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Abstract
There are two main drawbacks when operating solar en-
ergy systems: a) the resulting energy costs are not yet
competitive and b) solar energy is not always available
when needed. In order to improve the overall solar plants
efficiency, advances control techniques play an important
role. In order to develop efficient and robust control tech-
niques, the use of accurate mathematical models is crucial.
In this paper, the mathematical modeling of the new TCP-
100 parabolic trough collector (PTC) research facility at
the Plataforma Solar de Almería is presented. Some sim-
ulations are shown to demonstrate the adequate behavior
of the model compared to the facility design conditions.

Keywords: solar energy, parabolic trough collector,
modeling, simulation

1 Introduction
The interest in renewable energy sources such as solar en-
ergy, experienced a great impulse after the Big Oil Crisis
in the 70s. Driven mainly by economic factors, this in-
terest decreased when oil prices fell. Nowadays, there is
a renewed interest in renewable energies spurred by the
need of reducing the environmental impact produced by
the use of fossil energy systems ((Goswami et al., 2000)
(Camacho and Berenguel, 2012)). Solar energy is, by far,
the most abundant source of renewable energy (IRENA,
2012).

Many solar electricity production, furnaces, heating and
solar cooling systems have been developed in the last
decade (Camacho et al., 2012). The main technologies for
converting solar energy into electricity are photovoltaic
(PV) and concentrated solar thermal (CST). Parabolic
trough, solar towers, Fresnel collector and solar dishes are
the most used technologies for concentrating solar energy.

As example of the above mentioned, we can men-
tion the following commercial solar plants: The 9 SEGS
trough plants (354 MW) which commissioned between
1985 and 1990 in California, are considered to be the first
commercial plants. Most of the commercial solar plants
have been built and commissioned in the last decade. As
examples we can mention the three 50 MW parabolic
trough plants Andasol 1, 2 and 3 in Guadix (Spain), the

solar tower plants of Abengoa PS10 and PS20, Gemaso-
lar solar tower built by Torresol Energy, the three 50 MW
Solnova and the two 50 MW Helioenery parabolic trough
plants of Abengoa in Spain, and the SOLANA and Mojave
Solar parabolic trough plant now operating in Arizona, of
280 MW power production each (Camacho and Gallego,
2013).

One of the first experimental solar trough plants was the
solar field ACUREX at the Plataforma Solar de Almería
(PSA). It consisted of a field of solar collectors, a heat
storage system and an electrical conversion unit (0.5 MW
Stal-Laval turbine). This plant has been operating from
1980 to 2013, and many control strategies have been
tested there ((Rubio et al., 2006) (Lemos et al., 2000)
(Berenguel, 1996) (Gallego et al., 2013)).

There are two main drawbacks when operating solar en-
ergy systems: a) the resulting energy costs are not yet
competitive and b) solar energy is not always available
when needed. Considerable research efforts are being de-
voted to develop techniques which may help to overcome
these drawbacks (Camacho et al., 2011); advanced con-
trol is one of those techniques which can help on reduce
operating costs and increase solar plants performance (Ca-
macho and Gallego, 2015).

In order to develop control and optimization algorithms
for solar energy systems, obtaining an accurate dynamic
model is very useful. This paper presents a mathematical
model of the new PTC TCP-100 research facility at the
PSA, currently under construction.

A considerable research effort has been done in the past
concerning the developing of accurate mathematical mod-
els describing the dynamics of parabolic trough systems.
One of the first work describing the equations which gov-
ern the behavior of a parabolic trough loop was done in
(Carmona, 1985). For example, in (Yebra et al., 2006),
an object oriented modeling and simulation of parabolic
trough collectors with modelica is presented. In (Yilmaz
and Soylemez, 2014), a complex analysis based on solar,
optical and thermal models is developed by using differ-
ential and non-linear algebraic correlations. In (JAI and
CHALQI, 2013), a mathematical model that describes the
heat exchange between the main components of a ther-
mal solar collector in an Integrated Solar Combined Cy-
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cle (ISCC) plant is described. More precise and complex
models dealing with modeling of parabolic trough plants
with direct vapor generation are described in (Bonilla
et al., 2012), (Bonilla, 2013), (yeb, 2005) and (Bonilla
et al., 2011).

A PTC solar plant consists mainly of: a collector
field, a power conversion system (PCS), a storage system
and auxiliary elements such as pumps, pipes and valves
((Duffie and Beckman, 1991), (Camacho et al., 2013)).
The solar collector field is formed by PTCs that collect
solar radiation and focus it onto a tube in which a heat
transfer fluid, usually synthetic oils, circulates. As the oil
passes through the metal tube, it is heated up and then
used by the PCS to produce electricity by means of a tur-
bine. The storage system is necessary to cover possible
mismatches between the solar energy available and the
demand. This is one of the advantages of solar thermal
energy: the storage of the thermal energy is easier and
cheaper than the storage of electrical energy (Herrmann
and Kearney, 2002).

The new TCP-100 has new features compared to the
ACUREX solar field: the solar tracking system is North-
South axis instead of West-East axis of the ACUREX field
(Camacho et al., 2007). The collectors and metal tubes
are greater and the working temperatures are about 350-
380 °C whereas the normal temperatures of the ACUREX
field were about 250-280 °C (Camacho et al., 1997). A
more complete description of the TCP-100 research facil-
ity solar field is carried out in section 2.

The model uses data from data sheets of components
and designing conditions from technical documentation of
this facility. In particular, parameters related to collectors’
size, diameter of the metal tube and the overall optical ef-
ficiency. The main characteristics of the heat transfer fluid
have been obtained using data from the datasheet pro-
vided by the supplier (Dowtherm). Thermal losses will be
obtained more precisely when experimental data is avail-
able. For simulation purposes, data from the provider of
the PTCs is used as a first approximation.

The paper is organized as follows: section 2 provides
a complete description of the TCP-100 PTC solar field.
Section 3 describes the main assumptions and equations
of the mathematical model. Section 4 shows simulations
describing the behavior of the model. Finally, section 5
draws to a close with some conclusions.

2 TCP-100 solar field description
A new parabolic trough collector facility has been erected
at Plataforma Solar de Almería (CIEMAT), in replacement
of the so many times referenced ACUREX field that had
been operated for more than 30 years. The new facility
is named TCP-100 and has been designed mainly to de-
velop automatic control algorithms for parabolic trough
solar fields .

The TCP-100 solar field is formed by three loops of
parabolic trough collectors (PTC), each of them composed

Figure 1. Lateral view of the first TCP-100 PTC in the first loop
at Plataforma Solar de Almería (PSA-CIEMAT). It is composed
of 8 modules of 12 meters length each.

Figure 2. Top view of the TCP-100 field at Plataforma Solar
de Almería (PSA-CIEMAT). The three loops are shown, with
two PTCs in each of them, numbered from 1 (rightmost) to 6
(leftmost). The first loop is formed by the connected pair 1-2
(right loop), the second loop by 3-4 (center loop) and the third
by 5-6 (left loop).

by two PTCs in a North-South orientation. Each of 6 PTCs
is 100 m length, formed by 8 modules in parallel. Fig. 1
shows the first PTC belonging to the first loop.

The PTCs in each loop are connected in the South ex-
treme, and the colder PTC will be always the first in the
row, placed at the right part (see Fig. 2).

Remarkable features of the new solar field are those
aimed at the experimentation of advanced control tech-
niques, with an important quantity of sensors and actua-
tors with respect to its predecessor ACUREX. These fea-
tures are summed up:

• Inlet and outlet solar field temperature sensors.

• For each loop, inlet and outlet temperatures are mea-
sured. Inside the loop, for each PTC: inlet, outlet and
middle point temperatures sensors are available.

• Volumetric flow rate for each loop.

• The aperture of control valves at the input of each
loop can be controlled.

The heat transfer fluid is Syltherm 800, suitable for
the operating conditions of this new field. Although not
treated in this paper, it is worth mentioning that this new
solar field is connected to a thermocline storage tank and
a cooler cycle through a heat exchanger. The operating
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conditions for a nominal solar radiation of 900 W/m2 are:
ṁ = 18.72 kg/s, inlet and outlet temperatures of 330◦C
and 380 ◦C respectively. A schematic diagram of the field
is shown in Fig. 3.

3 Mathematical modeling of TCP-100
solar field

Each of the TCP-100 loops consists of two eight module
PTCs suitably connected in series. Each collector mea-
sures 100 m long and the passive parts joining them (parts
where solar radiation does not reach the tube) measures 24
m long.

This sort of systems can be modeled by using a lumped
description (concentrated parameter model) or by a dis-
tributed parameter model (Gallego and Camacho, 2012).
The approach used here is the distributed parameter model
for each loop. The whole solar, composed of the three par-
allel loops, can be modeled by adding loops in parallel.

The model equations are the same used in the ACUREX
solar field developed in (Carmona, 1985) and (Camacho
et al., 1997). The model consists of the following system
of non-linear partial differential equations (PDE) describ-
ing the energy balance:

ρmCmAm
∂Tm

∂ t
= IKoptcos(θ)G

−HlG(Tm −Ta)−LHt(Tm −Tf ) (1)

ρ fC f A f
∂Tf

∂ t
+ρ fC f q

∂Tf

∂x
= LHt(Tm −Tf ) (2)

Where the subindex m refers to metal and f refers to
the fluid. The model parameters and their units are shown
in Table 1.

In the following, all the parameters needed for the
model are described, with the exception of geometric pa-
rameters (lengths and areas). The metal density and spe-
cific heat correspond to stainless steel tube 321.

3.1 Optical and geometric efficiencies
The optical efficiency, Kopt , takes into account elements
such as reflectivity, absorptance, interception factor and
others. According to the maker, the peak optical efficiency
is about 0.76.

The geometric efficiency, cos(θ), is determined by the
position of the mirrors with respect to the radiation beam
vector. It depends on hourly angle, solar hour, declina-
tion, Julianne day, local latitude and collector dimensions
(Goswami et al., 2000).

Parabolic trough collectors usually track the sun with
one degree of freedom using the E-W axis (as the
ACUREX field did) or the N-S axis (Oden and Abu-
Mulaweh, 2013). Solar tracking maintains the plane of

Table 1. Parameters description

Symbol Description Units

t Time s
x Space m
ρ Density Kgm−3

C Specific heat capacity JK−1kg−1

A Cross Sectional Area m2

T (x,y) Temperature K,°C
q(t) Oil flow rate m3s−1

I(t) Solar Radiation Wm−2

cos(θ) geometric efficiency Unitless
Kopt Optical efficiency Unitless

G Collector Aperture m
Ta(t) Ambient Temperature K,°C

Hl Global coefficient Wm−2°C−1

of thermal loss
Ht Coefficient of heat Wm−2°C−1

transmission metal-fluid
L Length of pipe line m

a solar beam so that it is always normal to the collec-
tor aperture. Commercial plants use the N-S axis track-
ing, because it improves greatly the amount of direct so-
lar radiation collected compared to the E-W axis tracking
throughout the year (Oden and Abu-Mulaweh, 2013). As
stated previously, the TCP-100 solar field uses N-S axis
tracking, and the expression for computing the cos(θ), is
as follows ((Duffie and Beckman, 1991) (Osterholm and
Palsson, 2014)).

cos(θ) =
√

cos(θz)2 + cos(δ )2sin(ω)2 (3)

Where δ is the declination and it can be obtained using
the well known Spencer formulas by using equation (4),
(Camacho et al., 2012).

δ = 0.006918−0.399912 · cos(ω)+0.070257 · sin(ω)

−0.006758 · cos(2 ·ω)+0.000907 · sin(2 ·ω)

−0.002697 · cos(3 ·ω)+0.00148 · sin(3 ·ω) (4)

The variable ω , is the hourly angle, the angular dis-
placement of the sun east or west of the local meridian
due to rotation of the earth on its axis at 15 degrees per
hour. It can be calculated as follows:

ω = (Tsun −12) ·15 · (Π/180) (5)

Where Tsun is the solar hour (Blanco and Santigosa,
2017) which can be computed using the local time as fol-
lows (Osterholm and Palsson, 2014):

Ts = localhour+4(Lst −Lloc)+Et

Where Lst is the standard meridian for the local time
zone, Lloc is the longitude of the location in degrees west
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Figure 3. Schematic diagram of the TCP-100 solar field in which the three loops configuration.

and Et is the equation of time (in minutes) which can be
obtained using the following equation (6):

Et = (0.000075+0.001868 · cos(B)
−0.032077 · sin(B)−0.014615 · cos(2 ·B)
−0.04089 · sin(2 ·B)) ·229.18 (6)

With B computed as B : (2 ∗π/365) ∗ (JD− 1), where
JD is the Julianne day.

The zenith angle is denoted by θz,the angle of inci-
dence of beam radiation on a horizontal surface (Duffie
and Beckman, 1991). It can be obtained by using the
expression (7):

θz = cos(φ)cos(δ )cos(ω)+ sin(φ)sin(δ ) (7)

The variable φ stands for the Latitude.

3.2 Characteristics of the heat transfer fluid
As stated before, the plant uses Syltherm 800 as a heat
transfer fluid (HTF). The HTF is a highly stable, long-
lasting silicone fluid designed for high temperature liquid
phase operation. It can operate from -40 °C to 400 °C,
without degradation.

The density ρ , specific heat C, and the coefficient of
heat transmission have been obtained by data provided in
the product data sheet. A polynomial adjustment was per-
formed in order to obtain an expression valid for the entire

range of operating temperatures. The expression obtained
are:

ρ f =−0.00048098T 2
f −0.811Tf +953.65 (kg/m3)

C f = 0.0000001561T 2
f +1.70711Tf

+1574.2795 (J/(kg ◦C))

The coefficient of heat transmission has two parts: one
depends on the temperature of the fluid and the other de-
pends on the oil flow (Camacho et al., 1997). Obtaining
the expression of this coefficient involves using complex
convection heat transmission formulas (Baerh, 1965).

The expressions are as follows:

Hv(T ) = 2 · (−0.00016213T 3
f +1.221T 3

f

+115.9983Tf +12659.697

Ht = Hv(T )q0.8 (W/(m2 ◦C)) (8)

3.3 Thermal losses
The thermal losses coefficient has to be obtained by using
experimental data from the actual solar field. However,
the field is not operative yet so the experimental data is
not available. For simulation purposes, the coefficient of
thermal losses has been considered to be similar to that
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used in the ACUREX field, but taking into account that
the overall thermal losses for 400 °C are about 265 W/m2

as stated in the metal tube data sheet. The coefficient of
thermal losses has the following expression:

Hl = 0.000357346 · (Tm −Ta)

−0.00878632 (W/(m2 K)) (9)

When experimental data is available, this coefficient
will be adjusted better.

4 Simulations
In this section, some simulation results are shown. In these
simulations, typical operating values of solar radiation, in-
let temperature and oil flow are used. These values are:
inlet temperature: 330°C, outlet temperature: 380°C and
the nominal mass flow is 18.72 kg/s for the whole solar
field.

Figure 4 shows a simulation carried out on a summer
day (Julianne day: 196). The upper part of figure 4 depicts
the field temperatures (inlet and outlet temperatures). The
bottom part of figure 4 shows the solar radiation (IDN), the
modified solar radiation (mod IDN), namely, the product
I ∗ cos(θ), and the oil flow multiplied by 100 (kg/s). As
can be seen, for the nominal operating conditions, the out-
let temperature of the model is very close to that expected
in the designing conditions (380 °C).

Figure 4. Simulation of a summer day.

Figure 5 plots a simulation performed with data from a
winter day (Julianne day: 349). The outlet temperature is
substantially lower because the modified solar radiation is
much lower. This effect is produced by the cos(θ), which
is smaller in winter months than summer months. In order

to rise the outlet temperature, decreasing the oil flow is
indispensable.

Figure 5. Simulation of a winter day.

The variation of the cosine of the incidence angle is
shown in figure 6 for different months. It is shown that
the variation of the cos(θ) is more pronounced throughout
the day in winter days than in summer and spring days,
with a deeper valley at the solar noon. In summer days,
such as the one belonging to June, the cosine variation is
smoother.

Figure 6. cos(θ) variation for different months.

Finally, a day with some transients in solar radiation,
produced by scattered clouds, is simulated in figure 7.
The clouds produce that the solar radiation decreased from
14.1 to 14.6 h approximately, and the solar field tempera-
ture decreases correspondingly. Some steps in the oil flow
have been produced throughout the day, in order to main-
tain the outlet temperature around 365 °C, although when
the passing clouds affect the solar field, the outlet temper-
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Figure 7. Simulation of a day with scattered clouds.

5 Conclusions
In order to develop efficient and robust control techniques,
the use of accurate mathematical models of the palnt be-
comes necessary. A mathematical model of the solar field
of the new TCP-100 research facility at the Plataforma So-
lar de Almería was presented. The simulations of the dy-
namic model under different operating conditions showed
that the model behaved as expected.

As can be seen in figure 4, for the nominal condi-
tions (IDN=900 W/m2, Tin=330 and the mass flow=18.72
kg/s), the model produces a similar outlet temperature to
that expected (380 °C).

When experimental data is available and the model ad-
justment is completed, this will be a very important test-
bench for simulating advanced control strategies and opti-
mization algorithms.
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