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Abstract: This work shows a control policy based on MPC and applied to project
risk management. MPC has been applied due the properties that presents such
as the easy constraint treatment or the extension to multivariable case. The
control actions are the mitigation actions to execute in order to reduce the risk
exposure. Stochastic variables have been introduced to model the uncertainties of
risk impacts. Integer variables are involved in the optimization problem modelling
the mitigation actions.Copyright c©2005 IFAC
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1. INTRODUCTION

Project risk management is a very extended field
in economic systems due to the accomplishments
that can be reached. The limited knowledge about
the process, the economic system’s complexity
and the uncertainty in strong points, have played
a decisive role. Nowadays, methods and disciplines
that help to face challenges are being highly ac-
cepted in companies. Organizations which better
understand the nature of the risks and can manage
them more effectively can not only avoid unfore-
seen disasters but can work with tighter margins
and less contingency (Chapman and Ward, 2000).
Several previous studies have aimed to develop
methodologies or formalizations about risk man-
agement (Crouhy et al., 2000),(Jaafari, 2001). In
(Zafra-Cabeza et al., 2004) an optimal schedul-

1 This work has been supported by the Spanish MCYT
under the grant DPI2002-04375-C03-01

ing and risk assessment of projects is carried out
through static modelling.

This paper studies control policies applied to
project scheduling. The objective of the paper
is to maintain the cost of the project within
budget, according to a given reference and taking
into account risk management. The manipulated
variables are the mitigation actions to undertake
in order to reduce risk exposure and the controlled
variable is the cost of the system. A dynamic
model of the process is proposed where there are
explicit constraints imposed by the system.

Model predictive control (MPC) is an optimal
control strategy based in the explicit use of a dy-
namic model to predict the process output at fu-
ture time instants (Camacho and Bordons, 2004).
MPC disciplines are widely applied in industry
(Richalet, 1993) and economic systems (Herbert
and Bell, 2001).
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The control methodology applied to this study
has been MPC. Some of the reasons in which this
decision has been based are the easy treatment
of the constraints, the extension to multivariable
case and the main role of the model.

This paper develops a methodology to reduce
the risk exposure. The control policies are based
upon a model that predicts the policy targets.
The control variables (actions) can be integer;
therefore, the optimization problem is stated as a
mixed integer problem. Constraints are explicitly
introduced upon the control variables so that they
may be limited to economically realistic values.

The impacts caused by risks can be modelled as
deterministic or stochastic variables. In that case,
a special kind of constraints called chance con-
straints are introduced requiring that constraints
should be held with a probability exceeding α.
The addition of these variables gives rise to an
stochastic optimization problem and it will be
treated in the paper.

This work is organized as follows. Section 2 de-
scribes the system, providing the dynamic model
and the risk modelling. Section 3 presents the
optimal control problem based on MPC and the
constraint description where stochastic variables
are involved. A case study is depicted in Section
4. The experiments have been realised on a true
project. Some concluding remarks are described
in Section 5.

2. SYSTEM DESCRIPTION

The considered system corresponds to the cost
estimation of projects. Assuming that the schedul-
ing of the tasks that comprise the project and
the set of risks that can affect to these tasks are
known, the objective of this process is to minimize
the cost of the whole project through actions that
reduce the impacts of the identified risks.

The cost of the project until time instant t has
been considered as:

y(t) = y(t − 1) + T (t) + R(u, t) (1)

where

y(t) and y(t − 1) is the cost of the project until
t and (t − 1) instant times, respectively.

T (t) is the nominal cost contribution of the tasks
that are being executed at instant time t, and

R(u, t) is the term that contains the risk manage-
ment at time t

As it can be observed, the control actions affect
term R(u, t). The following subsection describes
how risk mitigation has been modelled in this
work.

2.1 Risk Modelling

In this paper, risks are characterized by a proba-
bility of occurrence (Pi) and initial impacts (IIi)
which may affect cost of the project, if risks be-
come facts and if no actions are taken. The link
between tasks, risks and actions is provided in
a Risk-Based Structure (RBS). An example of
(RBS) is depicted in Figure 1. Every task may
have some risks (Ri) associated as a result of the
risk assessment performed. Actions (Ai) can be
taken to manage risks and their consequences.
Several actions may reduce the same risk and one
action may reduce more than one risk. The same
risk can be associated to different tasks. Tasks,
risks and actions are depicted by rectangles, tri-
angles and circles, respectively.

Fig. 1. Risk-based structure of a project

Four types of actions are usually considered in the
risk management context:

• Mitigate: Reduce the impact of a source of
risk.

• Prevent: Change the probability of occur-
rence.

• Avoid: Plan to avoid specified sources of risk
• Accept: Accept risk exposure, but do nothing

about it.

Only mitigation and accept actions have been
implemented in this paper. Mitigation actions will
reduce the initial impact of a risk on a task, but
the project will be charged with additional cost
not included in the initial scheduling. Notice that
the impact is probabilistic (only if the risk occurs),
but the cost of the action is a fact. Examples of
mitigation actions are the contracts of new work-
ers or the purchasing of new machinery to prevent
delays in a task. Insurance contracts are also an
example and, perhaps, the most common practice
to mitigate risks. In fact, insurance companies
have an increasing interest in improving risk esti-
mates to encourage mitigation through scientific
modelling (Kleindorfer and Kunreuther, 1999).
Every mitigation action is described by a set of
three elements:

Ai = {ui, fi, gi} i = 1...p
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where p is the number of mitigation actions and
the decision variable for the action (Ai) is denoted
by ui. fi : < → < is a function that determine
the impact reduction as a function of ui in each
unit time; thus, fi is the cost reduction of initial
impact when the action (Ai) is applied. The cost
of executing an action in an unit time is modelled
by functions gi(ui) : < → <. f and g functions
can be linked to an additional parameter to state
the period time considered for the reduction.
In previous works (Zafra-Cabeza et al., 2002) it
was seen that the decision about a mitigation
action is not usually a execute/don’t-execute de-
cision. The intensity of the action has to be taken
into account when deciding how to execute the ac-
tion. The impact and the cost of the action depend
on the number of workers to be contracted, or the
amount insured; that is, the decision will be taken
depending on the value of the mitigation action
control variable ui. Thereby, ui ∈ < or ui ∈ ℵ.

Therefore, the term R(u, t) presented in equation
(1) can be described as follows:

R(u, t) =
m

∑

i=1

riskt(i, t)REi(u, t) (2)

where the number of risks is denoted by m. Terms
REi(u, t) models the effect of the risk Ri at time
t. This term is called ”Risk Exposure” and it is
defined as:

REi(u, t) = Pi(IIi −

p
∑

j=1

fj(uj))

+

p
∑

j=1

riska(i, j)gj(u) (3)

where Pi is the probability of the risk Ri and
IIi denotes the initial impact of the risk Ri

affecting the cost. The sum of functions f means
the reduction of the initial impact by executing
actions. riskt(i, t) = 1 indicates that the risk
Ri could take place at time t according to the
risk identification and otherwise riskt(i, t) = 0.
riska(i, j) = 1 if the risk Ri is mitigated by action
j. gj(uj) is the cost of the mitigation action Aj .

3. PREDICTIVE CONTROL APPROACH

The control objective is to maintain the total
cost of the project according to a given reference
in each step. The manipulated variables are the
actions to undertake in order to reduce risk expo-
sure.
Model predictive Control (MPC) is an optimal
control strategy based on the explicit use of a dy-
namic model to predict the process output at fu-
ture time instants (Camacho and Bordons, 2004).

The future time interval considered in the opti-
mization is called prediction horizon (N). The set
of future control signals is calculated by optimiz-
ing a determined criterion or objective function
that usually is quadratic. The predicted outputs
depend on the known past inputs and outputs
values up to instant t and on the future control sig-
nals. Only the control signal calculated for instant
t is sent to the process whilst the next control
signals are rejected. Therefore an optimization
problem is solved at each time instant. Note that
the receding horizon concept is applied.
The objective function uses to include the control
effort and the error between the predicted output
and the reference:

JN =

N
∑

j=1

δ(j)[ŷ(t + j|t) − w(t + j)]2

+ λ(j)

N
∑

j=1

[4u(t + j − 1)]2 (4)

MPC disciplines are being widely accepted by the
academic world and by industry (Richalet, 1993).
Some advantages that MPC presents over other
methods are the easiness to implement the control
law, the extension to multivariable case or the ad-
dition of constraints in the optimization. However,
note the main role that the model of the process
takes place.
The previous statements have been decisive to se-
lect this control strategy for this work. Equations
(1),(2) and (3) can be rearranged and the cost can
be expressed as the following 1-output, n-input
model:

A(z−1)y(t) = B(z−1)u(t − 1) + d(t) (5)

where A(z−1) = 1 − (z−1), B(z−1) is a n ×
1 polynomial vector and d(t) is an offset term
including the nominal cost of the project and the
mean cost of impacts for the corresponding time
period, not depending or control actions. B(z−1)
is time-varying and is calculated in each step;
the model process changes at each time instant
as consequence of the risk occurrence and their
probabilities. In order to simplify the instant to
execute the mitigation actions, the start day of
the tasks has been selected. The sample time has
been considered one day.

3.1 Constrainst description

MPC presents a great advantage over other meth-
ods in the treatment of constraints. This optimiza-
tion problem is usually subject to constraints on
the control u which can be expressed as:

Ruu(t) ≤ u ≤ ru(t)

 136



When the risk identification is carried out, the
accurate value of the impacts can be unknown at
that time. This work comprises the case where im-
pacts can be modelled as deterministic or stochas-
tic variables, according the available information
about them. In the second case, IIj has been
supposed as a stochastic variable with normal
distribution (IIj ∼ N(µj , σ

2

j )).
Chance constrained optimization is a stochastic
method that attempts to reconcile optimization
over uncertain constraints. The constraints, which
contains stochastic parameters, are guaranteed to
be satisfied with a certain probability at the opti-
mum found (Kall and Wallace, 1994). Chance con-
straints can be added to the optimization problem
under the format:

Pr{REcj(ξ, u) ≤ Kcj} ≥ αcj (6)

Taking into account that

Pr{IIcj(ξ) ≤ h(u)} = F (h(u)) (7)

with F the value of the cumulative distribution
function of a standard normal distribution, it can
be stated that F (h(u)) ≥ αcj . Therefore, the
equation (6) can be transformed to:

h(u) ≥ F−1(αcj) (8)

The chance constraints are convex ∀α ∈ [0, 1](Kall
and Wallace, 1994).

4. EXPERIMENTS

In order to illustrate the proposed technique, a
true research project has been taken as an exam-
ple: the AESOP 2 (Assessment of Energy Saving
in Oil Pipelines) project. The main objective of
the project was to study and develop techniques
for the use of flow improvers or drag reducers
(DRA) in pipelines to reduce the energy consump-
tion and to increase the transport capabilities of
oil pipeline networks. Table 1 describes the tasks
of the project.

Initial costs assigned to the different tasks, with-
out considering risks, are shown in Table 2 (these
data are not true in order to keep the confiden-
tiality of the project). After the initial scheduling
of the project, risk assessment identifies the main
risks associated to each task. The RBS that was
identified is shown in Figure 1. Table 3 shows
the risks that are going to be considered in this
example and their consequence on the project.

2 AESOP project (ENK6-CT2000-00096) is a research and

technological development project partially supported by

the Energy, Environment and Sustainable Development
Programme of the European Union Fifth Framework Pro-

gramme (http://www.esi2.us.es/aesop/)

Table 1. Tasks of AESOP project.

Task Description

WP1 Kick-off meeting and starting of the project

WP2 Assessment of effect on fuel performance for

high additive concentrations

WP3 Experimental Field Studies of flow im-

provers in Pipelines

WP4 Effectivity model development

WP5 Methodology for the use of long-chain poly-

mers in Pipelines

WP6 Project management

WP7 End of the project. Last meeting

These risks have to be modelled, determining the
probability of occurrence, the impacts and the
set of mitigation actions that can be executed.
The impacts in terms of cost and the proposed
mitigation actions are described in Table 4.

Table 2. Task description

Task Time Start month End Month Cost

WP1 0.1 0 0 9

WP2 8 0 7 430

WP3 10 0 9 625

WP4 5 10 14 195

WP5 21 15 36 510

WP6 36 0 36 54

WP7 0.1 36 36 9

Table 3. Risk description

Risk Description

R1 Conclusive results about the impossibility of using

DRA in pipelines because of the fuel performance

R2 Difficulty in calibration of measurement equipment

because of the DRAs

R3 Not enough or lack of quality in the collected data

R4 Adverse work conditions situation in the test pipeline

R5 Overrun

R6 Failure of a partner

The set of possible mitigation actions are {Ai}
with i = 1...6. Therefore, there are six control
actions, u1, ..., u6. Variables u2 and u6 are boolean
and the rest of them are real. The considered
process is a first-order linear system without dead
time and therefore B(z−1) = B0(t). B0(t) and d(t)
are defined as follows

B0(t) =













(−P1f1 + g1)riskt(1, t)

(−P2f2 + g2)riskt(2, t)

(−P2f3 − P3f3 + g3)max(riskt(2, t), riskt(3, t))

(−P3f4 + g4)riskt(4, t)

(−P4f5 + g5)riskt(5, t)

(−P5f6 + g6)riskt(6, t)













d(t) =

nrisks
∑

i=1

PiIIiriskt(i, t)

+

ntasks
∑

i=1

taskt(i, t)

taskt(i, t) = 1 if the task WPi is being executed
at time t. In other case, taskt(i, t) = 0.
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Table 4. Mitigation actions description

Risk Cost Actions Description Cost Re. Cost Function

R1 175 A1 Insurance contract 1 (Real) f11 = 100u1 g1 = u1

R2 242 A2 Auxiliary measurement equipment purchasing

(Boolean)

f12 = 225u2 g2 = 45.6u2

A3 Subcontracting the measurement in the injection

points (Real)

f13 = 6.5u3 g3 = u3

R3 205 A3 f13 = 6.5u3 g3 = u3

A4 Preliminary and exhaustive analysis on experimental

activities (Real)

f14 = 8au4 g4 = u4

R4 93 A5 Insurance contract 2 (Real) f15 = 60u5 g5 = u5

R5 0.1CT A6 Contract more qualified staff (Boolean) f16 = 76.5u6 g6 = 23.7u6

R6 183 -

The horizon, N has been established to 10 and the
control effort, (λ = 0.01) to allow high changes
in the control. The constraints that have been
considered are the following:

ui ≥ 0 with i = 1, 3, 4, 5

f2(u2) + f3(u3) ≤ max(II2, II3) (9)

f3(u3) + f4(u4) ≤ max(II2, II3)

f5(u5) ≤ 4.9II4

f6(u6) ≤ 7II5

f1(u1) ≤ II1
∑

gi ≤ 0.2 ∗ CT

First constraint states that variable u1, u3, u4 and
u5 are real but they can not be negative. The
next constraints do not allow the reduction of the
cost for the risks to be higher than an amount
of the initial impacts. The additional cost of the
mitigation actions can not be higher than the
twenty percent of the total cost of the project
(CT ); it is stated in the last constraint. CT is
the total cost of the project when risks are not
considered.

The results of the optimization problem have
been obtained using a solver developed in Mat-
lab (Bemporad, 2002) that can be used for the
mixed integer programming. These algorithms use
branch and bound methods.

The reference trajectory w(k) can be chosen to
indicate the desired execution rate of the process
and may be linked to the financial policy of the
company for a particular project. In figure 2 the
reference has been established to 0 in order to
minimize the cost. The thin solid line (ynom)
means the cost considering risks, but no miti-
gation actions. The cost for the non risk case is
depicted in dashed-dotted line (ynor). The upper
bold solid lines represent the proposed solutions
under the constraints described in equation (9). If
some of the initial constraints are removed, it is
possible to observe how the cost decreases. It is
stated in the lower bold solid line when constraint
(f1(u1) ≤ II1) is removed. Figure 3 shows the

control actions. They are always executed at the
beginning of the actions. In fact, notice that ynom

is highly increased in the points where tasks begin.
The risk probabilities have been taken randomly.
Note how variables u2, u6 only take values in
{0, 1}.
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Fig. 2. Cost for the non risk case (dashed-dotted
line), without mitigation actions (thin solid
line) and the proposed solution (bold solid
line).
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Fig. 3. Control actions

For the next experiment the initial impact of R1

has been considered as a stochastic variable with
normal distribution (II1 ∼ N(175, 12)). Hence,
two new constraints have been added:

f1(u1) ≤ 2II1(ξ
k) k = 1, ..., ns (10)

Pr{RE1(u, ξk) ≤ 25} ≥ 0.99 k = 1, ..., ns
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ns denotes the number of samples (ns = 10).
The first constraint states that the reduction for
R1 can not be higher than two times the initial
impact II1(ξ

k). The second inequality is a chance
constraint. It states that the Risk Exposure should
be reduced to 25 with a probability equal to 99%.

Also, the reference has been changed taking into
account a possible company policy. w(k) is up-
dated at each time instant, w(k) = ynor(k) +
0.2 ∗ yrisk(k), where yrisk(k) is the additional
cost that risks cause. The considered constraints
for this experiment have been the first, second,
third and forth of equation (9) and additionally,
the constraints stated in equation (10). Figure
4 shows the results obtained. There are no im-
portant changes in the output; the dotted line is
the reference and the bold line is the proposed
solution. The main differences are reflected in the
control signals. Figure 5 shows the control actions
for the deterministic case, without constraints
stated in eq. 10 (solid line) and for the stochastic
case (dotted line). Note that in the stochastic case,
besides all the control signals as in deterministic
case, u1 is maintained an interval with a value
not equal to 0 to satisfy the stochastic constraints
whilst in the deterministic case only one period
time the action A1 is executed. In the stochastic
approach, not only a value of the impact is con-
sidered but a discrete distribution as consequence
of the uncertainty modelling.
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Fig. 4. Costs with probabilistic constraints

5. CONCLUSIONS

This paper describes a control policy that opti-
mizes the cost of a project taking into account risk
management. MPC has been the chosen control
methodology due to the facility that presents in
the treatment of constraints or the extension to
multivariable case. The setting of the reference or
the control effort can set policies imposed by the
company. The introduction of uncertain variables
modelled as stochastic variables has given rise to
a stochastic optimization.
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Fig. 5. Control actions for the stochastic case
(dotted line) and deterministic case (solid
line)
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