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We consider the problem of building a continuous stochastic model, i.e., a Langevin or Fokker-Planck equa-
tion, through a well-controlled coarse-graining procedure. Such a method usually involves the elimination of the
fast degrees of freedom of the “bath” to which the particle is coupled. Specifically, we look into the general case
where the bath may be at negative temperatures, as found, for instance, in models and experiments with bounded
effective kinetic energy. Here, we generalize previous studies by considering the case in which the coarse
graining leads to (i) a renormalization of the potential felt by the particle, and (ii) spatially dependent viscosity
and diffusivity. In addition, a particular relevant example is provided, where the bath is a spin system and a sort
of phase transition takes place when going from positive to negative temperatures. A Chapman-Enskog-like
expansion allows us to rigorously derive the Fokker-Planck equation from the microscopic dynamics. Our
theoretical predictions show excellent agreement with numerical simulations.
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Introduction. Systems with negative temperature typically
appear in experiments or models where the effective kinetic
and potential energies are limited and therefore the micro-
canonical entropy can be nonmonotonic in the energy [1–5].
Examples are found in many physical contexts, including
nuclear spins [6,7], fluid dynamics [8], and trapped ultracold
atoms [9,10]. In these systems, the presence of negative tem-
peratures is seen without ambiguities when observing certain
degrees of freedom: For instance, the single-particle momen-
tum distribution may take the typical form of an “inverted”
Maxwell-Boltzmann distribution, of course with cutoff values
at the boundaries [11].

It is worth recalling that negative values of temperaturelike
variables also arise in other physical frameworks, for example,
within Edwards’s statistical mechanics description of dense
granular media [12–14]. Therein, the role analogous to that
of the temperature is played by the compactivity X , which is
defined by X −1 = ∂S(V )/∂V , where S(V ) is the total number
of stable configurations for a given volume V . Since S(V )
is not a monotonic function of V , negative compactivities
arise and correspond to packings that are looser than those
characterized by positive values of X [15–18].

Once the thermodynamics and the statistical mechanics of
a class of systems have been understood, it is a natural ques-
tion to wonder about their (statistical) dynamical description.
A classical problem is that of deducing stochastic equations
for the dynamics of slow degrees of freedom, for example,
a Langevin equation (LE) for the evolution of the position
and/or momentum of a tagged massive particle [19]. In the
following, by LE we mean a stochastic differential equation,
which corresponds to a continuous Markov process [20]. It is
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important to recall that analytical derivations thereof, through
some kind of coarse-graining procedures, from the equations
of the “microscopic” dynamics, e.g., Hamilton equations, Li-
ouville equation, Boltzmann equation, etc., are possible only
in a few special cases. A relevant alternative is to assume some
form of LE with few parameters, based upon some previous
theoretical knowledge of the investigated problem, and then
estimate those parameters from numerical or experimental
data through a proper inferring procedure. A discussion of
such an approach and its many practical subtleties is given
in Ref. [21].

In the case of systems with negative temperature, a LE for
a massive particle has already been considered by some of
us in Ref. [21]. Therein, it was assumed that the parameters
appearing in the LE—viscosity and noise amplitude—were
constant. In general, however, it may happen that there is
a coupling of the transport coefficients of the LE with the
particle position, depending upon the particular form of the
global Hamiltonian. Moreover, in such a previous investiga-
tion, a procedure to infer the viscosity, or noise amplitude,
from the Hamiltonian of the total system was not provided:
On the contrary, the fair success of an inference recipe of LE
parameters from numerical data was shown.

In the present Rapid Communication, we consider a
more general case that includes, in addition to possible
negative temperatures, (i) a renormalization of the potential
felt by the heavy particle, and (ii) inhomogeneous LE param-
eters. The usual Einstein-like relation between viscosity and
noise amplitude is confirmed by simply assuming equilibrium,
with the particular form of kinetic energy not playing any
crucial role. Afterwards, as an example, we investigate a
Hamiltonian system comprising a slow continuous degree of
freedom coupled to a bath of spins. A Chapman-Enskog-
like coarse-graining procedure allows us to derive the LE
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for the slow degrees of freedom, which leads to both a
renormalized potential and nonuniform viscosity and noise
amplitudes, obeying the Einstein relation mentioned before.
Interestingly, a phase transition—in a sense to be specified
below—stems from the renormalization of the potential, when
the temperature crosses from positive to negative values.
Numerical simulations of the total Hamiltonian system and
the LE confirm our theoretical picture.

Renormalized potential and generalized Einstein relation
between viscosity and diffusivity. Let us consider a system
comprising a “heavy” particle with canonical variables � ≡
(x, p) and a bath characterized by some variables that we
denote by z. The Hamiltonian of this system is assumed to
have the form

H (�, z) = K (p) + U (x) + HN (z) + VI (x, z), (1)

where K and U are the “kinetic energy” of the slow particle
and its external confining potential, respectively, HN is the
Hamiltonian of the bath, and finally VI is the potential for the
interaction between the heavy particle and the bath. The bath
variables z can be, for example, positions and momenta of N
“light”’ particles or Ising variables of N “fast” spins.

At equilibrium at temperature T , the probability distri-
bution function (PDF) for the whole system is given by
the canonical distribution Ps(�, z) = Z−1 exp[−βH (�, z)],
where Z is the partition function and β is the inverse of
the temperature—we are taking Boltzmann’s constant kB = 1.
The marginal PDF for the particle variables is then given by

fs(�) = Z−1e−β[K (p)+UR (x)], UR(x) = U (x) + Fb(x), (2a)

e−βFb(x) ≡
∫

dz e−β[HN (z)+VI (x,z)]. (2b)

Note that, in general, the integration over the bath variables
renormalizes the potential felt by the particle. The additional
term Fb(x) is the free energy of the bath for given values of
the particle variables.

Now we turn our attention to the dynamics. The evolution
equations for (x, p) read

ẋ = ∂pH = K ′(p), (3a)

ṗ = −∂xH = −U ′(x) − ∂xVI (x, z), (3b)

where the prime indicates the relevant derivative for functions
that only depend on one variable. At this point, we introduce
the hypothesis of timescale separation: The heavy particle
variables (x, p) are assumed to evolve much slower than the
bath variables z. In this regime, the term ∂xVI is expected to be
described by a “viscous term”—only a function of (x, p)—
plus a “noisy term.” In other words, we seek to generalize
the Klein-Kramers equation to systems with a generic form
of K (p), which may allow for the existence of negative
temperatures.

Following the above discussion, our candidate equation has
the generic form

ẋ = K ′(p), ṗ = −U ′(x) + B(�, t ), (4)

in which B(�, t ) is the effective force, which contains also
a noisy term, on the particle stemming from the interaction
with the bath. Going from Eq. (3b) to (4) implies conditional

averages over the fast degrees of freedom, keeping fixed
the slow variables. Therefore, the statistical properties of the
coarse-grained force B(�, t ) depend in general on both x
and p.

The original Langevin-Klein-Kramers equation predicts a
linear, or additive, form for B, namely, B(�, t ) = −γ p + ξ (t ).
Therein, ξ (t ) is a Gaussian white noise, with 〈ξ (t )〉 = 0 and
〈ξ (t )ξ (t ′)〉 = 2Dδ(t − t ′), and the two main parameters are
the constant viscosity γ > 0 and diffusivity D > 0. When
K (p) is not quadratic in p, the simplest modification is re-
placing the viscous term −γ p with −γ K ′(p). This was done
in Ref. [21], where the usual Einstein relation γ = βD was
shown to hold also for β < 0.

The coarse graining over the bath variables may lead to
a more general situation, which we analyze here. First, an
additional effective external potential term may appear in
B(�, t ), which we identify with −F ′

b(x) to be consistent with
the equilibrium situation: If the bath variables were infinitely
fast, the bath would remain exactly at equilibrium at all times
and the particle would follow a deterministic motion under the
force −U ′

R(x) = −U ′(x) − F ′
b(x) [22]. Second, the viscosity

and the diffusivity may be spatially dependent, i.e., γ = γ (x)
and D = D(x). Incorporating these two ingredients into our
description, we end up with the following ansatz for the
coarse-grained force,

B(�, t ) = −F ′
b(x) − γ (x)K ′(p) +

√
2D(x)ξ (t ). (5)

The Fokker-Planck equation for the PDF f (�, t ) for the
heavy particle is then

∂t f = −K ′(p)∂x f + U ′
R(x)∂p f

+ ∂p[γ (x)K ′(p) f + D(x)∂p f ], (6)

Following Ref. [23], we can write the Fokker-Planck
equation as a conservation law, ∂t f = −∇ · J, where
J ≡ {Jx, Jp} is the probability density current and ∇ ·
J ≡ ∂xJx + ∂pJp. Moreover, J can be split into its re-
versible and irreversible parts Jrev and Jirr, specifically
Jrev(�, t ) = {K ′(p) f (�, t ),−U ′

R(x) f (�, t )} and Jirr(�, t ) =
{0,−γ (x)K ′(p) f (�, t ) − D(x)∂p f (�, t )}.

The steady solution of the Fokker-Planck equation must
be the equilibrium distribution fs(�) in Eq. (2a). On the one
hand, substitution of the steady distribution into the Fokker-
Planck equation always leads to ∇ · Jrev,s(�) ≡ 0, with no
particular requirements for the reversible part of the current.
On the other hand, the condition ∇ · Jirr,s = 0 can be fulfilled
only if Jirr,s ≡ 0, i.e., if detailed balance (DB) holds [23]. The
DB condition leads to

γ (x) = βD(x), (7)

which is a generalized Einstein relation for inhomogeneous
viscosity and diffusivity.

An example with an analytical derivation of the LE. As an
example of the general case discussed before, we consider the
following Hamiltonian for a slow particle coupled to a spin
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bath,

H (�, σ ) = K (p) + V (x, σ ), (8a)

V (x, σ) = U (x) − μλ(x)
N∑

j=1

σ j . (8b)

Above, σ ≡ (σ1, σ2, . . . , σN ) are spin variables, σ j = ±1, μ

is a constant, and λ(x) is a certain function of x. Then, the
spins σ are the bath variables z in Eq. (1), and the bath
contribution to the Hamiltonian HN (z) + VI (x, z) reduces to
the term −μλ(x)

∑
j σ j , i.e., the spins feel an inhomogeneous

external field μλ(x).
To start with, we discuss the equilibrium situation. Therein,

the system as a whole is described by the canonical distri-
bution Ps(�, σ ) = Z−1 exp [−βH (�, σ )]. In this simple case,
the specific form of the free energy of the bath Fb(x) for given
values of the particle variables is

e−βFb(x) = {2 cosh [βμλ(x)]}N . (9)

Moreover, we can also write the conditional probability of
finding the spins in a configuration σ for given values of the
particle variables as

P s(σ|x) = eβ[μλ(x)
∑

j σ j+Fb(x)]. (10)

Our notation makes it explicit that this conditional probability
depends only on x. Also, we have that

F ′
b(x) = −Nμλ′(x)〈σ 〉s(x), 〈σ 〉s(x) = tanh [βμλ(x)],

(11)

where 〈σ 〉s(x) ≡ ∑
σ σ jP s(σ|x), for any j.

Now, let us consider the dynamics. On the one hand, ac-
cordingly with our previous general discussion, the evolution
equations for (x, p) are

ẋ = ∂H

∂ p
= K ′(p), ṗ = −∂H

∂x
= −∂xV (x, σ ), (12)

where ∂xV (x, σ ) = U ′(x) − μλ′(x)
∑

j σ j . On the other hand,
and for the sake of simplicity, we assume Glauber’s stochastic
dynamics for the spins. We denote by R j the operator that
flips the jth spin, leaving the remainder unchanged. The
transition rate for the flipping of the jth spin, i.e., from
configuration σ to R jσ , is

Wj (σ|x) = α

2
{1 − σ j tanh[βμλ(x)]}, (13)

in which α is a characteristic rate [24]. We can write a
Liouville-master equation for the time evolution of the joint
PDF P (�, σ, t ),

W(σ|x)P (�, σ, t ) = ε[∂t + L(�, σ )]P (�, σ, t ). (14)

We have introduced the linear operators

W(σ|x) ≡
N∑

j=1

(R j − 1)Wj (σ|x), (15a)

L(�, σ ) ≡ K ′(p)∂x − ∂xV (x, σ)∂p. (15b)

Note the auxiliary ε in front of the right-hand side (rhs) of
Eq. (14), actually ε = 1. Clearly, the canonical distribution is
a time-independent solution of Eq. (14) [25].

Our idea is to derive an equation for the marginal PDF
for the particle variables f (�, t ) = ∑

σ P (�, σ, t ) when the
spins are much faster than the “heavy” particle. Specifically,
this means that ω0/α � 1, with ω−1

0 being the characteristic
time over which the heavy particle evolves. Instead of mak-
ing this idea explicit by introducing dimensionless variables,
we have employed an equivalent approach—usual in kinetic
theory—by introducing the auxiliary ε in front of the rhs of
Eq. (14) [26].

Chapman-Enskog expansion. We proceed with an expan-
sion in powers of ε,

P (�, σ, t ) = P s(σ|x) f (�, t ) +
∞∑

l=1

εl P (l )(�, σ, t ). (16)

We ensure f (�, t ) to be the exact marginal distribution of
the particle by assuming

∑
σ P (l )(�, σ, t ) = 0, ∀l � 1. It is

the dynamical equation of f (�, t ), and not f itself, that is
expanded in powers of ε in the Chapman-Enskog method
[27–31],

∂t f (�, t ) =
∞∑

l=0

εlF (l )(�, t ). (17)

Truncating the above series at the lowest order (l = 0), one
has the “deterministic” (zero noise) approximation. The effect
of the noise can be introduced in the simplest way by retaining
the first two terms (l = 0, 1). This is what we do in the
following [32].

Now, we list the equations obtained by inserting Eqs. (10),
(16), and (17) into Eq. (14). Up to order ε2,

W(σ|x)P s(σ|x) f (�, t ) = 0, (18a)

W(σ|x)P (1)(�, σ, t ) = P s(σ|x)F (0)(�, t )

+L(�, σ )P s(σ|x) f (�, t ), (18b)

W(σ|x)P (2)(�, σ, t ) = P s(σ|x)F (1)(�, t )

+ [∂t + L(�, σ )]P (1)(�, σ, t ).

(18c)

Equation (18a) (order of unity, ε0) is an identity, because in
Eq. (16) we have anticipated the zeroth-order contribution to
the expansion of P in powers of ε.

First, we resort to Eq. (18b) (order of ε) to obtain F (0)

and P (1). We bring to bear that the rhs of Eq. (18b) must
be orthogonal to P s(σ|x), i.e., its sum over all the spin con-
figurations vanishes, which entails that F (0) = −K ′(p)∂x f +
[U ′(x) + F ′

b(x)]∂p f . Following our general discussion, there
appears an extra force −F ′

b(x), given in this specific system
by Eq. (11). In order to have a consistent limit as N → ∞, the
coupling constant μ between the particle and the spins must
scale as N−1/2 [33]. With this scaling, we have that

F (0)(�, t ) = −K ′(p)∂x f (�, t ) + U ′
R(x)∂p f (�, t ), (19a)

UR(x) = U (x) − β

2
μ̃2λ2(x), μ = μ̃N−1/2, (19b)

It is worth emphasizing the emergence of the “renormalized”
potential UR(x), once more accordingly with the general
framework developed before.
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Next, we substitute the obtained expressions for F (0)

into Eq. (18b), and take into account that ∂xP s(σ|x) =
βμλ′(x)

∑
j [σ j − 〈σ 〉s(x)]P s(σ|x) to write the following

equation for P (1),

W(σ|x)P (1)(�, σ, t ) = μλ′(x)[βK ′(p) f (�, t ) + ∂p f (�, t )]

×
N∑

j=1

[σ j − 〈σ 〉s(x)]P s(σ|x). (20)

Interestingly, this equation can be explicitly solved for P (1),
because it is easy to show that

∑
j [σ j − 〈σ 〉s(x)]P s(σ|x) is

an eigenvector of the operator W(σ|x) corresponding to the
eigenvalue −α. Therefore,

P (1)(�, σ, t ) = −α−1μλ′(x)[βK ′(p) f (�, t ) + ∂p f (�, t )]

×
N∑

j=1

[σ j − 〈σ 〉s(x)]P s(σ|x). (21)

Now, we make use of Eq. (18c) to calculate F (1) [34]:
Again, its rhs must also be orthogonal to P s(σ|x), i.e., the
sum over all the spin configurations must vanish. Therefore,
F (1) = −μλ′(x)

∑
σ

∑
j σ j∂pP (1), from which (i) taking into

account the explicit expression for P (1) and (ii) considering
the limit as N → ∞, F (1) is reduced to

F (1)(�, t ) = α−1[μ̃λ′(x)]2∂p[βK ′(p) f (�, t ) + ∂p f (�, t )].
(22)

Fokker-Planck equation for f (�, t ). Up to order ε, the
evolution of the marginal distribution f (�, t ) is given by
∂t f = F (0) + εF (1). We write the result in the limit as N →
∞, with the scaling in Eq. (19b) and, moreover, we make ε =
1 as we discussed before carrying out the Chapman-Enskog
expansion. Making use of Eqs. (19) and (22), we arrive at

∂t f = −K ′(p)∂x f + U ′
R(x)∂p f

+α−1[μ̃λ′(x)]2∂p[βK ′(p) f + ∂p f ], (23)

which is in complete agreement with the general picture we
have developed before. In particular, comparison with Eq. (6)
leads to identifying the viscosity and the diffusivity in terms
of the microscopic parameters of the model,

D(x) = α−1[μ̃λ′(x)]2, γ (x) = βD(x). (24)

Of course, the stationary solution of Eq. (23) is the exact
marginal equilibrium distribution fs(�) ∝ e−β[K (p)+UR (x)], in
accordance with Eq. (2a).

The Fokker-Planck equation (23) can be rewritten as a LE,

ẋ = K ′(p), ṗ = −U ′
R(x) − α−1[μ̃λ′(x)]2βK ′(p) + ξ (t ),

(25)
in which ξ (t ) is a Gaussian white noise verifying

〈ξ (t )〉 = 0, 〈ξ (t )ξ (t ′)〉 = 2α−1[μ̃2λ′(x)]2δ(t − t ′). (26)

In Eq. (25), the noise acts on the variable p while D(x)
depends only on x, thus it is not multiplicative.

Numerical simulations. In order to check the consistency
of our theoretical scheme, we perform numerical simulations
of the “exact” microscopic dynamics (14) in the α � 1—fast
spins—limit: Our aim is to compare the measured values of
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FIG. 1. Equilibrium PDF of the particle variables (x, p). The
top (bottom) panels correspond to β = 2 (β = −2). Histograms are
computed from numerical simulations of the microscopic dynamics
(14); red solid lines are the best fits to the Boltzmann distribution
(2a). Parameters: N = 104, α = 10, μ = 10−2, dt = (αN )−1.

significative observables to those predicted by the mesoscopic
description provided by the Fokker-Planck equation (23).
Specifically, we consider the following case,

K (p) = 1 − cos p, U (x) = (1 − cos x)2, λ(x) = sin x.
(27)

The kinetic energy is inspired by the experiment in Ref. [10],
where cold atoms in an optical lattice display both positive and
negative temperatures. It has also been studied theoretically
(for instance, see Refs. [11,21]).

For the microscopic dynamics, the spins are started from a
completely random configuration. Then, for each time step dt
thereof, our algorithm performs two actions: First, it evolves
the state (x, p) of the particle through a deterministic velocity
Verlet integration step; then it chooses one spin with uniform
probability, and tries to flip it according to the Glauber dy-
namics (13). The probability of flipping the chosen spin σ j is
given by Ndt Wj (σ|x); in order to keep it of the order of unity,
we choose dt = (αN )−1 for our simulations.

As a first check of the validity of our description, we
verify the renormalization of the potential that arises in our
theoretical framework. Specifically, we check the shape of
the equilibrium PDF for the particle variables (x, p), which
is given by Eq. (2a). Making use of Eqs. (19b) and (27), the
renormalized potential UR(x) is

UR(x) = (1 − cos x)2 − β

2
μ̃2 sin2 x. (28)

For positive temperatures, UR(x) corresponds to a bistable
potential with symmetric minima at x ∈ [−π, π ] verifying
cos x = 2/(2 + βμ̃2) and maxima at x = 0,±π , whereas
for negative temperatures UR(x) has only one minimum at
x = 0 and attains its maximum value at x = ±π . Thus,
the most probable value of x—given by the maximum of
exp[−βUR(x)]—changes discontinuously from x = ±μ̃

√
β

for β = 0+ to x = ±π for β = 0−.
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FIG. 2. Equilibrium autocorrelation functions. Specifically, we
consider two observables, sin x above and sin p below, for β = 2
(left panels) and β = −2 (right panels). Red circles represent the
simulations of the original dynamics (14), whereas blue diamonds
are the numerical integration of the Fokker-Plank equation (23), with
a time step h = 10−4. Other parameters as in Fig. 1.

In Fig. 1, we show the histograms of x and p at equilibrium,
for two values of the temperature with opposite signs: The
agreement between the numerical and the theoretical results
are excellent. By fitting each plot with the corresponding
Boltzmann factor, we infer values of the parameter β that
are compatible with the original ones used in the simulations,
within the confidence interval for the fit. Note that the most
probable value of momentum is ±π �= 0 for β < 0, but this
is compatible with stationarity: there is no average drift since
ẋ = ∂H/∂ p = sin p.

Second, we check the accuracy of the derived Fokker-
Planck equation for describing the dynamics of the particle
variables. More concretely, it is how the dynamical quantities
obtained from Fokker-Planck compare with those obtained
from the exact dynamics that we are interested in. With this
aim, we numerically integrate Eq. (25) using a standard algo-
rithm for stochastic differential equations [35], in its variant
of order h3/2, where h is the time step.

Several time-dependent quantities computed from the
Fokker-Planck equation (23) are compared with those ob-
tained by simulating the original Liouville-master equation
(14). In Fig. 2, we look into time correlation functions at equi-
librium, namely, into the autocorrelations of sin x and sin p.
The qualitative difference between Figs. 2(a) and 2(b) can
be related to the shape of the free energy, which is different
for positive and negative temperatures. When it is bistable
(β > 0), the time needed to cross zero is longer and thus
oscillations are hindered. In Fig. 3, we study the relaxation

-1

-0.5

 0

 0.5

 1 (a)

β=2〈 c
os

 x
 | 

Γ(
0)

 〉

-1

-0.5

 0

 0.5

 1 (b)

β=-2

-1

-0.5

 0

 0.5

 1

 0.1  1  10  100

(c)

β=2〈 c
os

 p
 | 

Γ(
0)

 〉

Time

Original
Stochastic

-1

-0.5

 0

 0.5

 1

 0.1  1  10  100  0.1  1  10  100  1000

(d)

β=-2

Time

 0.1  1  10  100  1000

FIG. 3. Relaxation to equilibrium. We plot the time evolution
of the averages of cos x (top) and cos p (bottom), for β = 2 (left
panels) and β = −2 (right panels). In all cases, the particle starts
from the initial condition �(0) = (x(0), p(0)) = (1, 1). As in Fig. 2,
the original dynamics (red circles) is compared with the Fokker-
Planck equation (blue diamonds), with a time step h = 10−4. Other
parameters as in Fig. 1. Green dashed lines are 〈cos x〉 and 〈cos p〉
analytically computed averaging over the theoretical equilibrium
distributions.

to equilibrium of some dynamical observables. In particular,
we have evaluated 〈cos x〉 and 〈cos p〉, conditioned to fixed
initial values of the particle variables �(0) ≡ (x(0), p(0)). In
both cases, the agreement is evident.

Concluding remarks. In conclusion, we have generalized
the problem of deriving a LE to nonstandard forms of the
Hamiltonian that also allow for absolute negative tempera-
tures. The LE obtained here satisfies a generalized Einstein
relation that has been shown to apply for (i) arbitrary spatial
dependence of the transport coefficients, and (ii) situations
in which the potential felt by the particle is renormalized
as a consequence of its interaction with the bath. Such a
renormalization is relevant when the eliminated fast degrees
of freedom change the potential felt by the particle [36].

A particular example is treated in detail through a
Chapman-Enskog-like coarse-graining procedure, which pro-
vides exact expressions for the transport coefficients. This
specific case is in complete agreement with the general pic-
ture and, in addition, presents a transition from one-basin to
bistable free energy when going from positive to negative
temperatures.
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