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Abstract: Current energy efficiency policies in buildings foster the promotion of energy retrofitting of
the existing stock. In southern Spain, the most extensive public sector is that of educational buildings,
which is especially subject to significant internal loads due to high occupancy. A large fraction of
the energy retrofit strategies conducted to date have focused on energy aspects and indoor thermal
comfort, repeatedly disregarding indoor air quality criteria. This research assesses indoor air quality
in a school located in the Mediterranean area, with the objective of promoting different ventilation
scenarios, based on occupancy patterns and carbon dioxide levels monitored on site. Results show
that manual ventilation cannot guarantee minimum indoor quality levels following current standards.
A constant ventilation based on CO2 levels allows 15% more thermal comfort hours a year to be
reached, compared to CO2-based optimized demand-controlled ventilation. Nevertheless, the latter
ensures 35% annual energy savings, compared to a constant CO2-based ventilation, and 37% more
annual energy savings over that of a constant ventilation rate of outdoor air per person.

Keywords: school buildings; indoor air quality; CO2 levels; mechanical ventilation; thermal comfort;
energy consumption; Mediterranean climate

1. Introduction

Given that the building sector accounts for around 40% of energy consumption [1] in Europe,
increasing energy efficiency in buildings has become a fundamental goal [2]. As established in Directive
2010/31/EU [3], it is crucial to reduce the energy needed to adequately cool, heat, and ventilate buildings,
fostering alternative solutions that minimize energy demand [4]. Nevertheless, the slow rate at which
existing buildings are being replaced by new constructions [5] makes it difficult to meet the energy
savings proposed in these standards. Thus, the existing building stock must be refurbished in order to
provide significant environmental effects [6]. As a result, current energy policies promote building
retrofitting as a main strategic action, as established in Directive 2012/27/EU [7]. In this regard, Directive
2018/844 [8] establishes a long-term plan to enhance building retrofitting of the existing stock for its
decarbonization, through high-energy efficiency measures, including aspects relating to health and
air quality.

Equally, the increasing outdoor temperatures due to climate change significantly impact the energy
consumption of existing buildings and frequently lead to indoor overheating [9], which negatively
affects thermal comfort and indoor air quality [10]. These phenomena are more pronounced in
the warmer climates of southern Europe [11], including the Mediterranean area. In addition, the
educational building stock is especially sensitive to these issues given the importance of internal
occupancy loads in the thermal balance. This sector is the most extensive for public buildings in
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southern Europe [12]. The Spanish educational building stock was mainly built prior to 1979 [13],
predating the first standard establishing thermal requirements [14]. This stock consists of 33,667
non-university centers, and just over 7200 of these are located in southern Spain [15].

As established by Stabile et al. [16], energetically retrofitting existing buildings is key for reducing
energy costs in the building sector. For this reason, retrofit strategies in the existing educational stock
in Europe have fostered the implementation of consumption-saving solutions, mainly considering
thermal and energy-based approaches [5]. In contrast, indoor air quality (IAQ) is usually relegated to
the background, despite its direct relation to health and comfort [17].

In the case of southern Spain, the existing educational buildings do not generally have cooling
systems [18], since the academic year only considers the partial use of these buildings in summer season
(classes finish in mid-June and start in mid-September). It is therefore vital to promote alternative
retrofit strategies that guarantee adequate IAQ during the periods of use.

Among the main IAQ indicators, carbon dioxide levels are quite widespread when assessing indoor
spaces, such as educational buildings, where the main polluting source is the human metabolism [19].
Wargocki and Wyon [20] stated that both temperatures and air quality in classrooms are important factors
in the learning process, and should be as much a priority as improving teaching methods. Extensive
research has shown that spaces with insufficient or inadequate ventilation may lead to occupant
discomfort [21], while having adverse effects on health and cognitive performance [22,23]. Moreover,
poor IAQ has serious repercussions on the attendance and learning ability of students [24], reducing
the performance of tasks [25,26], and leading to occupant discomfort. Shendell et al. [27] reported
a statistically significant relation between student absenteeism and carbon dioxide concentrations,
stating that a 1000-ppm increase in the difference between indoor and outdoor CO2 concentration
led to an increase of around 10% to 20% in student absenteeism. Branco et al. [28] analyzed how
the exposure to different indoor air pollutants (CO2, CO, HCOH, NO2, O3, total volatile organic
compounds, PM1, PM2.5, PM10, and total suspended particles) influence children’s health and comfort.
After monitoring 25 nursery and primary schools they concluded that PM2.5 and CO2 were the major
concerning pollutants. Likewise, Becerra et al. [29] measured high priority pollutants (such as CO2,
PM2.5, PM10, and TVOC, among others) in nine Mediterranean schools. The authors reported that
the main indoor air pollutant sources were those related to occupancy and settled dust: CO2 and PM.
Lazovic et al. [30] assessed PM10, PM2.5, CO2, and NO2 concentrations in two schools and identified a
correlation between PM and CO2 concentrations.

Several guidelines and standards also consider CO2 levels to be an adequate air quality indicator
in order to modulate the outdoor air flow rate and maintain adequate indoor conditions while limiting
energy consumption [31,32].

Natural ventilation is one of the most effective passive strategies for improving efficiency
and energy saving [33,34], since it requires no energy to operate. Gil-Baez et al. [12] assessed the
effectiveness of a cross natural ventilation system in a school in southern Spain. They stated that the
natural ventilation system allows primary energy savings of up to 33% compared to a mechanical
ventilation system. Vivian-Dorizas et al. [35] analyzed ventilation rates and indoor air pollutants in
nine naturally ventilated schools in Athens (Mediterranean climate). The authors concluded that
the average ventilation rate in all schools was higher than the minimum value recommended by the
standards, with CO2 concentrations also above the limit values.

In the summer of 2017 in Seville (southern Spain), outdoor temperatures exceeded 30 ◦C and
40 ◦C for 67% and 16% of the days, respectively [36]. Thus, natural ventilation is noticeably dependent
on outdoor temperatures [19]. Additionally, current ventilation standards [37] require the air to be
filtered in order to ensure minimum air quality levels. Hence, natural ventilation based exclusively
on opening the windows is usually insufficient to guarantee adequate IAQ conditions in educational
buildings, therefore making it necessary to incorporate mechanical ventilation systems. Moreover, the
control of the ventilation systems is usually conditioned by users and based mainly on thermal aspects,
rather than IAQ [38] conditions, while the existence of cross-ventilation is also a factor in guaranteeing
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the movement of air. Stabile et al. [39] conducted a study on the effect of natural ventilation on IAQ in
several Italian classrooms. They concluded that manual airing based on subjective physical responses
could not provide minimum IAQ in the classrooms during severe meteoclimatic conditions.

For this reason, mechanical ventilation and heat recovery systems are widely incorporated to
achieve adequate IAQ in existing school buildings [40] and a necessary approach for buildings with
a high crowding index [16]. Schibuola et al. [6] analyzed a demand-controlled ventilation system to
retrofit a university library in Venice, reaching total primary energy consumption savings of up to 33%
for a ground-source heat pump. Almeida [41] explained the benefits of optimized demand-controlled
ventilation methods for improving IAQ in classrooms in southern Portugal, comparing a naturally
cross-ventilated classroom with a mechanically ventilated one. According to the surveys collected,
students prefered the IAQ of the mechanically ventilated classroom. This is because air temperatures
were lower and CO2 concentrations almost never exceeded 1500 ppm, as was the case in 20% of the
occupied period with natural ventilation. Stabile et al. [39] compared the IAQ and energy consumption
reported by manual airing (opening windows) and a CO2-based demand-controlled ventilation system.
Mechanical ventilation results showed a reduction in CO2 levels and a lower penetration of sub-micron
particles. Meanwhile, manual airing showed statistical reductions in CO2 when longer airing periods
were set, also leading to higher sub-micron particle infiltration from outdoors.

This paper assessed the IAQ of a monitored school with no HVAC (heating, ventilating, and
air-conditioning) system, located in the Mediterranean area. CO2 levels monitored for one year were
analyzed, considering real use and occupancy patterns. The main objective of this research was
quantitative and comparative analysis, through the energy modelling of several ventilation scenarios
selected based on the criteria established in current standards. The final aim was to ambiently retrofit
the school, evaluating the impact of these scenarios on indoor operative temperatures in the classroom,
when free-running conditions (without heating and cooling systems) were considered. The influence
of the ventilation scenarios on electricity consumption of the systems (fans) was also assessed. The
novelty of this paper is that it assessed whether it is possible to use passive mechanical ventilation
systems (no thermal treatment of air) to improve IAQ conditions in Andalusian schools.

2. Methods

This paper presents an analysis of indoor ambient variables, combining on-site monitoring
techniques and energy simulation modelling. Specifically, IAQ was assessed through the analysis of
the carbon dioxide levels recorded in a school classroom in the Mediterranean climate during a whole
year, extending previous research conducted as part of the same case study [36]. CO2 concentrations
were analyzed in three representative periods when the classroom was occupied (winter, summer, and
mid-season), and using Matlab R2017, a matrix programming for descriptive statistical analysis [42].
Moreover, for the purposes of reference, CO2 levels were also evaluated during an occupied period.

Considering the statistical results obtained, the most unfavorable occupancy pattern of a typical
working day was determined, incorporating carbon dioxide levels registered in the classroom during
the monitoring process. The aim of this was to evaluate the influence of three ventilation scenarios
(explained in Section 2.2) on the indoor temperatures of the classroom during a typical academic year,
as well as on the electricity consumption related to the ventilation systems (fans).

2.1. Considerations for the Indoor Air Quality Analysis

In the analysis of the case study, maximum values recommended by several standards were taken
into account in order to guarantee adequate indoor air conditions. Firstly, the Spanish Standard for
Thermal Installations in Buildings (RITE) [43] recommends maximum values of carbon dioxide levels
according to the indoor air quality required in the building. For educational buildings (air quality:
IDA 2), it is recommended that indoor CO2 levels of 500 ppm over outdoor CO2 concentrations
are maintained.
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In contrast, the American Society of Heating, Refrigerating, and Air-Conditioning Engineers
(ASHRAE) [44] recommends not to exceed indoor carbon dioxide levels by over 700 ppm above
outdoor concentrations. In addition, this standard states that CO2 levels should be below 1000 ppm in
spaces with working stations with continued exposure to pollutants.

Lastly, the European Technical Report CR 1752 [45] establishes an upper limit depending on
the building category, corresponding to the A category, a PPD around 15%, and a ventilation rate of
10 l/(s·person), for sedentary occupants and indoor pollution due to human metabolism. Thus, CO2

concentrations should be kept below 460 ppm over outdoor levels.

2.2. Considerations for the Air Changes Per Hour Analysis

After analyzing indoor air quality analysis, three ventilation scenarios were defined according to
the methods established in the Spanish Standard for Thermal Installations in Buildings (RITE) [44]:
(1) Indirect classification by the rate of outdoor air per person (CVp); (2) indirect classification by
CO2-based constant ventilation (CV); (3) and indirect classification by CO2-based optimized demand
control (VV). The first two methods are explained in RITE [44] and are determined through a constant
ventilation rate.

The first method (CVp) is applied in spaces where people are considered to have a metabolic
rate of around 1.2 met and where most of the indoor pollutants are due to the human metabolism.
Depending on the building use, indoor air quality is defined and a specific minimum ventilation rate
per person is associated to it. In the case of a school classroom, indoor air quality is defined as “IDA 2”,
which corresponds to a minimum ventilation rate of 12.5 l/s·person. When the classroom is unoccupied,
this method considers no ventilation rate. In addition, the ventilation rate obtained requires constant
application when the classroom is occupied, and as a result, it overestimates ventilation necessities.

The second method (CV) is also suitable for spaces where pollution is mainly due to human
biofluents. In this case, ventilation rates are determined using Equation (1):

Q = G/(∆CO2 × E), (1)

where:

Q: Calculated ventilation rate (l/s);
G: CO2 pollutant loads of the space (l/s·person). For a classroom, this is 19 l/s·person;
∆ CO2: Difference between indoor and outdoor CO2 levels (10−6 ppm). For IDA 2, a value of 500 ppm
over outdoor CO2 concentrations was considered;
E: Effectiveness of the ventilation system. This parameter was fixed at 0.9

In this study, a third scenario consisting of a variation of the second method (CV) was included
in the analysis (VV) in order to optimize the ventilation rate depending on the carbon dioxide levels
recorded during a typical working day. Unlike the first two scenarios, VV considers a variable
ventilation rate determined from indoor CO2 recorded during the monitoring of the classroom. For its
calculation, Equation (1) was also applied but considering both monitored indoor and outdoor dioxide
carbon concentrations. Thus, this variable method allows a better adjustment to a real monitored
case study.

2.3. Considerations for the Energy Simulation Analysis: Thermal Comfort and Electrical Consumption

Once the geometrical, physical, and constructive characterization of the classroom was
obtained [46], an energy simulation model was constructed to analyze the influence of the ventilation
scenarios above on the indoor thermal performance and electricity consumption of the ventilation
systems. Neither air heat treatment nor heat recovery systems were considered for the ventilation
design. Thermal comfort was assessed considering operative temperatures (both indoor air and
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surface temperatures) in the simulation model, which incorporated the calculation procedure of
ISO 7726:2002 [47].

For the modelling phase, the energy analysis software Design Builder (v. 4.7.0.027), recognized by
the US DOE [48], was used as an interface to EnergyPlus [49]. The adjacent spaces of the classroom
were also modelled in order to account for their thermal influence. The data from the outdoor variables
monitored during the year were incorporated into the weather file used for the energy simulations.
Indoor air measurements during an unoccupied period in the monitoring stage were used to validate
the energy simulation model following the criteria established in the American Society of Heating,
Refrigerating, and Air-Conditioning Engineers (ASHRAE) Guideline 14-2002 [45].

For the thermal comfort assessment, simulated indoor temperatures were analyzed according
to ISO 7730:2005 [50], considering the classroom occupied in free-running conditions (no cooling or
heating system). This standard establishes a method based on the theory formulated by Fanger [51],
determining a reference temperature band according to the seasonal clothing level, air humidity and
velocity, activity levels, and a specific predicted percentage of dissatisfied (PPD).

Even though several formulations on the adaptive approach (such as CEN EN 15251:2007 [32], and
its revision prEN 16798-1:2015 [52], or ASHRAE 55:2017 [53]) have been developed in recent decades,
revealing a correlation between indoor and outdoor temperatures, these adaptive models can only be
applied with a given outdoor temperature range.

Fanger’s method was considered in the case study since it best reproduces the real metabolic rate
and thermal resistance values recorded in the classroom [36]. In addition, as stated in the introduction,
the upper limits of the outdoor temperature ranges established in the adaptive standards cited were
dramatically exceeded in Seville in 2017. Thus, adaptive models could not be properly implemented in
this case study.

Hence, in order to determine the thermal comfort band, the following aspects were considered:
An average relative humidity of 50%, a metabolic rate of 1.2 met, an interior PPD below 15%, and
a thermal resistance of 0.5 clo in summer and 1.2 clo in winter and mid-season. Thus, the thermal
comfort bands were 16.1 ◦C to 24.1 ◦C for winter and mid-season and 22.8 ◦C to 26.8 ◦C for summer.

When assessing the electricity consumption of ventilation systems, a fan capable of working
both at a constant and a variable ventilation rate was introduced into the simulation software. A
high-performance, low-consumption, and helicon-centrifuge fan was selected, meeting the requirements
of the minimum ventilation rates obtained in the calculations (Section 4.3). For each scenario, the
operating schedule of the fan was implemented in the energy simulation model, and based on the
technical sheets of the product, the corresponding electricity consumption was assigned to each
ventilation rate obtained in the calculations [54].

3. Case Study

3.1. Case Study Description

In order to conduct this research, on-site measurements were obtained for a public educational
building, Martíñez Montañés Secondary School, managed by the Andalusian Regional Government.
This building is located at latitude 37.37◦ N and longitude −5.97◦ W, that is, in southern Spain, in an
area with a Mediterranean climate. A south-facing classroom on the second floor of the school was
monitored specifically (Figure 1).

The 6.95 m × 6.85 m classroom has four windows, which are roughly south facing. The windows,
which are 2.40 m high and 1.40 m wide, account for 53% of the façade surface.

Table 1 shows the constructive and physical properties of the classroom analyzed. The infiltration
rate was obtained using a Blower Door test, conducted to characterize the airtightness of the building’s
envelope, following the procedure established in ISO 9972:2015 [55]. The test results showed that the
air leakage rate at 50 Pa was V50 = 578 (±0.2%) m3/h [47]. The Persily–Kronvall model was adopted [56]
to convert to infiltration rates expressed in air changes per hour (ACH).
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Figure 1. Floor plan of the monitored classroom with the location of the sensors used and the elements
of the proposed ventilation system (explained in Section 4.3).

Table 1. Considerations for the energy simulation model.

Variable Value Unit

Façade: 0.015 m exterior mortar rendering, 0.115 m perforated brick wall, 0.015 m
interior mortar rendering, 0.07 m non-ventilated air chamber, 0.06 m partition

brick wall and 0.015 m gypsum plaster
1.32 W/m2

·K

Partition wall: 0.015 m gypsum plaster, 0.07 m partition brick wall and 0.015 m
gypsum plaster 1.92 W/m2

·K

Floor/ceiling: 0.02 m artificial stone floor, 0.025 m mortar rendering, 0.30 m
ceramic beam filling pieces and 0.015 m gypsum plaster 1.29 W/m2

·K

Windows: aluminum frame, 4 mm single glazing, no thermal bridge 5.70 W/m2
·K

Infiltration rate 0.40 ACH

Occupancy rate 0.45 p/m2

Lessons in the school are taught in the morning (from 9:00 to 15:00) for secondary education, and
in the evening (from 16:00 to 20:00) for adult education. Although the classroom has a maximum
capacity of 35 students plus a teacher (Figure 2a), the maximum number of occupants during the
monitoring process was 21 people (occupancy rate of 0.45 p/m2). The academic year for the school
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considers the following no-work periods: Until 8 January; from 23 June to 17 September; and from
20 December. Moreover, the classroom has an external solar protection system (Figure 2b) from its
original construction, based on roller blinds made of polyvinyl chloride material (PVC).
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Figure 2. (a) Monitored classroom; (b) Cross-section of the window: location of outdoor sensors.

3.2. Monitoring System

The monitoring system, installed according to EN ISO 7726:2002 [47], consists of the sensors
indicated in Table 2, also showing their main technical characteristics. This equipment registers
information at 10-min intervals, storing it on data loggers located in the monitoring panel of the
classroom. Every 30 min, the monitored data is uploaded to a File Transfer Protocol (FTP) server
through a mobile card.

Table 2. Probes in the room monitored.

Device Nº Location Unit Range Accuracy

CO2 detector 1 On surface: east Wall ppm 0–2000 ±(40 ppm + 4.8 %
of reading)

Presence detector 2 North walls Y/N 4–15 m -

Window opening control 4 Windows Y/N - -

Blind level sensor 4 Blinds mm 200–8000 ±25 mm

Pyranometer 1 Outdoor W/m2 0–4000 ±2.0%

Lux meter 1 Outdoor lux 0–200,000 ±4.0%

The data loggers store information related to several sensors. There is an indoor sensor for carbon
dioxide levels in the classroom, as well as two presence sensors, four sensors that measure the aperture
of the window, and another four sensors that register information of the shutter aperture levels. It
should be noted that the monitoring system only registers the aperture or closure of each window (Y/N):
100% means that all the windows are open. However, no information is provided on the percentage of
the aperture of the window or the associated ventilation rate. An outdoor luxmeter and pyranometer
were installed on the façade in addition to the indoor sensors.

Information regarding other outdoor ambient variables was also recorded (relative humidity,
air temperature, CO2 levels, wind speed and direction) by a local weather station, placed in some
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test cells [57], at a distance of 450 m from the educational building. Table 3 shows the technical
characteristics of the sensors in the weather station.

Table 3. Probes in the weather station.

Device Nº Orientation Unit Range Accuracy

Thermometer 2 N ◦C −40–80 ±0.15±0.1%

Hygrometer 1 - % 0–100 ±3% (0.70%)–±5% (71.10%)

CO2 detector 1 - ppm 0–2000 ±2.0%

Anemometer 1 - m/s 0–50 ±0.5

Vane 1 - ◦ 0–360 ±2.5

Information registered by all outdoor sensors was included in the weather file used in the energy
simulation modelling. Air temperatures monitored inside the classroom during an unoccupied period
when the shutters are fully open were used to validate the energy simulation model, as explained in
Section 2.3.

3.3. Monitoring Phases

The classroom was monitored from May 2017 to April 2018 (12 months), recording data during
three representative seasonal periods: Winter, summer, and mid-season. The characteristics of these
periods are shown in Table 4.

Table 4. Characteristics of periods analyzed.

Periods Description Tout (◦C) Hours Analyzed Occupied Hours

Winter 1 December to 28 February 1.9–26.2 2160 964

Summer 1 May to 23 June 9.4–46.4 1296 335

Mid-season 1 March to 30 April 5.2–36.5 1464 429

Note: Non-working days have been removed from the winter period.

In the statistical analysis of the periods, the following non-working days were erased from the
study: From 20 December to 8 January and from 23 June to 17 September. Thus, the analysis conducted
is in line with the academic year of the educational building.

For reference, a 120-hour unoccupied period (18 to 22 April) was also considered in order to
collect indoor CO2 values without the influence of users.

4. Analysis of Results

Indoor carbon dioxide levels during unoccupied and occupied periods were assessed in order to
verify whether IAQ conditions meet the requirements and recommendations of the standards. The
ventilation scenarios considered, determined based on the CO2 concentrations obtained, are then
shown. Finally, the influence of each ventilation scenario on indoor temperatures and electricity
consumption of the ventilation system was evaluated.

4.1. Carbon Dioxide Levels Analysis: Unoccupied Period

Figure 3 shows the average carbon dioxide concentrations in the classroom during an unoccupied
period and with the windows totally closed. As can be seen, average outdoor CO2 levels of around
470 ppm were registered, with maximum values of 530 ppm. Inside the classroom, average CO2 levels
of 390 ppm were recorded, with minimum and maximum peaks of 376 and 421 ppm, respectively.
Carbon dioxide levels were maintained between 350 and 400 ppm during 70% of the total hours. The
rest of the time, values varied between 400 and 450 ppm.
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The relatively high indoor concentration of CO2 during this period may be attributed mainly to the
closure of the windows and the absence of a mechanical ventilation system in the classroom. Moreover,
it should be taken into consideration that the reduction of dioxide carbon levels was progressive. This
is easily observed in Figure 3, where CO2 concentrations are slightly higher during the first two days
after an occupied period (18 April and 19 April) and are then noticeably reduced (from 20 April to
22 April).

4.2. Carbon Dioxide Levels Analysis: Occupied Periods

Figure 4 shows the percentage of hours when the classroom was: (1) Unoccupied, (2) occupied in
free-running conditions (without heating and cooling systems), and (3) occupied in thermal comfort
(according to ISO 7730:2005) during free-running conditions. In these three cases, the percentages
indicated were determined considering 100% of the hours. Figure 5 shows indoor CO2 levels registered
in the classroom during the three seasonal periods analyzed and under two hypotheses: (1) Occupied
and (2) occupied in thermal comfort (according to ISO 7730:2005). The ranges used to analyze carbon
dioxide levels were set considering the following criteria: (1) Values under 500 ppm, which is the lower
limit established by the Spanish standard (RITE) [44]; (2) values between 500 and 1000 ppm, which
make it possible to identify the hours when the classroom meets the recommendations of the RITE and
the RC 1752; (3) maximum values recommended by the ASHRAE, which can be assessed in the range
1000–1500 ppm; and (4) IAQ is considered to be absolutely inadequate when values are over 1500 ppm.

In summer, the percentage of occupied hours in comfort, when free-running conditions are
considered, corresponds to 100% of the hours occupied in free-running conditions. This is due to the
fact that the summer season analyzed is 1 May to 23 June, since these are the working summer months
considered in the academic year. However, it is worth highlighting that the classroom is in thermal
comfort during less than 5% of the occupied hours in free-running conditions during winter. The
results obtained show that most of the time when thermal comfort is met during the winter season,
carbon dioxide levels are over 1500 ppm. In mid-season and summer, CO2 levels are usually up to
1000 ppm during comfort hours.
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Figure 5. Percentage of hours with a given CO2 concentration registered during occupied hours and
comfort hours (ISO 7730:2005) in free-running conditions (no HVAC). Percentage of hours when the
CO2 recommendations of RITE, ASHRAE, and CR 1752 are exceeded.

Nevertheless, it should be taken into account that indoor CO2 levels are highly conditioned by
window aperture, which is freely operated by users. For this reason, information regarding window
operation is included in Table 5, establishing a correlation between this variable and the carbon dioxide
concentrations registered. The information corresponds to the percentage of windows that are open:
100% means all the windows are open. The percentage of windows open with a minimum shutter
aperture level of 10% is shown in parentheses.
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Table 5. Percentage of windows open during different indoor CO2 ranges and when shutters are 10%
open. The highest % is shown in bold.

Variables Winter Summer Mid-Season

% of the windows that are
open at a certain level of
CO2 (among them, % of
hours when shutters are

≥10% open)

CO2 ≤ 500 ppm 58.4 (18.8) 74.5 (63.3) 66.2 (38.4)

500 < CO2 ≤ 1000 ppm 22.6 (7.5) 11.3 (6.3) 18.5 (10.1)

1000 < CO2 ≤ 1500 ppm 5.7 (1.6) 5.0 (2.2) 6.7 (2.8)

CO2 > 1500 ppm 13.3(3.0) 9.2 (5.6) 8.6 (5.0)

Note: Numbers in bold represent the highest values obtained in each seasonal period.

The indoor CO2 levels observed are quite high, since the window aperture time is significantly
limited, and moreover, it tends to match the low rolling shutter aperture levels.

Figures 6–8 show indoor (in blue) and outdoor (in red) CO2 levels registered in winter, summer,
and mid-season. For the sake of clarity, only two weeks of each period were graphically represented.
Maximum CO2 concentrations recommended by RITE (dashed purple line), ASHRAE (dashed green
line), and CR 1752 (dashed yellow line) are indicated, considering the explanations provided in
Section 2.1. Non-working days (in this case, unoccupied days on weekends) are shaded in grey.

Generally, in all three seasonal periods analyzed, outdoor CO2 concentrations are in the region of
500 ppm, although levels above this value are also recorded occasionally. The percentage of occupied
hours in thermal comfort conditions when the maximum recommended values of the standards are
exceeded is high in winter (more than 75% of the total hours). In summer and mid-season, CO2

values are above the recommended limits during 35% and 20% of the hours, respectively. During
these periods, the differences between ASHRAE and the remaining two standards are greater. These
differences are approximately 10% and 13% of hours in the summer and mid-season and are due to
fluctuations of the outdoor CO2 levels.

Taking into account the limit values of the standards analyzed, the recommendations of RC 1752
are exceeded during a higher percentage of hours, followed by RITE and, lastly, ASHRAE, which is the
most permissive standard.
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4.3. Ventilation Scenarios: Air Changes Per Hour Analysis

From the statistical analysis conducted in the previous sections, carbon dioxide concentrations
monitored during a representative typical day in the classroom were obtained, considering the
following criteria: (1) The classroom is unoccupied during the day before the one selected; and (2)
during the day selected, windows are totally closed and the classroom is constantly occupied, with the
highest number of occupants registered in the academic year: 21 people in the morning (from 9:00 to
15:00) and 25% less people in the evening (16:00 to 20:00).

Considering the above, 19 March was selected as the representative typical day, corresponding to
the mid-season period. For this day, CO2 levels, both indoors (blue line) and outdoors (black line), are
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shown in Figure 9. According to the procedure detailed in Section 2.2, the minimum ventilation rates
(expressed in air changes per hour (ACH)) needed to reduce CO2 concentrations were determined.
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Figure 9. Indoor and outdoor CO2 levels monitored in the classroom on 19 March (no mechanical
ventilation systems). The air changes per hour calculated for the simulation considerations for the three
analyzed ventilation scenarios are also represented.

Table 6 shows the characteristics of each ventilation scenario when considering the specific case
study, as well as the ventilation rate obtained in the calculations. The indirect classification by the
rate of outdoor air per person (CVp) is represented by a dashed green line. A minimum ventilation
constant rate of 6.5 ACH was obtained, when considering 21 people inside the classroom (as previously
explained, this is the highest number of occupants registered in the academic year). This ventilation
rate has to be maintained constantly during the occupied period from 8:00 to 15:00. After this, due to
the 25% reduction in the number of occupants, the constant ventilation rate is set at 4.7 ACH from
16:00 to 20:00.

Table 6. Ventilation scenarios’ characteristics and calculation results.

Scenario Type of Ventilation Rate Method Criteria Calculated Rate

CVp Constant People Standard
requirements

6.5 ACH (8:00 to 15:00)
4.7 ACH (16:00 to 20:00)

CV Constant CO2
Standard

requirements
6.1 ACH (8:00 to 15:00)

4.6 ACH (16:00 to 20:00)

VV Variable CO2 Monitored data 3.3–6.1 ACH (8:00 to 15:00
and 16:00 to 20:00)

For the indirect classification by CO2-based constant ventilation (CV), the constant rate obtained is
6.1 ACH (dashed yellow line) from 8:00 to 15:00. The number of occupants in the classroom is reduced
in the evening and the ventilation rate decreases accordingly, due to the reduction in CO2 levels. A
constant ventilation rate of 4.6 ACH is therefore applied from 16:00 to 20:00.
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For the indirect classification by CO2-based optimized demand control (VV), that is, with a
variable ventilation rate, values range between 3.3 and 6.1 ACH (dashed red line), corresponding to
the variation of indoor-monitored CO2 levels in the classroom.

It can be seen that between 8:00 and 13:00, indoor CO2 concentrations are above the IAQ levels
recommended by RITE (the grey shading represents a band of 500 ppm over outdoor carbon dioxide
levels). After 13:00, CO2 levels are reduced, meeting the IAQ comfort band and requiring a lower
ventilation rate. This is due to the decrease in the number of occupants.

As regards the technical configuration of the system, Figure 10 represents a conceptual and
simplified scheme of the proposed ventilation system. Mechanical fans would be incorporated in an
air handling unit (AHU) placed on the roof of the building. Ventilation ducts would be located in
the common corridor, supplying and extracting air though wall ventilation grids, as indicated in the
mentioned figure.
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4.4. Ventilation Scenarios: Indoor Temperature Analysis

In this section, the influence of the three ventilation scenarios analyses on the indoor temperatures
of the classroom during free-running conditions were assessed (Figure 11). Their impact on indoor
thermal comfort was analyzed in winter, summer, and mid-season.

The percentage of comfort hours was determined considering the academic year when the school
is occupied, shown in Table 7. Based on both the indirect classification by the rate of outdoor air per
person (CVp) and the indirect classification by CO2-based constant ventilation (CV), it can be observed
that indoor temperatures are quite similar during the three seasonal periods. This also leads to similar
percentages of comfort hours, with differences of around 0.6% in winter, 0.2% in summer, and 0.1%
in mid-season, and a lower number of comfort hours in the case of the indirect classification by the
rate of outdoor air per person (CVp). In the third case, that of the indirect classification by CO2-based
optimized demand control (VV), the number of thermal comfort hours is slightly lower than those of
the other two scenarios. However, the differences are once again slightly noticeable, with 8.8% to 9.4%
less thermal comfort hours in winter, 1.5% to 1.6% in summer, and 5.2% to 6.1% in mid-season.



Energies 2019, 12, 4607 15 of 20

Energies 2019, 12, x FOR PEER REVIEW  15 of 20 

 

8.8% to 9.4% less thermal comfort hours in winter, 1.5% to 1.6% in summer, and 5.2% to 6.1% in mid-

season.  

 

Figure 11. Comparison of indoor annual temperatures simulated in the three ventilation scenarios: 

indirect classification by the rate of outdoor air per person (CVp), indirect classification by CO2-based 

constant ventilation (CV), and indirect classification by CO2-based optimized demand control (VV). 

Table 7. Simulation results: % of thermal comfort hours in winter, summer, and mid-season. 

Protocols 
Comfort Hours in 

Winter 

Comfort Hours in 

Summer  

Comfort Hours in 

Mid-Season 

Description Hours  % Hours % Hours % 

Non-ventilated 1500 69.4 43 1.2 367 10.0 

CVp 1929 89.3 122 3.3 806 21.9 

CV 1942 89.9 127 3.5 837 22.8 

VV 1739 80.5 68 1.9 614 16.7 

Total school hours analyzed 1872 86.7 1511 41.1 2663 72.5 

Total no-school hours 288 13.3 2161 58.9 265 7.2 

Total hours 2160 100.0 3672 100.0 2928 100.0 

Nevertheless, in all three cases, the thermal comfort percentages reached with no thermal 

treatment of the air are higher than those of the non-ventilated protocol, which represents the current 

state of the classroom.  

4.5. Ventilation Scenarios: Electrical Consumption Analysis 

Figure 12 shows the annual electricity consumption (kWh) associated to each ventilation system, 

based on the scenarios analyzed.  

Figure 11. Comparison of indoor annual temperatures simulated in the three ventilation scenarios:
indirect classification by the rate of outdoor air per person (CVp), indirect classification by CO2-based
constant ventilation (CV), and indirect classification by CO2-based optimized demand control (VV).

Table 7. Simulation results: % of thermal comfort hours in winter, summer, and mid-season.

Protocols Comfort Hours in
Winter

Comfort Hours in
Summer

Comfort Hours in
Mid-Season

Description Hours % Hours % Hours %

Non-ventilated 1500 69.4 43 1.2 367 10.0

CVp 1929 89.3 122 3.3 806 21.9

CV 1942 89.9 127 3.5 837 22.8

VV 1739 80.5 68 1.9 614 16.7

Total school hours analyzed 1872 86.7 1511 41.1 2663 72.5

Total no-school hours 288 13.3 2161 58.9 265 7.2

Total hours 2160 100.0 3672 100.0 2928 100.0

Nevertheless, in all three cases, the thermal comfort percentages reached with no thermal treatment
of the air are higher than those of the non-ventilated protocol, which represents the current state of
the classroom.

4.5. Ventilation Scenarios: Electrical Consumption Analysis

Figure 12 shows the annual electricity consumption (kWh) associated to each ventilation system,
based on the scenarios analyzed.
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As the results obtained show, the electricity consumption of a ventilation system operating in
the classroom at a constant ventilation rate during the whole year, and determined by the indirect
classification by the rate of outdoor air per person (CVp), is around 225.6 kWh/year. If a ventilation
system calculated using CO2-based constant ventilation (CV) is chosen, the electricity consumption is
reduced by 3.8% (217.0 kWh/year). In contrast, the ventilation system determined using CO2-based
optimized demand control (VV) allows electricity savings of 34.6%, when compared to the previous
option, with a total annual consumption of around 141.9 kWh/year.

5. Conclusions

This paper assessed the indoor air quality (IAQ) of an educational building in southern Spain,
analyzing the CO2 concentrations monitored in a classroom during a whole year. This research was
conducted during three representative periods (winter, summer, and mid-season), comparing the
registered values with the upper limits recommended by several national and international standards.
In order to obtain CO2 reference values in the classroom in free-running conditions (no internal
gains and windows totally closed), an unoccupied 5-day period was also analyzed. Taking into
consideration the CO2 levels monitored, three ventilation scenarios were defined in order to compare
their influence on the classroom’s indoor temperatures (% of thermal comfort hours) and on the
electricity consumption of the ventilation system (kWh/year): 1) Indirect classification by the rate of
outdoor air per person (CVp); (2) indirect classification by CO2-based constant ventilation (CV); and
(3) indirect classification by CO2-based optimized demand control (VV).

The main conclusions reported in this research can be summarized as follows:

• During the unoccupied period and with the windows totally closed, the CO2 concentrations
monitored in the classroom are below 425 ppm.

• When the classroom is occupied, in around 45% of the hours in winter and mid-season, carbon
dioxide levels are between 500 and 1000 ppm, concentrations that are registered during 40% of the
hours in summer.

• However, indoor CO2 levels are significantly high when the classroom is occupied in thermal
comfort conditions, even exceeding values of 1500 ppm in more than half of the analyzed hours
in winter.

• Even though the classroom has natural ventilation mechanisms (windows), the high CO2 values
justify the need to promote mechanical ventilation systems, guaranteeing indoor environmental
quality in line with the requirements and recommendations of the national and international
standards. The ineffectiveness of the natural ventilation mechanisms may be due to the lack of
crossed-side ventilation and inadequate operation of these systems by users.
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• If the three ventilation scenarios are compared from a thermal point of view, CO2-based constant
ventilation reaches approximately 15% more comfort hours per year in free-running conditions
compared to CO2-based optimized demand ventilation, with more significant differences in winter.
Nevertheless, indoor temperatures are quite similar between the ventilation based on outdoor air
per person and the CO2-based constant ventilation for all the seasonal periods.

• When the associated electricity consumption is taken into account, differences between the three
systems are much more noticeable: CO2-based optimized demand ventilation allows annual
savings of around 35% in comparison with CO2-based constant ventilation. Moreover, CO2-based
optimized demand ventilation consumes 40% less electricity per year than a ventilation based on
outdoor air per person.

Despite its impact on thermal comfort, in an educational building located in the Mediterranean
climate, the use of CO2-based optimized demand ventilation leads to very significant savings compared
to other constant rate ventilation systems.

The results also show that high ventilation rates should be adopted in the case study to enhance
IAQ conditions. In this sense, it should be highlighted that the ventilation rates established in the
standards considered in this paper provide minimum values. Further research is required on this topic,
especially regarding the consideration of how other pollutants may influence IAQ conditions. This
paper shows how passive mechanical ventilation systems (without thermally treating air) can be used
to retrofit Andalusian schools, improving IAQ conditions with a low electricity consumption.
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