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ABSTRACT 

 

Confinement ends, and recovery phase should be accurate planned. Health System (HS) 

capacity, specially ICUs and plants capacity and availability, will remain the key stone in 

this new Covid-19 pandemic life cycle phase. Until massive vaccination programs will 

be a real option (vaccine developed, world wield production capacity and effective and 

efficient administration process), date that will mark recovery phase end, important 

decisions should be taken. Not only by authorities. Citizen self-management and 

organizations self-management will be crucial. This means: citizen and organizations day 

a day decision in order to control their own risks (infecting others and being infected).  

This paper proposes a management tool that is based on a ICUs and plants capacity model. 

Principal outputs of this tool are, by sequential order and always according to last best 

data available: (i) ICUs and plants saturation estimation data (according to incoming rate 

of patients), (ii) with this results new local and temporal confinement measure can be 

planned and also a dynamic analysis can be done to estimate maximum Ro saturation 

scenarios, and finally (iii) provide citizen with clear and accurate data allow them 

adapting their behavior to authorities’ previous recommendations. One common 

objective: to accelerate as much as possible socioeconomic normalization with a strict 

control over HS relapses risk.    

Keywords: Health system management, capacity planning, Covid-19 recovery strategies, 

Citizen Self-management, Queue theory, System Dynamics 

1. Introduction 

Recovery phase is starting, or is going to start in few weeks, in some of most pandemic 

affected countries as Spain. The duration of this new phase is uncertain and linked to the 

development and availability of the vaccine. Minimize fatalities while minimizing the 

number of new infections demands effective management strategies. That allows health 

system (HS) optimal response (Mcclellan et al., 2020). Meanwhile, to achieve these 

objectives, it is essential that population is aware its fundamental role fighting against 

COVID-19. Citizen behavior after opening the confinement is key in order new infections 

do not grow exponentially again, leading back the country to a new quarantine with 

numerous deaths and a massive economic loss. 

Saturation of hospitals plants and ICUs have been a fact during phase 1 (spread or 

expansion). This will also be one of the most important risk in the recovery phase. To 
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deal with new massive demands of HS capacity, governments should find quick solutions 

(asap) and supported by contingencies plans and studies in order to guide as best as 

possible these quick investments.  

In our previous work (Crespo et al., 2020), suitability of local adapted strategies was 

discussed, considering local quarantine times and local GDP reduction impact. Now, the 

paper focuses on feasibility of local planning for CoVid-19 recovery phase. We model 

Health System Capacity in order to control the optimal HS response. 

This way is possible to use and take advantage of great research community effort in 

infection prediction models to:  

i) optimal decision making of sanitary resources allocation and  
ii) early detection of the force of infection the system can face under several 

circumstances and  
iii)  support citizen and organizations self-management. 

According to our previous results based on the prediction model of Gañán-Calvo and 

Hernández Ramos (2020) we focus the study at local level (Indenture level definition). 

Relapses will emerge at local level. But also new HS saturation events will happen at 

local level. Inhabitants of a population will go to local hospitals, which will cause 

saturation in those hospitals in the provinces where the number of new infections is high. 

Through this work, it will also be possible to determine those provinces that, being the 

health system less saturated, will be able to receive people infected from other provinces 

that are in worse conditions, thus achieving an overall improvement in the health system. 

 For the management point of view, recovery is the most complex phase. Not only owing 

to great number of decisions to take but also to real relapses risk. To be aware relapses 

may happen is the first step to control recovery. In this moment of the pandemic (real 

evolution and generated knowledge), relapses risk is critical because it’s high probability 

and “not admissible" consequences. Especially if correct measures are not designed or 

not applied properly, and citizen and organizations do not contribute with the best 

possible self-management decisions.  

Once the confinement is underway, the arrival of infected people to the HS will decay 

and there is a time window, an opportunity, to design a strategy, a plan, to adjust the 

activity recovery to the existing HS’s capacity. 

 

2. Approaches and variables for the Health System (HS) Modelling 

The capacity planning problem, or sometimes the capacity expansion problem, is a 

classical problem in operations management literature. The problem the health systems 

face has important short-term dynamics, in fact, one can find some similarities to the 

problem that some organizations face with products rollouts to limit their short-term 

exposure while positioning themselves to capture the maximum long-term upside.  

In this study, for instance, the magnitude of possible relapses will be uncertain and for 

our strategy development it is extremely important to know how quickly assumptions 

about can be converted to knowledge, and what to do when any assumption is invalidated, 

so managers must develop a kind of “discovery-driven planning” (as explained by 

McGrath et al. (2000). In these cases, the use of a disciplined process to uncover, test, 

and revise the assumptions behind the health system’s response to pandemic, 

systematically, is required. By doing so, there is exposure to uncertainties common to 
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pandemics, but uncertainties can be addressed at the lowest possible cost in public and 

economic health. 

The problem the paper faces in this paper is the one of striking a balance between the 

levels of the restrictive measures to take at the province level vs. the province HS’s 

required capacity to deal with potential relapses. There are two common approaches to 

deal with this problem: 

1. Analytical models. At this point, queue theory models are the most commonly 

used models. The utilization of these models requires the knowledge of the rates 

of patient’s arrival, and the distribution of the time for patients’ treatments, in 

hospitals plants and intensive care units (ICUs). Other analytical models to deal 

with this problem such as Linear Programming models can also be used (Duffuaa, 

2000), although many authors of these models recognize that it is very complex 

to treat the general capacity planning problem in a single optimization model 

including all aspects of the problem. 

2. Monte-Carlo Simulation models. A more general approach is based in stochastic 

simulation (Dekker et al., 1995). The simulation will be carried out in the 

computer, and estimates will be made for the desired measures of performance 

(Hoyland et al, 1995). The simulation will be then treated as a series of real 

experiments, and statistical inference will then be used to estimate confidence 

intervals for the desired performance metrics.  

High number of variables allow us to define the system accurately, but on the other hand, 

this will increase the complexity of the model and therefore it will be more difficult to 

solve. Modelling optimization entail reaching an intermediate point where the system is 

well defined without making its resolution very difficult. The variables chosen to define 

the queuing model and the simulation model are shown in Table 1. The variables are 

divided into three groups. 

Note that although many variables depend on the study region or time, there are certain 

variables that have been assumed constant in this study. The ratios of people who recover 

from the hospital and go home (Rph), of people who die on the hospital Plant (Rpd) and 

of people who die in the ICU (Rid) have remained fairly constant over time and for the 

different provinces (Sources). Therefore, we have decided to keep its values constant 

throughout the study. On the other hand, for the average times that a person has spent at 

the Plant (Ttp) or ICU (Tticu), we have calculated (Sources) a reference value that we 

have used in all the provinces and that, therefore, we have also assumed constant 

throughout the study. The rest of the variables are assumed to be variables with the region 

and with time. All the used variables of the health system from now on in both the queuing 

model and the simulation model are defined in Table 1. 

3. Modelling the HS response using QT analytical models. 

Queuing processes can be modelled as continuous time stochastic processes with a 

discrete number of states. When the distribution function is exponential, the process is 

said to be a homogeneous Poisson process (HPP). In this case Poisson processes, because 

of their definition, have properties that are interesting to us, for instance: 

 Reproductive property: If we mix n independent Poisson processes, the result is 

another Poisson process which has an arrival rate equal to the sum of the rates of 

the processes considered; 

 Divisible character. That is to say, if the arrivals are ruled by a Poisson process of 

rate λ and every arrival is directed to a certain subsystem i with probability pi, 
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with i=1, …, n. Then each of the subsystems is a Poisson process with arrival rates 

λp1, λp2,…,λpn; 

 If a phenomenon of arrivals is obtained from a great number of renovation 

independent processes, the above-mentioned process it is approximately a Poisson 

process. At least in intervals of time of short duration in comparison with the times 

between arrivals of the individual processes. 

 

Variables group Variables definition Notation Units 

System states 

related variables 

Number of infected that goes to the hospital 𝐶 People/day 

Treated at the Plant (Queue or bed) 𝑁𝑡𝑝 People 

Treated in Bed at the Plant 𝑁𝑝 People 

Waiting for Plant 𝑁𝑤𝑝 People 

Treated at the ICU (Queue or bed) 𝑁𝑡𝑖𝑐𝑢 People 

Treated in Bed at the ICU 𝑁𝑖𝑐𝑢 People 

Waiting for ICU 𝑁𝑤𝑖𝑐𝑢 People 

Death Toll 𝐷𝑡𝑜𝑙𝑙 People 

Confined at home 𝑁𝑐ℎ People 

Immunized 𝑁𝑖 People 

Flows related 

variables 

Entering at the plant 𝜆𝑒𝑝 People/day 

With bed assigned at the Plant 𝜇𝑏𝑎 People/day 

Directed to the ICU from triage 𝜆𝑖𝑐𝑢 People/day 

Entering the ICU 𝜆𝑒𝑖𝑐𝑢 People/day 

Entering home confinement 𝜆𝑒ℎ𝑐 People/day 

Entering Plant from ICU 𝜇𝑒𝑝𝑓𝑖 People/day 

Entering the ICU from Plant 𝜇𝑒𝑖𝑓𝑝 People/day 

Dying at the ICU 𝜇𝑖𝑑 People/day 

Dying at the Plant 𝜇𝑝𝑑 People/day 

Released for home confinement 𝜇𝑟ℎ𝑐 People/day 

Cured at home 𝜇𝑐ℎ People/day 

Leaving plant 𝜇𝑝 People/day 

Leaving ICU 𝜇𝑖𝑐𝑢 People/day 

Ratios, times and 

capacities 

variables 

Ratio of patients derived to Plant 𝑅𝑝 Ratio 

Ratio of patients derived to ICU 𝑅𝑖𝑐𝑢 Ratio 

Plant to Home ratio 𝑅𝑝ℎ Ratio 

Plant Death ratio 𝑅𝑝𝑑 Ratio 

ICU Death ratio 𝑅𝑖𝑑 Ratio 

Average total time spent in Plant per patient 𝑇𝑡𝑝 Days 

Average total time spent in ICU per patient 𝑇𝑡𝑖𝑐𝑢 Days 

Time spent in Bed at the Plant 𝑇𝑝 Days 

Time spent in Bed at the ICU 𝑇𝑖𝑐𝑢 Days 

Average time at home 𝑇ℎ Days 

Time waiting in Plant 𝑇𝑤𝑝 Days 

Time waiting in ICU 𝑇𝑤𝑖𝑐𝑢 Days 

Plant capacity  𝐶𝑝𝑏 Beds 

ICU capacity  𝐶𝑖𝑐𝑢 Beds 

Table 1. Variables of the Health System (HS) Modelling 
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Although one of the queuing problem hypotheses is to use a FIFO policy (First Inside, 

First Outside), circumstance that will not happen in real life, since the severity of the 

patient in the queue will finally prevail over the arrival order, due to the small percentage 

of the cases that occur daily, it is assumed that calculated averages will not be altered and 

therefore the use of this model continues to be successful. 

Considering previous properties, following formulation of stationary queuing problem  

(presented in Table 2 and Figure 1) is applied to the HS. 

 

Variables Notation Units Value 

Daily number of infected arriving to hospitals 𝐶 People/day Province based 

Ratio of patients derived to Plant 𝑅𝑝 Ratio Province based 

Ratio of patients derived to ICU 𝑅𝑖𝑐𝑢 Ratio Province based 

Average total time spent in Plant per patient 𝑇𝑡𝑝 Days 11 

Average total time spent in ICU per patient 𝑇𝑡𝑖𝑐𝑢 Days 14 

Plant capacity  𝐶𝑝𝑏 Beds Province based 

ICU capacity  𝐶𝑖𝑐𝑢 Beds Province based 

Plant to Home ratio 𝑅𝑝ℎ Ratio 80% 

Plant Death ratio 𝑅𝑝𝑑 Ratio 15% 

ICU Death ratio 𝑅𝑖𝑑 Ratio 13% 

Table 2. Input data to solve the queuing problem applied to HS. 

 

Figure 1. Queuing problem applied to Plant and ICU 

The first step to solve the stationary problem will be to calculate the number of people 

entering the Plant and the number of people entering the ICU, which can be done directly 

with the following equations: 

𝜆𝑒𝑝 = 𝐶 · 𝑅𝑝         (1) 

𝜆𝑒𝑖𝑐𝑢 = 𝐶 · 𝑅𝑖𝑐𝑢        (2) 

Secondly, once these two flows of people are known, we will calculate the four remaining 

flows will be calculated using, on the one hand, the ratios of people who recover in Plant 
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and the people who die in the ICU and, on the other hand, the two equations that are 

obtained when applying continuity in the Plant and ICU systems, that is, equalizing the 

input and output flows of each system. 

𝜇𝑟ℎ𝑐 = 𝑅𝑝ℎ · (𝜆𝑒𝑝 + 𝜇𝑒𝑝𝑓𝑖)        (3) 

𝜇𝑝𝑑 = 𝑅𝑝𝑑 · (𝜆𝑒𝑝 + 𝜇𝑒𝑝𝑓𝑖)        (4) 

𝜇𝑖𝑑 = 𝑅𝑖𝑑 · (𝜆𝑒𝑖𝑐𝑢 + 𝜇𝑒𝑖𝑓𝑝)        (5) 

𝜆𝑒𝑝 + 𝜇𝑒𝑝𝑓𝑖 = 𝜇𝑒𝑖𝑓𝑝 + 𝜇𝑟ℎ𝑐 + 𝜇𝑝𝑑       (6) 

𝜆𝑒𝑖𝑐𝑢 + 𝜇𝑒𝑖𝑓𝑝 = 𝜇𝑒𝑝𝑓𝑖 + 𝜇𝑑        (7) 

This is a system of 4 equations with 4 unknown variables that is easy to solve and from 

which it is obtained all the flows of the queuing problem. Once flows are known, 

everything else can now be calculated using the equations presented above from the 

queuing theory. According to little's law, total number of people within each system can 

be calculated: 

𝑁𝑡𝑝 = (𝜆𝑒𝑝 + 𝜇𝑒𝑝𝑓𝑖) · 𝑇𝑡𝑝         (8) 

𝑁𝑡𝑖𝑐𝑢 = (𝜆𝑒𝑖𝑐𝑢 + 𝜇𝑒𝑖𝑓𝑝) · 𝑇𝑡𝑖𝑐𝑢        (9) 

To calculate the number of people waiting in each queue, and the waiting time, it is useful 

to calculate the patient exit rate (μ) and the saturation rate (ro) of each system.  

𝜇𝑝𝑏 = 𝐶𝑝𝑏/𝑇𝑡𝑝         (10) 

𝜇𝑖𝑐𝑢 = 𝐶𝑖𝑐𝑢/𝑇𝑡𝑖𝑐𝑢         (11) 

𝜌𝑝 = (𝜆𝑒𝑝 + 𝜇𝑒𝑝𝑓𝑖)/𝜇𝑝𝑏        (12) 

𝜌𝑖𝑐𝑢 = (𝜆𝑒𝑖𝑐𝑢 + 𝜇𝑒𝑖𝑓𝑝)/𝜇𝑖𝑐𝑢        (13) 

Once these variables are calculated, it is time to apply the following equations and obtain 

the people in the queues and the average time they have to wait. 

𝑁𝑤𝑝 =
𝜌𝑝2

(1 − 𝜌𝑝)⁄         (14) 

𝑁𝑤𝑖𝑐𝑢 =
𝜌𝑖𝑐𝑢2

(1 − 𝜌𝑖𝑐𝑢)⁄         (15) 

𝑇𝑤𝑝 =
𝜌𝑝

𝜇𝑝𝑏 · (1 − 𝜌𝑝)⁄         (16) 

𝑇𝑤𝑖𝑐𝑢 =
𝜌𝑖𝑐𝑢

𝜇𝑖𝑐𝑢 · (1 − 𝜌𝑖𝑐𝑢)⁄        (17) 

Finally, applying continuity again, we can calculate the average number of people in bed 

on the floor and in the ICU are obtained, as well as the time they are there. 

𝑁𝑝 = 𝑁𝑡𝑝 − 𝑁𝑤𝑝          (18) 

𝑁𝑡𝑖𝑐𝑢 = 𝑁𝑖𝑐𝑢 − 𝑁𝑤𝑖𝑐𝑢        (19) 

𝑇𝑝 = 𝑇𝑡𝑝 − 𝑇𝑤𝑝         (20) 

𝑇𝑖𝑐𝑢 = 𝑇𝑡𝑖𝑐𝑢 − 𝑇𝑤𝑖𝑐𝑢        (21) 

It is essential for the problem to converge that the saturation rate (ro) in both Plant and 

ICU is always less than one, which means that the patient entry rate remains below the 

patient exit rate that can give the system due to its capacity. Therefore, for the problem to 

have a solution, it is an essential condition: 
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𝜌𝑝 =
(𝜆𝑒𝑝+𝜇𝑒𝑝𝑓𝑖)

𝜇𝑝𝑏
< 1 → 𝜆𝑒𝑝 + 𝜇𝑒𝑝𝑓𝑖 < 𝜇𝑝𝑏                      (22) 

𝜌𝑖𝑐𝑢 =
(𝜆𝑒𝑖𝑐𝑢+𝜇𝑒𝑖𝑓𝑝)

𝜇𝑖𝑐𝑢
< 1 → 𝜆𝑒𝑖𝑐𝑢 + 𝜇𝑒𝑖𝑓𝑝 < 𝜇𝑖𝑐𝑢     (23) 

This can be considered as a sort of calculator, that assuming a given HS capacity, give us 

the maximum input rate of patients the system can handle, considering of course 

stationary conditions. Obviously, the HS under the pandemic thread will never be under 

a stationary state but this result offers an interesting tool to understand the expected 

system conditions at certain scenarios, for instance capacity versus patients arrival rate.  

 

Figure 2. Plant saturation per province vs Infected people going to hospital 

Notice that Figure 2 & 3 results are calculated assuming stationary conditions with the 

intention to stablish reference patient flow limits for HS units saturation. 

 

Figure 3. ICU saturation per province vs Infected people going to hospital 
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Figure 2 shows the evolution of the saturation of the plant in each province (ρp) versus 

the number of infected patients who pass through the hospital in that province. In this 

number of infected people grows daily, and saturation of the plant increases, reaching a 

number from which the plant cannot handle it. Similarly, Figure 3 shows the saturation 

of the ICU (ρicu) versus the number of infected registered in the province. Note that since 

the capacity of the ICUs is much less than that of the Plants, they are saturated for a 

smaller number of infected in each province. 

However, managers cannot allow hospitals to reach such a saturation level (ρ=1), since 

the number of people in the queue at the Plant and ICU will greatly increase and also the 

time they are waiting, causing deaths that can be preventable. To avoid these long queues 

and waiting times we have limited the waiting time in the queues to 1 hour, which leads 

to maximum saturations for the Plant and the ICU in each province. These results are 

shown in Table 3 (see also Figure 4). This table shows first the capacity of the plant and 

the ICU of each province, in number of beds. 

PLANT Almería Cádiz Córdoba Granada Huelva Jaén Málaga Sevilla 

Plant capacity 

(beds) 

1003 1847 1347 1873 857 1160 2686 2650 

Average     𝝀𝒆𝒑 +
𝝁𝒆𝒑𝒇𝒊 

9 20 22 44 12 27 57 45 

Average 𝝆𝒑 0.11 0.13 0.20 0.28 0.17 0.28 0.25 0.20 

𝝆𝒑  Sat. (Tw>1h) 0.79 0.87 0.83 0.88 0.76 0.81 0.91 0.91 

Average      𝝀𝒆𝒑 +

𝝁𝒆𝒑𝒇𝒊      in 

saturation 

66 134 93 136 54 78 204 201 

ICU Almería Cádiz Córdoba Granada Huelva Jaén Málaga Sevilla 

ICU capacity 

(beds) 

88 172 139 205 79 110 279 290 

Average   𝝀𝒆𝒊𝒄𝒖 +
𝝁𝒆𝒊𝒇𝒑 

3 5 5 11 4 6 13 12 

Average 𝝆𝒊𝒄𝒖 0.44 0.49 0.63 0.87 0.75 0.95 0.78 0.66 

𝝆𝒊𝒄𝒖 Sat. (Tw>1h) 0.79 0.90 0.81 0.89 0.71 0.76 0.90 0.96 

Average  𝝀𝒆𝒊𝒄𝒖 +

𝝁𝒆𝒊𝒇𝒑 in 

saturation 

5 11 8 13 4 6 18 20 

Table 3. Maximum saturations allowed for the Plants and ICUs of each province. Public and 

private hospitals (source: Junta de Andalucía) 

 

0

1

2

3

4

5

0

10

20

30

40

50

60

Almería Cádiz Córdoba Granada Huelva Jaén Málaga Sevilla

Avs. Saturation Rates  for Tw> 1 hour

Plant saturation rate ICU saturation rate Ratio Plant/ICU Saturation

h
tt

p
s:

/
/

id
u

s.
u

s.
es

/
h

an
d

le
/

11
44

1/
95

40
7

 



 

 

Figure 4. Summary of saturation rates results for Tw> 1hr. in plant and ICU and their quotient. 

Logically, the higher this capacity, the more saturation is able to achieve without greatly 

increasing queuing times. Second, the average number of people entering the Plant and 

ICU currently in each province and the average saturation of both services are shown. 

Note that currently having carried out an effective confinement in the provinces of 

Andalusia, the Plants show a saturation level in almost all cases below 25%. Likewise, 

the ICUs, although they are more saturated because they have less capacity, do not reach 

a very critical value in any province except in Jaén, which if this had been the entry rate 

since the beginning of the pandemic would have been saturated.  

Having evolved with a variable entry rate, this did not actually happen. Finally, it is we 

shown the saturation of the plant and the ICU and the number of patients in each service 

for which the queues of the services would take more than an hour (considered 

unacceptable). In the provinces that have more capacity, such as Malaga or Seville, the 

plant can be more saturated, even reaching 90% and the waiting time will not exceed 1 

hour, however, in others with less capacity, such as Huelva or Almería, this time of one 

hour is expected to be reached for saturations of less than 80%. 

4. Modelling the HS response using Monte-Carlo simulation. 

In this section, Monte-Carlo simulation method is applied to the problem of designing a 

COVID-19 response management strategy, in a way that the expected relapses of the 

pandemic when the confinement is finished, can be properly managed. This method 

allows considering relevant aspects of the health systems operation in order to create a 

realistic dynamic scenario of the system through the generation of certain random and 

discrete events, which cannot be easily captured by analytical models, such as: variable 

and seasonal demand, stand-by facilities, dynamic capacity adjustments, treatment 

priorities, etc. By doing so, we can avoid restrictive modelling assumptions that had to be 

introduced to fit the models to the numerical methods available for their solution, at the 

cost of drifting away from the actual system operation and at the risk of obtaining 

sometimes dangerous misleading results (Pidd et al., 2003). The weak point of the Monte-

Carlo method is the computing time (Marseguerra et al.,2000) especially when the search 

space for the control variables of the problem to test increases, though the computation 

levels of recent servers minimizes this dependence. 

For a better understanding, the simulation problem by Monte-Carlo is structured in two 

blocks: The Health System Capacity Planning Problem and Hospital Demand Dynamic 

Model Determination Problem. 

4.1.HS System Capacity Model for COVID-19 Planning Problem 

The health system capacity planning problem will now be modeled (see Figure 5) using 

continuous time stochastic simulation (other examples can be found in the literature in 

discrete event simulation too, like un Günal et al, 2010) . This simulation will evaluate 

the system state every constant time interval (Δt =1 day), the new system state will be 

recorded and statistics collected. We will consider chronological issues by simulating the 

number of patients to be treated at any time in the different units. The model is built using 

VENSIM (Ventana, 2004) as simulation tool, which has special features to facilitate 

Monte-Carlo type of simulation experiments, and to provide confidence interval 

estimations.  
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The following are the formal difference equations for the continuous time stochastic 

simulation model considered: 

 

 

Figure 5. Stock and flow diagram of the health system. 

State variable equations  

The patients waiting for treatment, at the ICU: 

𝑁𝑤𝑖𝑐𝑢𝑡 = 𝑁𝑤𝑖𝑐𝑢𝑡−1 + 𝜆𝑖𝑐𝑢𝑡 − 𝜆𝑒𝑖𝑐𝑢𝑡 , with the following initial conditions: (24) 
𝑁𝑤𝑖𝑐𝑢𝑡𝑜 = 𝑁𝑤𝑖𝑐𝑢0   (25) 

The patients waiting for a bed in the plant: 

𝑁𝑤𝑝𝑡 = 𝑁𝑤𝑝𝑡−1 + 𝜆𝑒𝑝𝑡  − 𝜇𝑏𝑎𝑡  , with the following initial conditions:  (26) 
𝑁𝑤𝑝𝑡𝑜 = 𝑁𝑤𝑝𝑜   (27) 

The number of patiens confined at home would be: 

𝑁𝑐ℎ𝑡 = 𝑁𝑐ℎ𝑡−1 + 𝜆𝑒ℎ𝑐𝑡 + 𝜇𝑟ℎ𝑐𝑡  − 𝜇𝑏𝑎𝑡  , with the following initial conditions: (28) 
𝑁𝑐ℎ𝑡𝑜 = 𝑁𝑐ℎ𝑜   (29) 

These leaving the home confinement would me immunized: 

𝑁𝑖𝑡 = 𝑁𝑖𝑡−1 + 𝜇𝑐ℎ𝑡  , with the following initial conditions:   (30) 
𝑁𝑖𝑡𝑜 = 𝑁𝑖𝑜   (31) 

The number of patiens treated at the ICU would be: 

𝑁𝑡𝑖𝑐𝑢𝑡 = 𝑁𝑡𝑖𝑐𝑢𝑡−1 + 𝜆𝑒𝑖𝑐𝑢𝑡 + 𝜇𝑒𝑖𝑓𝑝𝑡  − 𝜇𝑒𝑝𝑓𝑖𝑡 − 𝜇𝑖𝑑𝑡, with initial conditions: (32) 
𝑁𝑡𝑖𝑐𝑢𝑡𝑜 = 𝑁𝑡𝑖𝑐𝑢𝑜   (33) 

The number of patiens treated at the plant would be: 

𝑁𝑡𝑝𝑡 = 𝑁𝑡𝑝𝑡−1 + 𝜇𝑏𝑎𝑡 + 𝜇𝑒𝑝𝑓𝑖𝑡 − 𝜇𝑟ℎ𝑐𝑡 − 𝜇𝑒𝑝𝑓𝑖𝑡−𝜇𝑝𝑑𝑡, with initial conditions: (34) 
𝑁𝑡𝑝𝑡𝑜 = 𝑁𝑡𝑝𝑜   (35) 
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Finally, part of tse treated at the ICU will die: 

𝐷𝑡𝑜𝑙𝑙𝑡 = 𝐷𝑡𝑜𝑙𝑙𝑡−1 + 𝜇𝑖𝑑𝑡 + 𝜇𝑝𝑑𝑡  , with the following initial conditions:  (36) 
𝐷𝑡𝑜𝑙𝑙𝑡𝑜 = 𝐷𝑡𝑜𝑙𝑙𝑜   (37) 

 

Flow variables equations: 

𝜆𝑖𝑐𝑢𝑡 = 𝐼(𝐶𝑡 × 𝑅𝑖𝑐𝑢)          (38) 

𝜆𝑒𝑝𝑡 = 𝐼(𝐶𝑡 × 𝑅𝑝)          (39) 

𝜆𝑒ℎ𝑐𝑡 = 𝐶𝑡 − (𝜆𝑖𝑐𝑢𝑡 + 𝜆𝑒𝑝𝑡)        (40) 

𝜇𝑐ℎ𝑡 = 𝐼(𝐷𝑒𝑙𝑎𝑦3(𝜆𝑒ℎ𝑐𝑡 + 𝜇𝑟ℎ𝑐𝑡 , 𝑇ℎ))       (41) 

𝜇𝑟ℎ𝑐𝑡 = 𝐼(𝑅𝑝ℎ × 𝑁𝑡𝑝𝑡/𝑇𝑝)         (42) 

𝜇𝑒𝑝𝑓𝑖𝑡 = 𝐼((1 − 𝑅𝑖𝑑) ×  (𝑁𝑡𝑖𝑐𝑢𝑡−1/𝑇𝑖𝑐𝑢))        (43) 

𝜇𝑝𝑑𝑡 = 𝐼(𝑅𝑝𝑑 × 𝑁𝑡𝑝𝑡−1/𝑇𝑖𝑐𝑢))        (44) 

𝜇𝑖𝑑𝑡 = 𝐼(𝑅𝑖𝑑 × 𝑁𝑡𝑖𝑐𝑢𝑡−1/𝑇𝑖𝑐𝑢))        (45) 

𝜇𝑒𝑖𝑓𝑝𝑡 = 𝐼((1 − 𝑅𝑝ℎ − 𝑅𝑝𝑑) × 𝑁𝑡𝑝𝑡/𝑇𝑝)       (46) 

𝜆𝑒𝑖𝑐𝑢𝑡 = 𝑀𝐼𝑁(𝐶𝑖𝑐𝑢 − 𝑁𝑖𝑐𝑢𝑡−1−𝜇𝑒𝑖𝑓𝑝𝑡 + 𝜇𝑒𝑝𝑓𝑖𝑡 , 𝑁𝑤𝑖𝑐𝑢𝑡−1 + 𝜆𝑖𝑐𝑢𝑡)   (47) 

𝜇𝑏𝑎𝑡 = 𝑀𝐼𝑁(𝐶𝑝 − 𝑁𝑡𝑝𝑡−1 − 𝜇𝑒𝑝𝑓𝑖𝑡 + 𝜇𝑒𝑖𝑓𝑝 + 𝜇𝑝𝑑, 𝑁𝑤𝑖𝑐𝑢𝑡−1 + 𝜆𝑒𝑝𝑡)   (48) 

Where: 

𝐼(𝑥): Funtion providing the integer value for x 

𝐷𝑒𝑙𝑎𝑦3(𝑥, 𝑦): Funtion providing a third order delay of input x for the timedelay y 

Then, for a greater resemblance to reality, it is crucial to determine hospital demand 

caused by COVID-19 in order to feed the previous model. 

4.2. Selected model for HS demand for COVID-19 determination 

For the dynamic modelling of the problem dealing with hospital demand determination, 

it is selected a type of SEIR model similar to others in literature (Iwata et al., 2020), that 

has been then re-formulated in a particular way. The general formulation of the SEIR 

model is a set of four first order differential equations as follows: 

𝑑𝑆
𝑑𝑡⁄ = −𝛽 ×

(𝑆 × 𝐼)
𝑃⁄        (49) 

𝑑𝐸
𝑑𝑡⁄ = 𝛽 ×

(𝑆 × 𝐼)
𝑃⁄ − 𝑎 × 𝐸      (50) 

𝑑𝐼
𝑑𝑡⁄ = 𝑎 × 𝐸 − 𝛾 × 𝐼       (51) 

𝑑𝑅
𝑑𝑡⁄ = 𝛾 × 𝐼         (52) 

Where S, E, I and R are for Susceptible, Exposed, Infectious and Recovered populations, 

respectively. P is the complete population, β is the force of infection or the disease 

transmission rate, a is the inverse of the latent infection period and γ is the inverse of the 

infection duration time. For this model Ro, the disease basic reproduction number, is 

defined as  𝑅0 = 𝛽 𝛾⁄ . In Figure 6, the model design that has been selected for the 
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empirical resolution of the above differential equations is presented. The list of complete 

used variables that we use are in Table 4.  

 

Figure 6. Stock and flow diagram of the pandemic SEIR&D model. 

 

 

State variables Notation Units 

Infectious population 𝐼 People/day 

Exposed 𝐸 Ratio 

Population susceptible to be infected 𝑆 Ratio 

Recovered and Deaths 𝑅&𝐷 Days 

Total infected (Prediction) 𝑇𝑖𝑛𝑓 Days 

Flow variables Notation Units 

Infecting 𝐼𝑛 People/day 

Health system input flow 𝐻𝑆𝑖𝑛 People/day 

Output flow 𝑂𝑢𝑡 People/day 

Auxiliary variables Notation Units 

Fraction of population susceptible 𝐹𝑠 Ratio 

Contacts between infected and susceptible 𝑇𝑐 Ratio 

Basic reproduction number before(bc) and (uc) confinement. 𝑅0 People 

Force of infection or transmission rate 𝛽 People/day 

Model parameters Notation Units 

Time of confinement 𝑇𝑐𝑜 Days 

Time of infection incubation 𝑇𝑖𝑖 Days 

Time of infection duration 𝑇𝑖𝑑 Days 

 

Table 4. Notation of the variables used in SEIR&D model. 
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 These are the formal difference equations for the continuous time stochastic simulation 

model considered are: 

State variable equations  

The population supceptible to be infected: 

 𝑆𝑡 = 𝑆𝑡−1  − 𝐼𝑛𝑡  , with the following initial conditions:   (53) 

 𝑆𝑡𝑜 = 𝑆𝑜   (54) 

The exposed population is: 

 𝐸𝑡 = 𝐸𝑡−1 + 𝐼𝑛𝑡−𝐻𝑆𝑖𝑛𝑡  , with the following initial conditions:   (55) 

 𝐸𝑡𝑜 = 𝐸𝑜   (56) 

The infectious population: 

 𝐼𝑡 = 𝐼𝑡−1 + 𝐻𝑆𝑖𝑛𝑡 − 𝑂𝑢𝑡𝑡 , with the following initial conditions:  (57) 

 𝐼𝑡𝑜 = 𝐼0   (58) 

The population Recovered ad death is: 

 𝑅&𝐷𝑡 = 𝑅&𝐷𝑡−1 + 𝑂𝑢𝑡𝑡  , with the following initial conditions:  (59) 

 𝑅&𝐷𝑡𝑜 = 𝑅&𝐷𝑜   (60) 

Flow variables equations: 

𝐼𝑛𝑡 = 𝐼(𝛽 × 𝑇𝑐𝑡)         (61) 

𝐹𝑠𝑡 = 𝑆𝑡/𝑆𝑜𝑡   , with So, the initical susceptible population (62) 

𝐻𝑆𝑖𝑛𝑡 = 𝐼(
𝐸𝑡

𝑇𝑖𝑖⁄ )         (63) 

𝑂𝑢𝑡𝑡 = 𝐼(
𝐼𝑡

𝑇𝑖𝑑⁄ )         (64) 

Aauxiliary variables equations: 

𝐹𝑠𝑡 = 𝑆𝑡/𝑆𝑜𝑡   , with So, the initical susceptible population (65) 

𝑇𝑐𝑡 = 𝐹𝑠𝑡 × 𝐼𝑡         (66) 

𝛽𝑡 =
𝑅0𝑡

𝑇𝑖𝑑
⁄          (66) 

4.3. Calibrating and Deduced behavior patterns of the Models 

With the aim of validating the models with data, calibrating parameters according to fit 

observed real-life behavior patterns, a real case is selected for the Malaga province. In 

Figure 7, it is presented results for Tinf in Málaga, the predictor for the total infected 

people. Picture shows the parts of the curve that are critical for its calibration.  

In Málaga the confinement took place Tco=19 days after the first person was found 

infected, Io=1 and So=1.6M People, the curve best fit obtained, assuming a basic 

reproduction number R0bc=7 persons (within limits presented in Biao Tang et al, 2020) 

are for:  Tid=7 days and Tii=4.1 days. 𝑅0𝑢𝑐 could be calibrated as in Figure 8, where the 

reader can notice that R=<1 was reached in less than 30 days after the confinement (this 

result that we will remind later). Notice the R0 is substantially reduced under confinement 

to reach values close to 0.37 persons.   
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Figure 7. Model results for prediction of Total Infected (Tinf) in Málaga. 

 

Figure 8. Result for RO calibration under confinement 𝑅𝑂𝑢𝑐(𝑡 − 𝑇𝑐𝑜). 

Once the model is calibrated, Monte-Carlo simulation can evaluate the saturation of ICU 

or Plant before and under the confinement. This is relevant to gain understanding about 

the pandemic and HS dynamics when releasing confinement measures. The calibrated 

model replicated how, despite possible punctual hospital problems in ICUS, the HS in 

Málaga was far from saturation thanks to the early confinement of the population.  

4.4. Citizen self-management. Relevant information obtained from the 

model application.  

Last part of this paper is dedicated to understand, with the model, the effort that must be 

expected from the citizens when the confinement ends. In this new phase of the Covid-

19 pandemic, recovery phase. What is the force of infection that our HS can bear? What 

is the basic information that citizens should perfectly know in order take good decisions 

to collaborate in relapses risk reduction? How long will this next phase last? 

In order to consider this important aspect projecting the model results until day 200, that 

is to say, 125 days after the release of the confinement, assuming this will take place the 

day 75, 56 days after the confinement (May 10th for Málaga). Multivariate sensitivity 

analysis has been done. It is considered the following hypothesis:  

 [𝑇𝑖𝑛𝑓𝑡 30%] variability added in prediction for infected (random uniform),  

 [𝑅 & 𝑇 20%] variability added in flow rates and times in HS (random uniform),   

 𝑅0𝑎𝑐 , after confinement, within the interval [0.85 − 1,5], also (random uniform). 
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Results for the sensitivity analysis 400 simulations are presented in Figures 9 and 10, 

where plant and ICU occupations for 125 days since the release of the confinement are 

analyzed. These results show: 

 The risk of ICU saturation is very low only 5% of the simulations. 

 No saturation would take place in Plant, since we would never reach the 2000 

patients regardless the possible queue of patients in plant waiting for ICU. 

 Although this would be the maximum level of risk to bear within the period 

analyzed (R0=1.5), ensuring control to limit R0 to 1.1 persons maximum would 

be advisable, monitoring the status of the variable, preparing for eventual 

confinement that could take place if needed due to an important relapse, and in a 

number of days that could be stablished following the curve in Figure 8. 

 According to Figure 8, and the data and calibration of the model in Málaga, in 

case of sudden relapses (monitored over a certain period, for instance 5 days) a 2 

weeks quarantine would be enough to lower R0 to reach levels below 1 person 

(see strategy in Qun Li et al, 2020). 

 

 

Figure 9. Sensitivity results for plant occupation. 

 

 

Figure 10. Sensitivity results for ICU occupation. 

Curve for 𝑅𝑂𝑎𝑐 = 1.1 

Curve for 𝑅0𝑎𝑐 = 1.1 
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Finally, in figure 10 we present the graph with Monte-Carlo analysis results for the 

expected death toll for the province. The reader can have look at the impact in number of 

deaths when relaxing the R0. Again, here simulation results are for a uniform distribution 

in R0 within the interval [0.85 − 1,5]. We call readers attention in the simulation horizon, 

that would end very close to the point when a vaccine could be available. This mark the 

end of recovery phase and the beginning of the following phase of Covid-19 pandemic 

life cycle. May be an “stationary phase” with seasonal peaks, as other viruses. 

 

Figure 11. Sensitivity results for Death Toll. 

Another important discussion that could be possible with the model, not done in this 

paper, is the impact in measures of any antiviral medicine that could be available at a 

certain moment in time, and whose doses could be supplied with a certain delay time. 

To maintain the R0 mentioned enormous effort must be done by citizens and society in 

general. R0 results of multiplying the average number of contacts (𝑁𝑐) that infectious 

people have with people susceptible to be infected (I× 𝐹𝑠), times the ratio of infection of 

a contact (𝑅𝑖), times the time of infection duration (𝑇𝑖𝑑).  

𝑅𝑂 = 𝛽 × 𝑇𝑖𝑑 = (𝑁𝑐 × 𝑅𝑖𝑛) × 𝑇𝑖𝑑 

Therefore, citizens must be aware about the personal effort in contacts reduction 

(mobility, events, meetings, etc.) and in lowering the ratio of infection (PPEs, social 

distancing, hygiene, etc.) that will be expected from them.   

5. Conclusions 

Reaching the end of the second phase of the pandemic life cycle determined by the end 

of the confinement suffered in almost all countries of the world, there is a common 

objective for the next phase, to be prepared not to cause an exponential growth of the 

virus again leading to a second quarantine. With the tools proposed in this manuscript, 

the aim is to face this new phase of possible relapses, facilitating decision-making. The 

end of this phase will be determined by the appearance of a vaccine or that a significant 

percentage of the population has suffered from the virus, leading to the last phase of the 

virus life cycle or post-pandemic phase. 

Curve for 𝑅0𝑎𝑐 = 1.1 
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The presented simulation model is a powerful tool to cope with the virus phase of possible 

relapses. First, when the confinement is released it will be essential to control the new 

infections. The recovery phase requires everyone to act in an environment of tremendous 

uncertainty. Our model gives accurate and easily interpreted data so that the citizen knows 

how to adapt their behavior until a cure appears. Those same data can be used in the self-

management of companies and work centers. 

Conversely, if citizens are unable to adapt their behavior, it would cause a relapse of the 

virus that the model can detect in time. Our model identifies these data and allows us to 

follow the evolution of possible relapses, predicting whether it is possible that hospitals 

will become saturated in the future. This is the key information to make decisions, both 

for companies and citizens. 

Finally, if new confinement is required, this tool makes it easier to locate resources where 

they are really needed, supplying more resources in those areas that are close to saturation 

than in other regions that do not have the need. These three characteristics that the model 

presents are therefore essential to face this new phase of the virus life cycle that is coming 

and to minimize the impacts that this may cause. 
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