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Abstract: This paper presents a methodology for tuning PIDs considering the nominal
performance and the robustness as control specifications. The synthesis procedure is
~imilar .to the Ziegler-Nichols method for PID controllers and can be easily used for
mdustnal processes. As a workbench for testing the PID controller a mobile robot has
been used. The path tracking problem of a mobile robot has been used as a workbench
for testing the PID controller. Copyright © 2000 IFAC
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1. INTRODUCTION

In spite of the fact that the most frequently con­
trollers used in industry are PIDs, studies pre­
sented by many authors have shown that a great
amount of control problems are caused by inap­
propriate tuning of the PID parameters. Thus,
study of PID tuning methods is of great impor­
tance.

Many methods have been proposed in literature
to tune PIDs. One of the most known meth­
ods for tuning PID controllers when the process
can be modeled as a first order transfer function
with a delay, either stable (Pe) or integrative
(Pi) is the tuning method proposed by Ziegler
and Nichols (1942). This method generates ac­
ceptable responses in stable processes with low
ratio between the dead time (L) and time con­
stant (T) of the process, but the responses are
very oscillating or very slow with high ratio LIT
or integrative processes. In this paper, a PID is
tuned approximating the dead time by a transfer
function (Leonard, 1998) and taking into account
robustness considerations.
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As a workbench for testing the proposed PID
controller a mobile robot has been used. The
problem treated in this work is known as Path
Tracking (PT) which is that of driving a mobile
robot to follow a previously calculated reference
path, defined as a set of consecutive points. A
synchro drive mobile robot is used and a robust
tuned PID controller is proposed to solve the
PT problem. This controller has been tuned for
integrative processes and allows the use of simple
models.

The paper is organized as follows: In section 2
the description of the proposed tuning for the
PID controller is presented for stable plants and
integrative plants are described in section 3. The
robustness of the proposed PID is discussed in
section 4. The model considered for the mobile
robot kinematics is presented in section 5 and
the way in which the PID is applied to the
PT problem is shown in section 6. In section 7,
experimental results on a Nomad 200 mobile robot
are shown. The paper ends with the conclusions.

In the following two sections, the PID tuning is
discussed for stable and integrative plants mod-
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2. PID TUNING FOR STABLE PROCESSES

eled with Pe(s) and Pi(s) defined as:

P. (s) =~e-L. R(8) = K ve- L• (1)
e 1 + Ts ,. 8

A simple and frequently used (Leonard, 1998) way
for tuning a PlO controller for Pe plants is using
a rational first order function instead of the dead
time, which provides a good approximation in the
frequency domain:

e-·L / 2 1 - 8L/2
e-·

L = e.L/2 - 1 + sL/2 (2)

This approximation allows a low frequencies sec­
ond order transfer function model given by:

K p (1- sL/2)
PI (s) = (1 + Ts)(1 + sL/2) (3)

A PlO controller with a low pass filter (which
reduces high frequency derivative gain) has a
transfer function:

1 1
C(s) =Kc (1 + -T + Tds)-lT (4)

is + JS

The parameters of the controller are tuned using
the root locus method, looking for quick response
without oscillations (see figure 1)

T 2LT
• d = L+2T
• Ti = T + L/2
• TJ is chosen to reduce high frequency gain.

A simple way is to chose TJ = oL, with
o< 0 < T / L , that allocates filter poles to
the left of -l/T (see figure 1).

• Kc is chosen in such a way that exist two
equal closed loop real poles in s = -1/To:

L+2T /
Kc =~(40 + 1- 4(02 + 0/2)1 2)

p

(5)
..,

quick responses (low To values). If the model is
equal to the process, this tuning guarantees quick
responses without oscillations and governed by
8 = -l/To real poles. But in real processes, low To
means allocate poles in complex plane where can­
not be used the approximation given by equation
2. In these cases, errors between the model and
the process are important and the time response
has high frequency components that generate os­
cillations. If 0 > T / L a slow response is obtained
due to low pass PID filter that cancels derivative
effects. Also the system performance is limited by
model errors for small 0 values. This problem is
similar to that of high order plants modeled with
low order models, where closed loop poles must
be allocated considering unmodeled dynamic.

In real practice, dynamic model errors and param­
eters estimation uncertainties must be considered.
As will be proved in this work, parameter 0 is
related to the controller robustness. This create a
compromise between performance and robustness.

Once a PlO is well tuned for perturbation re­
jection (with an adequate 0) the responses show
a higher overshoot than the one specified. This
corresponds to the zeros allocated in the closed
loop and can be corrected introducing a reference
filter (as shown in figure 2) that reduces the ef­
fect of these zeros. The filter can be tuned in a
simple way because zeros are introduced by the
controller. This problem is known as two degrees
of freedom control and is analyzed in some works
(Morari and Zafiriou, 1989) (Astrom and Witen­
mark, 1984). Also, a study of the zeros influence
in system response based on basic tools (time
response and frequency domain) is presented in
(Normey-Rico, 1995).

Fig. 2. System controlled with PlO and reference
filter
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Fig. 1. Root locus diagram for PlO tuning

From these relations and from root locus dia­
gram it can be seen that low 0 values generate

(7)W(s)
1 + OATrs

1 +sTr

and the zeros effect can be canceled with Tr .

The slow PlO zero is allocated in s = -2/L,
and then Tr can be chosen equal to L/2. Thus,
the number of parameters remains the same and
the controller simplicity is also maintained. A
better performance is shown in figure 3 where
the simulation conditions and PlO parameters are
held.

In particular, the reference filter can be chosen as
follows:

·'IT-1lTl

.......

...
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Fig. 5. System responses in closed loop with the
proposed PID for an integrative plant

From these results, it can be concluded that this
PID can give good results if very short time re­
sponse is not required. In these cases, the approx­
imation used for time delay modelling is no longer
valid and the performance is deteriored. In prac­
tice, the error in the time delay approximation is
not the only one difference between the real plant
and its model and all of them must be considered
in the controller design in order to guarantee the

1.2

It is clear that the scheme presented in figure
4 can be transformed into the scheme of figure
2. The relation between W'(s), Ko and C'(s)
and C(s) and W(s) is given by: C(s) = Ko +
C'(s), W(s) = w'~~~'(8) where can be observed
that although C(s) is a PID controller, W(s) is no
more a first order filter and the simple procedure
used with C'(s) cannot be repeated. In figure 5
it is shown responses to different "I values for the
proposed C'(s) e W'(s).

• Ti = 1.5L e Td =2L/3,
• TI proportional to L: TI = "IL, with 0 < "I <

0.75 (for the allocation of the filter poles to
the left to the P2 (s) poles)

• Kc for real poles is a function of "I and is
given by:

Kc = ;:v (4"1 + 1- 4("/2 + "1/2)1/2) (11)

that allocates the poles in s = -11T1 with:

T1 = "I !:. (12)
("/2 + "112)1/2 - "I 2

The obtained relations are similar to that of the
stable case expressions. Again, a new parameter
("/) defines robustness characteristics of the sys­
tem and also, it is used a reference filter W'(s) =
1t~'i::;" for better transient responses in reference
changes, and it is tuned as in the stable case.
In this case, C'(s) has complex conjugate zeros
whose real part is used for tuning TT; then:
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Fig. 4. Integrative process controlled by Ko gain
and PID with reference filter

delay, Ko must be carefully chosen in order to
avoid oscillatory responses in Pi modeled pro­
cesses. In this work, is proposed to use the same
delay approximation than in the stable case:

Pi(s) = K v (l - sL/2) (8)
s(l + sL/2)

From the root locus diagram it is possible to
calculate the Ko value which makes that the in­
ner closed loop poles generate responses with an
overshoot less than 5%. Thus, the Ko final value is
Ko = ~.5L and the new transfer function between
control 'and output (with the delay approxima­
tion) is given by:

p. (s) =2Kv / L(l - sL/2) (9)
2 1 + 1.5Ls + L2 S 2

In the second step, the PID controller C'(s) is
tuned using the same ideas presented for the
stable case:

C'(s) = K c(1 + T
1

+ Td S )(-1IT) (10)
is + IS

and the following values are selected:

Dead time and integrative behavior makes PID
tuning more difficult. As was mentioned, Ziegler­
Nichols method is not good enough in these cases.
Alternative methods have been proposed (Morari
and Zafiriou, 1989) (Chien and Fruehauf, 1990)
(Luyben, 1996). In this work, simplicity is main­
tained with two steps based method. In the first
step a proportional control Ko (see figure 4) is
tuned. This transforms integrative system dy­
namic into a stable process. Due to the system

q(l)

u(l) +1
+

Fig. 3. Closed loop system responses with PID
and reference filter for stable plant

3. PID TUNING FOR INTEGRATIVE
PROCESSES



4. ROBUST TUNING OF PID CONTROLLER

robustness. This will be analyzed in the following
section.

The robust stability in closed loop can be analyzed
in a simple way taking into account that P can
be written as P :;;; Pn + OP, where OP are the
modeling errors and Pn represents the nominal
plant. This type of uncertainties model is not
structured because they are not linked to specific
parameters (gain, delay, etc). In this case, Pn(s)
is the transfer function used to tune the PlO:

Pn(s) :;;; Pe(s) in the stable case, and Pn(s) :;;;
Pi (s) in the integrative case. The closed loop
characteristic equation is: 1 + C(s)P(s) = 1 +
C(s)(Pn + oP) = 0, where C(s) is the total
control action in cascade with the process. A polar
diagram of the system is shown in figure 6.

-r = 0.5'0'

10'.---------~------__.

dP(w) coincides with the inverse of the system
closed loop transfer function for W (s) = 1. This
shows the relation between performance and ro­
bustness. Using expressions of Pn(s) and C(s)
with the proposed tuning for the stable case:

l:,Pe(w) = 1(1 + Tojw)2 I Vw (17)
11- jwL/21

in integrative case is:

l:,Pi(w) = I (1 + Tdw)2 I Vw (18)
11- jwL/2\

As To is a function of (} and T l is a function of
f, these parameters can be used for tuning the
system robustness in closed loop. Greater (} (()
values, mean greater To (Tl ) values, and therefore,
greater dP(w) in high frequencies. On the other
hand, a robustness improvement implies slower
responses and performance losses. For instance,
in figure 7 dPi(w) is shown for different values of

f·1...&
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-1-ePn

C(Pn-oliP)
cp,l.

\
.,
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-r=

-_ ..... --_ .. .. .. ... modeling errors

Fig. 6. Polar diagram for robust stability study of
PlO

First, it is calculated the polar diagram in open
loop and nominal case CPn(jw). With the tuning
chosen in the nominal case, the -1 point is not
included. Then, the distance between diagram
points CPn(jw)and -1 point are computed by
11-1 - CPn(jw)ll. This is a measure of the closed
loop robustness. From the characteristic equation
of the system it is obtained:

1-1 - CPn 1=11 + CPn 1=1 CoP I (14)

Now it is computed the polar diagram for C(Pn +
oP). If the -1 point is not included in the new
diagram, then the real system is stable and the
distance between real and nominal curves are
always greater than 11 +CPn I for all frequencies.
The maximum distance between nominal and real
plants (l:,P) that holds robust stability in closed
loop is calculated by:

IoP(jw) I~ l:,P(w) = 11 + fg~~n,(jW) I Vw.

(15)

or relative to Pn :

I oP(~w) 1< dP(w) = 11 + ~(jw)~~(j)wl) I Vw.
Pn(Jw) - I C(Jw)Pn JW

(16)

'0~'L-------~------,""""",
1~ 1~ 1~

Frequency

Fig. 7. PID robustness with different f values.

In the same figure, the modeling error ~ is
depicted (dotted line). With this method it is
possible to tune (} (() parameter.

Also it is possible to chose (} (() as the parameter
that guarantees a frequency response module in
closed loop (the inverse of ~) without a peak.
It can be proved that this is guaranteed with
(} = f = 0.13 (note that in the proposed cases,
the function is the same for stable and integra­
tive cases). Chosing (} = f = 0.13, the tuning
parameters can be written in a tabular form like
Ziegler-Nichols known rules. Table 1 shows the
tuning for PID(s) = K c(1 + i.. + Tds)(l+h.),
reference filter Filter(s) - l+O.4Tr B and K (in

- l+TrB 0

the integrative case).

5. THE MOBILE ROBOT PATH TRACKING
PROBLEM

As a application for testing the proposed robust
tuned PID controller a Nomad 200 mobile robot is
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Model Kc T; Td T( Ko TT

~e-L- U.~(~IL.+'
T+L/2 LT O.13L 0 L/21+_ K»L L+2T

~e-L- ~i! 1.5L 2L/3 O.13L 2# L O.75L•
Table 1. PID parameters value for the proposed tuning

7. EXPERIMENTAL RESULTS

Then, for the mobile robot, the reduced model was
defined with Kv = 1, L = 0.2 s and 'Y was chosen
equal to 0.5 for compensate uncertainties in the
simplified model given by equation 19.

Using 'Y = 0.5 the parameters for the reference
filter W(s), C(s) and Ko are computed. These
transfer functions were calculated for discrete time
and the final control law programmed in the robot
mobile main processor.

For testing the behaviour of the robust tuned
PID, the block diagram that appears in figure 10
was implemented in a Nomad 200 mobile robot.
The reference steering angle 8r is computed in the
approximation point block from the robot position
(xg,yg) and the points that define the path. In
order to tune the proposed PID, a linear model of
the process is needed. The linear model has been
obtained from the hypothesis that the increments
in the reference steering velocity are small and the
dynamic of the rate limiter block is not present.
In this case the model can be simplified by an
integrative process with dead-time given by the
following equation:

e-O.2s

Pi(s) =-- (19)
s

6. PATH TRACKING WITH THE PROPOSED
PID

For the experimental tests the controller parame­
ters have been chosen as follows: >. = 0.6 meters,
V = 0.4 m/ s (90% of the maximum robot veloc­
ity),8max = 30 degrees/s2 and the sampling time
T was chosen equal to 0.2 seconds

Figure 11 shows the performance of the proposed
controller for two different real dead times. The

steering velocity reference 8r has been chosen, and
a constant linear velocity V of the mobile robot
has been used. The model of the robot for the
steering angle is given by a kinematic equation
and a non linear dynamics related to a rate limiter
in the steering velocity. As was mentioned, the
control variable used has been the steering veloc­
ity reference 8r . The steering velocity 8(t) follows
its reference with a non linear dynamics. When
a change in 8r occurs, the steering velocity has a
small dead time L = 0.2 seconds and is limited
by the maximum acceleration (8ma.,) given by the
steering motors.8

5.1 Synchro-drive steering angle model

Fig. 9. Approximation points and their respective
reference steering angles in two different po­
sitions

Fig. 8. Global reference frame for the mobile robot
omad 200

used. This robot has a synchro-drive type locomo­
tion system which consists of three drive wheels
which turning speed and orientations vary simul­
taneously. In figure 8 it is shown the synchro-drive
configuration and the steering angle 8 referenced
to the global axis.

The robot provides a position estimation system
based on odometry. It is well known that odom­
etry is a technique which has an accumulative
error which implies the need for update the es­
timation from environmental data provided from
sensor systems with a predetermined frequency.
This problem is considered to be decoupled with
the PT problem and has not been accomplished
in this work.

X g Xglobal

Y',}--+-~

The mobile robot steering angle {) must follow a
steering angle reference 8r defined by an approx­
imation point located at a fixed distance, >., in
the path (see figure 9). As the control variable the

Yglobal

Xglobal
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Path trackin with estimation dela errors

Path tracking without ~til1lation delay I?frors
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Fig. 10. Block diagram of the proposed PlO
controller implemented in the mobile robot
for path tracking
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Fig. 11. Path tracking for the mobile robot: (a)
with real delay L, (b) with real delay 1.4£

initial position for the mobile robot was Xo =
0.6, Yo = 1.13 and orientation 00 = 0 (parallel
to x g axis). Note that the reference path chosen
has small curvatures, which makes more difficult
to follow the reference. The path tracking in the
two cases of figure 11 are very similar without
delay errors (figure l1(a)) and with a 40% in the
delay error (figure l1(b)). The difference appears
in the very first sample times, where the path
following with estimation delay errors (b) is more
oscillating.

In figure 12 also there are differences when the
control demands more control effort in path track­
ing with estimation error (figure l1(b)).

Note the satisfactory performance obtained in
the reference following (see figure 11) although
the linear velocity V is 90% of the Nomad's
top velocity and the reference steering angle Or
changes continuously.

8. SUMMARY AND CONCLUSIONS

A method for robust tuning of PID controllers has
been proposed based on classical control concepts

Fig. 12. ~teering velocities 6r (continuous line)
and 0 (dashed line): (a) with real delay L (b)
with real delay 1.4£

and can be applied to stable and integrative pro­
cesses that are modeled like first order transfer
functions with a delay. The synthesis procedure
is similar to the Ziegler-Nichols method for PID
controllers. The robustness of the controller can
be changed with parameters (0 and 'Y for sta­
ble and integrative plants) and allows a good
performance with uncertainties in the dead time.
Finally the proposed PID has been implemented
for a mobile robot path tracking problem and
some experimental results have shown the good
performance obtained in spite of delay estimation
uncertainties.
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