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Abstract: Novel strategies to treat cancer effectively without adverse effects on the surrounding

normal tissue are urgently needed. Marine sponges provide a natural and renewable source of

promising anti-tumor agents. Here, we investigated the anti-tumor activity of Aerothionin and

Homoaerothionin, two bromotyrosines isolated from the marine demosponge Aplysina cavernicola,

on two mouse pheochromocytoma cells, MPC and MTT. To determine the therapeutic window

of these metabolites, we furthermore explored their cytotoxicity on cells of the normal tissue.

Both metabolites diminished the viability of the pheochromocytoma cell lines significantly from

a concentration of 25 µM under normoxic and hypoxic conditions. Treatment of MPC cells leads

moreover to a reduction in the number of proliferating cells. To confirm the anti-tumor activity of these

bromotyrosines, 3D-pheochromocytoma cell spheroids were treated with 10 µM of either Aerothionin

or Homoaerothionin, resulting in a significant reduction or even complete inhibition of the spheroid

growth. Both metabolites reduced viability of normal endothelial cells to a comparable extent at

higher micromolar concentration, while the viability of fibroblasts was increased. Our in vitro results

show promise for the application of Aerothionin and Homoaerothionin as anti-tumor agents against

pheochromocytomas and suggest acceptable toxicity on normal tissue cells.

Keywords: marine sponges; Aplysina cavernicola; pheochromocytoma and paraganglioma; fibroblasts;

spheroids; HUVEC; fractionated treatment; normal tissue toxicity; therapeutic index
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1. Introduction

Cancer is one of the main causes of death in this century and there is a continuing need for the

identification and the development of new anti-tumor drugs. The clinical use of new drugs is thereby

often limited by their low specificity towards the tumor tissue, leading to simultaneous damage of the

surrounding normal tissue and restricting the dose that can be administered (therapeutic window).

Natural resources provide a virtually inexhaustible source of bioactive compounds. Especially

the oceans, which cover the majority of our planet, make the marine environment the largest habitat

on earth hosting high and largely-unexplored biodiversity [1]. Marine sponges are mostly of sessile

nature and lack effective morphological defense mechanisms; nonetheless, their survival is ensured

by the development of chemical defense strategies by the production of secondary metabolites with

various bioactivities [2,3]. These secondary metabolites have also shown the potential to inhibit

tumor cell growth [4,5]. Already six decades ago, isolation of C-nucleosides from the Caribbean

sponge, Cryptotheca crypta, provided the basis for the synthesis of Cytarabine, the first sponge-derived

anti-tumor drug in clinical use [6]. Eribulin (Halaven®), a synthetic derivative based on the structure

of halichondrin B isolated from the demosponge Halichondia okadai, is also in clinical application for

the treatment of metastatic breast cancer [4,7]. These data underline the potential of sponge-derived

secondary metabolites as anti-tumor drugs.

Sponges of the Verongiida order, such as Aplysina aerophoba and A. cavernicola, are characterized by

the synthesis of brominated tyrosine derivatives (bromotyrosines) with, e.g., cytotoxic and multi-target

activities [8]. According to the modern view, bromotyrosines can be produced by spherulocytes—specialized

cells located within chitinous skeletal fibers of verongiids [9]. Two corresponding representatives

are Aerothionin and Homoaerothionin, two tetrabromo spirocyclohexadienylisoxazoles with a wide

range of biological activity (Figure 1) [10]. Aerothionin displayed a cytotoxic activity towards the

cervical cancer (HeLa) [11,12] as well as breast cancer (MCF-7) cells [13] and was able to inactivate

multidrug-resistant clinical isolates of Mycobacterium tuberculosis [14]. Moreover, Aerothionin showed

the potential to inhibit the adenosine A1 receptor [12]. Both sponge-derived metabolites inhibit

voltage-dependent calcium channels [15] and furthermore showed promising activity against the

chloroquine-resistant strain of Plasmodium falciparum, the carrier of malaria [13]. Demosponges of the

order Verongiida can be cultivated and represent renewable sources of unique 3D chitinous scaffolds [16,

17], which are ready-to-use for various biomedical [18,19] and technological applications [9,20–24].

 

 

Figure 1. Schematic view: fresh collected A. cavernicola demosponge (the diameter of the sponge’s

finger-like bodies is about 2 cm) and the chemical structure of two isolated secondary metabolites,

Aerothionin and Homoaerothionin.

We previously showed that marine sponges provide a renewable natural source of potential

anti-tumor and anti-metastatic drugs for the treatment of adrenal pheochromocytomas and extra-adrenal

paragangliomas (PPGLs) [25]. These neural crest-derived tumors with variable disease aggressiveness



Mar. Drugs 2020, 18, 236 3 of 12

provide a good model for investigating the anti-tumor activity of new sponge-derived metabolites;

in addition, effective treatment strategies for these rare tumors are still lacking [26]. This prompted us

to investigate the anti-tumor activity of Aerothionin and Homoaerothionin against pheochromocytoma

cells. In this regard, we also evaluate the normal tissue toxicity of both metabolites using fibroblasts

and endothelial cells to determine the therapeutic window and to predict undesirable side effects on

the normal tissue.

2. Results

2.1. Anti-Tumor Activity of Aerothionin and Homoaerothionin In Vitro

To evaluate the therapeutic window of Aerothionin and Homoaerothionin, we started with the

determination of the anti-tumor activity of both compounds. Therefore, two different pheochromocytoma

cell lines were used as models. Tumor cell hypoxia is commonly known to induce therapy resistance. To

simulate hypoxic conditions characterized by a reduced oxygen partial pressure, we cultivated both cell

lines under extrinsic hypoxia (≤1% O2) or spheroid conditions as 3-dimentional model characterized by

intrinsic hypoxia [27].

2.1.1. Aerothionin and Homoaerothionin Decreased Proliferating Cell Characteristics

Aerothionin reduced the relative viability (RV) of MPC mouse pheochromocytoma cells after

24 h treatment, significantly starting with a concentration of 25 µM (RV25µM = 83.7 ± 1.7%;

RV50µM = 55.1 ± 2.2%; Figure 2A). Under hypoxic conditions, Aerothionin was less effective in

decreasing MPC cell viability (RV25µM = 93.2 ± 3.0%; RV50µM = 70.4 ± 3.7%). Treatment with 10 µM

Aerothionin diminished the number of proliferating cells under normoxic conditions significantly,

while MPC cells under hypoxic conditions were not additionally affected (Figure 2B). As already shown

in our previous work, cultivation under hypoxia resulted in growth inhibition of these cells [25].

The second sponge-derived drug, Homoaerothionin, was less effective in diminishing the

proliferating properties of these cells. Homoaerothionin reduced RV under normoxic conditions from

25 µM (RV25µM = 88.6 ± 4.0%; RV50µM = 61.3 ± 1.7%), but under hypoxic conditions a concentration

of 50 µM (RV25µM = 102.3 ± 3.1%; RV50µM = 74.1 ± 4.0%) was needed to decrease RV significantly

(Figure 2A). Under normoxic conditions, treatment with 10 µM Homoaerothionin diminished the

number of proliferating MPC cells significantly, while no additional effect could be detected under

hypoxic conditions (Figure 2B).

For confirmation purposes, we used a second pheochromocytoma cell line, named MTT that shows

a more aggressive cell behavior. Treatment with at least 25 µM Aerothionin (RV25µM = 82.8 ± 3.9%;

RV50µM = 48.3 ± 4.0%; Figure 3A) diminished RV under normoxic conditions significantly resulting in

a half-maximal effective concentration (EC50) of 48.1 µM in these cells. Cultivation under hypoxia just

slightly impaired the cellular response of the MTT cells towards Aerothionin (RV25µM = 84.5 ± 3.7%;

RV50µM = 58.2 ± 2.0%). The number of proliferating MTT cells was not affected by the treatment with

Aerothionin under normoxic and hypoxic conditions (Figure 3B). Homoaerothionin reduced the RV

under normoxia (RV25µM = 83.3 ± 5.4%; RV50µM = 55.7 ± 5.7%) and hypoxia (RV25µM = 94.2 ± 3.9%;

RV50µM = 60.3 ± 4.1%) to a comparable extent (Figure 3A). Similar to Aerothionin, treatment with

Homoaerothionin (10 µM) had no effect on the number of proliferating MTT cells (Figure 3B).

2.1.2. Aerothionin and Homoaerothionin Diminished Spheroid Growth

For a better simulation of the in vivo tumor situation, we used 3D-pheochromocytoma cell

spheroids characterized by an oxygen and nutrient gradient that led to the formation of three different

zones: (1) the outer layer with proliferating cells; (2) a hypoxic area; and (3) the necrotic core [27].

A single treatment with 10 µM Aerothionin or Homoaerothionin at day four after spheroid generation

decelerated MPC cell spheroid growth from day 11 onwards significantly (Figure 4A). In clinical

treatment regimes, drugs are often administered in recurring cycles. Therefore, we treated our
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MPC cell spheroids at days four, eight, 11, and 15 after spheroid generation, and monitored their

growth. In contrast to the single treatment, a fractionated treatment regime with Aerothionin or

Homoaerothionin resulted in complete inhibition of the MPC cell spheroid growth (Figure 4A).

Comparable results were also obtained for the more aggressive MTT cell spheroids characterized in

this model by a larger spheroid diameter (diameterday18 = 568.0 ± 34.8 µm) compared to the MPC cell

spheroids (diameterday18 = 469.1 ± 19.5 µm). Four days after single treatment with either Aerothionin

or Homoaerothionin the MTT spheroid growth diminished significantly and a fractionated treatment

inhibited the growth completely over the observation time.  

 

Figure 2. The impact of Aerothionin and Homoaerothionin on MPC cell proliferating properties.

The impact of Aerothionin and Homoaerothionin on (A) MPC cell viability and (B) the number of

proliferating MPC cells under normoxic and hypoxic conditions is shown. Four to five independent

experiments were performed (n= 15–32). Mean±SEM; ANOVA and Bonferroni post hoc test comparison

vs. control * p < 0.05, ** p < 0.001.

2.2. Effects of Aerothionin and Homoaerothionin on Cells of the Normal Tissue

For the development of a novel therapeutic strategy, the therapeutic window of a drug is of great

importance. It is defined as the range of drug dosages that can treat disease effectively without having

side effects mainly associated with a toxicity on cells of the normal tissue. Therefore, we investigated the

therapeutic effective concentration of 10 µM Aerothionin and Homoaerothionin (anti-tumor activity)

regarding a possible cytotoxic effect on endothelial cells and fibroblasts of normal tissue.

2.2.1. Effects of Aerothionin and Homoaerothionin on Endothelial Cells

Treatment with 25 to 50 µM Aerothionin (RV25µM = 77.7 ± 4.6%; RV50µM = 60.4 ± 8.5%) or

Homoaerothionin (RV25µM = 75.9 ± 2.8%; RV50µM = 59.2 ± 6.0%) significantly reduced the viability
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of mouse endothelial cells (MS1) isolated from the islet of Langerhans from the pancreas (Figure 5A).

The cytotoxic effect of both compounds was thereby comparable. Generation of MS1 cells spheroids was not

successful to study long-time effects of Aerothionin and Homoaerothionin. To confirm these results, we used

primary human umbilical vein endothelial cells (HUVECs) [28]. Aerothionin (RV25µM = 74.0 ± 16.1%;

RV50µM = 45.8 ± 13.7%) or Homoaerothionin (RV25µM = 63.7 ± 18.9%; RV50µM = 35.5 ± 7.3%) diminished

the viability of these cells at a concentration of 50 µM (Figure 5B). The half-maximal effective concentration

was determined in the middle micromolar range (EC50,Aerothionin = 43.8 µM; EC50,Homoaerothionin = 34.5 µM)

for the HUVECs.
 

 

Figure 3. The impact of Aerothionin and Homoaerothionin on MTT cell proliferating properties.

The impact of Aerothionin and Homoaerothionin on (A) MTT cell viability and (B) the number of

proliferating MTT cells under normoxic and hypoxic conditions is shown. Four to five independent

experiments (n = 15–32). Mean ± SEM; ANOVA and Bonferroni post hoc test comparison vs. control

* p < 0.05 or ** p < 0.001.

2.2.2. Aerothionin and Homoaerothionin Stimulated the Viability of Normal Fibroblasts

As a second cell typeof thenormal tissue, we investigated theeffect ofAerothionin and Homoaerothionin

on mouse fibroblasts, 3T3. Fibroblasts are crucial for synthesizing the structural framework of tissues.

Treatment with up to a concentration of 25 µM Aerothionin (RV25µM = 116.6± 4.0%; RV50µM = 100.8± 6.4%)

stimulated the viability of 3T3 cells significantly (Figure 6A). Homoaerothionin even showed this stimulating

effect on 3T3 viability up to a concentration of 50 µM (RV25µM = 116.4 ± 0.8%; RV50µM = 102.3 ± 1.0%).

To investigate long-time effects, we treat 3T3 cell spheroids with 10 µM Aerothionin or Homoaerothionin

(Figure 6B). The same concentration of Aerothionin or Homoaerothionin, that resulted before in a significant
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reduction or even a complete inhibition of the tumor cell spheroid growth, showed no measurable effect on

the 3T3 spheroid growth after single and fractionated treatment.  

 

Figure 4. The impact of Aerothionin and Homoaerothionin on pheochromocytoma cell spheroid growth.

(A) MPC and (B) MTT cell spheroids were treated with Aerothionin, Homoaerothionin, or DMSO as

the control. A single treatment or a fractionated treatment regime was performed. Arrows mark the

different treatment time points. Four independent experiments (n = 12) were performed. Mean ± SEM;

ANOVA and Bonferroni post hoc test comparison vs. control * p < 0.05, ** p < 0.001. Scale bar: 200 µm.  

 

Figure 5. The effects of Aerothionin and Homoaerothionin on endothelial cell viability. Dose-dependent

effects of Aerothionin and Homoaerothionin on the cell viability of (A) mouse endothelial cell line,

MS1, and (B) primary human umbilical vein endothelial cells (HUVECs) are shown. Four independent

experiments (n = 12) were conducted. Mean ± SEM; ANOVA and Bonferroni post hoc test comparison

vs. control * p < 0.05, ** p < 0.001.
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Figure 6. The impact of Aerothionin and Homoaerothionin on fibroblasts. (A) Treatment with either

Aerothionin or Homoaerothionin stimulated the viability of the mouse fibroblast, 3T3. (B) 3T3 fibroblast

spheroids were treated with Aerothionin, Homoaerothioin, or DMSO as the control. A single treatment

or a fractionated treatment regime was performed. Arrows mark the different treatment time points.

Scale bar: 200 µm. Four independent experiments (n = 12) were conducted. Mean ± SEM; ANOVA

and Bonferroni post hoc test comparison vs. control * p < 0.05, ** p < 0.001. No significant difference

was verified for 3T3 spheroids.

3. Discussion

The development of novel therapeutic approaches to cure cancer without side effects on healthy

tissues is urgently needed. In our present study, we investigated the therapeutic window of two

secondary metabolites, Aerothionin and Homoaerothionin, isolated from the marine demosponge

A. cavernicola for the first time. Both metabolites showed a significant anti-tumor activity towards

pheochromocytoma cells, while cells of the normal tissue were either stimulated (in the case

of fibroblasts) or reacted with a reduction of viability at higher concentrations (in the case of

endothelial cells).

Previously, we have already demonstrated the anti-tumor and anti-metastatic activity of

Aeroplysinin-1, a secondary metabolite isolated from the marine demosponge A. aerophoba, in our

pheochromocytoma cell models [25], and furthermore investigated the anti-tumor activity in cells of

more common tumor entities such as melanoma and breast cancer [29]. Aeroplysinin-1 diminished the

cell viability of MPC and MTT cells in a micromolar concentration (EC50,Aeroplysinin-1 = 9.6–11.4 µM) [25],

while Aerothionin and Homoaerothionin reduced the viability of these cells only from a

higher concentration of 25 µM. All three secondary metabolites reduced or even inhibited the

pheochromocytoma spheroid growth to a comparable extent. This is furthermore in line with the

anti-tumor effects of Aerothionin on HeLa cells in a micromolar range [11,12]. In the literature, it is

discussed whether Aerothionin and Homoaerothionin are only weakly active precursors, which are

converted into the active form, Aeroplysinin-1, by an enzymatic biotransformation following the

breakdown of the cellular compartmentation of the sponge [30,31]. Another reason for the slightly

diminished anti-tumor activity of Aerothionin and Homoaerothionin might be thereduced availability

of these compounds in the cells. Structural differences in comparison to Aeroplysinin-1 indicate a higher

hydrophobicity of Aerothionin and Homoaerothionin, possibly leading to a stronger accumulation of

these compounds in the hydrophobic cell membrane.
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The clinical application of novel drugs is often limited by their unspecific toxicity towards the

normal tissue and the associated short- and long-term side effects. At high concentrations of 25–50 µM,

Aerothionin and Homoaerothionin diminished viability of mouse (MS1) and primary human (HUVEC)

endothelial cells. An EC50 of 43.8 µM for Aerothionin and 34.5 µM for Homoaerothionin could

only be determined for the HUVECs. Aeroplysinin-1 showed increased cytotoxicity on the MS1 cell

(EC50 = 18.1 µM) [29], while for Aerothionin and Homoaerothionin no EC50 value could be detected.

With regard to undesirable toxicity towards the endothelium, Aerothionin and Homoaerothionin

appear to be safer than Aeroplysinin-1, with a comparable anti-tumor activity in vitro. Inhibition

of tumor angiogenesis is also discussed as a promising therapeutic approach to treat cancer [32].

Nothing is known about the anti-angiogenic activity of Aerothionin and Homoaerothionin, but the

anti-angiogenic activity of Aeroplysinin-1, which reduces the growth, migration, and invasion of

endothelial cells [33] is well described and also suggests an anti-angiogenetic activity of Aerothionin

and Homoaerothionin.

Another cell type of normal tissue is fibroblasts, which are crucial for the formation of the connective

tissue and are key players for maintaining skin homeostasis and orchestrating physiological tissue

repair [34]. Aerothionin and Homoaerothionin did not show any short-term and long-term cytotoxic

effects on fibroblasts; on the contrary, the treatment of both compounds resulted in stimulation

of fibroblast viability. In comparison, Aeroplysinin-1 reduced the viability of the 3T3 fibroblasts

significantly (EC50 = 40.1 µM) [29]. The potential fibroblast stimulating effects of Aerothionin and

Homoaerothionin should be investigated further, especially with regard to a potential application to

induce wound-healing and tissue renewal [35]. Overall, our in vitro data indicates that Aerothionin and

Homoaerothionin have a wider therapeutic window than Aeroplysinin-1, demonstrating a comparable

anti-tumor activity with simultaneously-reduced toxicity on cells of normal tissue.

Moreover, dose-limiting side effects on the normal tissue and the potentially limited bioavailability

of Aerothionin and Homoaerothionin could, for example, be improved by targeting chemical

modification of the molecule structure or an encapsulation of the drug [36–38]. We previously

demonstrated that a targeted release of nitric oxide could diminish cytotoxic effects on endothelial cells

induced by selective estrogen receptor modulators (SERMs) and could thereby improve the therapeutic

index of these drugs [38]. The diverse effects on different types of cells indicate a cell-specific target

resulting in the anti-tumor activity of these metabolites. Kalaitzis et al. already demonstrated an

inhibitory activity of Aerothionin on the adenosine A1 receptor [12]. An effect on voltage-dependent

calcium channels was furthermore discussed for both metabolites [15]. Continuative investigations

on Aerothionin and Homoaerothionin should therefore focus on the identification of the precise

mechanism of action leading to the anti-tumor activity of these bromotyrosines.

In the present study, we demonstrated the anti-tumor activity of Aerothionin and Homoaerothionin

on pheochromocytoma cells. For non-metastatic pheochromocytomas and paragangliomas, surgery is

the treatment of choice, but if metastases already occur treatment is challenging [39]. Combination

therapy with BYL719, a phosphatidylinositol-3-kinase α inhibitor, and everolimus, a mammalian target

of rapamycin inhibitor, showed synergistic effects on PPGLs in vitro [40]. The presence of different

secondary metabolites in the sponge also implies that the extent of the chemical defense mechanism

might be due to the combination of different metabolites. Therefore, it would be interesting for further

studies to examine whether Aerothionin and Homoaerothionin might also have a synergistic anti-tumor

effect either with other sponge-derived secondary metabolites or common chemotherapeutic agents

(chemosensitizing effect).

Our in vitro investigations showed promise for the application of Aerothionin and

Homoaerothionin as anti-tumor drugs against PPGLs. The therapeutic application of these precursors

of Aeroplysinin-1 seems to have a better therapeutic window than the active compound showing

a comparable anti-tumor activity by reduced toxicity on cells of normal tissue. The application of

Aerothionin and Homoaerothionin, as well as other sponge-derived secondary metabolites, provides a

promising therapeutic approach to treat cancer alone or perhaps also in combination with other drugs.
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4. Materials and Methods

Aerothionin and Homoaerothionin were kindly provided by BromMarin GmbH (Freiberg,

Germany) with the a purity grade of >99%.

4.1. Cell Culture

The mouse pheochromocytoma cells (MPC) generated from heterozygous neurofibromatosis

knockout mice, and its more aggressive derivate, the tumor tissue-derived (MTT) cells, were acquired

from Arthur Tischler [41–43] and cultivated as previously described [25]. Mouse fibroblasts 3T3

isolated from embryo tissue and the mouse endothelial cells, Mile sven 1 (MS1), were obtained from

the American Type culture collection and cultivated using Dulbecco’s Modified Eagle’s Medium

(DMEM) with 10% fetal calf serum (FCS) plus 1 mM glutaMax and sodium pyruvate. Primary human

umbilical vein endothelial cells (HUVECs) were isolated and cultivated as previously described [28].

All cells were cultivated under normoxic conditions in a CO2 incubator. To simulate hypoxic conditions

(extrinsic hypoxia), cells were cultivated at reduced oxygen partial pressure (≤1% O2) in a special

incubator equipped with an oxygen-sensor (Gasboy, Labotect, Rosdorf, Germany). In all cases,

cultivation took place at 37 ◦C, 5% CO2, and 95% humidity. All cell lines were routinely tested

to be mycoplasma-free using MycoAlert Mycoplasma Detection Kit (Lonza, Basel, Switzerland).

After trypsinization (trypsin/EDTA; 0.05%/0.02%) cells were diluted with complete medium and

counted using C-CHIPs (Neubauer improved). All experiments were performed after at least one

passage after re-cultivation. In the case of the pheochromocytoma cells, cultivation and the experimental

work were performed by using collagen A coated cell culture dishes. For the primary HUVEC cells,

cell culture dishes were coated with gelatin (0.5%).

4.2. Viability Assay

To investigate the anti-tumor activity of Aerothionin and Homoaerothionin, the CellTiter

96® AQueous One Solution Cell Proliferation Assay (Promega, Walldorf, Germany) was used as

previously described [25]. Both compounds were used at a concentration of 0.4 to 50 µM and

the relative viability was calculated using the analyzed absorbance at 490 nm ([absorbancetreated ×
100%]/absorbanceDMSOcontrol). The half-maximal effective concentration (EC50) was calculated from

the dose-response curve by using the dose-response fit model of the SigmaPlot software package.

4.3. Proliferation Assay

Cells (1.5 × 105) were seeded in 6-well plates, allowed to attach for 24 h and treated with

10 µM Aerothionin and Homoaerothionin. Afterwards, cells were incubated for 48 h, 72 h, or 144 h

under normoxic or hypoxic conditions. Cells were washed with PBS, trypsinized, and after careful

resuspension in medium (total volume: 1 mL) cells were counted using the cell counting application of

the Spark® multimode microplate reader (Tecan Trading AG, Männedorf, Switzerland). Each well was

counted in duplicate.

4.4. Generation and Cultivation of Tumor Cell Spheroids

Pheochromocytoma cell spheroids were generated as previously described [25,27].

4.5. Generation and Cultivation of Fibroblast Spheroids

The 3T3 cells (5 × 102) were resuspended in complete DMEM containing 20% of a 1.2%

methylcellulose solution (0.24% (w/v), prepared in serum-free DMEM + Glutamax) and seeded

in non-adherent round-bottom 96-well plates for suspension culture (Greiner Bio-One, Kremsmünster,

Austria). After 3–4 days of cultivation, the consumed medium was replaced.
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4.6. Spheroid Treatment and Growth Measurement

To determine the influence of Aerothionin and Homoaerothionin, four-day-old spheroids were

treated with 10 µM of the sponge-derive secondary metabolites. Two different experimental settings

were performed. For the first one, treatment took place once at day four (single treatment). During the

second setting, spheroids were treated 4, 8, 11, and 15 days after generation (fractionated treatment).

Afterward, the size of each spheroid was measured by using an inverse microscope Axiovert 200M

(Zeiss, Software: AxioVision 4.8). The area (A) of each spheroid was analyzed using the software

package Fiji (ImageJ). The diameter (d) was calculated under the assumption of an approximately

spherical form of the spheroids (d = 2 ×
√

(A/π)).

4.7. Statistical Analysis

Descriptive data were expressed as mean ± SEM. The number of n represents the number of

technical and biological replicates within the independent experiments. Statistical analysis was carried

out using one-way analysis of variance with post hoc Bonferroni with SigmaPlot 12.5 (Systat Software

GmbH, Erkrath, Germany).
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17. Fromont, J.; Żółtowska-Aksamitowska, S.; Galli, R.; Meissner, H.; Erpenbeck, D.; Vacelet, J.; Diaz, C.;

Tsurkan, M.V.; Petrenko, I.; Youssef, D.T.; et al. New family and genus of a dendrilla-like sponge with

characters of verongiida. Part ii. Discovery of chitin in the skeleton of ernstilla lacunosa. Zool. Anz. 2019,

280, 21–29. [CrossRef]

18. Mutsenko, V.V.; Gryshkov, O.; Lauterboeck, L.; Rogulska, O.; Tarusin, D.N.; Bazhenov, V.V.; Schütz, K.;

Brüggemeier, S.; Gossla, E.; Akkineni, A.R.; et al. Novel chitin scaffolds derived from marine sponge ianthella

basta for tissue engineering approaches based on human mesenchymal stromal cells: Biocompatibility and

cryopreservation. Int. J. Biol. Macromol. 2017, 104, 1955–1965. [CrossRef]

19. Mutsenko, V.V.; Bazhenov, V.V.; Rogulska, O.; Tarusin, D.N.; Schütz, K.; Brüggemeier, S.; Gossla, E.;

Akkineni, A.R.; Meißner, H.; Lode, A.; et al. 3d chitinous scaffolds derived from cultivated marine

demosponge aplysina aerophoba for tissue engineering approaches based on human mesenchymal stromal

cells. Int. J. Biol. Macromol. 2017, 104, 1966–1974. [CrossRef]

20. Ehrlich, H.; Steck, E.; Ilan, M.; Maldonado, M.; Muricy, G.; Bavestrello, G.; Kljajic, Z.; Carballo, J.;

Schiaparelli, S.; Ereskovsky, A.; et al. Three-dimensional chitin-based scaffolds from verongida sponges

(demospongiae: Porifera). Part ii: Biomimetic potential and applications. Int. J. Biol. Macromol. 2010, 47,

141–145. [CrossRef]
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Machałowski, T.; Ereskovsky, A.; Martinović, R.; Muzychka, L.; et al. Express method for isolation

of ready-to-use 3d chitin scaffolds from aplysina archeri (aplysineidae: Verongiida) demosponge. Mar. Drugs

2019, 17, 131. [CrossRef] [PubMed]

24. Wysokowski, M.; Machałowski, T.; Petrenko, I.; Schimpf, C.; Rafaja, D.; Galli, R.; Ziętek, J.; Pantović, S.;
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