for detected aberrations of clusters on oncology wards (or other high

endemic settings). This is different particularly in other disciplines with low VRE preva-

lence. Therefore, adjusted levels of specificity based on ward discipline are required, nota-

bly for VRE in Germany, but possibly also for pathogens with similar epidemiological

characteristics.

Outbreaks of Clostridium difficile infections (CDI)

Outbreaks of toxin-producing C. difficile are another problematic area of automated outbreak

detection. C. difficile is a ubiquitous bacterium; the associated diarrhea (CDI) usually follows

extensive antimicrobial therapy [30]. Therefore, simple pathogen detection without clinical

verification of diarrhea is most likely not an adequate approach for CDI outbreak detection.

Moreover, whole-genome outbreak studies showed that probably only 40% of nosocomial

CDI clusters are clonal [31]. The rest are most probably independent events that follow anti-

microbial therapy. They can appear as clusters due to ward-specific policies determining

which antimicrobial therapies are used. Therefore, on a high endemic ward, the positive pre-

dictive value of a CDI outbreak alarm is low. Even more problematic, most laboratories exam-

ine factors other than bacterial cultures, for example toxin production. This often renders it

impossible to determine post hoc clonal relatedness. We examined four different C. difficile
clusters. Two of them were in sporadic situations and were detected by all algorithms (detec-

tion rate 100%). Of the two other endemic clusters, one was detected with an acceptable detec-

tion rate of 83% (outbreak 5). The other one (outbreak 4) was detected by only 50% of the

algorithms we tested. A noteworthy difference between these outbreaks was the steeper

increase in detection rates during outbreak 5 (compared to outbreak 4) and the associated

period prior the outbreak. Our results, therefore, showed that for CDI further adjustments

need to be made, in order determine the likelihood of a CDI outbreak.

Limitations

Our AODS approach is pathogen-based and can only detect possible clonal outbreaks. No

gold standard for outbreak detection exists because there is no international consensus on

the definition of an outbreak [3, 4, 20]. Therefore, specificity could not be calculated for our

AODS. Hence, we have based our analysis on the comparison of the outbreak detection system

we currently use and the AODS. Our manual outbreak detection system works prospectively

but the AODS works retrospectively. This approach could have missed outbreaks. Hence, such

outbreaks could be not analyzed by AODS. These Another limitation exists with regard to

clonal typing which was not performed routinely. Therefore, it was not possible to detect the

potential for better detection rates of the AODS with respect to our manual outbreak detection.

Future prospective studies that include state-of-the-art clonal typing methods are necessary in

order to assess further benefits of AODS.

Conclusion

Our work showed that an automated outbreak system for sporadic bacteria in hospitals can

work reliably in many cases. It can provide an early warning system and depends only on

timely reports of microbiological results. The greatest benefit of such an automated system

Lean back and wait for the alarm?

PLOS ONE | https://doi.org/10.1371/journal.pone.0227955 January 24, 2020 10 / 15

https://doi.org/10.1371/journal.pone.0227955


lies in the automatic alarm for clusters of otherwise rare pathogens, especially in large hospi-

tals. Regarding more common bacteria, the system resulted in a substantial improvement in

one hospital’s outbreak detection detection rates. However, the low positive predictive value

of those alarms illustrates the need for further adjustments for various other variables. For

example, ward and pathogen-specific characteristics need to be taken into consideration in

all analyses because they change the predictive value to a great extent. If outbreak isolates are

still retrievable, the alarm would lead to further molecular analyses of the isolates’ genetic relat-

edness. In most cases, this will not be feasible and a decision on the likelihood of a real out-

break remains dependent on the expertise of the hospital epidemiologist. We believe that

currently available technology cannot replace an experienced hospital epidemiologist. How-

ever, although it needs further development and evaluation in real life situations, our system

provides fundamental work toward a system of automated outbreak detection.

Supporting information

S1 Fig. Outbreak within a sporadic dataset (outbreak II). Shown is the course of pathogen

detection on the ward during a year when an outbreak was conventionally detected. The con-

ventionally detected outbreak is centered and marked by a light blue box. Every bar stands for

the number of pathogens detected per time interval (14 days). If a bar is colored, an algorithm

detected an aberration. Shown are the results for all six algorithms (top down in differing col-

ors): normal prediction interval, poison prediction interval, score prediction interval, early

aberration report system, negative binomial CUSUMs and Farrington algorithm.

(TIFF)

S2 Fig. Outbreak within a sporadic dataset (outbreak III). Shown is the course of pathogen

detection on the ward during a year when an outbreak was conventionally detected. The con-

ventionally detected outbreak is centered and marked by a light blue box. Every bar stands for

the number of pathogens detected per time interval (14 days). If a bar is colored, an algorithm

detected an aberration. Shown are the results for all six algorithms (top down in differing col-

ors): normal prediction interval, poison prediction interval, score prediction interval, early

aberration report system, negative binomial CUSUMs and Farrington algorithm.

(TIFF)

S3 Fig. Outbreak within a sporadic dataset (outbreak IV). Shown is the course of pathogen

detection on the ward during a year when an outbreak was conventionally detected. The con-

ventionally detected outbreak is centered and marked by a light blue box. Every bar stands for

the number of pathogens detected per time interval (14 days). If a bar is colored, an algorithm

detected an aberration. Shown are the results for all six algorithms (top down in differing col-

ors): normal prediction interval, poison prediction interval, score prediction interval, early

aberration report system, negative binomial CUSUMs and Farrington algorithm.

(TIFF)

S4 Fig. Outbreak within a sporadic dataset (outbreak V). Shown is the course of pathogen

detection on the ward during a year when an outbreak was conventionally detected. The con-

ventionally detected outbreak is centered and marked by a light blue box. Every bar stands for

the number of pathogens detected per time interval (14 days). If a bar is colored, an algorithm

detected an aberration. Shown are the results for all six algorithms (top down in differing col-

ors): normal prediction interval, poison prediction interval, score prediction interval, early

aberration report system, negative binomial CUSUMs and Farrington algorithm.

(TIFF)
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S5 Fig. Outbreak within a sporadic dataset (outbreak VI). Shown is the course of patho-

gen detection on the ward during a year when an outbreak was conventionally detected.

The conventionally detected outbreak is centered and marked by a light blue box. Every bar

stands for the number of pathogens detected per time interval (14 days). If a bar is colored,

an algorithm detected an aberration. Shown are the results for all six algorithms (top down

in differing colors): normal prediction interval, poison prediction interval, score prediction

interval, early aberration report system, negative binomial CUSUMs and Farrington algo-

rithm.

(TIFF)

S6 Fig. Outbreak within a sporadic dataset (outbreak VII). Shown is the course of pathogen

detection on the ward during a year when an outbreak was conventionally detected. The con-

ventionally detected outbreak is centered and marked by a light blue box. Every bar stands for

the number of pathogens detected per time interval (14 days). If a bar is colored, an algorithm

detected an aberration. Shown are the results for all six algorithms (top down in differing col-

ors): normal prediction interval, poison prediction interval, score prediction interval, early

aberration report system, negative binomial CUSUMs and Farrington algorithm.

(TIFF)

S7 Fig. Outbreak within an endemic dataset (outbreak 1). Shown is the course of pathogen

detection on the ward during a year when an outbreak was conventionally detected. The con-

ventionally detected outbreak is centered and marked by a light blue box. Every bar stands for

the number of pathogens detected per time interval (14 days). If a bar is colored, an algorithm

detected an aberration. Shown are the results for all six algorithms (top down in differing col-

ors): normal prediction interval, poison prediction interval, score prediction interval, early

aberration report system, negative binomial CUSUMs and Farrington algorithm.

(TIFF)

S8 Fig. Outbreak within an endemic dataset (outbreak 3). Shown is the course of pathogen

detection on the ward during a year when an outbreak was conventionally detected. The con-

ventionally detected outbreak is centered and marked by a light blue box. Every bar stands for

the number of pathogens detected per time interval (14 days). If a bar is colored, an algorithm

detected an aberration. Shown are the results for all six algorithms (top down in differing col-

ors): normal prediction interval, poison prediction interval, score prediction interval, early

aberration report system, negative binomial CUSUMs and Farrington algorithm.

(TIFF)

S9 Fig. Outbreak within an endemic dataset (outbreak 4). Shown is the course of pathogen

detection on the ward during a year when an outbreak was conventionally detected. The con-

ventionally detected outbreak is centered and marked by a light blue box. Every bar stands for

the number of pathogens detected per time interval (14 days). If a bar is colored, an algorithm

detected an aberration. Shown are the results for all six algorithms (top down in differing col-

ors): normal prediction interval, poison prediction interval, score prediction interval, early

aberration report system, negative binomial CUSUMs and Farrington algorithm.

(TIFF)

S10 Fig. Outbreak within an endemic dataset (outbreak 5). Shown is the course of pathogen

detection on the ward during a year when an outbreak was conventionally detected. The con-

ventionally detected outbreak is centered and marked by a light blue box. Every bar stands for

the number of pathogens detected per time interval (14 days). If a bar is colored, an algorithm

detected an aberration. Shown are the results for all six algorithms (top down in differing

Lean back and wait for the alarm?

PLOS ONE | https://doi.org/10.1371/journal.pone.0227955 January 24, 2020 12 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227955.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227955.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227955.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227955.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227955.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227955.s010
https://doi.org/10.1371/journal.pone.0227955


colors): normal prediction interval, poison prediction interval, score prediction interval, early

aberration report system, negative binomial CUSUMs and Farrington algorithm.

(TIFF)

S11 Fig. Outbreak within an endemic dataset (outbreak 6). Shown is the course of patho-

gen detection on the ward during a year when an outbreak was conventionally detected. The

conventionally detected outbreak is centered and marked by a light blue box. Every bar

stands for the number of pathogens detected per time interval (14 days). If a bar is colored,

an algorithm detected an aberration. Shown are the results for all six algorithms (top down

in differing colors): normal prediction interval, poison prediction interval, score prediction

interval, early aberration report system, negative binomial CUSUMs and Farrington algo-

rithm.

(TIFF)

S12 Fig. Outbreak within an endemic dataset (outbreak 7). Shown is the course of pathogen

detection on the ward during a year when an outbreak was conventionally detected. The con-

ventionally detected outbreak is centered and marked by a light blue box. Every bar stands for

the number of pathogens detected per time interval (14 days). If a bar is colored, an algorithm

detected an aberration. Shown are the results for all six algorithms (top down in differing col-

ors): normal prediction interval, poison prediction interval, score prediction interval, early

aberration report system, negative binomial CUSUMs and Farrington algorithm.

(TIFF)
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