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Abstract

The most e�cient approximate procedures so far for the �owshop scheduling
problem with makespan objective �i.e. the NEH heuristic and the Iterated Greedy
Algorithm� are based on constructing a sequence by iteratively inserting, one by
one, the non-scheduled jobs into all positions of an existing subsequence, and then,
among the so obtained subsequences, selecting the one yielding the lowest (partial)
makespan. This procedure usually causes a high number of ties (di�erent subse-
quences with the same best partial makespan) that must be broken via a tie-breaking
mechanism. The tie-breaking mechanism employed is known to have a great in�uence
in the performance of the NEH, therefore di�erent procedures have been proposed in
the literature. However, to the best of our knowledge, no tie-breaking mechanism has
been proposed for the Iterated Greedy. In our paper, we present a new tie-breaking
mechanism based on an estimation of the idle times of the di�erent subsequences in
order to pick the one with the lowest value of the estimation. The computational
experiments carried out show that this mechanism outperforms existing ones both
for the NEH and the Iterated Greedy for di�erent CPU times. Furthermore, em-
bedding the proposed tie-breaking mechanism into the Iterated Greedy provides the
most e�cient heuristic for the problem so far.
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1 Introduction

The permutation �owshop scheduling problem with makespan objective (also known as problem

Fm|prmu|Cmax, in the notation by Graham et al., 1979) involves the determination of the order

of processing of n jobs on m machines while all jobs have the same machine sequence. This

problem is, without doubt, one of the most studied problems in Operations Research (see in this

regard the reviews by Framinan et al., 2004; Reza Hejazi and Sagha�an, 2005; Ruiz and Maroto,

2005). There are several reasons for this fact: On the one hand, the �ow shop layout is the common

con�guration in many manufacturing scenarios, as it presents a number of advantages over the

more general job shop con�guration (see e.g. Vakharia and Wemmerlov, 1990; Krajewski et al.,

1987), and, in addition, many job shops are a �ow shop for most of the jobs (Storer et al., 1992).

On the other hand, makespan minimisation leads to the minimisation of the total production

run, therefore maximising machine utilisation and thus minimising �xed unit costs.

Aside to the practical relevance of the problem, since the early work by Johnson (1954),

contributions on the Fm|prmu|Cmax problem have pioneered the research in scheduling with

di�erent objectives and layouts, and many models and solution procedures for the latter problems

have their origins in the �owshop scheduling problem with makespan objective.

Since Rinnooy Kan (1976) proved the Fm|prmu|Cmax problem to be NP-complete if the

number of machines is higher than two, most of the contributions have focused on providing

approximate methods yielding good (but nor necessarily optimal) solutions in reasonable time.

In the race for designing e�cient heuristics for the problem, a breakthrough was obtained by

Nawaz et al. (1983) when they proposed the NEH heuristic. This heuristic consists of two phases:

In the �rst phase, jobs are arranged with respect to the descending sums of their processing times.

Within the second phase (denoted by insertion phase in this paper), a job sequence is constructed

by evaluating the partial schedules originating from the initial order given by the �rst phase:

Assuming a sequence already determined for the �rst k− 1 jobs, k candidate (sub)sequences are

obtained by inserting job in position k in the k possible slots of the current sequence. Out of these

k (sub)sequences, the one yielding the minimum makespan is kept as relative (sub)sequence for

these �rst k jobs given by phase one. Then, job in position k+1 from the �rst phase is considered
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analogously, and so on until all n jobs have been sequenced.

Note that the complexity of this heuristic is O(n3m), as the evaluation of an m-machine

makespan can be accomplished in O(nm) and the evaluation of the k subsequences resulting in

step k can be completed in O(n2m). However, Taillard (1990) proposed a mechanism �named

Taillard's acceleration in the following� so the evaluation of the k subsequences can be done in

O(nm) thus reducing the overall complexity of the heuristic to O(n2m).

If we consider the NEH heuristic as a particular case of a family of heuristics, there are several

elements (options) within this family. These are:

• Starting order, i.e. how to obtain an initial order in which the jobs are arranged in the �rst

phase.

• Sequence generation, i.e. how the candidate (sub)sequences are generated from the initial

starting order.

• Tie-breaking mechanism, i.e. how ties are treated in the evaluation of the candidate

(sub)sequences.

The starting order determines which job is to be picked for insertion in the current (sub)sequence.

The original proposal by Nawaz et al. (1983) is to arrange the jobs in descending order of the

sum of their processing times. Framinan et al. (2003) conducted an extensive study with dif-

ferent initial orders and showed that there were signi�cant di�erences among them and that,

the original order remained the best for the makespan objective. These results were later con-

�rmed by Kalczynski and Kamburowski (2007). Nagano and Moccellin (2002) proposed a dif-

ferent starting order based on an estimation of an idle time of the jobs. Although the authors

claimed that their proposal outperforms the original NEH, an extensive simulation study car-

ried out by Kalczynski and Kamburowski (2008) showed that this seems to be true only for

m < 6 and that the resulting di�erences were not statistically signi�cant. The latter au-

thors also proposed an initial starting order which they claim to outperform the original one.

Dong et al. (2008) proposed a modi�cation of the NEH heuristic in which a speci�c mechanism

for tie-breaking is applied in addition to a starting order based on the mean and the variance

of the processing times of the jobs and �nally, Kalczynski and Kamburowski (2009) proposed
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a new modi�cation of the classical. Although this last modi�cation outperforms the original

NEH (and the modi�cation of the NEH proposed by Kalczynski and Kamburowski, 2008 and

Dong et al., 2008, see Kalczynski and Kamburowski, 2011) in an extended test bed proposed by

Kalczynski and Kamburowski (2009), it was not proved that the proposed starting order was su-

perior to the original in the benchmark set of Taillard (1993) where the starting order proposed

by Dong et al. (2008) presents the best results.

With respect to sequence generation, the original proposal is to insert the job in the k possible

slots of the current sequence. However, it is clear that di�erent strategies could be adopted, either

by reducing the number of candidates (by e.g. evaluating just a fraction of the k possible slots), or

by exploring more candidates. With respect to the former strategies, Rajendran (1993) limited the

insertion to positions ⌊k/2⌋ to k with good results, while di�erent strategies have been proposed

for exploring more candidate solutions by Rad et al. (2009) (note that other strategies have been

explored for the total �owtime by Woo and Yim, 1998 and by Framinan and Leisten, 2003, but

there is no proof that they are e�cient with respect to makespan). In all these contributions, the

gains (losses) in the quality of the solutions are compensated by the increase (decrease) in CPU

time requirements.

Finally, with respect to the tie-breaking mechanism, modi�cations with respect to the original

tie-breaking mechanism have been suggested by several authors. Note that, in general, tie-

breaking mechanisms may refer either to the starting order (i.e. how to rank jobs with the same

indicator value in the initial ordering sequence), or to the sequence generation phase (i.e. how

to choose among di�erent subsequences with the same best partial makespan). In this paper we

focus on the second type �labelled insertion tie-breaking in the following� so existing contributions

will be discussed in detail in Section 2.

With or without the aforementioned modi�cations, NEH has turned out to be the most ef-

�cient heuristic found for the problem, and nowadays it remains the cornerstone of subsequent

heuristics that have been proposed for the problem and that can be seen as re�nements and/or

enhancements of NEH. The reason for this e�ciency probably lies in the procedure employed

for inserting and evaluating �using Taillard's acceleration� the non-scheduled jobs, a mecha-

nism also present in the Iterated Greedy Algorithm (denoted as IG_RSLS in the following)
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proposed by Ruiz and Stützle (2007) and considered among the best heuristics for the problem

(see Ruiz and Stützle, 2007; Pan et al., 2008). IG_RSLS starts with an initial sequence π pro-

vided by the NEH heuristic, and then applies an iterative improvement scheme consisting of the

following phases:

• Destruction phase. Here, d jobs are randomly removed from the sequence, π, without

repetition. The sequence without these jobs is denoted by πD and is formed by n− d jobs.

• Construction phase. The d destructed jobs are inserted one by one in the sequence πD

following the same procedure as in the insertion phase of the NEH heuristic but only for

the last d jobs (using again Taillard's acceleration). The �nal sequence is denoted by π′.

• Local search. The solution generated in the construction phase is improved by a local

search phase. This phase successively removes a job from the sequence π′ and inserting

this job in the best possible position (using Taillard's acceleration).

• Acceptance criterion. A simple simulated annealing-like acceptance criterion with a con-

stant temperature, T , is considered.

These four phases are repeated until the stopping criterion (usually a maximum CPU-time)

is reached. More recently, the local search phase of IG_RSLS has been improved by Pan et al.

(2008) by means of a so-called referenced insertion scheme (RIS), which is denoted as IGRIS

in the following. Nevertheless, the insertion scheme remains the same, so IG_RSLS could be

considered as an extremely e�cient heuristic for the problem.

Both in NEH and the Iterated Greedy algorithm, ties among (sub)sequences yielding the

lowest makespan may occur. In the original proposals, no speci�c mention on ties is given, so it is

usually assumed that the �rst slot for which the minimummakespan is achieved when inserting job

in position k is kept as the best (sub)sequence. However, the mechanism employed to break these

ties has a great in�uence on the performance of these algorithms, as Kalczynski and Kamburowski

(2007) �rst attested for the NEH. To the best of our knowledge, there is no proposal of integrating

tie-breaking mechanisms in the Iterated Greedy algorithm. In this paper, we propose a new tie-

breaking mechanism that outperforms existing ones both in the NEH and in the Iterated Greedy.
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The paper is organized as follows: in Section 2, the problem under consideration is formally

stated and the existing tie-breaking mechanisms are presented. Section 3 is devoted to explain

the proposed tie-breaking mechanism. In Section 4, our proposal is compared against existing tie-

breaking mechanisms when embedded in the NEH, and in the IG_RSLS and IGRIS algorithms.

Finally, in Section 5, the main conclusions are discussed.

2 Problem statement. Tie-breaking mechanisms

The problem under consideration can be stated as follows: There are n jobs to be scheduled

in a �owshop consisting of m machines. On each machine i, each job j has a processing time

denoted as tij . Given a sequence of jobs π := (π1, . . . πn), let us denote pij(π) the processing

time of job πj on machine i, i.e. pij(π) = tiπj . Whenever it does not lead to confusion, this

notation is abbreviated to pij . Analogously, Cij(π) (abbreviated to Cij whenever it does not lead

to confusion) denotes the completion time of job πj on machine i. Cij can be calculated in the

following recursive manner:

Cij = max{Ci−1,j , Ci,j−1}+ pij (1)

where C0j = Ci0 = 0.

Then, the makespan or maximum completion time is Cmn.

Let us assume that a partial schedule of k−1 jobs has been constructed. An unscheduled job

r (whose processing time in machine i is denoted by tir) is to be inserted in position l (l = 1 . . . k),

thus obtaining k partial sequences of k jobs denoting π(l) the sequence when the unscheduled

job is inserted in position l. Additionally, let us denote eij the earliest completion time of job πj

in machine i before inserting the unscheduled job. eij can be calculated as follows:

eij = max{ei,j−1, ei−1,j}+ pij , i = 1 . . .m, j = 1 . . . k − 1 (2)

with e0j = 0, and ei0 = 0. Similarly, qij the duration between the starting time of job πj on
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machine i (before inserting the unscheduled job) and the end of all operations can be calculated

according to the following expression:

qij = max{qi+1,j , qi,j+1}+ pij , i = m. . . 1, j = k − 1 . . . 1 (3)

with qm+1,j = 0, and qi,k = 0.

One possibility to calculate the makespan of each of these k sequences is to use equation (1)

for each sequence, which results in a complexity O(n2m). Taillard (1990) proposed a mechanism

based on equations (2) and (3) to reduce this complexity to O(nm): Since the earliest completion

times of the jobs in π prior to position l have not changed, then fil the completion time on

machine i of job inserted in position l can be computed in the following manner:

fil = max{ei,l−1, fi−1,l}+ tir, i = 1 . . .m (4)

with f0l = 0. Therefore, Cmax(l) the completion time of sequence π(l) is:

Cmax(l) = max
i=1...m

{fil + qil} (5)

Given the ability of this mechanism to quickly evaluate the makespans resulting of inserting a

job into all positions of a partial schedule, a greedy procedure which selects the best out of these

makespans has been incorporated by the most remarkable heuristics for the problem (including

NEH and IG_RSLS). Quite often, such procedure originates di�erent schedules with the same

(best) makespan. In the literature, mechanisms for breaking these ties have been proposed by

Kalczynski and Kamburowski (2007, 2008), by Dong et al. (2008), and by Ribas et al. (2010).

In Kalczynski and Kamburowski (2011), an analysis of the three �rst tie-breaking mechanisms

in the NEH was performed, being the best the one by Dong et al. (2008). Nevertheless, these

mechanisms were not tested for the IG.

All of the aforementioned mechanisms (with the exception of that by Ribas et al., 2010)

can be implemented in time O(n · m) using Taillard's acceleration, therefore not altering the

original complexity of NEH and IG_RSLS . The tie-breaking mechanism of Ribas et al. (2010)

is either O(n2 ·m) or O(n ·m2), depending on the use or not of Taillard's acceleration. Therefore,

7



its implementation in the NEH heuristic results in a complexity of the algorithm O(n2m2) or

O(n3m). In addition, since the NEH with this tie-breaking mechanism does not improve that

of the NEH with Dong's tie-breaking mechanism (see Ribas et al., 2010) we exclude Ribas et al.

tie-breaking mechanism from the analysis. The rest of tie-breaking mechanisms are discussed in

the next subsections.

2.1 Dong's Tie-breaking mechanism

Dong et al. (2008) presents a tie-breaking mechanism (TBD) to decide the position l where an

unscheduled job r is to be inserted in case of ties. This tie-breaking mechanism is based on:

• ECi,l−1 the earliest possible completion time of the job in position l−1 where l corresponds

to a position which minimises the makespan;

• Si,l+1 the latest possible start time of the job in position l + 1; and

• tir the processing time of the unscheduled job r in machine i.

In order to determine the position where job r is inserted, the position l(l = 1, . . . , k) min-

imising Dl as de�ned in equation (6) is chosen.

Dl =

m∑
i=1

(
tir

Si,l+1 − ECi,l−1
− El

)2

(6)

where:

El =
1

m

m∑
i=1

tir
Si,l+1 − ECi,l−1

(7)

2.2 Kalczynski & Kamburowski's Tie-breaking mechanism I

This tie-breaking mechanism is due to Kalczynski and Kamburowski (2007), and it is denoted

by TBKK1 onwards. It chooses the �rst index for which the minimum value is achieved for the

sequence ρ if min(aρ, br) ≥ min(ar, bρ). Otherwise, the last index for which the minimum is

achieved is chosen. Parameters aρ, ar, bρ and br are de�ned according to the expressions (8), (9),
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(10) and (11).

ar =

m∑
i=1

tir − tmr (8)

br =

m∑
i=1

tir − t1r (9)

aρ = Cmax(ρ)−
∑
j∈ρ

pmj (10)

bρ = Cmax(ρ)−
∑
j∈ρ

p1j (11)

2.3 Kalczynski & Kamburowski's Tie-breaking mechanism II

To improve the tie-breaking mechanism described in Section 2.2, Kalczynski and Kamburowski

(2008) propose replacing the aforementioned parameters aρ, ar, bρ and br by two new parameters

âr and b̂r, as de�ned by expressions (12) and (13). Thereby, the �rst index (for which the

minimum is reached) is chosen in case of ties when âr ≥ b̂r and otherwise, it is chosen the last

index. In this paper, TBKK2 is employed to denote this tie-breaking mechanism.

âr =

m∑
i=1

[
(m− 1)

(m− 2)

2
+m− i

]
· tir (12)

b̂r =

m∑
i=1

[
(m− 1)

(m− 2)

2
+ i− 1

]
· tir (13)

3 The proposed tie-breaking mechanism

The tie-breaking mechanism presented in this paper (denoted by TBFF in the following) is related

to the minimisation of total idle times. According to Framinan et al. (2003), the de�nition of

machine idletime is not unambiguous and at least three di�erent ways have been used:

• The idletime considering front delays (time before �rst job) and back delays (time after

the last job on the machine).

• Excluding front and back delays.

• Including front delays and excluding back delays.
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In this paper, we assume the third de�nition of the idle time. Therefore, iti the idle time

of machine i can be calculated according to the expression iti = Cin −
∑n

j=1 pij and the total

idle time by it =
∑m

i=1 iti. If we denote by ∆ij the idle time in machine i induced between the

completion of job j and the beginning of job j+1, then ∆ij can be written in terms of equations

(2) as follows:

∆ij = (ei,j+1 − pi,j+1)− eij (14)

The �rst two terms in the right side of the equation indicate the starting time of job j + 1,

therefore subtracting the completion time of job j yields the idle time between jobs j and j + 1

in machine i. Clearly, iti =
∑n−1

j=0 ∆ij , and therefore it =
∑m

i=1

∑n−1
j=0 ∆ij

In order to explain the tie-breaking mechanism, let us assume that we have a subsequence of

k − 1 jobs (see Figure 1). Then, an unscheduled job r is going to be inserted in all positions in

the subsequence in order to select the position yielding the minimum makespan. If ties occur,

then the position whose insertion yields the minimum total idle time is to be selected. Note that,

if the unscheduled job is to be inserted in position l, then gi,l−1 the cumulative idle times on

machine i induced by jobs prior to position l − 1 is:

gi,l−1 =
l−2∑
j=0

∆ij =
l−1∑
j=1

[(eij − pij)− ei,j−1] (15)

Analogously, hil the cumulative idle times on machine i induced by jobs after position l is:

hil =

k−2∑
j=l

∆ij =

k−2∑
j=l

[(ei,j+1 − pi,j+1)− eij ] (16)

It is clear that, for each machine i, when an unscheduled job r (with tir its processing time on

machine i) is inserted in position l (see example in Figure 2), gi,l−1 remains the same. However,

this does not happen for hil, which would have to be recomputed. Unfortunately, doing so would

substantially increase the computation time since Taillard's acceleration cannot be employed to

calculate the new idle times. As a consequence, we suggest using an estimation of the idle time

as tie-breaking indicator, based on the assumption that the new ∆ij values for jobs in positions
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Figure 1: Sequence of jobs before inserting the new job in position l

l + 1 to k are not very di�erent from the old ones. Therefore, when inserting an unscheduled

job, eij , qij and fil are used according to equations (2-4) in order to obtain the makespans for

each position. Then, the position yielding the minimum makespan is selected. In case of ties, we

calculate an estimation of the new idle time denoted by it
′
(l) for each position l for which the tie

occurs, and selects the position l yielding the minimum makespan for which it
′
(l) is minimum:

it′(l) =

m∑
i=1

(
gi,l−1 + hil +∆

′
i,l−1 +∆

′
il

)
(17)

The �rst term in Equation (17) denotes the idle time in machine i caused by the jobs prior to

position l− 1. This value has been already obtained, as it has not been modi�ed by the insertion

of the job. The second term is the idle time in machine i caused by jobs in (old) positions l to

k − 1 (now positions l + 1 to k once the job is inserted). As stated before, after the insertion of

job l, this is not anymore the idle time of the new sequence, but we will assume that they are

the same (hence the estimation). Finally, the insertion of the job in position l induces a new idle

time between the job in position l− 1 and the new job (denoted by ∆
′
i,l−1), and between the new

job and the job in the old position l (l + 1 after the insertion), denoted by ∆
′
i,l. Both terms can

be easily calculated from the data obtained from Taillard's acceleration:

∆
′
i,l−1 = (fil − tir)− ei,l−1 (18)

and
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∆
′
i,l = max{f ′

i−1,l − fil, 0} (19)

where f
′
i−1,l is the completion time on machine i of the job which before was in position

l (after inserting the new job, it corresponds to the job placed in position l + 1) and can be

computed as follows:

f
′
il = max{fil, f

′
i−1,l}+ pil, i = 1 . . .m (20)

and f
′
0l = 0 being pi,l the processing time of the job that before was in position l.

Note that Equation (17) can be simpli�ed by means of the idle time, ∆i,l−1, between the job

in position l − 1 and l:

it′(l) =
m∑
i=1

(
gi,l−1 + hil +∆i,l−1 −∆i,l−1 +∆

′
i,l−1 +∆

′
il

)
(21)

it′(l) =

m∑
i=1

(gi,l−1 + hil +∆i,l−1) +

m∑
i=1

(
∆

′
i,l−1 +∆

′
il −∆i,l−1

)
(22)

Equation (22) can be decomposed into two terms, i.e.:

it′(l) = C + it
′′
(l) (23)

where C =
∑m

i=1 (gi,l−1 + hil +∆i,l−1) is a constant that does not depend on the tie-breaking

l, and it
′′
(l) is:

it
′′
(l) =

m∑
i=1

(
∆

′
i,l−1 +∆

′
il −∆i,l−1

)
=

m∑
i=1

(
fil − eil + pil − tir +max{f ′

i−1,l − fil, 0}
)

(24)

where it has been used that ∆i,l−1 = (eil−pil)− ei,l−1, see Equation (14). Additionally, since∑m
i=1 tir is the same regardless the position l where the job is inserted, we can de�ne it

′′′
(l) a

more concise indicator equivalent to it
′′
(l) as follows:
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Figure 2: Sequence of jobs after inserting the job in position l

it
′′′
(l) =

m∑
i=1

(fil − eil + pil +max{f ′
i−1,l − fil, 0}) (25)

Therefore, the proposal breaks the ties according to the minimisation of it
′′
(l) �or, equiva-

lently, to the minimisation of it
′′′
(l). The pseudo code of this tie-breaking mechanism for the

NEH is shown in Figure 3. Note that the idle time it
′′
(l) is forced to be zero for the last job to

be inserted, i.e. no tie-breaking mechanism is considered for the last job to be inserted. It can be

easily checked that the insertion of tie-breaking mechanism does not alter the complexity of the

algorithm, i.e. it remains O(n2 ·m). Analogously, this mechanism can be easily incorporated in

the constructive and in the local search phase of IG_RSLS Ruiz and Stützle (2007), and in the

IGRIS by Pan et al. (2008).

4 Computational experience

The tie-breaking mechanisms described in the previous section have been coded in C# and

embedded into the NEH and the two versions of the Iterated Greedy. As for initial ordering in

the NEH, the non-increasing order of the sum of the processing times has been adopted. This is

the initial order of the original NEH and it has been chosen because, on one hand, it is the most

widely-employed mechanism and the results are easier to compare with the rest of the literature.

On the other hand, this allows focusing exclusively on insertion tie-breaking mechanisms and

removes the possible in�uence of more elaborated initial ordering rules such as the ones discussed
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π
′ ←− Sort in decreasing order of sum of processing times pij;

π ←− π
′
1;

for k = 2 to n do

r ←− πk
′;

Determine the values of eij, qij and fil from Taillard's acceleration (see equations 2, 3,
and 4);
Determine minimal makespan resulted of testing the job r in all possible positions of
π;
bp←−First position where the makespan is minimal;
tb←− Number of positions with minimal makespan (i.e. number of ties);
ptb←− Array (of length tb) with the positions where the makespan is minimal;
itbp is the idletime corresponding to the bp and set to a very large number;
if tb > 1 and k < n then

for l = 1 to tb do

it
′′ ←− 0;

if ptb[l] = k then

for i = 2 to m do

it
′′ ←− it

′′
+ fi,k − ei,k−1 − ti,r;

end

else

f
′

1,ptb[l] ←− f1,ptb[l] + p1,ptb[l];

for i = 2 to m do

it′′ ←− it
′′
+ fi,ptb[l] − ei,ptb[l] + pi,ptb[l] − ti,r +max{0, f ′

i−1,ptb[l] − fi,ptb[l]};
f

′

i,ptb[l] ←− max{f ′

i−1,ptb[l], fi,ptb[l]}+ pi,ptb[l];

end

end

if itbp > it
′′
then

bp←− ptb[l];
itbp ←− it

′′
;

end

end

end

π ←− Array obtained by inserting job r in position bp of π;
end

Figure 3: Our Tie-Breaking Method
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in Section 1. Nevertheless, we also provide the results using these more advanced initial orderings.

The computational experiments are carried out on an Intel Core i7-930, 2.8GHz, 16GB RAM

under Windows 7. This section is divided into two parts depending on which heuristic (NEH or

Iterated Greedy Algorithm) the tie breaks are implemented.

4.1 Comparison of Tie-breaking mechanisms for the NEH

The performance of the NEH with the tie-breaking mechanisms by Dong, Kalczynski&Kamburowski

and our proposal, as well as with the original tie-breaking mechanism of the NEH (labelled TBFS

in the following) are compared using the benchmark set of Taillard (1993) with 120 instances.

Note that, although in Kalczynski and Kamburowski (2011) it was established that Dong's tie-

breaking mechanism outperformed the two suggested by Kalczynski&Kamburowski for the NEH,

we nevertheless include them to test them against the proposal and to make the comparison

homogeneous with that of the IG (for which none of the mechanisms' performance was tested).

For each instance, the Relative Percentage Deviation (RPD) is computed with respect to the

best known solution according to expression (26), where NEHj is the solution obtained for the

instance by the NEH algorithm using the j tie-breaking mechanism while Best is the best known

solution or the lowest known upper bound value for the instance. The Average RPD (ARPD)

values are obtained by averaging RPD for each instance size or for the whole testbed. The results

in Table 1 show that the ARPD found by the original NEH is 3.325 while each other tie break

yields better ARPD, being the value of 3.034 the best one, obtained by our tie-breaking proposal.

RPD =

(
NEHj −Best

Best

)
· 100 (26)

Since we use the same test bed for all tie-breaking mechanisms, being each one a version of

the same algorithm, the random variables (ARPD) are related and the hypothesis of indepen-

dence can be rejected. Therefore, a paired samples t-test (shown in Table 2) can be used to

compare the results. Note that paired samples t-test is a usual test to establish the statistical

signi�cance of the di�erences in the performance of algorithms for �owshop scheduling prob-

lems in Taillard's testbed (see e.g. Hamed Hendizadeh et al., 2008; Tan et al., 2000; Dong et al.,
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Table 1: Average relative percentage deviation of NEH implemented with tie-breaking
mechanisms

Instance TBFS TBD TBKK1 TBKK2 TBFF

20 x 5 3.300 2.655 2.638 2.729 2.293
20 x 10 4.601 4.661 4.488 4.312 4.152
20 x 20 3.731 3.443 3.683 3.407 3.305
50 x 5 0.727 0.497 0.586 0.588 0.922
50 x 10 5.073 5.082 5.022 4.875 5.150
50 x 20 6.648 6.091 6.274 6.412 6.207
100 x 5 0.527 0.459 0.354 0.397 0.378
100 x 10 2.215 2.065 1.829 1.771 2.182
100 x 20 5.345 5.235 5.417 5.284 5.021
200 x 10 1.258 1.182 1.179 1.166 0.984
200 x 20 4.408 3.901 4.243 4.232 4.037
500 x 20 2.066 1.779 2.080 2.020 1.776
Average 3.325 3.088 3.149 3.099 3.034

2013). In view of the values of the signi�cance levels, it can be stated that each tie-breaking

mechanism is statistically signi�cant with respect to TBFS . However, no statistical signi�cance

among the rest of the tie-breaking mechanisms can be found due to the small size of the bench-

mark, a fact also noted by Kalczynski and Kamburowski (2008) when proposing their tie-breaking

mechanisms. Therefore, in line with these authors, an extended test-bed of 400 instances with

n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}, and m ∈ {5, 10, 15, 20}, with 10 replications

for each combinations of n and m is generated with the processing times uniformly distributed

in the interval [1, 99]. A paired-samples t-test (shown in Table 3) was performed, indicating that

our proposal is statistically signi�cant with respect to the other tie-breaking mechanisms, being

0.01 the maximum p-value found.

Results of the NEH algorithm with the proposed tie-breaking mechanism using di�erent initial

orders are shown in Table 4 for the Taillard's testbed. As explained in Section 1, three di�erent

initial orders outperforming the original non-ascending order of the sum of their processing times

have been proposed in the literature by Kalczynski and Kamburowski (2008) (denoted as KK1−

Init), by Dong et al. (2008) (denoted as AvgDev − Init); and by Kalczynski and Kamburowski
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Table 2: Paired samples t-test for NEH using Taillard's benchmark

Algorithm Mean SEM IC - Lower IC - Upper t Signi�cance
TBFS - TBFF 0.291 0.806 0.146 0.437 3.958 0.000
TBFS - TBD 0.237 0.852 0.084 0.391 3.054 0.003

TBFS - TBKK1 0.176 0.736 0.043 0.308 2.626 0.010
TBFS - TBKK2 0.226 0.711 0.098 0.354 3.490 0.001
TBD - TBFF 0.054 0.770 -0.086 0.193 0.764 0.446

TBKK1 - TBFF 0.115 0.842 -0.037 0.268 1.502 0.136
TBKK2 - TBFF 0.066 0.877 -0.093 0.224 0.819 0.415

Table 3: Paired samples t test for NEH using the extended benchmark

Algorithm Mean SEM IC - Lower IC - Upper t Signi�cance
TBFS - TBFF 0.226 0.496 0.177 0.274 9.117 0.000
TBFS - TBD 0.169 0.486 0.121 0.216 6.943 0.000

TBFS - TBKK1 0.102 0.466 0.056 0.148 4.375 0.000
TBFS - TBKK2 0.126 0.472 0.080 0.173 5.351 0.000
TBD - TBFF 0.057 0.450 0.013 0.101 2.545 0.011

TBKK1 - TBFF 0.124 0.490 0.076 0.172 5.057 0.000
TBKK2 - TBFF 0.099 0.410 0.059 0.140 4.849 0.000
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Table 4: Average relative percentage deviation of NEH implemented with our tie-breaking
mechanisms and di�erent initial order

Instance KK1− Init KK2− Init AvgDev − Init Original
20 x 5 2.484 2.372 2.559 2.293
20 x 10 4.919 4.453 3.543 4.152
20 x 20 3.265 3.509 3.331 3.305
50 x 5 0.555 0.791 0.749 0.922
50 x 10 4.865 4.861 4.905 5.150
50 x 20 6.139 7.026 5.812 6.207
100 x 5 0.379 0.321 0.412 0.378
100 x 10 1.961 2.057 1.719 2.182
100 x 20 5.284 5.114 5.147 5.021
200 x 10 1.030 0.899 0.987 0.984
200 x 20 3.712 3.895 3.885 4.037
500 x 20 1.726 1.650 1.713 1.776
Average 3.027 3.079 2.897 3.034

(2009) (denoted as KK2− Init). All three were implemented in order to obtain the best initial

order for the NEH using our tie-breaking mechanism. The ARPD using the initial order AvgDev

was 2.897 being the best initial order for Taillard's testbed, a result in line with those obtained

by Kalczynski and Kamburowski (2011).

4.2 Comparison of the tie-breaking mechanisms in the Iterated

Greedy

As explained before, the iterated greedy has two parameters (T, d) to be set. Ruiz and Stützle

(2007) conducted a full factorial design to determine both parameters, resulting d = 4 and T = 0.4

as the best combination. Therefore, these values are used in our implementation. Two versions of

the iterated greedy are analysed: IG_RSLS as in Ruiz and Stützle (2007) and IGRIS as proposed

by Pan et al. (2008). The tie-breaking mechanism analysed in Section 2 was integrated in these

Iterated Greedy Algorithms, together with our proposal. In order to compare them, the same

test bed as in Ruiz and Stützle (2007) was employed, i.e. Taillard's benchmark using 5 replicates

for each instance to increase the power of the analysis.

The termination criterion considered for both versions of the Iterated Greedy is the CPU
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Table 5: Average relative percentage deviation of iterated greedy algorithms implemented
with tie breaks and n · (m/2) · 30 milliseconds as stopping criterion

IG_RSLS IGRIS

Instance TBFS TBD TBKK1 TBKK2 TBFF TBFS TBD TBKK1 TBKK2 TBFF

20 x 5 0.045 0.066 0.076 0.049 0.076 0.037 0.041 0.076 0.053 0.041
20 x 10 0.055 0.052 0.087 0.080 0.104 0.080 0.096 0.099 0.064 0.057
20 x 20 0.092 0.095 0.085 0.066 0.114 0.081 0.093 0.098 0.090 0.092
50 x 5 0.007 0.039 0.021 0.003 0.017 0.006 0.020 0.024 0.007 0.006
50 x 10 0.724 0.754 0.842 0.707 0.566 0.683 0.651 0.787 0.666 0.621
50 x 20 1.199 1.188 1.228 1.191 1.134 1.160 1.066 1.195 1.149 1.173
100 x 5 0.005 0.066 0.030 0.013 0.014 0.005 0.067 0.018 0.013 0.013
100 x 10 0.274 0.383 0.415 0.215 0.226 0.258 0.301 0.336 0.202 0.219
100 x 20 1.624 1.446 1.789 1.624 1.346 1.547 1.365 1.770 1.542 1.387
200 x 10 0.317 0.477 0.284 0.140 0.155 0.267 0.361 0.263 0.161 0.148
200 x 20 1.656 1.401 1.925 1.466 1.239 1.549 1.287 1.898 1.478 1.248
500 x 20 0.767 0.724 1.033 0.668 0.542 0.728 0.621 0.987 0.626 0.530

Average 0.564 0.558 0.651 0.518 0.461 0.534 0.497 0.629 0.504 0.461

Table 6: Average relative percentage deviation of iterated greedy algorithms implemented
with tie breaks and n · (m/2) · 60 milliseconds as stopping criterion

IG_RSLS IGRIS

Instance TBFS TBD TBKK1 TBKK2 TBFF TBFS TBD TBKK1 TBKK2 TBFF

20 x 5 0.024 0.039 0.041 0.041 0.032 0.032 0.041 0.041 0.032 0.041
20 x 10 0.043 0.031 0.049 0.057 0.059 0.038 0.042 0.064 0.032 0.046
20 x 20 0.067 0.042 0.047 0.049 0.057 0.052 0.070 0.066 0.060 0.071
50 x 5 0.004 0.009 0.016 0.003 0.007 0.000 0.026 0.010 0.004 0.001
50 x 10 0.529 0.615 0.692 0.595 0.441 0.549 0.524 0.626 0.584 0.478
50 x 20 1.044 1.005 1.047 0.978 1.048 1.011 0.940 1.060 1.008 1.012
100 x 5 0.008 0.056 0.011 0.006 0.006 0.006 0.028 0.006 0.006 0.009
100 x 10 0.218 0.228 0.310 0.170 0.149 0.173 0.214 0.223 0.184 0.111
100 x 20 1.423 1.317 1.643 1.449 1.118 1.394 1.145 1.589 1.402 1.245
200 x 10 0.250 0.397 0.217 0.092 0.093 0.174 0.271 0.188 0.113 0.101
200 x 20 1.407 1.217 1.819 1.313 1.049 1.407 1.125 1.754 1.401 1.036
500 x 20 0.720 0.627 0.992 0.602 0.453 0.650 0.519 0.958 0.573 0.473

Average 0.478 0.465 0.573 0.446 0.376 0.457 0.412 0.549 0.450 0.385
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Table 7: Average relative percentage deviation of iterated greedy algorithms implemented
with tie breaks and n · (m/2) · 90 milliseconds as stopping criterion

IG_RSLS IGRIS

Instance TBFS TBD TBKK1 TBKK2 TBFF TBFS TBD TBKK1 TBKK2 TBFF

20 x 5 0.015 0.024 0.041 0.041 0.041 0.041 0.041 0.039 0.041 0.041
20 x 10 0.035 0.022 0.072 0.026 0.024 0.025 0.040 0.048 0.057 0.024
20 x 20 0.038 0.030 0.049 0.048 0.035 0.028 0.054 0.028 0.041 0.051
50 x 5 0.000 0.007 0.007 0.002 0.004 0.003 0.007 0.011 0.001 0.003
50 x 10 0.517 0.567 0.649 0.532 0.438 0.493 0.526 0.583 0.555 0.453
50 x 20 0.918 0.953 0.978 0.874 0.858 0.902 0.837 0.912 0.925 0.935
100 x 5 0.006 0.053 0.008 0.008 0.001 0.006 0.037 0.008 0.004 0.003
100 x 10 0.213 0.253 0.293 0.183 0.169 0.199 0.187 0.239 0.139 0.155
100 x 20 1.261 1.193 1.485 1.388 1.096 1.274 1.048 1.516 1.350 1.106
200 x 10 0.169 0.388 0.180 0.080 0.078 0.155 0.241 0.171 0.069 0.061
200 x 20 1.337 1.184 1.706 1.276 1.026 1.278 1.049 1.704 1.344 0.987
500 x 20 0.674 0.611 0.933 0.558 0.428 0.605 0.488 0.920 0.543 0.412

Average 0.432 0.441 0.533 0.418 0.350 0.417 0.380 0.515 0.422 0.353

time. In line with most papers, this time t depends on the amount of jobs and machines, i.e.

t = n · (m/2) · 30, t = n · (m/2) · 60 and t = n · (m/2) · 90 milliseconds (see e.g. Ruiz and Stützle,

2007, or Tzeng and Chen, 2012). ARPD results for each version of the iterated greedy algorithm

and for each tie-breaking mechanism are shown in Tables 5, 6 and 7 for each stopping time,

respectively. The results show that the ARPD for IG_RSLS with our tie-breaking mechanism

is the best for every stopping time, being the average results 0.461, 0.376 and 0.350 respectively.

Kalczynski & Kamburowski's tie-breaking mechanism II also yields good ARPD results: 0.518,

0.446 and 0.418 respectively. Both mechanisms performs better than the original iterated greedy

algorithm. Nevertheless, it is to note that Dong's tie-breaking mechanism and Kalczynski &

Kamburowski's tie-breaking mechanism I give worse results when included in IG_RSLS .

Furthermore, a paired-samples t- test was carried out in order to analyse the di�erent mech-

anisms (see Table 8). Our tie-breaking mechanism was found to be statistically signi�cant with

respect to every other tie-breaking mechanism for every value of t considered, being 0.017 the

highest p-value. Regarding the rest of the tie-breaking mechanisms, Kalczynski & Kamburowski's

tie-breaking mechanism II was found to be statistically signi�cant with respect to the original

IG_RSLS for t = n · (m/2) ·30 and t = n · (m/2) ·60 but not for t = n · (m/2) ·90, being 0.118 the
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p-value for this case. On the other hand, Kalczynski & Kamburowski's tie-breaking mechanism

I was found statistically worse, with p-value of 0.000. Finally, no statistically signi�cance was

found for any t between Dong's tie-breaking mechanism and the original IG_RSLS . Regarding

IGRIS , very similar results were found (results are shown in Tables 5, 6 and 7 for the di�erent

values of t). On the one hand, the proposed tie-breaking mechanism yields again the best ARPD,

being 0.461 for t = n · (m/2) · 30 milliseconds, 0.385 for t = n · (m/2) · 60 milliseconds, and 0.353

t = n · (m/2) · 90 milliseconds. On the other hand, Kalczynski & Kamburowski's tie-breaking

mechanism I is again the one with the worst results.

It is worth to highlight that the proposed tie-breaking mechanism performs better than exist-

ing mechanisms when embedded in the iterated greedy than when integrated in the NEH. Note

that the fact that a tie-breaking mechanism performs e�ciently for the NEH does not imply the

same for the iterated greedy. This is due to the fact that, in the NEH, the insertion is performed

in all steps (i.e. from a one-job sequence until the n jobs have been scheduled), while the con-

struction phase of the iterated greedy is performed only for the last d steps (beginning with a

sequence of N − d jobs). Therefore, a tie-breaking mechanism should have a good performance

in the last steps of the insertion phase in order to be e�cient when embedded in the iterated

greedy algorithm.

5 Conclusions

In this paper, we have presented a new tie-breaking mechanism based on an estimation of the idle

times of the di�erent subsequences in order to pick the one with the lowest value of the estimation.

This tie-breaking mechanism can be incorporated into the most e�cient approximate procedures

for the �owshop scheduling problem with makespan objective, resulting in statistically signi�cant

better results than existing tie-breaking mechanisms.

The rationale of our proposed tie-breaking mechanism is relatively simple, as it seems intuitive

that lower values of the total idle time would mean less delays in the processing of the jobs, which

would eventually lead to a better utilization of the machines and to a shortest makespan value once

all jobs have been positioned. The challenge is to calculate these idle times in an e�cient manner,
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Table 8: Paired samples t test for IG_RSLS using the benchmark of Taillard

CPU time Algorithm Mean SEM IC - Lower IC - Upper t Signi�cance

n · (m/2) · 30

TBFS - TBFF 0.103 0.277 0.080 0.125 9.078 0.000
TBD - TBFF 0.097 0.283 0.074 0.119 8.361 0.000
TBKK1 - TBFF 0.190 0.335 0.163 0.217 13.889 0.000
TBKK2- TBFF 0.057 0.235 0.038 0.076 5.961 0.000
TBFS - TBD 0.006 0.286 -0.017 0.029 0.522 0.602
TBFS - TBKK1 -0.087 0.259 -0.108 -0.067 -8.266 0.000
TBFS - TBKK2 0.045 0.222 0.028 0.063 5.002 0.000

n · (m/2) · 60

TBFS - TBFF 0.102 0.266 0.081 0.124 9.402 0.000
TBD - TBFF 0.089 0.272 0.067 0.111 8.034 0.000
TBKK1 - TBFF 0.197 0.361 0.169 0.226 13.397 0.000
TBKK2- TBFF 0.070 0.250 0.050 0.090 6.880 0.000
TBFS - TBD 0.013 0.263 -0.008 0.034 1.205 0.229
TBFS - TBKK1 -0.095 0.267 -0.117 -0.074 -8.746 0.000
TBFS - TBKK2 0.032 0.251 0.012 0.052 3.132 0.002

n · (m/2) · 90

TBFS - TBFF 0.082 0.243 0.063 0.102 8.280 0.000
TBD - TBFF 0.091 0.254 0.070 0.111 8.753 0.000
TBKK1 - TBFF 0.184 0.311 0.159 0.209 14.455 0.000
TBKK2- TBFF 0.068 0.221 0.050 0.086 7.554 0.000
TBFS - TBD -0.009 0.252 -0.029 0.012 -0.846 0.398
TBFS - TBKK1 -0.102 0.249 -0.121 -0.082 -10.006 0.000
TBFS - TBKK2 0.014 0.219 -0.004 0.031 1.564 0.118

22



particularly taking into account that Taillard's acceleration provides a very fast mechanism to

evaluate the subsequences which is at the core of the excellent performance of NEH and Iterated

Greedy. Our proposal is to use an ersatz of the idle times that can be calculated in parallel to the

evaluation of the makespan of the subsequences and thus not adding computational complexity

to the algorithms.

Note that Dong's tie-breaking mechanism can be also analysed under the light of idle time

minimisation. Dong's tie-breaking mechanism seeks a balanced usage of the machines at the time

slot of the insertion job, so idle time is 'locally' reduced. A drawback of this mechanism is that it

may generates fragmented time slots, which cannot be easily used by other jobs at a later stage.

This may explain the di�erent relative performance of this tie-breaking mechanism, depending

on whether it is embedded in the NEH (a single pass construction), or in IG (iterative).

The contribution of the paper can be summarised as follows: The main tie-breaking mecha-

nisms proposed for the NEH in the literature are also embedded in the Iterated Greedy Algorithm

for the �rst time, and their impact is analysed. Additionally, a new tie-breaking mechanism is

proposed, which is shown to be statistically better than other tie-breaking mechanisms both for

the NEH and for the Iterated Greedy. Furthermore, it has been shown that IGRIS(TBFF ) out-

performs the original IGRIS . Given the fact that IGRIS is a state-of-the-art heuristic for the

problem under consideration (see e.g. Pan et al., 2008), it turns out that IGRIS(TBFF ) becomes

the best heuristic for the permutation �owshop problem with makespan objective for di�erent

allowed CPU times.
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