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Abstract
Glycosaminoglycans (GAGs) are a physio- and pharmacologically highly relevant class of complex saccharides, possessing a
linear sequence and strongly acidic character. Their repetitive linear core makes them seem structurally simple at first glance, yet
differences in sulfation and epimerization lead to an enormous structural diversity with only a few GAGs having been success-
fully characterized to date. Recent infrared action spectroscopic experiments on sulfated mono- and disaccharide ions show great
promise. Here, we assess the potential of two types of gas-phase action spectroscopy approaches in the range from 1000 to
1800 cm−1 for the structural analysis of complex GAG oligosaccharides. Synthetic tetra- and pentasaccharides were chosen as
model compounds for this benchmark study. Utilizing infrared multiple photon dissociation action spectroscopy at room tem-
perature, diagnostic bands are largely unresolved. In contrast, cryogenic infrared action spectroscopy of ions trapped in helium
nanodroplets yields resolved infrared spectra with diagnostic features for monosaccharide composition and sulfation pattern. The
analysis of GAGs could therefore significantly benefit from expanding the conventional MS-based toolkit with gas-phase
cryogenic IR spectroscopy.
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Introduction

Living systems encode information and function in the se-
quence of biopolymers. Determining the primary structure of
nucleic acids and proteins has played a central role in the
progress in life sciences, with an arsenal of sensitive and au-
tomated sequencing strategies currently available. The high-

throughput de novo sequencing of glycans, however, is still
one of the biggest challenges in bioanalytics [1, 2]. An impor-
tant group of complex carbohydrates are glycosaminoglycans
(GAGs). These are strongly acidic polysaccharides with a lin-
ear sequence of repeating disaccharide units [3]. Based on the
structure of these disaccharides, five families of GAGs are
distinguished (Electronic Supplementary Material (ESM)
Figure S1). With the exception of naturally occurring
hyaluronan, the backbone is diversely sulfated, giving rise to
a multitude of isomeric sequences.

GAGs are ubiquitous in the extracellular matrix and on
cell surfaces [4]. Both as glycoconjugates and in uncon-
jugated form, they mediate various physio- and patho-
physiological processes, such as haemostasis, inflamma-
tion, tumorigenesis or target-cell recognition in infections
[5, 6]. Heparin—arguably the best known and pharmaceu-
tically most relevant natural GAG—is a widely used and
potent anticoagulant [7]. Due to its unfavorable pharma-
cokinetic properties, natural heparin is being increasingly
substituted by low molecular weight heparins (LMWHs)
and synthetic GAG analogues. The best example of the
latter approach is fondaparinux (Arixtra®), a heparin-
related fully synthetic pentasaccharide, approved by the
EMA and the FDA (Fig. 1a).
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Improved quality control in pharmaceutical analysis and
more broadly the pursuit to elucidate the glycocode, both urge

the development of efficient sequencing methods. However,
the analysis of GAGs has proven to be extremely challenging.
Despite the relatively simple backbone, they exhibit immense
complexity, which arises from two aspects of their structure:
size polydispersity and sequence microheterogeneity. As
polydisperse systems, their degree of polymerization is not
well-defined, making efficient separation methods essential.
Sequence microheterogeneity, on the other hand, is the result
of uronic acid epimerization and the extent and position of
sulfation. Multidimensional workflows combining chromato-
graphic or electrophoretic separations with mass spectrometry
(MS) have been traditionally employed to tackle the afore-
mentioned difficulties [8, 9]. Here, the high charge density
and the instantaneous, often unintended loss of sulfates during
ion manipulation cause additional problems. In recent years,
significant progress has been made in using novel electron-
based ion activation methods (EDD [10], EID [11], NETD
[12]) and ultraviolet photodissociation (UVPD) [13] to im-
prove the capabilities of MS to overcome the unique chal-
lenges of GAG analysis. Another promising direction is to
employ ion mobility spectrometry (IMS) to separate isomers
or isomeric fragments prior to MS analysis [14, 15]. A com-
plementary method to MS-based approaches is Fourier trans-
form infrared (FTIR) spectroscopy, which has been employed
for the spectroscopic profiling of intact biological samples
[16, 17]. However, despite the aforementioned successful at-
tempts, GAGs are still largely underexplored.

The potential of gas-phase infrared (IR) spectroscopy on
mass-selected ions to tackle the complexity of GAGs has been
demonstrated using infrared multiple photon dissociation
(IRMPD) spectroscopy [18, 19] and messenger-tagging spec-
troscopy [20]. Generally, spectra measured at low tempera-
tures and without excessive ion heating proved to be better
resolved. Here, we employ IRMPD spectroscopy and cryo-
genic IR spectroscopy in helium nanodroplets in a compara-
tive manner to benchmark the analytical performance of each
method. The aforementioned spectroscopic studies focused on
disaccharides. Here, we extend the molecular space and report
gas-phase IR spectra for synthetic tetra- and pentasaccharides
with a different degree of sulfation. Such well-defined struc-
tures are well-suited for proof-of-principle analyses,
exhibiting every aspect of sequence microheterogeneity, in-
cluding uronic acid stereochemistry. In addition, the investi-
gated molecules are similar in size to the smallest GAG oli-
gosaccharides that carry biological information [21]. Finally,
they provide residue overlap that is essential for sequencing
longer GAG chains based on their characteristic fragments.

Experimental methods

Experimental details on sample preparation, IRMPD spectros-
copy and cryogenic IR spectroscopy in helium nanodroplets

Fig. 1 a The synthetic anticoagulant fondaparinux (as sodium salt)
presented as chemical structure and in the symbol nomenclature for
glycans (SNFG, legend given in grey box). Highlighted in red are the
positions of the sulfate groups. b IRMPD spectroscopy of fondaparinux-
sodium salt (1727 Da) investigated as adduct with two additional sodium
ions [fondparinux+2Na]2+ (upper panel) and as doubly protonated spe-
cies [fondaparinux+2H]2+ (lower panel).c Cryogenic IR spectroscopy in
helium nanodroplets of the aforementioned ions. Dashed lines indicate an
overlap of measurements using different experimental conditions (see
ESM)

534 Lettow M. et al.



can be found in the ESM. In brief, the experiments utilized in
this work comprise of two types of action spectroscopy. The
main difference is the type of action, namely dissociation ver-
sus ejection from a helium nanodroplet (ESM Figure S2). The
former is ideal for ions with a low-energy dissociation channel
to prevent spectral broadening resulting from unintended ion
heating. It is well-known that highly sulfated glycosaminogly-
cans, both as protonated and deprotonated ions, are challeng-
ing to analyze with mass spectrometry-based techniques be-
cause of their fragility [22]. However, this fragility can be
highly advantageous for a dissociation-based action spectro-
scopic method, such as IRMPD spectroscopy. Cryogenic IR
spectroscopy in helium nanodroplets, on the other hand, is
performed on ions cooled to 0.4 K. As a result, highly resolved
spectra are typically obtained, which enable the differentiation
of minute structural differences in isomeric glycan ions and
could potentially serve as fingerprints for identification [23,
24].

Results and discussion

First, the commercially available fondaparinux-sodium salt
(1727 Da, Fig. 1a) was investigated as doubly protonated
species [fondaparinux+2H]2+ (m/z 864) and as adduct with
two additional sodium ions [fondaparinux+2Na]2+ (m/z
886). Using IRMPD, IR spectra for both species were record-
ed (Fig. 1b). Activation of both precursor ions leads to the loss
of one of the eight possible sulfate groups as neutral SO3. The
level of activation, i.e., the number of photons exciting the
molecule, is tuned such that ideally only one loss channel is
populated. Both spectra show three regions of absorptions.
Most specific for the investigated ions are the positons of
bands above 1600 cm−1, a region that is typically attributed
to the stretching vibrations of carbonyl and carboxylate func-
tional groups. The [fondaparinux+2H]2+ ion exhibits a strong
absorption centered at 1755 cm−1, which indicates that two
protons are located at the carboxyl functional groups, making
them neutral. In comparison, the sodiated analogue
[fondparinux+2Na]2+ shows a strong stretching vibration of
the charged carboxylates at 1630 cm−1. Between 1200 and
1450 cm−1, mainly the antisymmetric SO3

− stretching modes
from multiple sulfate groups are observable [18], with minor
contributions of weak C–H bending vibrations. In the lower
wavenumber range, combined C–O and C–C stretching vibra-
tions from the glycan core and also the symmetric SO3

−

stretching modes are typically found. Overall, the spectra are
rather congested, especially in the lower wavenumber range.

To qualitatively benchmark the gain in spectral quality at
low ion temperature, the IR spectra for both species
[fondparinux+2Na]2+ and [fondaparinux+2H]2+ were record-
ed using cryogenic IR spectroscopy (Fig. 1c). Generally, the
position of the absorption bands obtained in IRMPD is

reproduced. Yet, the spectral resolution in the cryogenic IR
spectra is much higher even in the lower wavenumber range.
A limitation is that the intensity of bands in the higher wave-
number range is much lower and as a consequence the car-
bonyl vibration above 1750 cm−1 cannot be sufficiently
resolved.

As cryogenic IR spectroscopy yields spectra of improved
resolution, the ability of the method to provide discrete spec-
tral features potentially diagnostic to the sulfation pattern was
tested. To do so, a model system of the hyaluronic acid (HA)
family was studied. Sulfated hyaluronic acid (SHA) deriva-
tives are in focus of current research to systematically tailor
GAG-protein interactions (Fig. 2a) [25]. These newly devel-
oped potential drug candidates serve as well-defined standards
in this study. With their low degree of sulfation, high stability
in a mass spectrometry experiment and acidic nature, negative
ion mode is well-suited for these molecules. The IR spectra for
the non-sulfated HA tetrasaccharide as [HA-2H]2− (m/z 400)

Fig. 2 a Chemical structure and SNFG representation of the investigated
synthetic, sulfated (highlighted in red) hyaluronic acid (SHA) derivative.
b Cryogenic IR spectroscopy in helium nanodroplets of the non-sufated
hyaluronic acid (HA) as [HA-2H]2− (upper panel) and the 2SHA deriva-
tive as [2SHA-2H]2− (lower panel). Absorption bands corresponding to
sulfate groups are highlighted with red squares. c Cryogenic IR spectros-
copy in helium nanodroplets of the non-sufated HA as [HA-H]−
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and the doubly sulfated 2SHA derivative as [2SHA-2H]2−

(m/z 480) were recorded using cryogenic IR spectroscopy
(Fig. 2b). The strongest absorption in the spectrum of the
non-sulfated [HA-2H]2− is the carboxylate antisymmetric
stretching vibration at 1645 cm−1. The presence of this band
confirms the deprotonation of the carboxyl functional group.
The amide I band (the C=O stretching vibration of secondary
amides) arising from the GlcNAc moiety is most likely over-
lapped by the strong vibration of the carboxylate anion. The
corresponding amide II and III vibrations are assigned to the
features observed at 1585 cm−1 and 1372 cm−1, respectively.
Absorptions between 1000 and 1200 cm−1 mainly stem from
the glycan core.

In order to elucidate the impact of sulfation, the spectrum of
the doubly sulfated, but otherwise chemically identical glycan
[2SHA-2H]2− was recorded for comparison. As expected
from the relative proton affinities of the carboxylate and sul-
fate moieties, the carboxyl functional groups are neutral,
which is confirmed by the C=O stretching vibration at
1770 cm−1. The signal at 1685 cm−1 is assigned to the amide
I vibrations. The amide II and III vibrations can be assigned
qualitatively to the bands at 1547 and 1372 cm−1. The vibra-
tion at 1455 cm−1 is in a spectral region in which O–H bending
modes in carboxyl groups are typically found. Most impor-
tantly, the sulfates showmultiple well-resolved bands between
1200 and 1350 cm−1 (Fig. 2b, lower panel, highlighted with
red squares).

Finding the optimal charge state is crucial to obtaining
good spectral quality.With two carboxylate functional groups,
the singly deprotonated ion of the tetrasaccharide HAyields a
congested spectrum (Fig. 2c). Two chemically almost identi-
cal deprotonation sites aid the formation of two deprotomers,
each with a multitude of individual conformers. In addition,
the dense hydrogen bonding network within the molecule can
promote charge migration, which further increases the number
of potentially observable species [26].

Conclusion

In summary, we here demonstrate the potential of IR action
spectroscopy in the range from 1000 to 1800 cm−1 for the
structural characterization of highly complex GAG oligosac-
charides. Well-resolved IR spectra of oligosaccharides up to
pentasaccharides were obtained using cryogenic IR spectros-
copy in helium nanodroplets. Signals arising from sulfate
groups appear in a spectral range in which typically no other
diagnostic vibrations occur. As a result, vibrational patterns
with high informational content are highly resolved. The op-
timal charge state depends on the functional groups present
and is crucial for the spectral quality. Besides being sensitive
to minute structural differences, cryogenic IR spectroscopy on
mass-selected ions has the potential to be implemented in

existing MS-based workflows. Current MS-based databases
[27] could be extended with IR fingerprints of intact and frag-
ment ions of GAGs. As such, gas-phase IR spectroscopy
could serve as a key analytical technique for the characteriza-
tion of GAG oligosaccharides in the future.
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