

Abstract— Image processing is a fundamental operation

in many real time applications, where lots of parallelism

can be extracted. Segmenting the image into different

connected components is the most known operations, but

there are many others like extracting the region adjacency

graph (RAG) of these regions, or searching for features

points, being invariant to rotations, scales, brilliant

changes, etc. Most of these algorithms part from the basis

of Tracing-type approaches or scan/raster methods. This

fact necessarily implies a data dependence between the

processing of one pixel and the previous one, which

prevents using a pure parallel approach. In terms of time

complexity, this means that linear order O(N) (N being the

number of pixels) cannot be cut down. In this paper, we

describe a novel approach based on the building of a pure

Topological framework, which allows to implement fully

parallel algorithms. Concerning topological analysis, a first

stage is computed in parallel for every pixel, thus

conveying the local neighboring conditions. Then, they are

extended in a second parallel stage to the necessary global

relations (e.g. to join all the pixels of a connected

component). This combinatorial optimization process can

be seen as the compression of the whole image to just one

pixel. Using this final representation, every region can be

related with the rest, which yields to pure topological

construction of other image operations. Besides, complex

data structures can be avoided: all the processing can be

done using matrixes (with the same indexation as the

original image) and element-wise operations. The time

complexity order of our topological approach for a m×n

pixel image is near O(log(m+n)), under the assumption that

a processing element exists for each pixel. Results for a

multicore processor show very good scalability until the

memory bandwidth bottleneck is reached, both for bigger

images and for much optimized implementations. The

inherent parallelism of our approach points to the

direction that even better results will be obtained in other

less classical computing architectures.1

Keywords — Topology, Component-Labeling, Adjacency

Tree, Image Processing, Parallelism.

I. INTRODUCTION

he starting point in our work is that topology is the

ideal scenario for promoting parallelism, although

it drives to less classical approaches. The nature of

the topological properties goes necessarily from local-

to-global relations. The power of our method resides in

that topological magnitudes are, by definition, robust

under deformations, translations and rotations.

Up to now, the only topological invariant that has been

calculated using a fully parallel computation is the Euler

1 Department of Computer Architecture and Technology. University of
Seville. Spain.
2 Department of Applied Mathematics. University of Seville. Spain.

Corresponding author: fdiaz@us.es

number [3]. Other authors have recently proposed other

parallel algorithms that compute some aspects of the

homological properties of binary images [13]. In [4], a

digital framework for parallel topological computation

of 2D binary digital images based on a sub-pixel

scenario was developed, modeling the image as a special

abstract cell complex [11], in order to facilitate the

generalization of this work to images of higher

dimensions. Still, topological approaches in that sense

are rare in the literature.

Within a purely discrete level, combinatorial versions of

CW-complexes, called abstract cell complexes (ACC,

for short [11]), can be used for a correct algorithmic

development. They are formed of basic elements

(representing the cells using topological coordinates) of

different dimensions together with a bounding function

describing the combinatorial relationship “to be in the

boundary of”. Different definitions of ACCs can be

found in the literature (see [29] for a thorough survey).

To sum up, we construct our scaffolding on the basis of

the two following basic topological properties: “being

adjacent to” and “being surrounded by”. Moreover, we

take advantage of the powerful duality properties that

the topological invariants of connected components and

holes have in the context of 2D binary digital images

based on square pixel. In other words, we exploit the

duality that the holes of 4-adjacent CCs (connected

components) must be 8-adjacent CCs and vice versa (see

Fig. 1). Finally, our algorithms use only trees as their

basis. Each CC is then described by only one tree, which

is connected to another CC tree by only one edge. Our

framework allows us to extend the parallelism to every

single pixel, in such a way that all of them do the same

operations without any real dependence among them.

When writing the code, we must carefully estimate the

number of operations, the memory consumption, and,

the most important aspect, the ratio of memory accesses

per pixel, if a fast execution is required. In fact, this last

parameter is in many occasions a measure of the final

algorithm performance [23].

In this paper we summarize how a pure topological

framework can extend because the degree of parallelism

to every single pixel. These novel image processing

methods can sensibly decrease computation times if

enough PEs (Processing Elements) were available.

II. RELATED WORKS

In relation to the representation of digital objects or,

alternatively, binary digital images, various topological

models have been exhaustively used. Adjacency trees

(also called topological, inclusion or homotopy trees [2,

16, 17], and here AdjT, for short) offer a classical

region-based representation in terms of rooted tree of

T

Parallel Image Processing Using a Pure

Topological Framework

Fernando Diaz-del-Rio1, Helena Molina-Abril2, Pedro Real2, Pablo Sánchez-Cuevas1, Antonio Ríos-

Navarro1

344 Jornadas SARTECO 2019, Septiembre, Cáceres

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/322844336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

certain topological and spatial properties of the

connected components in a binary image. Within an

AdjT, each node represents a distinct foreground (FG) or

background (BG) component, and an edge between two

nodes means that one of them is surrounded by the other.

The root in an AdjT always represents the unique BG

component “surrounding" the image (if it does not exist,

it can be artificially created) and two 2D binary digital

images are topologically equivalent if and only if their

AdjTs are equivalent. An example of an AdjT of the

binary image in Fig. 1 (Left) is shown in Fig. 1 (Right).

Aside from image understanding [18] and

mathematical morphology applications [7, 10, 15],

AdjTs have encountered exploitation niches in

geoinformatics, dermatoscopics image, biometrics, etc.

(see [3, 5, 6] for instance). Therefore, finding fast

algorithms for segmenting and computing the AdjT of a

2D digital binary image is crucial for solving important

problems related to topological interrogations in the

current technological context. It is evident that the

compression of those nodes of a CCL tree (CCLT)

satisfying the neighboring condition “having the same

color", directly yields to the AdjT.

Connected component labeling (CCL) of binary

images is one of the fundamental operations in real time

applications, like fiducial recognition [6] or classifying

objects as connected components (CCs). The labeling

operation transforms a binary image into a symbolic

matrix in which every element (pixel) belonging to a

connected component is assigned to a unique label.

Currently, there are mainly four classes of CCL

algorithms: Multi-scan algorithms, Two-scan algorithms,

Tracing-type algorithms and Hybrid algorithms mixing

the previous ones. All of them (including the fastest one)

use raster or tracing-type approaches, scanning the

whole binary image or its contours in a sequential

manner. For instance, they can label the first pixel; and

then, the second one is labelled as a function of the first

pixel label. This local processing runs progressively

until the last pixel is reached. This fact necessarily

implies real data dependencies between the labeling of

one pixel and the previous one, which restricts from

using a pure parallel approach. In terms of time

complexity, this means that linear order O(N) (being N

the number of pixels) cannot decrease independently of

the number of available processing units.

Implementations for computing topological

magnitudes can be achieved using classical approaches.

These algorithms would contain two main stages: 1) the

scanning phase where provisional labels are sequentially

assigned to pixels depending on their neighbors, 2) and

some kind of union-find technique [33] to detect and

process label equivalence information of the previous

assignment. Still, there is some space for parallelism

when codifying scan or tracing-based CCL algorithms.

For example, dividing the image into strips is a

classical data partition technique for obtaining

parallelism. The second stage must then use a more

sophisticated union-find technique for the provisional

labels to get to the CCL. Using this classical divide-and-

conquer approach, many works have addressed different

implementations [8, 10, 15] including tuning parallel

algorithms for specific computers [1]. The issue is that

this division necessarily implies more data dependences

between the strips in which the original image was

divided (it makes harder the union-find stage). Thus, a

pure parallel approach is not allowed.

Other interesting topological representations of digital

images are appearing in the last years, thus leading to

successful applications, for instance, in the field of

image registration and matching. Most of them are

hierarchical representations, which can be categorized

into two classes: inclusion trees and partition trees.

Leaves in inclusion trees are often image extrema, and

inner nodes are formed by region growing from the

leaves until the root which covers the whole image. In

general, any cut of an inclusion tree does not form a

complete partition of the underlying image. Typical

examples are Max- and Min-tree and Tree of Shapes,

which combines both of them [27]. Partitioning trees, on

the other side, are initialized from an image partition.

Then they rely on iterative merges of small regions at

finer scale into larger regions at coarser levels. One of

the most commonly used are Binary Partition Trees

(BPT), α-trees and ω-trees [28]. More concretely, the α-

tree, was first introduced to avoid relying on an ordering

relation among image pixels (as in Max- and Min-

trees). It is based on representing quasi-constant color

regions of the original image.

Fig. 1. Left: possible black attractors (little triangles) and white
attractors (downwards arrows) for a face-like image. Holes of 4-

adjacent CCs are 8-adjacent CCs and vice versa for 2D binary digital

images. Right: AdjT (Adjacency tree) of the image. The main attractor
is the representative of the white component that surround the whole

image.

III. TOPOLOGICAL APPROACH

Topological analysis of digital images studies their

degree of connectivity, defining specific adjacency

relations between pixels as “local neighborhood

measures”. Thus, connectivity and adjacency are the key

concepts in topological methods. Correctness of a

framework prevents from paradoxes when an image

representation is pursued. In relation to topological

frameworks (Homological Spanning Forest, HSF in our

case), we take advantage of the powerful duality and

isotopic properties that the topological invariants of

connected components and holes have in the context of

2D binary digital images based on square pixels. In fact,

our method starts from an AdjT at pixel’s level and

computes an AdjT at CC’s level. Let us develop this

notion with a simple example.

When an object is discretized into a 2D image, it is

obvious that all pixels can be linked as a tree, simply by

connecting adjacent pixels using some trivial criterion

for all of them (Fig. 2, (1)). For instance, the edge goes

Jornadas SARTECO 2019, Septiembre, Cáceres 345

to the South, if not possible to the West (we call it a

South-West or simply SW-criterion). Note that this tree

can be built independently of pixel colors. To sum up,

we can state that the whole 2D image can be represented

by one root pixel, which we call “attractor” (because it

will attract the rest of pixels when building the tree in

our framework).

Let us introduce two objects in the image, having

different colors to distinguish them. According to the

previous consideration, each object must be represented

by only one tree, which means that one of the objects

must contain the attractor of the whole image, and the

other object can be represented by an attractor that falls

into the previous object (Fig. 2, (2)). Conditions for one

pixel to be considered being an attractor depends on

adjacency criteria. Most common criteria in labelling

algorithms are 8-adjacency for black pixels and 4-

adjacency for white ones. In this case, tree edges

connecting two pixels of different colors are candidates

to attractors (Fig. 3).

Still, guessing the correct directions so that each object

can be embodied by a tree cannot be achieved by local

criterions. Instead, we need a global knowledge of the

objects to find the correct direction for every pixel; this

is patent for a spiral-like object. For instance, if we used

a NE criterion for dark and SW for white pixels, cycles

can appear. This is the case of Fig. 2, (3), where a simple

black ‘L’ shape produces an undesirable situation: both

black and white objects have two attractors. Thus a cycle

comes out.

Thus, a meticulous strategy that allows a fast detection

of incorrect directions and their parallel corrections must

be found. For two dimensional digital images this can be

achieved in two stages: 1) using a NE (North-East)

criterion for dark pixels and a SW one for the white

pixels; 2) Once a cycle is detected, transport two edges

so that we get to the correct HSF (having one tree per

object) (Fig. 2, (4)). Dashed arrows are the new

transported edges.

To sum up, edges that connect different colors are

candidates (attractors) of frontiers between CCs. False

attractors (in case a cycle is detected) can be transported

to get to the correct HSF. In the end, any tree covering

the image plus the region frontier candidates is an

instance of a connectivity tree that holds the complete

information of the image. Further details about how to

implement a fully parallel implementation of this

process are detailed in next sections.

Fig. 2. (1) Any 2D image can be connected as a single tree. (2)
Guessing the correct directions so that each object is a tree (3) Using

NE criterion for dark and SW for white pixels can produce cycles. (4)

A transport pair to get the correct HSF (one tree per object).

Fig. 3. The two unique possible patterns for attractors. Left: white

attractor that is connected to an 8-adj black set of pixels. Right: black
attractor connected to a 4-adj white set of pixels. Grey star represents a

pixel of any color

IV. PARALLEL PROCESSING KEYS

For the sake of clarity, from now on, this paper

concentrates on the parallel procedure to label a B/W

image of mxn pixels (the problem known as CCL,

Connected Component Labelling). Current CCL

solutions are fully sequential on their first stage. That is,

the provisional label of a pixel is written as a function of

some set of the previous one (Fig. 4). In fact the strength

of fastest CCL algorithm (according to YACCLAB [22])

resides on the use of a big window of neighboring pixels

and a very ingenious way to reduce the hundreds of

combinations of this window into a few dozens of cases

(a Decision Tree or Table strategy) [24].

After the sequential stage, a ‘Union-Find’ phase

combines and relabel those labels that are detected to

belong to the same CC. This will be the case of labels 1

and 3 in Fig. 4; their label equivalence would be

discovered when approaching the most South-East black

corner.

1 1 2 2 2 2 3

1 1 1 2 2 2 3

4 4 1 ?

Fig. 4. A B/W image showing a sequential labelling (using a South-

East direction). When a new CC is found, it is assigned a new
incrementing label. Next pixel (e.g. that marked with ‘?’) must be

labelled as a function of the previously labelled pixels.

Our previous topological framework allows to build in a

fully parallel manner all the labelling. Instead of

assigning a non-meaningful label to each pixel, we can

set them with the jump distance to their attractor. Thus,

true attractors are to be set as 0, whereas false attractor

(after a transport) will be given a jump distance to the

corresponding attractor (see Fig. 5). There are two main

phases to proceed with the jump distance computation.

+1 0 -1 +4 +1 +6 -1 +4

-4 +1 0 0 -4 +1 -2 0
Fig. 5. Left: Jump distances of Fig. 2, (3). A linear address distance is

followed, being the jump of +/-4 a change of row (because image has 4
columns). Right: New jump distances assigned to false attractors after

the transport is done.

A. First stage: from local to global jump distance.

In the first stage, every pixel (in parallel) computes its

jump distance to its attractor. This can be done by using

exponentially growing jump distances in a logarithm

number of iterations. Fig. 6 shows an example for 9

adjacent pixels, which can be completed after three

iterations. Arrows expresses the memory accesses that

every pixel must do. For each reading, each pixel must

346 Jornadas SARTECO 2019, Septiembre, Cáceres

add its previous distance with the new read value. As far

as we know, the first work that proposed a similar

scheme was [25] with the purpose of producing highly

efficient Monte Carlo simulations for two and three-

dimensional critical Ising models.

Similar procedures can be extended for any dimension.

Further details for applying this phase to 2D binary

images can be found in our previous paper [26], which it

is shown that this phase can be executed in log2(m+n-1)

iterations at most, due to its exponential nature.

Supposing that we have p PEs, their complexity is

O((mn/p)log(m+n)), thus being this phase usually the

most time consuming.

Fig. 6. Three iterations of parallel jump distance computation for 9
adjacent pixels. Most left pixel is the attractor. Arrows expresses the

memory accesses that every pixel must do (only one pointed arrow is

depicted for the second iteration for clarity purposes).

B. Second stage: transports.

The second stage consists of the parallel transports of

pairs of false black and white attractors. This supposes a

transport of edges until a unique tree existed, and no

cycle remains. Any transport implies the updating of two

jump matrix elements (or equivalently, redirecting two

edges for each pair of false attractors). If black and

white pixels conformed tree structures and followed

different directions when doing previous jump distance

computation, all transports can be done in parallel if the

next concurrency condition is detected for each possible

transport. This perfect concurrency of executing many

transports is guaranteed since for each transport there

are two travels through trees up to their corresponding

roots (attractors). The condition that the beginning pixel

must be the same as the destination after the two tree

travels ensures the unicity of the pair to be cancelled

(Fig. 7). Hence transport phase has no need for any

critical section or atomic clause. This cannot be ensured

in classical Union-Find techniques.

Fig. 7. Condition for guarantying the perfect concurrency of executing
many transports in parallel. First, from the above black attractor a tree

ensures finding a unique white attractor, which additionally constitutes

a “barrier” of white pixels. Going back (step 2) from the black adjacent
pixel to the white attractor also ensures unicity. Finally, dashed arrows

represent the new jump distances to be computed after the transport is

done.

This stage must execute several pairs of cycle searching.

Although this phase seems to be tricky, if there were

more PE than attractors, its timing complexity is reduced

to a few iterations. In [26] it is found that the number of

iterations reached a maximum of six pairs even for the

most problematic images (big random images -16

Mpixels- having a 50% of black pixels). Conversely, it

was only one for the real images tested (having a size

until 2 Mpixels). The worst-case scenario of this phase

is left for future research.

At the end of these two stages, we get to a new

representation of the 2D image, in which any matrix

element contains a jump distance to its true attractor,

that is, to the root of the tree that represents the whole

CC (see Fig. 10). Obtaining the AdjT is quite

straightforward; simply by looking for each attractor the

jump distance of its adjacent opposite color pixel (which

goes to a new attractor).

Jump distance information is the basis for many other

topological representations; some of them are shortly

discussed in section VI.

V. EXPERIMENTAL RESULTS

Two complete implementations were done in

C++/OpenMP. The first was a direct translation of a

previous MATLAB/OCTAVE implementation presented

in [26]. The second is a more optimized version, whose

results have been submitted to the journal ‘Pattern

Recognition Letters’. The server where tests were

carried out was an Intel Xeon E5 2650 v2 with: 2.6

GHz, 8 cores, 8x32 KB data caches, Level 2 cache size

8x256 KB, Level 3 cache size 20 MB, maximum RAM

bandwidth: 59.7 GB/s. Experiments were run 25 times

and mean times were collected.

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Ti
m

es
 (s

)

Density

1 2 3 4 5 6 7 8

Fig. 8. Times for 1 to 8 threads as a function of density (random

images).

For the first implementation, when optimization is

poor, the scalability is very high. Thus, speedup (time

for various threads divided by time for 1 thread) is near

the number of threads (Table I), which points out that

achieved scalability is excellent for all image sizes and

densities. Fig. 8 depicts times for a set of 512x512 pixel

images with different densities, showing that processing

times are very near to that of current fastest algorithm

[22]. Taking into account the good scalability, we expect

that our implementation ran even faster in a massive

Jornadas SARTECO 2019, Septiembre, Cáceres 347

multicore processor. Although scalability is a little

inferior for real images (Fig. 9) than for random images,

times are much smaller. In fact, the processing time for

the only random image (“633.png”, 4196 Kpixel) in this

figure is even bigger than that of a real image with a

double size. This is due to the higher amount of CC that

random images usually have (in relation to the real

ones).

0

0,2

0,4

0,6

0,8

1

1,2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Ti
m

es
 (

s)

Image size (Kpixel)

1 2 4 8

Fig. 9. Times for 1, 2, 4, 8 threads for real images.

TABLE I

SPEEDUP FOR RANDOM IMAGES OF DIFFERENT SIZES (DENSITY = 0.9).

#threads 256x256 512x512 1024x1024 2048x2048

2 1,88 1,92 1,94 1,95

3 2,65 2,73 2,89 2,82

4 3,39 3,48 3,79 3,61

5 3,92 4,13 4,57 4,33

6 4,45 4,95 5,30 4,98

7 5,56 5,59 5,94 5,55

8 5,93 6,58 6,48 6,19

TABLE II

MEAN TIMES FOR RANDOM IMAGES OF DIFFERENT SIZES AND

DENSITIES. BBDT IS FROM [22][23] AND HSF IS OUR METHOD

(#THREADS IN BRACKETS).

Size BBDT HSF (1) HSF (2) HSF (3) HSF (4)

1024 0,009 0,023 0,100 0,095 0,127

4096 0,029 0,064 0,144 0,130 0,158

16384 0,102 0,221 0,296 0,243 0,268

65536 0,374 0,839 0,896 0,624 0,666

262144 1,444 3,305 3,040 2,229 2,129

1048576 5,706 13,239 10,888 7,660 7,229

4194304 23,662 65,644 42,131 32,372 28,553

16777216 117,962 338,320 210,366 154,011 129,632

Size BBDT HSF (5) HSF (6) HSF (7) HSF (8)

1024 0,009 0,128 0,106 0,110 0,114

4096 0,029 0,149 0,129 0,135 0,127

16384 0,102 0,235 0,199 0,203 0,189

65536 0,374 0,546 0,452 0,410 0,397

262144 1,444 1,885 1,391 1,252 1,180

1048576 5,706 6,384 4,811 4,305 3,836

4194304 23,662 25,878 20,275 18,742 18,170

16777216 117,962 110,767 90,458 80,713 78,685

Besides, Table II shows the results from the second

(optimized) version of our method compared with the

BBDT method, which is the currently fastest CCL

algorithm according to [22]. The optimization of our

code introduces more than 7x speedup with respect to

the timing of Fig. 8, but decreases the multithread speed-

up to only 4x for 8 threads. Of course, for little images

the extra overhead time (introduced by OpenMP when

creating the threads) hinders speedup. This supposes that

speedups are also decreased for medium images.

For this second optimized implementation, we can beat

the fastest sequential CCL algorithm when executing on

a convenient number of cores (in general, 5 or 6 threads

in our experiments with medium/big random images, see

Table II). However, scalability begins to be less high

because data accesses come to be a bottleneck.

Finally, an additional advantage of our approach is that

it presents lower deviation for a same size and different

densities than the BBDT method. This is manifest when

processing images of very different textures.

VI. FUTURE WORK: OTHER TOPOLOGICAL

REPRESENTATIONS

Jump distances define another image representation

that allows to obtain topological measures

straightforwardly (Fig. 10).

 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
 ○ ● ● ● ● ● ● ● ● ○
 ○ ● ● ○ ○ ○ ● ○ ● ○
 ○ ● ● ○ ● ○ ● ○ ● ○
 ○ ● ● ○ ● ○ ● ● ● ○
 ○ ● ● ○ ○ ○ ● ● ● ○
 ○ ● ● ○ ○ ● ● ○ ● ○
 ○ ● ● ● ● ● ○ ○ ● ○
 ○ ● ● ● ● ● ● ● ● ○
 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

0 -1 -2 -3 -4 -5 -6 -7 -8 -9

-10 77 76 75 74 73 72 71 70 -19

-20 67 66 0 -1 -2 62 0 60 -29

-30 57 56 -10 10 -12 52 -10 50 -39

-40 47 46 -20 0 -22 42 41 40 -49

-50 37 36 -30 -31 -32 32 31 30 -59

-60 27 26 -40 -41 1 22 9 20 -69

-70 17 16 15 14 13 0 -1 10 -79

-80 7 6 5 4 3 2 1 0 -89

-90 -91 -92 -93 -94 -95 -96 -97 -98 -99

Fig. 10. Up Left: A 10x10 B/W image Attractors are marked with

upwards (for the white) downwards (for the black) arrows. Up Right:
Its AdjT. Bottom: The Jump distance matrix. Black pixels follow a SE

criterion (positive values in general) and white ones a NW (negatives

values in general). Attractors are assigned a value 0 (highlighted with
shadow).

Going further, digital images of any dimension and

with multiple object inside (that is, color images)

requires more powerful topological description. In this

case, we can benefit from other duality topological

properties, like object/border. This concept needs to

declare a convenient abstract cell complexes (ACC,

[11]) for dealing with color images. Exploration of this

approach demonstrates that two dimensional color

images can be treated with 4 cells per elemental PE [4],

using cells of dimensions 0, 1 and 2. An example of a

color image and an elemental PE is found in Fig. 11.

Each PE covers a pixel in a digital image and can hold

the information related to flat color zones and their

borders (called cracks in [4]), that is, a region-contour

0

0,2

0,4

0,6

0,8

1

1,2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Ti
m

es
 (s

)

Image size (Kpixel)

1 2 4 8random image

“633.png”

348 Jornadas SARTECO 2019, Septiembre, Cáceres

HSF [31]. That is, a complete image can be composed as

many trees as correlative dimensions (0-1 tree and 1-2

tree for the case of Fig. 11). Region-contour information

can be seen in Fig. 11 (Right) as a set of 0, 1, 2 cells for

flat zones (regions) and a selected set of 1, 2 cells

drawing the region interfaces (contours as black

segments).

For doing so, we must proceed in a similar manner to

that explained previous sections, that is, cells (having

their topological coordinates) of different dimensions

must be joined together with a bounding function, and a

combinatorial optimization process must compress the

whole image into just one pixel. The relationship “to be

in the boundary of” for the different regions must be

efficiently computed and stored to preserve the

topological information of the image. Each of these

relations can be seen as a division of one tree into

several sub-trees (Fig. 11, Right).

Besides, using this previous topological information, a

potential idea consists of introducing color order

relations among sub-trees to extract more sophisticated

features. In this sense, during the last decade, features

based of pure topological relations (Max- and Min-tree,

Tree of Shapes, Binary Partition Trees, α-trees and ω-

trees, etc.). Recently the so-called Tree-Based Morse

Regions (TBMR, [32]) determines local invariant

“interest” points, with the same complexity as classical

MSER (Maximally Stable Extremal Regions), and a

repeatability on par with state-of-the-art methods. In

addition, it obtains a significantly higher number of

features, being both accurate and robust enough to be

applied to image registration and 3D reconstruction.

Fig. 11. Left: a fragment (9 pixels) of a color image. Numbers

represent color values of the original image pixels. For the ACC
representation, numbers are 0-cells, crosses are 1-cells and solid

squares are 2-cells. At the most bottom left corner, the dotted square is

an elemental PE composed of 4 cells. Right: a possible contour tree
(divided into subtrees) containing the border information of the image

represented by 1 and 2 cells.

For two dimensional objects, only two homology

groups must be considered: those representing

connected components and holes. However, this

topological framework can be extended to high

dimensional images by defining the proper elemental PE

that allows a complete topological representation and,

afterwards, by building the different k-(k+1) trees (being

k a dimension) in the most effective way [30]. Then,

objects immersed on the nD-image would be represented

by homology groups of dimensions 0, 1, …, n-1.

CONCLUSIONS

Most of the image processing algorithms part from

tracing-type or scan/raster methods. This fact necessarily

introduces data dependences between the processing of

one pixel and the previous one, which prevents pure

parallel implementations. We describe a very different

approach based on a pure topological framework, which

allows to implement fully parallel algorithms. This

yields to an image representation that avoids complex

data structures. In fact, all the processing can be done

using matrixes (with the same indexation as the original

image) and element-wise operations. Theoretical time

complexity orders of our topological approach for an

image of m×n pixels is near O(log(m+n)). Being a

consistent topological framework, this method can be

extended to color n-dimensional images.

ACKNOWLEDGEMENT

This work has been supported by the Spanish research

projects MTM2016-81030-P (AEI/FEDER,UE)) and

TEC2012-37868-C04-02 of Ministerio de Economía y

Competitividad and the VPPI of the University of

Seville.

REFERENCES

[1] P. Bhattacharya. Connected component labeling for binary
images on a reconfigurable mesh architecture. Journal of Systems

Architecture, 42(4):309-313, 1996.

[2] O.P. Buneman. A Grammar for the Topological Analysis of
Plane Figures. Edinburgh Univ. Press, pp. 383-393, 1969.

[3] F. Chiavetta, V. Di Ges. Parallel computation of the Euler

number via connectivity graph. Pattern Recognition Letters 14, 849-
859, 1993.

[4] F. Diaz-del-Rio, P. Real, D., Onchis: A parallel Homological

Spanning Forest framework for 2D topological image analysis. Pattern
Recognition Letters 83, 49-58, 2016.

[5] A. Cohn, B. Bennett, J. Gooday, N. Gotts: Qualitative spacial

representation and reasoning with the region connection calculus.
GeoInformatica 1(3), 275-316, 1997.

[6] E. Costanza, J. Robinson. A region adjacency tree approach to
the detection and design of fiducials. Video, Vision and Graphics, pp.

63-99, 2003.

[7] R. Cucchiara, C. Grana, A. Prati, S. Seidenari, G. Pellacani.
Building the topological tree by recursive FCM color clustering. 16th

IEEE ICPR, 1, pp. 759-762, 2002.

[8] S. Gupta, D. Palsetia, M.M.A.Patwary, A. Agrawal, A.N.
Choudhary. A new parallel algorithm for two-pass connected

component labeling, in: IEEE IPDP Symposium, pp. 1355-1362, 2014.

[9] H. J. Heijmans. Connected morphological operators for binary
images, Comput. Vis. Imag. Understand., 73 (1), pp. 99-120, 1999.

[10] O. Kalentev, A. Rai, S. Kemnitz, R. Schneider. Connected

component labeling on a 2d grid using CUDA. J. Parallel Distrib.
Comput. 71, 615-620, 2011.

[11] V. Kovalevsky.: Algorithms in Digital Geometry Based on

Cellular Topology. 10th IWCIA, Springer Berlin Heidelberg, vol.
3322, pp. 366-393, 2004.

[12] R. Keshet.: Shape-tree semilattice. J. Math. Imag. Vis., 22 (2-3),

pp. 309-331, 2005.
[13] A., Murty, V., Natarajan, S., Vadhiyar.: Efficient homology

computations on multicore and manycore systems, in: 20th Annual

International Conference on High Performance Computing, pp. 333-
342, 2013.

[14] NVIDIA, Cuda C best practices guide version. http://developer.

nvidia.com/. Oxley, J.G., Matroid theory. volume 3. Oxford University
Press, 2017.

[15] M. Patwary, M. Ali, P. Refsnes, and F. Manne. Multi-core

spanning forest algorithms using the disjoint-set data structure. In 26th
IEEE IPDP Symposium, pp. 827-835, 2012.

[16] REDHOM, Redhom. http://redhom.ii.uj.edu.pl/, Institute of

Computer Science, Jagiellonian University, 2017.
[17] V. Ranwez, P. Soille, Order independent homotopic thinning

for binary and grey tone anchored skeletons, Pattern Recognition

Letters 23 (6), 687-702, 2002.
[18] A. Rosenfeld. Adjacency in digital pictures. Inf. Control 26, 24-

33, 1974.

[19] J. Serra. Image Analysis and Mathematical Morphology.
Academic Press, 1982.

Jornadas SARTECO 2019, Septiembre, Cáceres 349

[20] J. Stell and M. Worboys.: Relations between adjacency trees.

Theo. Comp. Sci., 412 (34), pp. 4452-4468, 2011.

[21] S. Williams, A. Waterman, D.A. Patterson. Roofline: an

insightful visual performance model for multicore architectures.

Commun. ACM 52, pp. 65-76, 2009.

[22] YACCLAB - Yet Another Connected Components Labeling
Benchmark. https://github.com/prittt/YACCLAB, 2017.

[23] Grana, C., Bolelli, F., Baraldi, L., Vezzani, R., 2016.

YACCLAB - Yet Another Connected Components Labeling
Benchmark, in: 23rd International Conference on Pattern Recognition,

ICPR.

[24] Grana, C., Borghesani, D., Cucchiara, R., 2010. Optimized
block-based connected components labeling with decision trees. IEEE

Transactions on Image Processing 19, 1596–1609
[25] Swendsen, R.H., Wang, J., 1987. Non-universal critical

dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58, 86–88.

[26] Díaz-del-Río, F., H., Molina-Abril, P. Real, 2019. Computing
the component-labeling and the adjacency tree of a binary digital

image in near logarithmic-time. Computational Topology in Image

Context, Lecture Notes in Computer Science, Springer 11382, 82–95.
[27] Soille, P. , Constrained Connectivity for Hierarchical Image

Partitioning and Simplification, IEEE Transactions on Pattern Analysis

and Machine Intelligence, V 30, N. 7, pp 1132–1145, 2008.
[28] Petra Bosilj, Ewa Kijak, Sébastien Lefèvre. Partition and

Inclusion Hierarchies of Images: A Comprehensive Survey. Journal of

Imaging, MDPI, 2018, 4 (2), pp.1-31.
[29] R. Klette , Cell complexes through time, in: Proceedings of SPIE

4117, vol. 4117, 20, pp. 134–145 .

[30] Real, P., Diaz-del-Rio, F., Onchis, D.: Toward Parallel
Computation of Dense Homotopy Skeletons for nD Digital Objects. In

International Workshop on Combinatorial Image Analysis, pp. 142-

155. Springer, 2017.
[31] Real, P., Diaz-del-Rio F., Onchis, M. Labeling color 2D digital

images in theoretical near logarithmic time. 17th international

Conference on Computer Analysis of Images and Patterns. Istad,
Suecia. 2017

[32] Y. Xu, P. Monasse, T. Géraud, L.Najman. Tree-Based Morse

Regions: A Topological Approach to Local Feature Detection October
2014IEEE Transactions on Image Processing 23(12).

[33] Lifeng He, Xiwei Ren, Qihang Gao, Xiao Zhao, Bin Yao, Yuyan

Chao. The connected-component labeling problem: A review of state-
of-the-art algorithms. Pattern Recognition 70 (2017) 25–43

350 Jornadas SARTECO 2019, Septiembre, Cáceres

	Todo0-Numerado
	1Portada
	3PrólogoComitésPatrocinadores
	Comités Organizadores
	Comité de Dirección de las Jornadas SARTECO
	Organizadores Jornadas SARTECO2019 y Comité JP2019
	Comité de Coordinación JCER2019
	Comité de Programa JCER2019
	Comité T3M2019
	Patrocinadores

	4Indice

	Todo1-12-Numerado
	Todo1
	0Separador
	1PonenciaMariaJose
	2PonenciaMikel
	3PonenciaFrancisco

	Todo2
	0Separador
	JS_2019_paper_1
	JS_2019_paper_11
	JS_2019_paper_30
	JS_2019_paper_33
	JS_2019_paper_40
	JS_2019_paper_49
	Introducción
	B&B espacial (BBE) versus algoritmos basados en caras.
	Test de copositividad basado en caras
	Recorrido del grafo de caras, disminuyendo k
	Recorrido del grafo de mayor a menor nivel
	Recorrido del grafo de menor a mayor nivel

	Evaluaciones numéricas
	Conclusiones

	JS_2019_paper_52
	Introducción
	DEpLSA para desmezclado hiperespectral
	Implementación paralela de DePLSA utilizando Nvidia CUDA
	Optimización de la gestión y accesos a memoria
	Implementación paralela del paso de Expectación
	Implementación paralela del paso de Maximización

	Experimentación
	Entorno de pruebas
	Imágenes hiperespectrales
	Experimentación y resultados

	Conclusiones y trabajo futuro

	JS_2019_paper_57
	JS_2019_paper_67
	Introducción
	Algoritmo de adyacencia
	Balanceo estático de la carga de trabajo
	Distribución por bloques
	Distribución cíclica

	Carga de trabajo dinámica temporizada
	Sistema de balanceo de carga
	Esquema de comunicaciones
	Caso de uso

	Análisis de rendimiento
	Conclusiones

	JS_2019_paper_76
	JS_2019_paper_80
	Introduction
	Interval Analysis
	Set Inversion

	Related Work
	Sequential SIVIA Algorithm
	Set of test problems
	Proposed Parallel Version
	Experiments
	Conclusions

	JS_2019_paper_86

	Todo3
	0Separador
	JS_2019_paper_6
	JS_2019_paper_19
	JS_2019_paper_23
	JS_2019_paper_31
	JS_2019_paper_34
	JS_2019_paper_58
	JS_2019_paper_60
	JS_2019_paper_64
	Introducción
	Efectos de modulación del retardo
	Efecto chorus
	Efecto flanger
	Efecto phaser

	Arquitectura del dispositivo
	Unidad aritmético-lógica

	Implementación y resultados
	Conclusiones y trabajo futuro

	Todo4
	0Separador
	JS_2019_paper_10
	Introducción
	Antecedentes
	Matrix Profile y SCRIMP
	Intel Xeon Phi KNL

	Optimización de SCRIMP en KNL
	Actualización de P y I
	Aumento de la Intensidad Aritmética
	Política de Ubicación en Memoria

	Evaluación Experimental
	Entorno Experimental
	Resultados de Aceleración
	Resultados de Ancho de Banda de Memoria
	Sensibilidad a la Longitud de la Serie Temporal y el Tamaño de la Ventana

	Conclusiones

	JS_2019_paper_15
	Introducción
	Trasfondo y trabajo relacionado
	Análisis del clustering óptimo
	Diseño
	Funcionamiento del algoritmo
	Clasificación de aplicaciones

	Experimentos
	Evaluación de los algoritmos de clustering
	Estudio de las estrategias dinámicas

	Conclusiones

	JS_2019_paper_32
	JS_2019_paper_87

	Todo5
	0Separador
	JS_2019_paper_5
	JS_2019_paper_7
	JS_2019_paper_24
	JS_2019_paper_27
	JS_2019_paper_45
	JS_2019_paper_59
	JS_2019_paper_81
	Introducción
	Procesador ARM-Simple
	Herramienta de simulación: Digital
	Actividades
	Conclusiones

	Todo6
	0Separador
	JS_2019_paper_8
	JS_2019_paper_38
	JS_2019_paper_51
	JS_2019_paper_62

	Todo7
	0Separador
	JS_2019_paper_18
	JS_2019_paper_35
	Introduction
	Principles of Design
	EngineCL Implementation
	API Utilisation
	Methodology
	Validation
	Usability
	Performance

	Related Work
	Conclusions and Future Work

	JS_2019_paper_36
	JS_2019_paper_37
	Introducción
	Trabajo relacionado
	Librería Hitmap
	Conceptos clave
	Arquitectura

	Propuesta
	Modelo propuesto
	Integración con Hitmap

	Detalles de Implementación
	Layout plug_layDimBlocksWeighted
	Layout plug_layBlocksWeightedToSelectedDim

	Estudio Experimental
	Resultados

	Conclusiones y Trabajo Futuro

	JS_2019_paper_66
	JS_2019_paper_71
	JS_2019_paper_75
	JS_2019_paper_77
	JS_2019_paper_78
	JS_2019_paper_82
	JS_2019_paper_84

	Todo8
	0Separador
	JS_2019_paper_17
	JS_2019_paper_22
	JS_2019_paper_25
	JS_2019_paper_41
	JS_2019_paper_46
	JS_2019_paper_63
	JS_2019_paper_68
	JS_2019_paper_70
	JS_2019_paper_72
	JS_2019_paper_73
	JS_2019_paper_83
	JS_2019_paper_85

	Todo9
	0Separador
	JS_2019_paper_4
	JS_2019_paper_9
	JS_2019_paper_12
	JS_2019_paper_21
	JS_2019_paper_28
	JS_2019_paper_29
	JS_2019_paper_43
	JS_2019_paper_53
	JS_2019_paper_61
	JS_2019_paper_65
	JS_2019_paper_79
	Introducción
	Metodología
	Resultados Experimentales y Discusión
	Experimentos con datos simulados
	Experimentos con datos reales
	Tiempo de ejecución

	Conclusiones

	JS_2019_paper_88

	Todo10
	0Separador
	JS_2019_paper_2
	JS_2019_paper_13
	JS_2019_paper_14
	Introducción
	Estado del arte
	Compresión de los filtros
	Identificación de operaciones útiles
	Arquitectura densa
	Etapa 1: Carga de los índices
	Etapa 2: Carga de los valores
	Etapa 3: MAC
	Etapa 4: Escritura

	Arquitectura dispersa
	Etapa 1: Carga de los índices
	Etapa 2: Emparejamiento
	Etapa 3: Carga de los valores
	Etapa 4: MAC
	Etapa 5: Escritura

	Resultados experimentales
	Conclusión
	Referencias

	JS_2019_paper_20
	JS_2019_paper_39
	JS_2019_paper_44
	JS_2019_paper_47
	JS_2019_paper_50

	Todo11
	0Separador
	JS_2019_paper_16
	I. Introducción
	II. Códigos de Corrección de Errores Matriciales
	A. Introducción a los códigos matriciales
	B. Código FUEC-M

	III. Código de Corrección de Errores FUEC-ME
	IV. Evaluación de los ECCs
	A. Modelos de Error
	B. Evaluación de la cobertura de errores
	C. Resultados de la síntesis de los ECCs

	V. Conclusiones
	Agradecimientos
	Referencias

	JS_2019_paper_42
	JS_2019_paper_54
	JS_2019_paper_55
	JS_2019_paper_56

	Todo12
	0Separador
	JS_2019_paper_3
	JS_2019_paper_26
	JS_2019_paper_48
	JS_2019_paper_74

	Página en blanco

