
MODEL PREDICTIVE CONTROLLER FOR
PIECEWISE AFFINE SYSTEM

Miguel Peña ∗ Eduardo F. Camacho ∗∗
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Abstract: This paper presents a hybrid procedure to solve Model Predictive
Controller (MPC) for Piecewise Affine System (PWA) The approach presented
here belong to the class of Branch and Bound (B&B) methods. The procedure
uses the concepts of reachable set combined to the specific B&Bmethods, in order
to reduce the number of Quadratic Problems (QP) needed to be solved by t he
optimization algorithm. Copyright 2005 IFAC
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1. INTRODUCTION

MPC has become an accepted standard for com-
plex constrained control problems in the process
industry. The main limitation to which processes
MPC could be used on is the computationally ex-
pensive on-line optimization requirement. Explicit
solutions to the MPC problem from linear con-
strained systems have been derived (Bemporad
et. al. (2002)). Unfortunately these approaches
are so complex and it is no applicable for great
dimension systems.

PWA systems arise as an approximation of
smooth nonlinear systems (Julián (1999)) and
they are equivalent (under additional assump-
tions) to some classes of Hybrid Systems (HS)
(Heemels et al. (2001)).

The application of MPC to HS requires to solve
an optimization program with mixed, integer and
real, decision variables (Bemporad and Morari
(1999)). In spite of this combinatorial nature, sev-
eral algorithmic approaches have been proposed
to reduce the computed time. Bemporad and
Mignone (2000) presents a B&B tree exploring

strategy for solving Mixed Integer Quadratic Pro-
gram (MIQP) involving time evolutions of Mixed
Logical Dynamical (MLD) model. The problem of
this method is that the system has to be converted
to aMLD system. This conversion, in same cases,
increases the model complexity. In addition, sim-
ulation is much easier for PWA systems than for
MLD systems (Bemporad (2002)).

This paper presents a hybrid procedure to solve
MPC of PWA in order to reduce the computing
time needed to solve the problem. The proposed
algorithm use a PWA model instead of theMLD
model. The approach presented here belong to
the class of B&B methods. The procedure uses
the concepts of reachable set (Kerrigan (2000))
combined to the specific B&B methods, in order
to reduce the number of QP problems need to
solves the optimization algorithm.

The paper is organized as follows: in section 2 the
PWA systems are described and the used MPC
strategy is developed. A simulation example is
shown in section 3.1 and concluding remarks are
given in section 4.
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2. PROBLEM FORMULATION

A PWA systems is defined as

xk+1 = A
ixk +B

iuk + f i for : xk ∈ Xi (1)

where {Xi}si=1 is a polyhedral partition of the
states space. Each Xi is given by

Xi xk|Qi xk qi (2)

where xk and uk denote the state and the input
vectors, respectively. The symbol indicate that
all component of vector fulfil the inequality.

Each subsystem Si defined by the 5-uple (Ai, Bi,
f i, Qi, qi), i ∈ {1,2,...,s} is termed a component
of the PWA system (1). Ai ∈ Rn×n, Bi ∈
Rn×m, and (Ai, Bi) is a controllable pair. Qi ∈
Rpi×(n+m) and f i ,qi are suitable constant vectors.
Note that n is number of states, m is the number
of inputs and pi is the number of hyperplanes that
define the i-polyhedral.

Assume that a full measurement of the state is
available at the current time k. Most formulation
of MPC require that the problem

U = arg min
U
J (3)

to : J =

N

i=1

(xk+i|k −wk)TQi(xk+i|k −wk)2

+
N

i=1

uTk+i−1Riuk+i−1

(4)

s.t. : uk+i ∈ U U {uk+i|Qu xk qu} (5)

is solved at each time k, where xk+i|k denoted
the predicted state vector at the k + i time,
obtained by applying the input sequence U
uk, ...,uk+N−1 to model (1) starting from the
state xk subjected to constraints. It be noted
that wk = w is the constant output reference.
Qi = Q and Ri = R are the (time predicted)
constant state and control weight matrix. The first
control input is then applied to the process. At
the next sample, measurements are used to update
the optimization problem, and the optimization is
repeated. In this way, this becomes a closed-loop
approach.

Let us consider the prediction problems associ-
ated to the MPC in the case of PWA system.
The subsystem describing the process is known
if xk is known, but the following subsystems de-
pends on the applied control sequence. It can be
considered that a change (transition) of model
is produced between a sampling instant and the
next. In general a sequence of subsystems I =
{Ik, Ik+1, ..., Ik+N−1} is activated, where Ij =
[1, ..., s] to j = [k, k + 1, .., k + N − 1]. Only
the initial value Ik = Ik(xk) of this sequence is
known. In order to solve the MPC problem (4)

the optimization sequence is added to the decision
variables. The resulting optimization problem can
be stated as

U = arg(min
U,I

J) (6)

where constraints relating the dependences of the
possible sequences U and I have to be added, i.e.

QIk+jxk+j qIk+j , j = {1, .., N − 1} (7)

Due to the integer nature of sequence I, the
problem of finding the optimum can be solved
by finding the optimum of the solutions for all
possible sequence of I , i.e.

U = arg min
I

min
U

J
QIUu qIU

(8)

where QIUu qIU indicate the constraints due
to dependences between I and U .

If no constraints are considered, the number of
possible sequences for a prediction horizon N
is sN−1. This implies that the number of real
optimization problem to solve is prohibitive for
large N and s.

Methods to reduce the number of problems with
real variables should therefore be developed. This
paper is devoted to this purpose. The algorithm
uses the properties of MPC when applied to
PWA in order to make the B&B method more
efficient.

2.1 Branch and Bound Algorithms

The B&B optimization method is a discrete
search technique, which has been successfully ap-
plied to different complex optimization problems.
The B&B method is a structured search tech-
nique belonging to a general class of enumerative
schemes. A graphical representation of the con-
cepts and separation in B&B algorithms can be
drawn with the help of trees. Figure 1 depicts a s-
ary tree. The tree can be explored in several ways.
The choice of the problem separation and the
order in which the subproblems are considered,
influences the average computational effort.

To reduce the number of alternatives, bounding is
applied. A particular branch j at level i is followed
only if the lower bound of the cumulative cost
J(i,j) plus a lower bound on the cost from the level

i to the terminal level L, denoted J
(i)
L is lower than

an best upper bound of the total cost (of the whole

search tree), denoted JU , that is J(i)+J
(i)
L < JU .

The lower bound is difficult to derive, and can be

simply set to zero J(i)L = 0.

Thus, the efficiency of the B&B tree search
strongly depends on good lower and upper bounds,
especially on a good initial upper bound, i.e., a
good initial estimate of JU .
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Fig. 1. Graphical representation of the concepts
in B&B algorithms.

2.2 Resolution of the Computational Problem
when I is fixed

If the sequence I = {Ik, Ik+1, ..., Ik+N−1} is
given, equation (4) can be written as

J = (x̄− w̄)T Q̄(x̄− w̄) + ūT R̄ū (9)

where R̄ = diag [Ri], (R̄ = R̄T 0), Q̄ =
diag [Qi], (Q̄ = Q̄T 0) for i = 1, ..,N , and x̄ =

xTk+1 · · · xTk+N
T
, w̄ = wTk+1 · · · wTk+N

T
,

ū = uk · · · uTk+N−1
T
the predicted state vector

can be written as

x̄ = Fxxk +Hxū+ fox (10)

See Peña et al. (2003) for detail.

Replacing (10) in (9) the index is

J(I, U) = ūTHQP ū+ f
T
QP ū+ gQP (11)

where HQP = [H
T
x Q̄Hx + R̄], f

T
QP = [2xkF

T
x Q̄Hx

+ 2fTo Q̄Hx - 2w̄
T Q̄Hx], gQP = xTk F

T
x Q̄Fxxk +

2fTo Q̄Fxxk - 2f
T
o Q̄w̄ + fTo Q̄fo - 2w̄

T Q̄Fxxk +
w̄T Q̄w̄. The constrain over the control (5) can
be written as Quū qu, and the constraints due
to I and U dependence (7) can be written as

QIx x̄I qIx (12)

where x̄I=[xk+1, ..., xTk+N−1]
T ,QIx = diag(QIk+1,

...,QIk+N−1) , qIx=[ qIk+1
T
,..., qIk+N−1

T
]T , x̄I

can be written by

x̄I = Cxx̄ (13)

where Cx= In∗N×n∗N 0 . Replacing (13) and
(10) in (12), the constraints due to the depen-
dency between U and I results in QIU ū
qIU , QIU=QIxCxHx, q

IU= qIx - QIxCxFxxk-
QIxCxfox. If constraints on the control actions are
also considered then

QQP ū qQP (14)

QQP= (Qu)T (QIU )T
T
, qQP= (qu)T (qIU )T

T
.

Therefore, once the sequence I is fixed, the prob-
lem can be solved by minimizing (11) subject to
the constraints (14).

Once the sequence of subsystems that are going to
be reached is defined, it results in a QP problem
that can be solved with standardQP optimization
methods.

2.3 Bound on the objective function

This section shows how a lower bound for the
objective function can be found when the sequence
of regions is fixed. This bound will be used by
the B&B algorithm to reduce the number of QP
problems.

The performance index (9) can be write as

J =
N

i=1

Ji (15)

where

Ji = (xk+i|k −w)TQ(xk+i|k −w) + uTk+i−1Ruk+i−1
(16)

for i = 1, ..., N . Due to xk+i|k=Ak+i−1xk+i−1|k+
Bk+i−1uk+i−1+ fk+i−1this equation can be write
as

Ji = [Lx̆+ p]
T
Q [Lx̆+ p] + x̆TRx̆

where x̆=
xk+i−1|k
uk+i−1

, L= Ak+i−1 Bk+i−1 , p=

fk+i−1- w, M =
0 0
0 R

. It is rearranged as

Ji = x̆
THx̆+ fTx̆+ q

whereH = LTQL+M , fT = 2pTQL, q = pTQp.
If the sequence of subsystems is defined that is I=
{Ik, Ik+1, ..., Ik+N−1} , Ij ∈ {1, ... , s} then, the
state and input fulfil that

xj ∈ XIj and uj ∈ U for j = {k, ..., k +N − 1}
as well as their predicted values. Therefore, it is
possible to obtain a minimum bound of Ji. It is

min (Ji) ≥ min
x̆

x̆THx̆+ fTx̆+ q

s.t : QIj x qIj , Quu qu

This is a QP Problem and can be resolve be
standard software. Due to JIk ≥ 0 then

min(J) ≥
k+N−1

i=k

min (JIi) (17)

The equation 17 is and lower bound of the index
9.

Using the lower bound of the objective function
17 the B&B algorithm described in Section 2.1
can be used to solve the problem. However, this
bound is too conservative and it is not too useful
for the algorithm.
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2.4 B&B in a MPC of PWA Model

Given a depth i and branch j there is an asso-
ciated unique subsequence characterized by I(i,j)

(0 < i < (Np − 1), 1 < j < si). Solving the asso-
ciatedQP problem, a lower bound is obtained for
the objective function J(i,j). This allows the deci-
sion tree to be pruned because the minimal cost
function obtained by the QP problem associated
to the sequence {Ik, ..., Ik+p} is an accumulative
lower bound of the cost function.

Given the state in the k time xk and the inte-
ger secuense of subsystems I(i,j) = {Ik, ..., Ik+p}
fixed by the node (i, j). Then the minimal value
of the cost function 9 that can be obtained
for this sequence is smaller that any other that
can be obtained for any other sequence I =
{Ik, ..., Ik+p, Ik+p+1} where Ik+p+1 = [1, ..., s]
The sequence of control moves U = uk, ...,uk+p
is obtained minimizing J by solving the convex
problem (11) , (14). The cost function is the
addition of positive elements associated to each
of the subsystems (16) encountered along the
trajectory.When a new system is added, a positive
component is added to the function and the cost
increases.

That is, the optimal value obtained for the se-
quence {Ik, ..., Ik+p} is a accumulative lower
bound of the cost function J (i,j) and this allows
to prune the decision tree.

Given the state in the k time xk and the integer
sequence of subsystems I = {Ik, ..., Ik+p} if
the QP problem (11) , (14) is infeasible then
the QP problem related with the sequence I =
{Ik, ..., Ik+p, Ik+p+1} is infeasible too.
The QP problem associated to sequence I =
{Ik, ..., Ik+p} is unfeasible when there are no
admissible control sequence U = uk, ...,uk+p
can take the system from state xk ∈ XIk to
xk+p ∈ XIk+p and passing through states xk+1 ∈
XIk+1 , ..., xk+p−1 ∈ XIk+p−1 . Therefore, if the
system cannot be taken to xk+p ∈ XIk+p then
it would be impossible to go from this last state
to xk+p+1 ∈ XIk+p+1 and the sequence I =
{Ik, ..., Ik+p, Ik+p+1} would therefore be unfea-
sible.

This allows the decision tree to be pruned fur-
ther. Because if the QP problem associated to se-
quence {Ik, ..., Ik+p} is unfeasible, all descending
branches will also be unfeasible.

The proposed algorithm is based on a depth search
along the prediction horizon. The reason is that
as soon as one obtains a feasible sequence the
associated cost can be used as a upper bound
of the global index JU and branches can be

pruned using the bound established by algorithm
described in Section 2.3 and using Proposition .

The best upper bound of the total cost JU is fixed
equal to infinite to start the algorithm.

For a given depth and branch (this implies a de-
termined sequence of subsystems), the algorithm
can be described as follows.

1- Compute the minimum bound of the corre-
sponding node using (17)

Each of the subsystems have an associated mini-
mum bound that can be computed in an off line
manner. A minimum bound for a sequence can be
computed as the addition of the these minimum
bounds for all subsystems of the sequence.

2- If the bound found in Step 1 is bigger that
the best upper bound JU , then the node and all
descending branches are eliminated from the tree.
Next node is evaluated.

3- Otherwise the QP problem associated to the
sequence is solved.

4- If the QP problem is unfeasible, then the
node and all descending branches are eliminated
from the tree. Next node with the same depth is
evaluated.

5- If the QP problem is feasible, the cost 9
is a lower bound for the cost of all descending
branches, If the bound is bigger than the best
upper bound JU , then the node and all descending
branches are eliminated from the tree. Next node
is evaluated.

6- If the bound obtained in Step 5 is smaller than
the best upper bound JU then depth is increased
by adding a new subsystem to the sequence.

These steps are carried out until the final depth
(the prediction horizon N). If the resulting index
is smaller than the best upper bound JU , the new
bound becomes the best upper bound JU and the
evaluation continues to the higher non evaluated
level.

2.5 One step Reachable subsystem

To further reduce the computational problem the
concept of one step reachable subsystem can be
used.

The key idea of the proposed algorithm is to
determine the set of possible regions that can be
reach from the actual region in the next sampling
time. The Reach Set (RS, R̃(Ω)) concept is used
for this purpose. See Kerrigan (2000) for more
details.

One-Step Reachable Subsystems (1-SRS) can be
defined based in the reach sets idea. The Sj
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subsystem is 1-SRS of the Si subsystem, denoted
by Si→

1
Sj , if the set Xj can be reached from the

set Xi in one step. It is possible to determine if
Si→1 S

j due to Si→1 S
j ⇐⇒ R(Xi) ∩Xj = ∅. In the

same way it can be determine the n-SRS.

The index of all subsystems that are n-SRS of the
subsystem i form the index set of n-SRS.

Definition: Index set of n-SRS Nin

Nin k ∈ [1, ..., s]/Si→
n
Sk

Transition from state Ij to Ij+1remains bounded
by the 1-SRSs of the corresponding subsystem to
Ij . This allow to prune the transition: a transition

from Ij to Ij+1 are not considered if Ij+1 /∈ NIj
1 .

If this concept is extended, the search tree can
be pruned further considering that Ij+k should

belong to N
Ij
k . Therefore, if only the 1-SRS for a

prediction horizon N are considered, the number
of possible sequences to test by the QP algorithm
is s(Ik)s(Ik+1)...s(Ik+N−1) (instead of sN , s(Ik) ≤ s),
where sIk is the number of 1-SRSs corresponding
to subsystem Ik.

It should be noted that the determination of
the 1 to n-SRSs for each subsystem can be
done off-line. The neighbor list for each of the
subsystems is included in the model description.
Each subsystem is, therefore, defined by the (7 +
N)-uple (Ai,Bi, Ci, f i, gi, Qi, qi,Ni1, ...,NiN), i ∈
{1, 2, ..., s} where, Ni is list containing the reach-
able neighbors of subsystem i.

In this article only 1-SRSs are used and they are
computed off line using the algorithm proposed by
Kerrigan (2000).

3. ILLUSTRATIVE EXAMPLES

3.1 Continuous PWA system

The proposed tree exploring strategy has been
applied to theMPC of a simple pendulum system.
A linearized equation of the discrete dynamic of
the simple pendulum system is used as model.
Consider the following linear system

mlθ̈ + klθ̇+mg sin(θ) =
τ

l
where θ is pendulum angle, l is length of pendu-
lum,m is mass of pendulum, g is the gravitational
force, k is a friction coefficient and τ is a torque
applied. Then, the state space model discretized
to a sample time T0 is

xk+11 = xk1 + T0xk2

xk1 = 1− T0k
m

xk2 −
T0g

l
sin x

k1
+
T0
l2m

uk

where uk = τ(k), xk1 = θ(k) and x2k = θ̇(k).
Using m = 1, l = 1, k = 0.5, g = 9.8, T0 =

-5 0 5
-10010
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0

5

-5 0
5

-10010

-20

0

20

x1(k)x1(k)

x2(k+1)x1(k+1)

x2(k)

Fig. 2. PWA model representation of the pendu-
lum

0.02 as modelling parameters. Starting from a
discretized model, a continuous PWA system as
(1) has been obtained using a sectors linearization
over the state space uniform grid. A partition
Xi xk|Qixk qi is defined after obtaining
56 sectors over the state space. Matrixes Bi are

considered invariants, i.e.: Bi = B = 0 T0
l2m

T
.

Figure 2 shows the state linearization functions.
Once the linearized model has been obtained, the
neighbors corresponding to each sector are found
using a reach set algorithm. In this example, the
bounds of the torque are 10.78 ≤ τ ≤ 10.78
(10.78 = 1.1 mgl), where the maximum torque in
stable state to reach any position is τ = mgl. All
simulations test have been carried out in Matlab.

Figure 3 shows the results with w = [0 0] and
x0 = [3, 3]. A prediction horizon N = 1 to
N = 10 is considered. The weights of the er-
ror and control action are Q̄x1=1000, Q̄x2=10,
R=0.1, respectively. Figure 4 show the number
of (minimum (dot), maximum (plus) and means
(star) values) QP evaluations Vs. the prediction
horizon for this experiment. In circles, this fig-
ure show the number of QP evaluation when all
possible sequences of regions (NQP = S

N−1) are
enumerated. For s = 54 and aN = 10, the number
of QP evaluations with the enumerative method is
NQP = 3904305912313344. The maximum num-
ber of QP evaluations for the proposed algorithm
is 4899, requiring a computation time (with a PC
computer) of 93.45 seconds.

Note that with the proposed algorithm, the num-
ber of decision variables of the QP problems in-
creases with the depth in the tree to a maximum
(equal to the prediction horizon). Figure 5 shows
the number of QP problems solved versus the
decision variable size for a prediction horizon of
10. It can be observed that the maximum number
of problems of length 10 is 2460 over a total of
4899.

4. CONCLUSIONS

In this paper we have proposed a new approach
for solving MPC control of PWA processes. The
algorithm is based on a B&B algorithm specific
for a PWA systems. The exploitation of decision
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versus the prediction horizon.
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QP optimization problem for N=10.

tree and the concept of reach sets . The proposed
tree exploring strategy chooses the reach set to
diminish the number of possible realizations of
the integer variables thus reducing considerably
the number of QP problems needed to be solved.

The efficiency of the bounding mechanism de-
pends on the quality of the bound estimates. In

this approach the bound are estimated in a coarse
form, but the use of proposition 2.4 increase the
prune ability. The availability of these proposi-
tions depends on the particular problem. If the
PWA systems is a obtain through a linearization
of a smooth non linear process (Julián (1999)),
the transition between subsystems are continu-
ous and prune ability is high. One should not
forget that the computational complexity of the
algorithm remains exponential, which makes it
prohibitively expensive for large control horizons.

If it is used this B&B optimization technique to
solve a MPC over a linearization of a smooth
non linear process have the advantage over other
nonlinear optimization methods that the global
discrete minimum is always found, guaranteeing
the optimality of control.
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