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SUMMARY

Type 2 diabetes is characterized by peripheral insulin

resistance and insufficient insulin release from

pancreatic islet b cells. However, the role and

sequence of b cell dysfunction and mass loss for

reduced insulin levels in type 2 diabetes pathogen-

esis are unclear. Here, we exploit freshly explanted

pancreas specimens frommetabolically phenotyped

surgical patients using an in situ tissue slice technol-

ogy. This approach allows assessment of b cell vol-

ume and function within pancreas samples of meta-

bolically stratified individuals. We show that, in

tissue of pre-diabetic, impaired glucose-tolerant

subjects, b cell volume is unchanged, but function

significantly deteriorates, exhibiting increased basal

release and loss of first-phase insulin secretion. In in-

dividuals with type 2 diabetes, function within the

sustained b cell volume further declines. These re-

sults indicate that dysfunction of persisting b cells

is a key factor in the early development and progres-

sion of type 2 diabetes, representing a major target

for diabetes prevention and therapy.

INTRODUCTION

Type 2 diabetes is a metabolic disorder that causes hyperglyce-

mia in patients and affects hundreds of millions of people world-

wide. It is responsible for debilitating long-term complications,

decreased quality of life, and premature death. Unfortunately,

present treatment options are unable to adequately control hy-

perglycemia and prevent the negative impact of type 2 diabetes.

Development of effective therapeutic approaches to correct

inadequate insulin levels in response to elevated blood glucose

relies on targeting the correct underlying pathological mecha-

nism. However, it is still under debate whether and at which

stage of diabetes pathogenesis insulin insufficiency is the result

of compromised b cell function (i.e., the amount of insulin

released by each individual b cell), reduced b cell mass (i.e.,

the number of b cells within the pancreas), and/or a combination

of both (Li et al., 2019; Taylor et al., 2019;Weir, 2020). It has been

suggested that b cell mass loss already happens in the early

stage of diabetes before b cell functional impairment (Weir,

2020; Weir and Bonner-Weir, 2004, 2013) and that b cell mass

deficit actually predisposes an organism to impaired glucose ho-

meostasis in diabetes (Costes et al., 2013; Leahy, 2005; Taylor

et al., 2019). On the other hand, by examining the timing and rela-

tionship between changes in blood glucose, b cell volume, and

insulin secretion, arguments have been made that the functional

deficit is more dominant and is requisite for the development of

type 2 diabetes (Ferrannini, 2010; Kahn et al., 2006, 2009; Ritzel

et al., 2006; Saisho, 2014). Hence, it is unclear whether andwhen

the objective in type 2 diabetes prevention and therapy should

be to protect and restore b cell function, i.e., the amount of insu-

lin released by each individual b cell, or to prevent the death of b

cells and increase their mass (Chen et al., 2017; Halban et al.,

2014). A main reason for the inability to address these key ques-

tions is the lack of samples and technologies to simultaneously

assess b cell function andmass. Systemicmetabolic tests in vivo

cannot reliably distinguish between the contribution of number

and function of b cells to plasma insulin levels. At present, b

cell mass in humans can only be assessed by histology of

pancreatic specimens from organ donors or surgical patients,

which do not allow functional testing. Utilizing this approach,

studies have reported a wide range of b cell mass reduction in

subjects with type 2 diabetes, stretching from 24% to 65% (But-

ler et al., 2003; Clark et al., 1988; Inaishi et al., 2016; Rahier et al.,

2008; Sakuraba et al., 2002; Yoon et al., 2003), whereas others
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suggested this method to overestimate b cell loss in type 2 dia-

betes (Marselli et al., 2014). In either case, an additional substan-

tial loss of function in the residual b cells seems imperative to

explain the extreme reduction in insulin response found in type

2 diabetes (Ferrannini et al., 2005; Gastaldelli et al., 2004; Hol-

man, 1998; Jensen et al., 2002; Osei et al., 1997; Ward et al.,

1984). Most importantly, current data do not elucidate to which

extent these two distinct components contribute to type 2 dia-

betes pathogenesis and whether loss of b cell mass and/or func-

tion is cause or consequence of the uncontrolled hyperglycemia.

Only limited and conflicting data are available on b cell mass in

pre-diabetes or impaired glucose-tolerant subjects (Butler

et al., 2003; Meier et al., 2009). Consequently, the role of b cell

mass and function in the development of type 2 diabetes and

their importance for prevention and therapy have been contro-

versially discussed (Clark et al., 2001; DeFronzo et al., 2013;

Henquin et al., 2008; Meier and Bonadonna, 2013; Weir and

Bonner-Weir, 2013).

Here, we employed a novel approach of human pancreas tis-

sue slices in combination with a unique collection of fresh

pancreas tissue samples from metabolically phenotyped sub-

jects to simultaneously assess b cell volume and function within

pancreatic tissue. Thereby, we provide direct evidence that

dysfunction of persisting b cells is an early feature of type 2 dia-

betes pathogenesis that remains an important mechanism

throughout disease progression.

RESULTS

Pancreas Tissue Slices of Metabolically Phenotyped

Subjects Allow Assessment of b Cell Volume and

Function in Type 2 Diabetes Pathogenesis

To explore the detailed 3D cellular morphology and insulin secre-

tion of intact human pancreatic tissue under near physiological

conditions, we utilized the pancreas tissue slice technique

(Marciniak et al., 2013, 2014; Speier and Rupnik, 2003) in freshly

explanted surgical samples from subjects who underwent

pancreatectomy (Ehehalt et al., 2015; Sturm et al., 2013). These

subjects, 4 non-diabetic (ND), 4 having impaired glucose toler-

ance (IGT), and 6 type 2 diabetes (Table S1), were part of a larger

cohort of 61ND,71 IGT, and88 type2diabetessubjects (Figure1),

inwhichpatients in thedays immediatelyprior tosurgeryhadbeen

metabolically phenotyped based on their clinical history, HbA1c

(Figure 1A), fasting blood glucose (fBG) levels (Figure 1B), and

an oral glucose tolerance test (OGTT) (Figure 1C) for being either

ND or having IGT or type 2 diabetes, according to the American

Diabetes Association (ADA) guidelines (Solimena et al., 2018).

Within this cohort, the mean age was slightly increased in IGT

and type 2 diabetes subjects in comparison to ND (Figure 1D),

whereas body mass index (BMI) (Figure 1E) and HOMA2-IR (Fig-

ure 1F) did not differ among the three groups. Fasting C-peptide

levels (Figure 1G) were significantly decreased, and fasting proin-

sulin (Figure 1H) significantly increased in type 2 diabetes. As a

result, the insulin/proinsulin ratio was significantly decreased in

IGT and type 2 diabetes in comparison to ND (Figure 1I). Conse-

quently, HOMA2-%B, as an indicator of insulin release, was

significantly different between all groups of the cohort (Figure 1J).

Tissuesamplesobtained immediatelyafter surgeryof thesubjects

providing tissue for this study were further processed by vibra-

tomesectioning toobtain120-mm-thick tissuesliceswithadimen-

sion of ca. 33 3mm (Figure 1K). Only viable tissue slices display-

ing a limited number of dead cells were used for subsequent

assays (Figure S1).

Islet Cell Morphology and Volume Are Not Altered in

Pancreas Tissue Slices of IGT and Type 2 Diabetes

Subjects

Endocrine cell content was quantified by 3Dmorphometry of the

entire slice volume for the three main endocrine cell types at

cellular resolution (Figures 2A–2C). Applying this procedure, we

could quantify the endocrine fraction and cellular distribution

within a given volume of pancreatic tissue (Figure S2). We found

that, in ND subjects, endocrine cells constituted 0.48% ± 0.09%

of pancreas volume (Figure 2D). This was slightly less than the

fractional area previously reported from histological studies (But-

ler et al., 2010; Wang et al., 2013). This difference is probably

related to differences in the experimental and analysis approach

used for the measurement of cell volumes within tissue pieces in

comparison to the assessment of cell area in thin sections.More-

over, tissue used in our study mainly originated from the

pancreas head, which has been reported to contain fewer islets

than the rest of the pancreas (Reers et al., 2009; Saito et al.,

1978). Interestingly, endocrine cell volume was not significantly

changed being 1.06% ± 0.33% and 0.91% ± 0.60% (Figure 2D),

respectively. Similarly, distinct endocrine cell volume fractions of

b, a, and d cells were not significantly altered in pancreas of ND,

IGT, and type 2 diabetes subjects (Figures 2E–2G). In addition,

the mean diameter of all detected endocrine objects, which re-

fers to all hormone-positive-stained cells identified as single cells

(1 cell; volume of 500–1,000 mm3), small clusters (2–10 cells; vol-

ume of 1,001–10,000 mm3), or islets (>10 cells; volume

>10,000 mm3), of up to >250 mm diameter as well as their density

in the pancreatic tissue were comparable between the groups

(Figures 2H and 2I). Furthermore, our analysis demonstrated

that the vast majority of endocrine objects in the human

pancreas, 82.02% ± 3.13%, were individual cells or small clus-

ters of up to 10 endocrine cells scattered throughout the

exocrine tissue (Figures 2J and 2K). However, these single cells

and small clusters only contributed 18.10% ± 4.22% to the over-

all volume of endocrine cells (Figures 2L and 2M). The vast ma-

jority of the endocrine volume was comprised by islets withR11

cells (Figures 2L and 2M). Neither the distribution of endocrine

object size nor their contribution to total endocrine volume was

significantly changed in the pancreas of IGT or type 2 diabetes

subjects (Figures 2H–2M). Thus, detailed 3D morphometry of

endocrine cell volume, composition, and distribution within the

studied human pancreatic tissue revealed no difference between

ND, IGT, and type 2 diabetes subjects.

b Cell Function Is Compromised in Pancreas of IGT

Subjects and Deteriorates in Type 2 Diabetes

Utilizing the unique potential of pancreas tissue slices, we addi-

tionally assessed b cell function by measuring kinetic insulin

secretion. Upon perifusion, pancreas tissue slices from ND sub-

jects showed a typical bi-phasic insulin secretory pattern in

response to elevated glucose levels exhibiting a peak in insulin
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secretion during the first phase, followed by a second-phase

plateau (Figures 3A and S3A). Intriguingly, tissue slices from

IGT subjects showed a significantly increased basal insulin

secretion, although glucose-stimulated insulin release was

comparable to ND (Figures 3A–3C and S3A). In contrast, the

baseline insulin secretion of slices from type 2 diabetes pa-

tients was similar to that of slices from ND subjects and signif-

icantly lower compared to IGT (Figures 3A–3C and S3A). More-

over, slices from both IGT and type 2 diabetes subjects lacked

the typical first-phase peak prior to the second-phase plateau

(Figures 3A–3C and S3A). When expressed as stimulation index

to illustrate the stimulatory potential of glucose over baseline,

slices from ND subjects displayed 5-fold increased insulin

secretion during first phase and 3-fold elevated secretion dur-

ing the second phase (Figures 3D and S3B), comparable to

the response observed from islets isolated from ND organ

donors (Figure S4). In contrast, samples from IGT and type 2

diabetes subjects showed a severely diminished stimulation in-

dex leading to a significantly reduced area under the curve of

insulin secretion in first and second phase (Figures 3D–3F

and S3B). Insulin content, in particular when normalized to b

cell volume measured in adjacent slices of the respective pa-

tient (see Figure 2), was strongly reduced in tissue slices ob-

tained from type 2 diabetes subjects (Figures 3G and 3H), indi-

cating emptying of insulin granule stores. Consequently, the

insulin secreted from slices of IGT and type 2 diabetes was

increased when expressed as a fraction of their insulin content

(Figures 3I and S3C).

Clinical Parameters of Type 2 Diabetes Pathogenesis

Are Associated with the Functional Decline of b Cells

Furthermore, our approach allowed us to compare b cell function

and volume in pancreas tissue slices directly with various clinical

parameters from the same subjects (Figures 4 and S5). We found

that endocrine cell volume in tissue slices correlated linearly with

age (Figure 4A) of the tissue donors, independent of their status

of glucose homeostasis. However, there was no significant cor-

relation between endocrine cell mass and BMI (Figure 4B),

HbA1c (Figure 4C), or fasting glucose (Figure 4D). Stimulated in-

sulin secretion from tissue slices showed no correlation with age

(Figure 4E) or BMI (Figure 4F) of the donor. Interestingly, when

assessing the relationship of stimulated insulin secretion and

HbA1c (Figure 4G) and fasting glucose (Figure 4H), ND, IGT,

and type 2 diabetes subjects clustered in groups, indicating an

association of b cell function with clinical parameters of type 2

diabetes pathogenesis.

Figure 1. Experimental Approach and Clin-

ical Data

(A–C) Parameters used to classify individual pa-

tients prior to surgery into the different disease

groups according to ADA criteria with (A) plasma

HbA1c, (B) plasma fasting blood glucose, and (C)

plasma 2-h blood glucose value during an OGTT.

(D–J) Age (D) and BMI values (E) of patients within

the entire cohort as well as (F) HOMA2-IR, (G)

fasting serum C-peptide, (H) fasting serum proin-

sulin, (I) insulin: proinsulin ratio, and (J) b cell

functional index. (F) and (J) were calculated with

the HOMA2 model calculator (https://www.dtu.ox.

ac.uk/homacalculator/).

(K) Schematic overview of the experimental work-

flow with human patients undergoing partial

pancreatectomy after being metabolically pheno-

typed (A–J). During partial pancreatectomic

surgery, pancreas tissue is resected and non-

cancerous tissue is procured and further pro-

cessed for tissue slice preparation. Viable tissue

slices are subsequently used for fixation and 3D

morphometric analysis or subjected to kinetic in-

sulin secretion.

Gray dots in (A)–(J) represent single patients with

n = 62 (non-diabetic [ND]), n = 71 (impaired glucose

toleranct [IGT]), and n = 88 (type 2 diabetes [T2D]).

Lines show mean ± SEM. Colored dots (ND n = 4;

IGT n = 4; T2D n = 6) represent patients used in the

current study. Statistical analysis was performed

on the entire cohort by one-way ANOVA and post

hoc comparison of disease groups with Sidak’s

correction for multiple comparisons. *p < 0.05.

See also Table S1.
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DISCUSSION

Our data demonstrate that b cells exhibit significant functional

deterioration and exhaustion already at early stages of type 2

diabetes pathogenesis, at which subjects exhibit impaired

glucose tolerance but are not yet diabetic. Conversely, b cell vol-

ume is maintained at this stage of disease progression, which is

in line with the previous finding of unchanged b cell mass in

impaired glucose-tolerant subjects (Meier et al., 2009). Thus,

our results identify b cell dysfunction as an initial feature of dia-

betes development and not necessarily as consequence of a

preceding loss in b cell mass. Interestingly, in non-diabetic sub-

jects with more elevated levels of fasting blood glucose

(>110 mg/dL) b cell mass was reported to be decreased (Butler

et al., 2003). This suggests that non-diabetic individuals with

significantly elevated fasting blood glucose might experience

advanced disease progression or a different etiology of diabetes

pathogenesis in comparison to individuals in pre-diabetic sub-

jects with impaired glucose tolerance (Rizza, 2010). Our study

shows that functional decline of b cells emerges in pancreatic tis-

sue of IGT individuals and manifests as increased basal insulin

release, a known feature of impaired glucose homeostasis

Figure 2. 3D Histomorphometric Analysis of Human Pancreas Tissue Slices

(A) Maximum intensity projection of an entire human pancreas tissue slice stained with antibodies against insulin (magenta), glucagon (grey), and somatostatin

(yellow) counterstained with DAPI (blue). Scale bar, 500 mm.

(B)Magnifiedmaximum intensity projection of a single islet (boxed in A) with insulin (magenta), glucagon (gray), somatostatin (yellow), and DAPI (blue) in XY (upper

left), XZ (bottom left), and YZ (upper right) orientation. Scale bar, 50 mm.

(C) Maximum intensity projection of the same islet as in (B) for single hormone staining for insulin (magenta), glucagon (gray), and somatostatin (yellow). Scale

bars, 50 mm.

(D–G) Quantification of hormone-positive volumes as percent of the total slice volumes of ND (green), IGT (blue), and T2D (orange) samples for (D) Ins+/Gcg+/Sst+

volume, (E) Ins+ volume, (F) Gcg+ volume, and (G) Sst+ volume.

(H and I) Mean endocrine object diameter (H) and endocrine object density (I) of the individual samples from ND, IGT, and T2D patients.

(J and K) Frequency distribution of hormone-positive endocrine objects by diameter (J) and mean percent of endocrine objects (K) grouped by appearance of

single cells, cluster (up to 10 cells), and islets (>11 cells) for individual samples from ND, IGT, and T2D specimens.

(L and M) Cumulative volume of all endocrine objects by diameter (L) and mean contribution (M) of single cells, cluster (up to 10 cells), and islets (>11 cells) to the

entire endocrine (Ins+/Gcg+/Sst+) volume from individual ND, IGT, and T2D samples. ND n = 4, IGT n = 4, and T2D n = 6 with data presented as mean ± SEM.

See also Figure S2.
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observed in individuals with IGT and with predictive value for

type 2 diabetes development (Charles et al., 1991). Yet we

show here that elevated basal insulin secretion appears without

a significant increase in peripheral insulin resistance and occurs

ex vivo in the absence of a direct systemic influence (Weyer et al.,

2000). Additionally, b cells from IGT subjects exhibited a loss of

first-phase insulin release, confirming the early manifestation of

this feature of dysregulated insulin release, previously observed

in IGT subjects in vivo in response to an OGTT (Gerich, 1997).

Similar to elevated basal insulin release, our data demonstrated

that also the loss of first-phase insulin secretion from pancreatic

tissue was the result of b cell dysfunction of an unchanged b cell

volume. Thus, although insulin dysregulation has been shown to

occur in early stages of type 2 diabetes development (Abdul-

Ghani et al., 2006; DeFronzo et al., 2013; Ferrannini et al.,

2005), our study provides further insight into underlying mecha-

nisms by demonstrating an intrinsic b cell defect without concur-

rent changes in b cell mass and independent of systemic insulin

resistance. Notably, recent transcriptomic analysis of pancreatic

surgical samples from subjects within this and a similar cohort

detected no significant transcriptomic changes in laser-capture

microdissected islets of individuals with IGT but only in those

from patients with overt type 2 diabetes (Gerst et al., 2018; Sol-

imena et al., 2018). This indicates that early b cell dysfunction in

IGT subjects is not the consequence of alterations in gene

expression but most likely in the levels of other factors, such

as proteins, lipids, carbohydrates, or metabolites. In subjects

with type 2 diabetes, the first phase of insulin release remained

absent, indicating ongoing b cell dysfunction. Moreover, the

basal and second phase of insulin release from pancreas tissue

slices declined in individuals with type 2 diabetes in comparison

to IGT, potentially as a result of long-lasting b cell stress, pro-

gressing b cell dysfunction, and b cell exhaustion. Intriguingly,

in our study, pancreatic tissue obtained from type 2 diabetes

subjects showed no decrease in b cell volume. This is in contrast

to findings of several histological studies on the pancreas from

type 2 diabetes organ donors (Butler et al., 2003; Clark et al.,

1988; Inaishi et al., 2016; Rahier et al., 2008; Sakuraba et al.,

2002; Yoon et al., 2003). Discrepancies concerning b cell mass

among studies can be related to variables like tissue sampling,

processing and analysis, or donor and disease characteristics,

including BMI, age, insulin resistance, glucose tolerance, and

fasting blood glucose levels. In addition, in some studies, b cell

mass might have been underestimated due to the presence of

degranulated and therefore insulin-negative b cells (Marselli

et al., 2014). Although the staining and imaging protocols used

in our study limit the risk of underestimation of b cell mass, we

cannot exclude escaping of a limited number of fully

Figure 3. Assessment of b Cell Function In

Situ

(A) Insulin secretion of slices from ND (green), IGT

(blue), and T2D (orange) subjects presented as

absolute secretion in ng/min. G1, KRBH buffer

containing 1 mM glucose; G3, KRBH buffer con-

taining 3mMglucose; G16.7mM, KRBHbuffer with

16.7 mM glucose; KCl, KRBH buffer with 16.7 mM

glucose and 60 mM KCl (final concentration [f.c.]).

(B and C) Area under the curve (AUC) measure-

ments of data in (A) for (B) basal secretion (minutes

0–10) and (C) entire stimulation period (minutes 10–

50) of the individual samples.

(D) Insulin secretory pattern of ND (green), IGT

(blue), and T2D (orange) pancreas tissue slices

during perifusion expressed as fold increase to

basal secretion within the first 10 min (3 mM

glucose).

(E and F) AUC measurements of data presented in

(D) for (E) first-phase insulin secretion (minutes 10–

22) and (F) second-phase insulin secretion (mi-

nutes 28–48) of single samples.

(G) Slice insulin content after perifusion of ND, IGT,

and T2D specimens.

(H) Slice insulin content normalized to Ins+ volume

assessed in adjacent slices for the respective

subject (see also Figure 2).

(I) Insulin secretory pattern of ND (green), IGT

(blue), and T2D (orange) pancreas tissue slices

during perifusion expressed as % of total content.

ND n = 4, IGT n = 4, and T2D n = 6 with data pre-

sented as mean ± SEM.

All data in this figure are analyzed using one-way

ANOVA with post hoc comparison of disease

groups using Sidak’s correction for multiple com-

parisons. *p < 0.05.

See also Figures S3 and S4.
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degranulated b cells. However, a potential underestimation of b

cell mass in IGT and type 2 diabetes would further strengthen our

observation that b cell function and not mass is declined in slices

of these patient groups. Given the strong overlap of reported b

cell mass ranges in type 2 diabetes and non-diabetic individuals

(Rahier et al., 2008), additional studies will be necessary to verify

the sustained b cell volume found in the here studied cohort and

samples. Nevertheless, our results clearly demonstrate that,

even at full-blown type 2 diabetes, there are significant numbers

of dysfunctional b cells present, which potentially can be func-

tionally recovered by appropriate therapies, e.g., via the removal

of potential systemic causes for b cell dysfunction and allowing

restoration of secretory capacity.

When assessing the impact of our study and its relevance for

the understanding of type 2 diabetes pathogenesis, specific

considerations have to be made. First, due to the complexity

of the protocol, we could only obtain and investigate fresh and

viable pancreas tissue slices from a limited number of surgical

donors. Thus, given the observed heterogeneity of pancreas

and diabetes pathogenesis in humans, studies with larger popu-

lations will be necessary to confirm the general applicability of

our findings. Nevertheless, the here applied direct correlation

of detailed systemic metabolic parameters with organ cell

morphology and function in the same individual facilitated the

detection of pathogenic phenotypes as never possible before.

In doing so, our data provide further insight into a controversially

discussed aspect of type 2 diabetes pathogenesis. Second,

subjects in our cohort underwent pancreatectomy mostly due

to a localized tumor. An effect of the neighboring tumor on the

here-studied healthy tissue cannot be fully excluded, albeit pa-

thology examination did neither reveal infiltration of cancer cells

in the islets nor signs of insulitis. Moreover, a previous study on

samples from this cohort did not detect any effect of the present

tumor on islet cell gene transcription in the healthy tissue (Soli-

mena et al., 2018). Furthermore, no relationship between

different cancer types and islet biology was observed in this or

the previous study. Most importantly, in the vast majority of

cases in which diabetes is associated with pancreatic cancer,

diabetes has been shown to manifest concomitantly or less

than 2 years prior to cancer diagnosis (Gullo et al., 1994; Pannala

et al., 2008). In contrast, subjects included in our study had either

no or long-standing diabetes (3, 6, 10, 15, 17, and 20 years dura-

tion), implicating no connection between the state of glucose ho-

meostasis and the cancer. To avoid assessing tumor-related b

cell changes, subjects with recent onset diabetes were not

included in our study. Therefore, we are confident that our results

reflect physiological and pathophysiological processes underly-

ing type 2 diabetes development. Third, in our study, the

pancreas tissue samples were mostly derived from the head of

the pancreas. Our conclusions on the performance of each

pancreas are therefore limited to this respective area and cannot

exclude different developments in a different part of the

pancreas. This could be relevant, as islet composition and den-

sity differ between the posterior part of the head and the tail of

the pancreas (Gersell et al., 1979; Saito et al., 1978). Interest-

ingly, islets in the pancreas head have been suggested to be

Figure 4. Association of Clinical Parameters with b Cell Function and Mass

(A–D) Regression analysis of endocrine cell volume (see Figure 2D) to (A) age, (B) BMI, (C) HbA1c, and (D) fasting blood glucose.

(E–H) Regression analysis of AUC values from insulin secretion (stimulation index) during stimulating conditions with 16.7 mM glucose (see Figure 3B) to (E) age,

(F) BMI, (G) HbA1c, and (H) fasting blood glucose. ND (green) n = 4; IGT (blue) n = 4; T2D (orange) n = 6.

See also Figure S5.
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preferentially affected inmetabolically challenging and patholog-

ical conditions (Ellenbroek et al., 2017; Savari et al., 2013; Wang

et al., 2013). However, these considerations do not affect our

conclusion of b cell dysfunction, manifesting as increased basal

and loss of stimulated first-phase insulin secretion in persisting b

cells, being an early crucial feature in the development of type 2

diabetes. Whether this is primarily occurring in islets in the

head of the pancreas or also in the body and tail will need to

be addressed in future studies. Finally, our cohort mainly

consists of type 2 diabetes patients of relatively older age and

with only moderate metabolic derangements, having no signifi-

cant changes in fasting insulin levels or HOMA2-IR compared

to ND subjects. Based on these clinical characteristics, our

findings may not be directly transferable to all type 2 diabetes

patients without additional studies. However, a recent study

on almost 9,000 patients, which led to stratification of adult-

onset diabetes patients into five different subgroups, showed

that patients exhibiting rather modest metabolic alterations

(defined as MARD for mild-age-related diabetes), similar to the

subjects in our cohort, represent the largest patient group of

adult-onset diabetes (Ahlqvist et al., 2018), further stressing

the importance of our findings. Within future studies, it will be

interesting to investigate whether our here-described mecha-

nism of type 2 diabetes pathogenesis also applies to the

pancreas of type 2 diabetes subgroups with different metabolic

characteristics.

In conclusion, using the combination of an in situ tissue tech-

nology and acute human pancreas specimens of metabolically

phenotyped subjects, we demonstrate that deteriorated function

of b cells plays a crucial role at initial stages of type 2 diabetes

development and persists throughout disease progression. We

show that dysregulated insulin release, in the form of increased

basal and loss of first-phase secretion, manifests at a pre-dia-

betic IGT state as result of b cell dysfunction within a sustained

b cell volume. Thus, our results provide experimental evidence

for a unique and unparalleled depiction of the pathogenesis of

human type 2 diabetes, highlighting b cell dysfunction as a crit-

ical target for the development of successful diabetes prevention

and therapy.
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STAR+METHODS

KEY RESOURCES TABLE

LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for resources and reagents should be directed to

and will be fulfilled by the Lead Contact, Stephan Speier (stephan.speier@tu-dresden.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The here presented study was approved by the local ethics committee (‘‘Ethik-Kommission der Medizinischen Fakultät Carl Gustav

Carus der Technischen Universität Dresden’’). Written informed consent was received from all participants prior to inclusion in the

study. Human pancreatic tissue was obtained through a collaboration between the Paul Langerhans Institute Dresden and the Uni-

versity Clinic Carl Gustav Carus which was initiated as part of the IMI IMIDIA consortium (Solimena et al., 2018) and continued in the

IMI RHAPSODY and INNODIA consortia. Patients undergoing partial pancreatectomy were thoroughly metabolically phenotyped

prior to surgery and classified into groups of non-diabetic (ND, n = 4), impaired glucose tolerant (IGT, n = 4) and type 2 diabetic

(T2D, n = 6). Age/sex and metabolic parameters were provided for all patients (Table S1)

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Guinea-pig polyclonal anti insulin Dako Cat# A-0546; RRID:AB_10013624

Mouse monoclonal anti glucagon Sigma Cat# G2654; RRID:AB_259852

Rat polyclonal anti somatostatin Abcam Cat# ab30788; RRID:AB_778010

Goat anti-guinea-pig Secondary Antibody Alexa Fluor 488 Thermo Fisher Scientific Cat# A-11073; RRID:AB_2534117

Goat anti-rat Secondary Antibody Alexa Fluor 546 Thermo Fisher Scientific Cat# A-11081; RRID:AB_141738

Goat anti-mouse Secondary Antibody Alexa Fluor 633 Thermo Fisher Scientific Cat# A-21050; RRID:AB_141431

Biological Samples

Human tissue University Clinic Carl Gustav Carus,

Dresden

N/A

Chemicals, Peptides, and Recombinant Proteins

Aprotinin Sigma Cat# A6106

DAPI Sigma Aldrich Cat# D9542

Fluorescein diacetate Sigma Cat# F7378

Low melting point agarose Carl Roth Cat# 6351.1

Propidium iodide Life Technologies Cat# P1304MP

Critical Commercial Assays

Insulin Ultra Sensitive Assay HTRF Kit Cisbio Cat# 62IN2PEH

Software and Algorithms

GraphPad PRISM 6.01 GraphPad Software, La Jolla,

California, USA

http://www.graphpad.com

Fiji Schindelin et al., 2012 https://fiji.sc/

MorphoLibJ Legland et al., 2016 https://imagej.net/MorphoLibJ

Other

Perifusion System Biorep Technologies, USA Cat# PERI4-02-230-FA

Semiautomatec vibratome VT1200S Leica Cat# 14048142066

LSM780 NLO Confocal microscope Zeiss N/A

Closed perifusion chamber + platform Warner Instruments Cat# 64-0223 and 64-0281
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METHOD DETAILS

Tissue Procurement, Processing and Slicing

Within 1.5 hours after explant, surgical tissue specimens were placed into ECS solution (125mM NaCl, 2.5mM KCl, 26mM NaHCO3,

1.25mM NaH2PO4, 1mM MgCl2, 2mM CaCl2, 10mM HEPES, 3mM glucose, pH 7.4) and processed into smaller tissue blocks by

removing connective, adipose and fibrotic tissue. Up to four small tissue pieces of ca. 3x3x3mm were placed into a 3,5cm Petri

dish and covered with 3,8% lowmelting point agarose (Carl Roth, 6351.1) preheated to 37�C. Once agarose was solidified, the small

agarose cubes containing tissue blocks were mounted using tissue glue (Superglue 90-120 CPS, World Precision Instruments, Inc,

cat. no. 7341) on the specimen holder of a semiautomatic vibratome (Leica VT1200S, cat. no. 14048142066) and the buffer tray was

filled with cold ECS solution. Slicing was performed at a step size of 120 mm, speed of 0.1mm/s, amplitude of 1mm and an angle of

15�. Slices were collected into a 6cmPetri dish containing 3mMglucose KRBHbuffer (137mMNaCl, 5.36mMKCl, 0.34mMNa2HPO4,

0.81mM MgSO4, 4.17mM NaHCO3, 1.26mM CaCl2, 0.44mM KH2PO4, 10mM HEPES, 0.1% BSA, 3mM glucose, pH 7.3) with apro-

tinin (25KIU/mL, Sigma, cat. no. A6106) and kept for 60 minutes at room temperature while shaking, before performing any further

experiments.

Tissue Viability

Tissue viability was assessed after slicing using FDA/PI staining. Two slices of each embedded block were incubated with propidium

iodide staining solution (f. c. 0.1mg/mL in PBS, Life technologies, cat. no. P1304MP-100mg) for 1-2 minutes at room temperature

while shaking. Fluorescein diacetate (f.c. 0.05mg/mL in PBS, Sigma, cat. no. F7378-5g) was added to the staining solution and incu-

bated for 2 minutes at room temperature in the dark, while shaking. Slices were transferred into PBS (Sigma, cat. no. D8537-500ml)

and imaged using a confocal microscope (LSM 780 NLO, Zeiss). If propidium iodide positive cells within the tissue (excluding the

cutting surface) exceeded �10%, we excluded the patient from the study.

Perifusion

Four slices originating from different embedded blocks were placed into a closed perifusion chamber (Warner Instruments, cat. no.

64-0223 and cat. no. 64-0281 (P-5)) and connected to a perifusion system with automated tray handling (Biorep Technologies, cat.

no. PERI4-02-230-FA). In order to equilibrate the slices to 37�C and to wash out accumulated hormones and enzymes from the tis-

sue, a 60-minute flushing step with 3mM KRBH at a flow rate of 100 mL/min was performed. Subsequently, the actual perifusion pro-

tocol was applied using a flow rate of 100mL/min and samples were collected in 96-well plates containing aprotinin at a final concen-

tration of 25 KIU/mL at an interval of 2 minutes. After the perifusion experiments, tissue slices were lysed for total insulin content

measurements using 500 mL acid ethanol (2% HCl [37%, 12M] in abs. ethanol). Samples were kept at �20�C until measured with

an Insulin Ultra Sensitive Assay Kit (Cisbio, cat. no. 62IN2PEH).

Immunofluorescent staining

Slices were fixed with 4% paraformaldehyde for 30 minutes at room temperature and kept in PBS at 4�C until staining. All antibody

solutions were prepared in staining buffer containing 30% goat serum, 900mM NaCl, 40mM sodium phosphate buffer (pH 7.4) and

0.6%Triton X-100. Slices were incubatedwith primary antibodies against insulin (1:500, guinea-pig, Dako, cat. no. A-0546), glucagon

(1:2000,mouse, Sigma, cat. no. G2654) and somatostatin (1:200, rat, Abcam, cat. no. ab30788) overnight at 4�Cwhile shaking. Slices

were washed three times for at least 30 minutes with PBS and incubated with secondary antibodies: AlexaFluor� 488 goat anti-

guinea-pig (1:200, Invitrogen, cat. no. A-11073), AlexaFluor� 633 goat anti-mouse (1:200, Invitrogen, cat. no. A-21050) AlexaFluor�

546 goat anti-rat (1:200, Invitrogen, cat. no. A-11081) and DAPI (2.5mg/ml, Sigma Aldrich, cat. no. D9542) overnight at 4�C while

shaking. Slices were washed three times for at least 30 minutes with PBS and kept at 4�C in the dark until imaging.

Imaging and Analysis

Single islet images were obtained using an upright laser scanning confocal microscope (LSM 780 NLO, Zeiss) with a Plan-Apochro-

mat 20x/1$0 water-immersion objective (Zeiss) using a stack separation of 1.5 mm. For the assessment of 2D islet morphology, 10-20

islets per patient were imaged from at least 3 different slices and analysis was performed manually on three z-planes per islet at a

distance of 15 mmusing Fiji (Schindelin et al., 2012). Islet cell composition was expressed as the average of the three planes analyzed.

For imaging of entire tissue slices, tile-scans were performed with 2-4 stained slices per patient mounted under a poly-L-lysine

coated 22x22mm glass coverslip submerged in PBS (pH 7.4) using an upright laser scanning confocal microscope (LSM 780

NLO, Zeiss), with a Plan-Apochromat 20x/1.0 water-immersion objective (Zeiss) and an automated stage (Zeiss). Single tiles were

imaged at a resolution of 0.75x0.75mm, a tile overlap of 15%, and stack separation of 2.5mm. The bounding grid was set around

the slice such that the entire slice was included in the tile-scan, and the stack boundaries were set to include the entire slice.

Tile-Scan Analysis

Raw tile-scans were stitched using the Fiji Stitching plugin (Preibisch et al., 2009; Schindelin et al., 2012). Fusion was completed by

maximum intensity, with a regression threshold of 0.3, maximum displacement threshold of 2.50, and absolute displacement

threshold of 3.50. The overlap was computed with sub pixel accuracy. Stitched tile-scans were contoured manually for the total slice
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area and for all individual endocrine objects (defined as positive for at least one hormone stained) on a maximum intensity projection,

with the ROIs saved separately. For individual endocrine objects, the regions were individually cropped from the stitched tile-scan,

the 488 channel was subtracted from the 546 channel, and the 546 channel was subtracted from the 633 channel to account for chan-

nel bleed. The images were then split by color, median filtered (3x3x1), and each converted to binary (IJ_IsoData). Hole filling in 3D

and size opening (limit 500 mm3), followed by volume analysis (Euler connectivity: C26) were completed using MorphoLibJ (Legland

et al., 2016). For total slice volume, each channel of the original tile-scan was added together, and then cropped using the total slice

ROI previously contoured. The image was median filtered (3x3x1), and a mask of nearby points was generated (within a distance of

10.0mm, threshold of 12.75) using the built in Fiji plugin. Dark and bright outliers (respectively) with a radius of 20 pixels each were

removed. Holes were filled, 3D volume closing was run (cube, 3x3x1), and volume analysis was completed as for the endocrine ob-

jects using MorphoLibJ (Legland et al., 2016). Analyzed volumes and endocrine object counts were pooled by patient number for the

purposes of statistical analysis. For further analysis, endocrine objects were grouped by volume into single cells (500 – 1,000mm3),

small endocrine clusters (1,001 – 10,000mm3, corresponding volume for 2-10 cells) and islets (> 10,000mm3, corresponding volume of

11 or more cells). Comparing endocrine cell composition of similar sized islets assessed by volumetric 3D morphometry of entire tis-

sue slices and manual 2D analysis of single image sections of an islet, we verified that semi-automated large-scale 3D morphometry

delivers the same precision as conventional manual cell counting in 2D, while providing a much larger amount of data with more spe-

cific and relevant information about pancreas morphology (Figure S6).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analyses and Calculations

No specific statistical methods were used to predetermine sample size. All results are presented asmean ± SEM. The significance of

the difference between groups was analyzed as described in the figure legends. P values < 0.05 were considered statistically signif-

icant. All statistical analyses were performed using GraphPad Prism Software version 6.01.

DATA AND CODE AVAILABILITY

This study did not generate any unique datasets or code
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