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We present the evaluation of magnetic terms in a Cu4O4 cubane-like system from truncated CI cal-
culations, as a case study of polynuclear transition-metal complexes. We employ a new excitation
selected configuration interaction (EXSCI) method based on the use of local orbitals. Taking advan-
tage of the locality and then of the fact that the interactions vanish when the distance is large, the
dimension of the CI is largely reduced. To the best of our knowledge these CI calculations are the
largest one performed for polynuclear transition metal systems so far. The results show the presence
of two leading ferromagnetic interactions between bridged Cu ions. Also the interactions between
the unbridged Cu ions are ferromagnetic, but very weak, in contrast to the experimental data. The
nature and amplitude of all the computed interactions are consistent with the relative orientation
of the magnetic orbitals in the molecule, and correctly reproduce the susceptibility versus temper-
ature curve. Our results indicate that it is possible to obtain similar fittings with sets of parameters
representing different physical effects and put in evidence the drawbacks of the fitting based on over-
simplified magnetic models. In this context, the presented computational strategy can be considered
as a useful tool to help in the interpretation of the magnetic data and the validation of the mag-
netic interaction model in the polynuclear magnetic systems. © 2011 American Institute of Physics.
[doi:10.1063/1.3659141]

I. INTRODUCTION

Polynuclear transition-metal complexes have been
receiving much attention over the years due to their role in
the field of molecular devices.1–4 Their properties result from
the presence of unpaired electrons in the system and the
interactions established among them. In fact these systems
are involved in processes such as the molecular conductivity,
rectification, switching, molecular wires, single-molecule
transistors, and molecular magnetic memories, with a special
emphasis on single-molecule magnets. Since the macro-
scopic properties observed in these systems come from
a high number of local interactions among all the active
centers (magnetic and electronic couplings, hole repulsions,
d–d repulsions, . . . ), a big effort has been dedicated to
the evaluation, rationalization, and understanding of the
factors governing the amplitude and nature of these local
interactions. However, the determination of the leading
magnetic interactions in polynuclear systems is not an easy
task, it faces some problems both from experimental and
theoretical points of view. The experimental evaluation of
the coupling constants first needs to establish a magnetic
model Hamiltonian which takes into account the interactions
among unpaired electrons. The number of local interactions
increases with the number of active centers, in such a way

a)Electronic mail: calzado@us.es.
b)Electronic mail: daniel.maynau@irsamc.ups-tlse.fr.

that a direct evaluation of all the local terms is impossible,
even when the spin Hamiltonian is reduced to the isotropic
interactions. In general, the experimental evaluation of the
coupling constants in these systems requires to assume some
leading interactions and to neglect the rest. This fixes a model
of magnetic interactions, which can only be validated from
the numerical fitting of thermodynamic and/or spectral prop-
erties. Since the model contains several parameters, larger
uncertainty than in common binuclear systems is expected.

In this context, independent and as accurate as possible
evaluations of the coupling constants would be welcome, in
order to clarify the mechanisms governing the local coupling
and the collective properties. But dealing with these systems
is not only difficult from an experimental point of view, in
fact, transition metal-based polynuclear molecular systems
constitute a real challenge for quantum chemistry methods
for several reasons. These compounds, even when molecular,
present several transition metal centers, with several d active
electrons. Furthermore, they are composed of extended and
polytopic ligands, which complete the coordination sphere
of the metal atom and allow a significant amount of con-
trol over the formation of clusters with a desired geometry.
Most of these ligands impose a low symmetry. Together with
restrictions due to the size and symmetry, there is an ad-
ditional constraint related to the necessity to explicitly deal
with electron-correlations effects due to the quasi-degenerate
d electrons. Moreover, most of the technological applications
are related to spin-orbit coupling effects.
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Nowadays, ab initio multireference configuration inter-
action (CI) techniques can be considered as the best tools for
obtaining correct descriptions of the electronic configurations
of the states involved in the coupling, as well as for determin-
ing with numerical accuracy the amplitude of the magnetic
coupling constants.5–7 Among them, the difference dedicated
CI (DDCI) approach by Miralles et al.8, 9 has been particu-
larly successful in evaluating magnetic coupling constants in
molecular and solid state magnetic materials, with a remark-
able good agreement with experiment.10–19 In this variational
method, a truncation of the CI space is performed, based on
the perturbative arguments in such a way that the CI expan-
sion only contains the determinants that play a role in the en-
ergy difference of the states involved in the coupling. Even
when the DDCI approach makes possible a considerable com-
putational time saving with respect to conventional single and
double excitation configuration interaction (SDCI) calcula-
tions, it is still too demanding for a system containing several
metallic centers and extended ligands (most of its applications
have been restrained to binuclear complexes), and additional
truncation schemes need to be considered. One possibility is
to take profit of the locality of the dynamical electron cor-
relation effects to introduce important truncations of the CI
space. In this context, Maynau and co-workers20, 21 have re-
cently proposed a new method of selection of the configura-
tions to be included in a CI calculation: the EXSCI method,
based on the use of localized orbitals. They proposed to retain
only those excitations which were among the “interacting lo-
cal orbitals,” using as threshold the value of the corresponding
exchange integral. This criteria makes possible a considerable
reduction of the size of the matrix to be diagonalized, and con-
sequently to deal with larger and more complex systems.

The procedure is completely general, and can be applied
to any type of system and/or any type of CI space. Here we
have employed this procedure to evaluate all the magnetic
terms in a cubane-like Cu(II) Cu4O4 system, described in
Sec. II, to check the consistency of the reported experimen-
tal fitting. The theoretical approaches used to evaluate the
magnetic terms are presented in Sec. III, and the computa-
tional details in Sec. IV. The resultant estimates of the mag-
netic terms are employed to simulate the susceptibility χT(T)
curves as shown in Sec. V. Finally, the main conclusions are
summarized in Sec. VI. Our results put in evidence the draw-
backs of the fitting based on the oversimplified magnetic mod-
els and the importance of the theoretical evaluations to reveal
the physics of the large systems, as a helpful and complemen-
tary tool to the experimental fittings.

II. DESCRIPTION OF THE SYSTEM

Among polynuclear transition-metal complexes, much
of the attention has been dedicated to high-nuclearity cop-
per(II) complexes which are not only relevant in the field of
molecular magnetism, but also to the active-site properties of
multinuclear copper oxidases.22–25 The flexibility of the coor-
dination sphere around Cu(II) combined with the use of mul-
tidentate ligands have produced a rich variety of Cu(II) com-
plexes of different nuclearity with a large structural diversity,
intimately related to their magnetic properties.26 Copper(II)
cubanes (Cu4O4) constitute one of the simplest and most com-
mon cases of such multinuclear Cu(II) complexes, of interest

SCHEME 1. (Left) Open cubane structure, only showing the short Cu–O
distances. The relative orientation of the Cu 3dx2-y2 orbitals is also shown.
(Right) The imposed S4 symmetry of the cubane is projected onto a square.

for their magnetic properties, which are tunable by making
small variations in the structural parameters.27–33 Copper(II)
cubanes can show dominant ferromagnetic as well as antifer-
romagnetic exchange interactions depending on the specific
geometry in the Cu4O4 core. They have been classified in
literature according to the number of short and long Cu–Cu
distances34–37 as 2+4 class (or type I), 4+2 class (or type II),
and 6+0 class (or type III).

Our study focuses on a tetranuclear Cu(II) complex
[Cu4(hpda)4][ClO4] H2O with Hhpda = N-(2-hydroxyethyl)-
1,3-propane-diamine synthesized by Shi Tan et al.38 and char-
acterized as having a magnetic ground state. The complex
can be classified as a 4+2 or type II cubane, with four short
and two long Cu-Cu distances resulting in an open cubane-
like Cu4O4 core structure, where each Cu(II) atom presents
a slightly distorted square-planar coordination with the two
nearest O and N atoms. Each hpda acts as a tridentate ligand
to one Cu atom (see Figure 1) in such a way that the dihe-
dral angle between the square planes of two Cu atoms bridged
with a single oxygen atom is nearly 90o (Cu1-Cu2, Cu1-Cu4,
Cu2-Cu3, and Cu3-Cu4 in Scheme 1). Unbridged Cu atoms
are placed on parallel planes, with the Cu atoms shifted along
the x (or y) axis (Cu1–Cu3 and Cu2–Cu4 in Scheme 1).

There are six two-body exchange interactions between
the four magnetic ions: four interactions between bridged Cu
atoms (nearest neighbours: J12, J14, J23, and J34) and two
interactions between unbridged Cu atoms (next-nearest
neighbours: J13 and J24). The magnetic susceptibility χ vs T
curve has been fitted38–40 to a Heisenberg model of the form

FIG. 1. (a) X-ray structure of the [Cu4(hpda)4][ClO4] H2O cubane. (b) Open
cubane-like Cu4O4 core structure. White, grey, and blue atoms are hydrogen,
carbon, and nitrogen, respectively.
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SCHEME 2. Four body operators in the cubane.

H = −� Jij Si Sj, with only two coupling constants J (J = J12

= J23 = J34 = J14) and Jd (Jd = J24 = J13) (see Scheme 1).
That is, the magnetic model employed by these authors ne-
glects the distortions around each magnetic center. The best
least-squares fit parameters proposed by these authors were
J = 89.8 cm−1, Jd = −32.6 cm−1, g = 2.06, ρ = 5.1
× 10−4, and Nα = 240 × 10−6 emu mol−1. The two last terms
correspond, respectively, to the molar fraction of mononu-
clear Cu(II) ions and the temperature independent magnetic
contribution.

The ferromagnetic J interaction is consistent with the rel-
ative orientation of the Cu 3dx2-y2 orbitals in two bridged Cu
atoms (Scheme 1). However, the non-negligible antiferromag-
netic nature of the coupling between unbridged Cu atoms Jd

is quite surprising at first glance, and it will be contrasted by
our calculations.

III. THE PROCEDURE

A. Theoretical evaluation of J

The theoretical analysis of the magnetic properties of
these systems requires the determination of the energy of the
low-lying states and their mapping onto the eigenvalues of
the model spin Hamiltonian. For the cubane the model spin,
Hamiltonian contains three different types of magnetic in-
teractions: the nearest and next-nearest neighbours J and Jd

interactions, which are two-body terms, and the four-body
terms, Jr, which produce the simultaneous permutation of the
four spin on the cubane (Scheme 2). This term is important
in high-Tc and spin ladders cuprates since it originates from
the electron cyclic circulation in Cu4O4 plaquettes, and it has
been claimed to be necessary to fully understand the mag-
netic excitations, and the infrared and neutron scattering spec-
tra of these systems.41–44 For Cu4O4 cubane these terms are

expected to be small, but they can be evaluated without any
additional cost once the effective Hamiltonian is built as dis-
cussed below. The so-resulting spin model Hamiltonian takes
the form

H = −J

NN∑
〈ij〉

(
SiSj − 1

4

)
− Jd

NNN∑
〈ij〉

(
SiSj − 1

4

)

− Jr

∑
〈ijkl〉

[
(SiSj )(SkSl)+(SiSl)(SjSk)−(SiSk)(SjSl)− 1

16

]
.

(1)

The real system belongs to the C1 symmetry point group, but
a slight modification allows us to impose the C2 symmetry.
This symmetrised structure is employed in our calculations,
and the discussion hereafter takes this aspect into account.

The unpaired electrons are essentially located on Cu
3dx2-y2 orbitals, although with delocalization tails on the
neighbour atoms. Such Cu centered orbitals are labelled {a,
b, c, and d}, localized on Cu1, Cu2, Cu3, and Cu4, respec-
tively. They constitute the active space CAS. The six Sz
= 0 determinants can be written on the basis of these four
orbitals: |ab̄cd̄|, |ābc̄d|, |abc̄d̄|, |āb̄cd|, |ab̄c̄d|, |ābcd̄|, and
constitute the model space. For C2 symmetry, there are two
different first-neighbour interactions J1 (J1 = J12 = J34) and
J2 (J2 = J23 = J14) and two next-nearest neighbour interac-
tions Jd1 (Jd1 = J13) and Jd2 (Jd2 = J24).

Regarding the four-spin operators, three different terms
can be distinguished: Jr1, Jr2, and Jr3, where the former
concerns the circulation of the electrons between only first-
neighbour sites, while Jr2 and Jr3 arise from the circulation of
electrons involving hopping between second-neighbour sites
(Scheme 2). The spin Hamiltonian on the basis of these deter-
minants has the following form, where A = (Jr1+Jr2− Jr3)/8,
B = (Jr1−Jr2+ Jr3)/8, and C = (−Jr1+Jr2+ Jr3)/8,

∣∣ab̄cd̄
∣∣ |ābc̄d| ∣∣abc̄d̄

∣∣ ∣∣āb̄cd
∣∣ ∣∣ab̄c̄d

∣∣ ∣∣ābcd̄
∣∣

J1 + J2 −Jr1/2 −J2/2 + A −J2/2 + A −J1/2 + B −J1/2 + B

J1 + J2 −J2/2 + A −J2/2 + A −J1/2 + B −J1/2 + B

J2 + (Jd1 + Jd2)/2 −Jr2/2 −Jd2/2 + C −Jd1/2 + C

J2 + (Jd1 + Jd2)/2 −Jd1/2 + C −Jd2/2 + C

J1 + (Jd1 + Jd2)/2 −Jr3/2
J1 + (Jd1 + Jd2)/2

. (2)
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The six eigenvalues of this Hamiltonian can be expressed
on the basis of the seven magnetic parameters. Then, it is not
possible to fix the amplitude of the magnetic parameters just
from the energy of the magnetic states if a priori any pa-
rameter is assumed to be negligible. Instead we can build an
ab initio effective Hamiltonian which is in one-to-one cor-
respondence with the model Hamiltonian. We need the six
eigenstates having the largest projections on the model space
and their eigenvalues. A detailed description of the procedure
can be found in Refs. 45–48. The comparison between the
ab initio effective Hamiltonian and the model Hamiltonian
elements fixes the amplitudes of the integrals appearing in the
latter and allows one to verify whether non-negligible addi-
tional interactions are present.

The magnetic states can be evaluated with different accu-
racy depending on the methodology employed. In the case of
DDCI calculations, the CI space for this system contains sev-
eral hundred millions of determinants. Therefore, additional
truncation schemes need to be considered as those discussed
in Sec. III B.

B. EXSCI calculations

The EXSCI method has been initially proposed by Bories
et al.20 and recently improved by Ben Amor et al.21 The goal
of this method is to hugely reduce the size of CI matrices and
consequently of the computational time, in order to make pos-
sible the use of CI calculations to deal with larger and more
complex systems. It can be applied to any set of excitations,
but here it will be used to truncate the DDCI space. The pro-
cedure requires the use of localized orbitals. Indeed, taking
advantage from the fact that electron correlation is a local phe-
nomenon, their use allows one to neglect long range interac-
tions. Moreover, a quasi linear dependence between the com-
putational time and the number of basis function (N-scaling)
is obtained. A brief description of the localization method and
of the CI program is given hereafter.

1. A priori localization method

The localization method is described in detail in Ref. 49.
It differs from the various methods that can be found in the
literature such as Boys,50 or Pipek and Mezey.51 In these ap-
proaches, canonical self-consistent field (SCF) or complete
active space self-consistent field (CASSCF) orbitals are lo-
calized according to a given criterion, i.e. the orbitals are op-
timised in the first step and then localized, so that one can
speak of a posteriori methods. In the a priori approach, guess
local orbitals are built in the first step, and then optimised
to reach a SCF or CASSCF quality in the second step. The
guess local orbitals are not uniquely defined and can be cho-
sen according to the physical problem under consideration.
They can be bond orbitals, lone pairs, and atomic or frag-
ment orbitals. The optimisation step consists of a super-CI-
like method. In this approach, a contracted CI matrix of the
single excitations on the CAS eigenvector is constructed and
then block diagonalised. Thanks to the block diagonalisation
the pseudo-natural orbitals resulting from this operation re-

main as local as the guess orbitals and can be used as guess
orbitals for a next iteration. At convergence, the iterative pro-
cess gives a set of local CASSCF orbitals (one obtains the
CASSCF energy). Some applications are presented in Ref. 52.

Another possibility is to perform a CASSCF calculation
using a standard program and to project each occupied (active
and virtual, respectively) guess orbital onto the space of oc-
cupied (active and virtual, respectively) canonical delocalized
orbitals.

The method yields a set of well localized occupied, ac-
tive, and virtual orbitals (see in Refs. 20 and 21 illustrations
of the method). The a priori approach presents some draw-
backs and some advantages. The main defect is that the final
set of localized orbitals is not unique and depends on how the
guess orbitals are built. Furthermore, this construction may
be sometimes complicated. The main advantage is that one
can easily get well localized virtual orbitals, which is not the
case in many other approaches. In many situations, the draw-
backs quoted above may be advantageous, since one can build
the local orbitals according to the physical problem under
consideration.

2. Reducing the CI size and the list of bielectronic
repulsion integrals

Once a set of localized occupied, active, and virtual or-
bitals are obtained, only excitations among “interacting local
orbitals” are retained, using as threshold the value of the cor-
responding exchange integral. Two orbitals a and b are in-
teracting when the corresponding exchange integral: Kab =
〈ab|ba〉 is larger than a certain threshold sl. Let us consider
some examples of how this criterion works on a double excita-
tion j → a, i → r, the corresponding operator being a

†
aa

†
r aiaj ,

where i, j are occupied, a is an active and r is a virtual orbital.
Figure 2 represents three different situations, where the active
orbital space is represented by a box and the occupied and
virtual orbitals placed on the same region are represented by
parallel lines. In this figure, a line close to the box represents
an orbital localized in regions near the active centers.

(a) The first example is shown in Figure 2(a). For excitation
i → r, the orbitals i and r are close in space and then the
integral Kir is larger than the threshold sl. The excitation
j → a moves one electron from one occupied orbital j to
an active orbital. If one active orbital b (not necessarily a)
is in interaction with j (Kjb > sl), one considers that j in-
teracts with the CAS as a whole. Then, the corresponding
determinant is kept on the CI space.

(b) In Figure 2(b) the orbital j interacts with the CAS (for
instance, with the active orbital b), but the orbital i does
not interact with r. Then, the integral Kbj > sl, but Kir

< sl. The corresponding determinant is eliminated.
(c) For Figure 2(c) the situation is similar to those described

in (a), but here the couples {CAS,j} and {i,r} occupy dis-
tant regions on the molecule. All the integrals Kbi and Kbr

are small for all active orbitals b. An additional threshold,
sl2, can be defined which takes into account this type of
situations. When all the integrals Kbi and Kbr are smaller
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FIG. 2. Three examples of a double excitation j → a, i → r in a set of
localized MOs to illustrate how the EXSCI method works (see text). The box
represents the CAS, and the horizontal lines the occupied and virtual MOs.
The blue arrows represent the excitations. A line closest to the box represents
an orbital located near the active centers.

than sl2, the corresponding determinant is eliminated. For
sl2 = 0, this determinant is kept.

Additional saving cost can be obtained by eliminating
small molecular integrals, following a procedure similar to
that used to shorten the list of determinants. This option does
not affect the size of the CI matrix, but the computational time
of each iteration on Davidson procedure.

The whole process employed to obtain theoretical esti-
mates of the magnetic parameters is summarized in Figure 3.

IV. COMPUTATIONAL DETAILS

All the calculations have used the geometry from x-ray
crystal structure, slightly modified to impose a C2 symmetry
point group (Figure 1). The main geometrical parameters have
been collected in Table I.

Core electrons of Cu atoms (up to 3s) were replaced with
effective core potentials, and the (9s6p6d)/[3s3p4d] basis set

CASSCF
High-spin state 

Localization: 
atoms, bonds,  

fragments 

DDCI calculations
with truncation 
at three levels: 

Eliminating localized MOs: 
- those on external bonds 

- core electrons 

- C-H bonds, C-C σ skeleton… 

Eliminating determinants: 
EXSCI procedure

Eliminating molecular integrals 

Analysis of WF 
& energy differences: 

Heff  J, Jd, Jr, … 

FIG. 3. Schematic representation of the complete strategy employed to si-
multaneously extract all the magnetic parameters in the Cu4O4 cubane.

TABLE I. Geometrical parameters of the molecule. In parenthesis, the cor-
responding first and second neighbour interactions are included. Notice that
Cu1(Cu2) and Cu3(Cu4) are related by the C2 axis.

Distance Bond angles
(Å) (o)

Cu1–Cu2 = Cu3–Cu4 (J1) 3.204 Cu1–O–Cu2 = Cu3–O–Cu4 111.5
Cu1–Cu4 = Cu2–Cu3 (J2) 3.149 Cu2–O–Cu3 = Cu1–O–Cu4 107.9
Cu1–Cu3 (Jd1) 3.403 Cu1–O–Cu3 98.3
Cu2–Cu4 (Jd2) 3.407 Cu2–O–Cu4 97.3

Dihedral angles (o)
Cu1–O–Cu2–O −9.7 O–Cu2–O–Cu3 −90.7
Cu2–O–Cu3-–O 11.9 O–Cu3–O–Cu4 89.9

was used for the valence electrons of Cu.53 ANO-type ba-
sis functions are used for the ligands of different quality de-
pending on the specific position. Contractions [4s3p1d] are
employed for N and O in bridging positions, [3s2p1d] for C
placed between N and O atoms, [3s2p] for external C atoms,
and [1s] for all H atoms.54–56 The system contains 88 atoms
with 616 basis functions.

DDCI calculations have been performed by means of
CASDI code57 on its EXSCI version. MOLCAS 7.2 code58

is used to obtain the CASSCF (4/4) quintet MOs set, which is
used as common MOs set in all the CI calculations. The ac-
tive space contains four orbitals resulting from the symmetry-
adapted combinations of the Cu 3dx2-y2 orbitals with tails on
the bridging O and N atoms. Figure 4 shows two views of one
of the four symmetry-adapted MOs, with large coefficients
on the 3dx2-y2 orbitals of Cu1 and Cu3, which are in parallel
planes but not face-to-face, and small contributions coming
from Cu2 and Cu4, which are in planes orthogonal to those
containing Cu1 and Cu3 atoms. It is worth recalling that the
interaction between Cu1 and Cu3 (similarly between Cu2 and
Cu4) has been proposed to be antiferromagnetic by Shi Tan
et al.38

Next, the MOs are localized as core, bond, and diffuse
orbitals. To reduce the cost of DDCI calculations, after local-
ization all the occupied and virtual σ C–H and N–H orbitals
have been eliminated, as well as the 1s core orbitals of all C,
N, and O atoms. Also the diffuse orbitals on external C atoms
have been frozen. Notice that although N atoms are linked to
the magnetic centers, the N–H bonds are out of the exchange
pathway between Cu atoms, and they do not participate on the

FIG. 4. Two views of one of the symmetry-adapted magnetic MOs, with
large coefficients on the 3dx2-y2 orbitals of Cu1 and Cu3, and small on Cu2
and Cu4.
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magnetic coupling. Test calculations on binuclear fragments
have been carried out and confirm that this choice does not
affect the magnetic coupling amplitudes.

V. RESULTS

A. Ground state and low-lying spectrum and magnetic
parameters from EXSCI calculations

The six low-lying states of the cubane have been evalu-
ated by means of the EXSCI calculations. They correspond
to a quintet state (Q), three triplet states (T1, T2, and T3),
and two singlet states (S1 and S2), all of them with large
projections on the eigenvectors of the model Hamiltonian
(Eq. (2)). This means that all the computed states correspond
to the magnetic states, resulting from the distribution of the
four unpaired electrons on the four active orbitals, and that
non-magnetic states such as those resulting from metal to lig-
and or ligand to metal excitations are higher in energy.

The ground state of the system is the spin quintet, in
agreement with the amplitude of the effective magnetic mo-
ment of about 5 μB at 5 K. The lowest excited state is a triplet
state, with a singlet state lying above the triplet. Next, there
are two triplet and one singlet states.

The whole DDCI space contains more than 870 × 106 de-
terminants prior to applying any truncation. Several tests have
been performed to analyze the impact of the selection criteria
on the values of the magnetic terms, the results of two of the
most significant have been collected in Table II. This table
shows the different selection thresholds (sl, sl2, and sli), the
computational time per iteration and root of the Davidson di-
agonalization, the number of determinants included in the CI
matrix and the resulting two-body magnetic coupling terms.
In all the considered tests, the three four-body operators, Jr1,
Jr2, and Jr3 are null.

For test A we have dealt with around 100 × 106 deter-
minants once that, the excitations that do not match the se-
lection criteria (sl = 10−3, sl2 = 10−4, and sli = 10−4) have
been eliminated of the DDCI space. The gaps between the
quintet ground state and the five excited states are: 24.3 (T1),
27.2 (S1), 29.6 (T2), 52.7 (T3), and 79.5 (S2) cm−1. The first-
neighbour interactions J1 and J2 are both ferromagnetic with
close values of 24 and 29 cm−1, respectively, which agree
with the relative Cu–Cu distance (larger for J1 than J2). The
second-neighbour Jd1 and Jd2 interactions are also ferromag-
netic although with a negligible absolute value.

Regarding the four-body operators, the three Jr1, Jr2,
and Jr3 terms vanish. Notice that Jr1 scales as t12t22/U3

(Refs. 47 and 48) where U is the on-site Coulomb repulsion
and t1 and t2 correspond to the hopping integrals between

first-neighbour Cu atoms. Both integrals are expected to be
quite small due to the quasi-orthogonal relative position of
the 3dx2-y2 orbitals on first-neighbour Cu atoms, while U is
a rather large quantity (around 5-7 eV for molecular Cu(II)
systems59). Jr2 and Jr3 scale as td1td2t22/U3 and td1td2t12/U3,
respectively,47 with td1 and td2 being the hopping integral be-
tween second-neighbour centers. td1 and td2 result from the
δ overlap of the 3dx2-y2 orbitals on second-neighbour Cu
atoms, which are separated by 3.4 Å of distance, and they
are not face to face as can be seen in Scheme 1 and Figure 1.
Then, their absolute values are expected to be quite small, and
consequently, also the amplitudes of Jr2 and Jr3.

Increasing the number of determinants in the CI space by
diminishing the sl threshold as in test B, practically does not
affect the amplitude of any of these terms. Consequently, the
spectrum is not affected either: the gaps between the quintet
ground state and the five excited states are now: 25.5 (T1),
28.6 (S1), 32.0 (T2), 56.7 (T3), and 85.6 (S2) cm−1. Notice
that, although the size of the CI space has augmented by a
factor 2, the computational time per root and iteration has
only increased by a factor 1.3, thanks to the molecular integral
threshold, here one order larger than in test A.

It is possible to enlarge the size of the CI space by reduc-
ing the sl and sl2 values. However, this results in prohibitive
computational times. On the other hand, the thresholds em-
ployed are in good agreement with those assuring the conver-
gence on systems where a complete calculation is possible.21

Since neither the amplitudes nor the nature of the interactions
have changed when going from test A to B and the DDCI cal-
culations on the complete space are unfeasible, we can con-
sider test B as the best one available and the resulting effective
magnetic parameters as converged. It is also important to no-
tice that these CI calculations are probably the largest (and
most expensive) performed on systems of this nature, which
constitute by itself a milestone in the field.

Then our best estimates of the magnetic parameters are:
J1 = 25.1 cm−1, J2 = 31.6 cm−1, Jd1 = 0.2 cm−1, Jd2

= 0.6 cm−1, and Jr1 = Jr2 = Jr3 = 0.0 cm−1. These results
are in good agreement with the estimates obtained by Ruiz
et al.34, 35 from density functional theory (DFT) based calcu-
lations. In these calculations, a S4 symmetry is imposed which
results in only two different couplings, J = 44.1 cm−1 and Jd

= 6.2 cm−1.
An additional point to be considered is the impact of the

size-consistency errors in the evaluation of magnetic terms
from these truncated CI calculations. Traditionally, this error
is not quantified when DDCI method is used to evaluate mag-
netic coupling terms, assuming that the error, if any, is not
important. Only recently some tests have been published60–64

TABLE II. Magnetic coupling terms (in cm−1) for the molecule obtained from EXSCI calculations, computational
time in minutes per iteration and root, and number of determinants in the CI space. In parenthesis, the correspond-
ing percentage of the DDCI space included in the calculations is shown. The full DDCI space contains 874.3 × 106

determinants.

Test sl sl2 sli CI size Time (min) J1 J2 Jd1 Jd2

A 10−3 10−4 10−4 99.9 × 106 (11%) 417 23.7 29.1 0.6 0.6
B 5 · 10−4 0 10−3 204.1 × 106 (23%) 536 25.1 31.6 0.2 0.6
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where the Davidson equation65 was employed to correct the
DDCI energies as follows:

Em

DDCI−SC
= Em

CAS
+ Em

DDCI
− Em

CAS(
Cm

0

)2 , (3)

where Em
CAS

and Em
DDCI

correspond to the zeroth-order CASCI
and DDCI energies of the m state, respectively, and (Cm

0 )2is
the norm of the projection of the wavefunction of m on the
CAS. A recent work on magnetic C-Be model systems, where
we have analyzed the effect of size-consistency errors by
comparing the DDCI and FCI estimates, indicates that the
Davidson formula overestimates the size-consistency errors
in the case of the DDCI approach,61 since this formula takes
into account the inactive double excitations which are not con-
tained in the DDCI wavefunction. Monari et al.60 have formu-
lated a modified Davidson equation to take into account the
particularities of DDCI with respect to standard SDCI calcu-
lations. These authors proposed that the correction for DDCI
energies has to be multiplied by a factor (NA-1)/ NA, where
NA is the number of active orbitals. The corrected DDCI en-
ergy becomes

Em

DDCI−SC
= Em

DDCI
+ NA − 1

NA

(
Em

DDCI
− Em

CAS

)(
1 − (

Cm
0

)2)
.

(4)
When this modified Davidson equation is employed, the im-
pact of the size-consistency errors on the DDCI values is
attenuated.61 In the case of EXSCI calculations (with addi-
tional truncation with respect to DDCI ones), there has not
been any study on this issue. We have employed both equa-
tions to correct the energies of the cubane obtained from test B
in the EXSCI calculations. The J values obtained once the SC
errors are corrected with Davidson (SC) or modified David-
son (SCm) equations for test B are shown in Table III. The
same behaviour observed in the C-Be model systems is found
for the cubane: (i) the absolute values of the magnetic pa-
rameters are enhanced when size-consistency errors are cor-
rected and (ii) the impact is larger for the original Davidson
equation than for the modified one. Additionally, the correc-
tion improves the comparison with the DFT values. But it is
important to keep in mind that the corrections of the size-
consistency errors in DDCI calculations and in particular in
EXSCI ones is still an open question, which requires in-depth
study.

As shown in Tables II and III, for each type of interaction
our two calculated values (J1 and J2; Jd1 and Jd2) are quite
close. Then, it is reasonable to assume that J = J2 ≈ J1 and

TABLE III. Impact of the size-consistency errors on the amplitudes of the
magnetic coupling constants (in cm−1) obtained from EXSCI calculations
(test B). SC and SCm refers to size consistency corrected parameters, the
former using the original expression by Davidson, and the last one using the
modified expression proposed for DDCI truncation.

J1 J2 Jd1 Jd2

DDCI 25.1 31.6 0.2 0.6
+SC 38.5 48.3 0.4 1.2
+SCm 33.3 41.9 0.3 1.0

Jd = Jd2 ≈ Jd1, as done in the experimental work38 and by
Ruiz et al.34, 35 But, notice that in the case of the experimental
data, it is an assumption made prior to the fitting, whose ade-
quacy cannot be checked, while our procedure does not need
to make any assumption, and this information is only recov-
ered once the calculations are analyzed.

B. Verifying the nature and extension
of the interactions

Comparing with the experimental values, there are two
points in disagreement: (i) the absolute value of both first-
and second-neighbour interactions are smaller than those re-
sulting from the experimental fitting and (ii) the calculated
second-neighbour interactions are not antiferromagnetic. The
former point can be related to the selection procedure. Since
it is not technically possible to perform a DDCI calculation
involving the complete set of determinants, it could happen
that the extracted values are underestimated. However, re-
garding the second point we are confident on the sign of the
respective interactions. As it is well known,59 the magnetic
coupling constant J results from two opposite contributions J
= 2K-4t2/U: the direct exchange, 2K which is ferromagnetic,
and the kinetic exchange, −4t2/U, resulting from the delocal-
ization of the electrons on the active centers and it is antiferro-
magnetic. Since the interaction between Cu1 and Cu3 (respec-
tively Cu2 and Cu4) is mainly through space, it is expected
that the superexchange mechanism (−4t12/U or −4t22/U, with
t1 → 0 and t2 → 0) has a negligible role, then the interaction
should be controlled by the direct exchange 2K, being ferro-
magnetic and small in absolute value due to the δ-type overlap
between Cu1–Cu3 (Cu2–Cu4) 3dx2-y2 orbitals.

To verify both points we have carried out a computational
experiment. We have built three binuclear models from the
cubane representative of the nearest- and next-nearest neigh-
bour interactions: dimer NN which contains Cu1 and Cu4

atoms and is used to evaluate J2, dimer NN2 which contains
Cu1 and Cu2 atoms, used to evaluate J1, and dimer NNN
which contains Cu2 and Cu4 atoms and is used to evalu-
ate Jd2. Each Cu atom maintains the coordination with one
hpda ligand. The broken C–C bonds have been saturated with
H atoms (C–H distance of 1.07 Å). Despite the approxima-
tions, the models retain the closest environment to each mag-
netic center. Then the so-resulting J values are expected to
be close to the amplitude of these interactions in the whole
cubane.

Each dimer contains two active electrons on two orbitals,
and J can be directly obtained from the energy difference
between the lowest singlet and triplet states, evaluated by
means of full DDCI calculations. The so-obtained J values are
+48.2 cm−1 for dimer NN, +37.8 cm−1 for dimer NN2, and
+3.8 cm−1 for dimer NNN, all in agreement with the ampli-
tude and signs of the estimations obtained from the complete
Cu4O4 cubane (Tables II and III). If instead of full DDCI cal-
culations, we perform EXSCI calculations with the same se-
lection criteria than in the whole cubane (test B), the J values
obtained for dimer NN and NNN are, respectively, +41.0 and
+2.4 cm−1. This indicates that the truncation introduced by
the EXSCI method could slightly underestimate the amplitude
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of the magnetic terms. Furthermore, the ferromagnetic nature
of the interaction between unbridged Cu atoms predicted by
the EXSCI calculations on the whole cubane is confirmed,
i.e., the truncation does not affect the sign of the interactions,
and only slightly their amplitudes.

C. Susceptibility curves

A way to check the reliability of the calculated magnetic
constants consists of simulating the susceptibility versus tem-
perature curve. Although it is well known that the χ vs T
curve is normally insensitive to the J values for ferromag-
netic compounds as the one studied here, this seems to be
the procedure employed to obtain the fitting parameters in the
experimental work.38 Then we start by comparing the χ vs T
curves obtained with the fitted parameters and that resulting
with the calculated magnetic constants.

Figure 5(a) represents the χ vs T plot for five sets of
values. Black line corresponds to the experimental values,
while the ab initio values are employed in the rest: red, green,
violet, and maroon symbols correspond, respectively, to the
fitting obtained with the calculated values for the cubane, val-
ues obtained from the dimers, values for the cubane corrected
by the Davidson equation or by the modified Davidson equa-
tion. The values of g, Nα , and ρ provided by Shi Tan et al.38

have been employed. The mononuclear Cu(II) ions and TIP
contributions are negligible in all the range of temperature,
and similar behaviour has been obtained when these two extra
contributions are not taken into account. The five sets of pa-
rameters give similar plots. The deviation between the curve
fitted with the experimental values and those obtained with
the calculated ones is measured through the reliability factor
R = �i[(χ exp(Ti)−χ calc(Ti)]2/�[χ exp(Ti)]2. R is very small
for all sets of calculated values: 1.3 × 10−5 for the values
calculated for the cubane and 3.6 × 10−6 for the values
obtained from the dimers or from the SC corrected cubane
values. Then, similar fittings are obtained with sets of
parameters representing different physics effects. The fitting
seems to be sensitive neither to the absolute value of the two
leading interactions nor to the nature of them, at least for the
range of values analyzed.

Additional insight is obtained with the χT vs T plot.
Figure 5(b) contains this plot for the four sets of parameters,
with the same colour code as for the χ vs T plot. The curve
for the ab initio values of the cubane deviates from the exper-
imental one, although the reliability factor is still very small
(R = 2.9 × 10−3). A better agreement is observed for the
ab initio values once the size-consistency errors are corrected
(+SCm values in Table III), with R = 8.0 × 10−4 and also for
the values of the dimers (R = 2.7 × 10−4). This confirms that
the parameters obtained directly from the cubane are slightly
underestimated, as mentioned above, and a better agreement
is obtained with larger J and Jd values, as those obtained once
the size-consistency errors are corrected. But notice that in all
sets of calculated parameters the unbridged Cu atoms present
a ferromagnetic interaction.

In summary, it is possible to fit the susceptibility mag-
netic data with sets of parameters with different absolute val-

FIG. 5. (Top) χ vs T plot and (bottom) χT vs T plot obtained by using dif-
ferent values of J and Jd : experimental values (black line, J = 89.8 cm−1, Jd

= −32.6 cm−1), those resulting from the ab initio calculations on the cubane
(red square, J = 31.6 cm−1, Jd = 0.6 cm−1), those from the calculations
on the dimers (green circle, J = 48.2 cm−1, Jd = 3.8 cm−1), the cubane
values corrected by the Davidson equation (violet plus, J = 48.3 cm−1,
Jd = 1.2 cm−1) or by the modified Davidson equation (maroon triangle, J
= 41.9 cm−1, Jd = 1.0 cm−1).

ues and with different physics. We observe that not only the
ratio between the magnetic coupling values determines the
shape of the χT vs T plot, as expected, but there also ex-
ists a certain compensation between the parameters, as men-
tioned by Tercero et al.,34 in such a way that a moderate an-
tiferromagnetic exchange Jd (–32.6 cm−1) compensates the
large ferromagnetic exchange J between bridged Cu atoms
(89.8 cm−1) found in the fitting, and it gives a similar plot
than a neglible Jd and a moderate ferromagnetic J value. In
this context, the fitting could take benefit of the predictions
provided by theoretical calculations, at least to establish the
ferromagnetic/antiferromagnetic nature of the leading inter-
actions.

VI. CONCLUSIONS

In this paper we have evaluated the magnetic coupling
constants in a Cu4O4 cubane isolated by Shi Tan et al.,38 as a
case study of magnetic polynuclear transition metal systems.
DDCI calculations have been performed and the resulting
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wavefunctions have been analyzed by means of the effective
Hamiltonian theory to simultaneously extract the amplitude of
the first-neighbour, second-neighbour, and four-body terms.
In order to make plausible the CI calculations the EXSCI
procedure has been employed, which allows us to reduce con-
siderably the number of DDCI determinants to be included in
the Davidson diagonalization in a rational way. To the best
of our knowledge these calculations are the largest never per-
formed with the CI approach on polynuclear transition metal
systems.

Seven magnetic parameters have been explicitly deter-
mined, without introducing any previous assumption about
their relative amplitude. This is an important difference with
respect to the experimental fitting where a magnetic model is
fixed beforehand, only the relevant parameters are introduced
in the model, the remaining presumably small parameters are
neglected. The results show the presence of two leading fer-
romagnetic interactions between bridged Cu ions, with which
magnetic constants J1 and J2 are close in absolute value. Also
the interactions between the unbridged Cu ions (Jd1 and Jd2)
are ferromagnetic, but very weak. The four-body terms are
negligible. The nature of the interactions agrees with the rel-
ative orientation of the magnetic orbitals in the molecule,
imposed by the coordination of the hpda ligands. Both the
amplitude and the nature of the two-body interactions have
been validated by means of DDCI calculations on binuclear
clusters extracted from the cubane structure. Finally, the sus-
ceptibility versus temperature curve has been simulated by
using the calculated magnetic coupling constant values. Al-
though the calculated J values appreciably differ from the ex-
perimental ones, the corresponding χ vs T and the always
more sensitive χT vs T plots are similar. Then, it is possi-
ble to obtain fittings of similar quality with sets of very dif-
ferent parameters. This indicates that the fittings are not uni-
vocal for these polynuclear systems, which moreover show
larger uncertainty than in common binuclear systems. This
explains why it has been reported J values which are not con-
sistent with the system geometry as in the system under study.
It is important to mention that the system considered here is
not an isolate case but many other examples involving Cu4O4

cubane compounds can be found in literature. For instance,
Tercero and co-workers have collected in Table IV of Ref. 34
a set of open 4+2 Cu(II) cubanes, similar to the system con-
sidered in this work, presenting antiferromagnetic exchange
coupling constants between the unbridged Cu centers, which
are in contradiction with the relative orientation of the Cu ac-
tive orbitals.

This scenario is not comfortable since many of the ef-
forts done by experimental groups in synthesizing and char-
acterizing new molecular systems are driven by the aim of
understanding the main factors controlling the magnetic prop-
erties. In this context, an efficient computational strategy,
combining the performance of the DDCI procedure in de-
termining the magnetic coupling constants, and the ability of
dealing with large systems containing several magnetic cen-
ters and extended ligands such as EXSCI does, can be con-
sidered as a useful tool to help in the interpretation of the
magnetic data and the validation of the magnetic interaction
model.

ACKNOWLEDGMENTS

Financial support has been provided by the Spanish
Ministry of Science and Innovation through Project No.
CTQ2009-07767. The Laboratoire de Chimie et Physique
Quantiques is “Unité Mixte de Recherche” UMR 5626 of the
CNRS.

1J. S. Miller, Dalton Trans. 2006, 2742.
2D. Gatteschi and R. Sessoli, Angew. Chem., Int. Ed. 42, 268 (2003).
3M. Verdaguer, Polyhedron 20, 1115 (2002).
4Magnetism: Molecules to Materials, edited by J. S. Miller and M. Drillon
(Willey VCH, Weinheim, 2005), Vols. 1–5.

5F. Neese, T. Petrenko, D. Ganyushin, and G. Olbrich, Coord. Chem. Rev.
251, 288 (2007).

6J. Chalupsk, F. Neese, E. I. Solomon, U. Ryde, and L. Rulek, Inorg. Chem.
45, 11051 (2006).

7A. Bencini, Inorg. Chim. Acta 361, 3820 (2008).
8J. Miralles, J. P. Daudey, and R. Caballol, Chem. Phys. Lett. 198, 555
(1992).

9J. Miralles, O. Castell, R. Caballol, and J. P. Malrieu, Chem. Phys. 172, 33
(1993).

10O. Castell, R. Caballol, V. M. García, and K. Handrick, Inorg. Chem. 35,
1609 (1996).

11O. Oms, J. B. Rota, L. Norel, C. J. Calzado, H. Rousselière, C. Train, and
V. Robert, Eur. J. Inorg. Chem. 2010, 5373.

12C. J. Calzado, J. F. Sanz, and J. P. Malrieu, J. Chem. Phys. 112, 5158
(2000).

13J. B. Rota, C. J. Calzado, C. Train, and V. Robert, J. Chem. Phys. 132,
154702 (2010).

14J. Cabrero, C. de Graaf, E. Bordas, R. Caballol, and J. P. Malrieu,
Chem.-Eur. J. 9, 2307 (2003).

15N. Suaud, A. Gaita-Ariño, J. M. Clemente-Juan, J. Sanchez-Marin, and
E. Coronado, J. Am. Chem. Soc. 124, 15134 (2002).

16C. J. Calzado, S. Evangelisti, and D. Maynau, J. Phys. Chem. A 107, 7581
(2003).

17N. Queralt, D. Taratiel, C. de Graaf, R. Caballol, R. Cimiraglia, and C. An-
geli, J. Comput. Chem. 29, 994 (2008).

18N. Suaud, Y. Masaro, E. Coronado, J. M. Clemente-Juan, and N. Guihery,
Eur. J. Inorg. Chem. 2009, 5109.

19J. B. Rota, L. Norel, C. Train, N. Ben Amor, D. Maynau, and V. Robert,
J. Am. Chem. Soc. 130,10380 (2008).

20B. Bories, D. Maynau, and M. L. Bonet, J. Comput. Chem. 28, 632 (2007).
21N. Ben Amor, F. Bessac, S. Hoyau, and D. Maynau, J. Chem. Phys. 135,

014101 (2011).
22Copper Coordination Chemistry: Biochemical and Inorganic Perspectives,

edited by K. D. Karlin and J. Zubieta (Adenine, New York, 1983).
23E. I. Solomon, F. Tuczek, D. E. Root, and C. A. Brown, Chem. Rev. 94,

827 (1994); E. I. Solomon, P. Chen, M. Metz, S. K. Lee, and A. E. Palmer,
Angew. Chem., Int. Ed. 40, 4570 (2001).

24J. P. Klinman, Chem. Rev. 96, 2541 (1996).
25S. Ferguson-Miller, and G. T. Babcock, Chem. Rev. 96, 2889 (1996).
26W. E. Hatfield, in Magnetostructural Correlations in Exchange Coupled

Systems, edited by R. D. Willet, D. Gatteschi, and O. Kahn (Reidel,
Dordrecht, 1985).

27A. Mukherjee, R. Raghunathan, M. K. Saha, M. Nethaji, S. Ramasesha,
and A. R. Chakravarty, Chem. Eur. J. 11, 3087 (2005).

28W. Plass, Coord. Chem. Rev. 253, 2286 (2009); A. Burkhardt, E. T. Spiel-
berg, H. Görls, and W. Plass, Inorg Chem. 47, 2485 (2008).

29J. Sletten, A. Sorensen, M. Julve, and Y. Journaux, Inorg. Chem. 29, 5054
(1990).

30H. Astheimer, F. Nepveu, L. Walz, and W. Haase, J. Chem. Soc. Dalton
Trans. 1985, 315.

31L. P. Wu, T. Kuroda-Sowa, M. Maekawa, Y. Suenaga, and M. Munakata,
J. Chem. Soc. Dalton Trans. 1996, 2179.

32Y. Xie, W. Bu, X. Xu, H. Jiang, Q. Liu, Y. Xue, and Y. Fan, Inorg. Chem.
Commun. 4, 558 (2001).

33J. K. Eberhardt, T. Glaser, R.-D. Hoffmann, R. Frölich, and E. U. Würth-
wein, Eur. J. Inorg. Chem. 2005, 1175.

34J. Tercero, E. Ruiz, S. Alvarez, A. Rodríguez-Fortea, and P. Alemany,
J. Mater. Chem. 16, 2729 (2006).

35E. Ruiz, A. Rodríguez-Fortea, P. Alemany, and S. Alvarez, Polyhedron 20,
1323 (2001).

http://dx.doi.org/10.1039/b515974a
http://dx.doi.org/10.1002/anie.200390099
http://dx.doi.org/10.1016/S0277-5387(01)00700-8
http://dx.doi.org/10.1016/j.ccr.2006.05.019
http://dx.doi.org/10.1021/ic0619512
http://dx.doi.org/10.1016/j.ica.2008.03.076
http://dx.doi.org/10.1016/0009-2614(92)85030-E
http://dx.doi.org/10.1016/0301-0104(93)80104-H
http://dx.doi.org/10.1021/ic9507631
http://dx.doi.org/10.1002/ejic.201001033
http://dx.doi.org/10.1063/1.481093
http://dx.doi.org/10.1063/1.3378023
http://dx.doi.org/10.1002/chem.200204167
http://dx.doi.org/10.1021/ja027806e
http://dx.doi.org/10.1021/jp034582t
http://dx.doi.org/10.1002/jcc.20859
http://dx.doi.org/10.1002/ejic.200900803
http://dx.doi.org/10.1021/ja802027u
http://dx.doi.org/10.1002/jcc.20588
http://dx.doi.org/10.1063/1.3600351
http://dx.doi.org/10.1021/cr00027a013
http://dx.doi.org/10.1002/1521-3773(20011217)40:24<4570::AID-ANIE4570>3.0.CO;2-4
http://dx.doi.org/10.1021/cr950047g
http://dx.doi.org/10.1021/cr950051s
http://dx.doi.org/10.1002/chem.200401048
http://dx.doi.org/10.1016/j.ccr.2008.12.002
http://dx.doi.org/10.1021/ic701777t
http://dx.doi.org/10.1021/ic00350a010
http://dx.doi.org/10.1039/dt9850000315
http://dx.doi.org/10.1039/dt9850000315
http://dx.doi.org/10.1039/dt9960002179
http://dx.doi.org/10.1016/S1387-7003(01)00278-7
http://dx.doi.org/10.1016/S1387-7003(01)00278-7
http://dx.doi.org/10.1002/ejic.200400779
http://dx.doi.org/10.1039/b604344p
http://dx.doi.org/10.1016/S0277-5387(01)00613-1


194704-10 C. J. Calzado and D. Maynau J. Chem. Phys. 135, 194704 (2011)

36R. Mergehenn and W. Haase, Acta Crystallogr. B33, 2734 (1977).
37L. Merz and W. Haase, J. Chem. Soc. Dalton Trans. 1978, 1594.
38X. Shi Tan, Y. Fujii, R. Nubada, M. Mikuriya, and Y. Nakano, J. Chem.

Soc. Dalton Trans. 1999, 2415.
39O. Kahn, Molecular Magnetism (Wiley VCH, Berlin, 1993).
40K. S. Murray, Adv. Inorg. Chem. 43, 261 (1995).
41J. Lorenzana, J. Eroles, and S. Sorella, Phys. Rev. Lett. 83, 5122 (1999).
42M. Matsuda, K. Katsumata, R. S. Eccleston, S. Brehmer, and

H.-J. Mikeska, Phys. Rev. B 62, 8903 (2000).
43S. Brehmer, H.-J. Mikeska, M. Müller, N. Nagaosa, and S. Uchida, Phys.

Rev. B 60, 329 (1999).
44R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost, T. E. Ma-

son, S.-W. Cheong, and Z. Fisk, Phys. Rev. Lett. 86, 5377 (2001).
45C. J. Calzado and J. P. Malrieu, Phys. Rev. B 63, 214520 (2001).
46C. J. Calzado and J. P. Malrieu, Eur. Phys. J. B 21, 375 (2001).
47C. J. Calzado and J. P. Malrieu, Phys. Rev. B 69, 0944351 (2004).
48C. J. Calzado, C. de Graaf, E. Bordas, R. Caballol, and J. P. Malrieu, Phys.

Rev. B 67, 132409 (2003).
49D. Maynau, S. Evangelisti, N. Guihery, J. P. Malrieu, and C. J. Calzado,

J. Chem. Phys. 116, 10060 (2002).
50S. H. Boys, in Quantum Theory of Atoms, Molecules and Solid State, edited

by P. O. Löwdin (Academic, New York, 1966), pp. 80–253.
51J. Pipek and P. G Mezey, J. Chem. Phys. 90, 4916 (1989).
52C. Angeli, S. Evangelisti, R. Cimiraglia, and D. Maynau, J. Chem. Phys.

117, 10525 (2002); S. Hoyau, N. Ben Amor, S. Borini, S. Evangelisti, and
D. Maynau, Chem. Phys. Lett. 451, 141 (2008).

53Z. Barandiarán and L. Seijo, Can. J. Chem. 70, 409 (1992).
54P.-O. Widmark, P.-A. Malmqvist, and B. O. Roos, Theor. Chim. Acta 77,

291 (1990).
55P.-O. Widmark, B. J. Persson, and B. O. Roos, Theor. Chim. Acta 79, 419

(1991).
56K. Pierloot, B. Dumez, P.-O. Widmark, and B. O. Roos, Theor. Chim. Acta

90, 87 (1995).
57N. Ben Amor and D. Maynau, Chem. Phys. Lett. 286, 211 (1998); CASDI

program: Package developed at the Laboratoire de Chimie et Physique
Quantiques, Université Paul Sabatier, Toulouse (France).

58F. Aquilante, L. de Vico, N. Ferré, G. Ghigo, P.-A. Malmqvist, T. Peder-
sen, M. Pitonak, M. Reiher, B. O. Roos, L. Serrano-Andrés, M. Urban,
V. Veryazov, and R. Lindh, J. Comput. Chem. 31, 224 (2010).

59C. J. Calzado, J. Cabrero, J. P. Malrieu, and R. Caballol, J. Chem. Phys.
116, 3985 (2002).

60A. Monari, D. Maynau, and J. P. Malrieu, J. Chem. Phys. 133, 044106
(2010).

61C. J. Calzado, A. Monari, and S. Evangelisti, J. Comput. Chem. 32, 315
(2011).

62N. Ben Amor, D. Maynau, J. P. Malrieu, and A. Monari, J. Chem. Phys.
129, 064112 (2008).

63J. Cabrero, R. Caballol, and J. P Malrieu, Mol. Phys. 100, 919 (2000).
64I. Negodaev, C. de Graaf, and R. Caballol, Chem. Phys. Lett. 458, 290

(2008).
65S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem. 8, 61

(1974).

http://dx.doi.org/10.1107/S0567740877009388
http://dx.doi.org/10.1039/dt9780001594
http://dx.doi.org/10.1039/a903524i
http://dx.doi.org/10.1039/a903524i
http://dx.doi.org/10.1016/S0898-8838(08)60119-1
http://dx.doi.org/10.1103/PhysRevLett.83.5122
http://dx.doi.org/10.1103/PhysRevB.62.8903
http://dx.doi.org/10.1103/PhysRevB.60.329
http://dx.doi.org/10.1103/PhysRevB.60.329
http://dx.doi.org/10.1103/PhysRevLett.86.5377
http://dx.doi.org/10.1103/PhysRevB.63.214520
http://dx.doi.org/10.1007/s100510170181
http://dx.doi.org/10.1103/PhysRevB.69.094435
http://dx.doi.org/10.1103/PhysRevB.67.132409
http://dx.doi.org/10.1103/PhysRevB.67.132409
http://dx.doi.org/10.1063/1.1476312
http://dx.doi.org/10.1063/1.456588
http://dx.doi.org/10.1063/1.1521434
http://dx.doi.org/10.1016/j.cplett.2007.11.073
http://dx.doi.org/10.1139/v92-059
http://dx.doi.org/10.1007/BF01120130
http://dx.doi.org/10.1007/BF01112569
http://dx.doi.org/10.1007/s002140050063
http://dx.doi.org/10.1016/S0009-2614(98)00104-3
http://dx.doi.org/10.1002/jcc.21318
http://dx.doi.org/10.1063/1.1446024
http://dx.doi.org/10.1063/1.3458642
http://dx.doi.org/10.1002/jcc.21623
http://dx.doi.org/10.1063/1.2938371
http://dx.doi.org/10.1080/00268970110105433
http://dx.doi.org/10.1016/j.cplett.2008.05.011
http://dx.doi.org/10.1002/qua.560080106

