
 

Abstract— Image processing is a fundamental operation 

in many real time applications, where lots of parallelism 

can be extracted. Segmenting the image into different 

connected components is the most known operations, but 

there are many others like extracting the region adjacency 

graph (RAG) of these regions, or searching for features 

points, being invariant to rotations, scales, brilliant 

changes, etc. Most of these algorithms part from the basis 

of Tracing-type approaches or scan/raster methods. This 

fact necessarily implies a data dependence between the 

processing of one pixel and the previous one, which 

prevents using a pure parallel approach. In terms of time 

complexity, this means that linear order O(N) (N being the 

number of pixels) cannot be cut down. In this paper, we 

describe a novel approach based on the building of a pure 

Topological framework, which allows to implement fully 

parallel algorithms. Concerning topological analysis, a first 

stage is computed in parallel for every pixel, thus 

conveying the local neighboring conditions. Then, they are 

extended in a second parallel stage to the necessary global 

relations (e.g. to join all the pixels of a connected 

component). This combinatorial optimization process can 

be seen as the compression of the whole image to just one 

pixel. Using this final representation, every region can be 

related with the rest, which yields to pure topological 

construction of other image operations. Besides, complex 

data structures can be avoided: all the processing can be 

done using matrixes (with the same indexation as the 

original image) and element-wise operations. The time 

complexity order of our topological approach for a m×n 

pixel image is near O(log(m+n)), under the assumption that 

a processing element exists for each pixel. Results for a 

multicore processor show very good scalability until the 

memory bandwidth bottleneck is reached, both for bigger 

images and for much optimized implementations. The 

inherent parallelism of our approach points to the 

direction that even better results will be obtained in other 

less classical computing architectures.1 
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I. INTRODUCTION 

he starting point in our work is that topology is the 

ideal scenario for promoting parallelism, although 

it drives to less classical approaches. The nature of 

the topological properties goes necessarily from local-

to-global relations. The power of our method resides in 

that topological magnitudes are, by definition, robust 

under deformations, translations and rotations. 

Up to now, the only topological invariant that has been 

calculated using a fully parallel computation is the Euler 
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number [3]. Other authors have recently proposed other 

parallel algorithms that compute some aspects of the 

homological properties of binary images [13]. In [4], a 

digital framework for parallel topological computation 

of 2D binary digital images based on a sub-pixel 

scenario was developed, modeling the image as a special 

abstract cell complex [11], in order to facilitate the 

generalization of this work to images of higher 

dimensions. Still, topological approaches in that sense 

are rare in the literature. 

Within a purely discrete level, combinatorial versions of 

CW-complexes, called abstract cell complexes (ACC, 

for short [11]), can be used for a correct algorithmic 

development. They are formed of basic elements 

(representing the cells using topological coordinates) of 

different dimensions together with a bounding function 

describing the combinatorial relationship “to be in the 

boundary of”. Different definitions of ACCs can be 

found in the literature (see [29] for a thorough survey). 

To sum up, we construct our scaffolding on the basis of 

the two following basic topological properties: “being 

adjacent to” and “being surrounded by”. Moreover, we 

take advantage of the powerful duality properties that 

the topological invariants of connected components and 

holes have in the context of 2D binary digital images 

based on square pixel. In other words, we exploit the 

duality that the holes of 4-adjacent CCs (connected 

components) must be 8-adjacent CCs and vice versa (see 

Fig. 1). Finally, our algorithms use only trees as their 

basis. Each CC is then described by only one tree, which 

is connected to another CC tree by only one edge. Our 

framework allows us to extend the parallelism to every 

single pixel, in such a way that all of them do the same 

operations without any real dependence among them. 

When writing the code, we must carefully estimate the 

number of operations, the memory consumption, and, 

the most important aspect, the ratio of memory accesses 

per pixel, if a fast execution is required. In fact, this last 

parameter is in many occasions a measure of the final 

algorithm performance [23]. 

In this paper we summarize how a pure topological 

framework can extend because the degree of parallelism 

to every single pixel. These novel image processing 

methods can sensibly decrease computation times if 

enough PEs (Processing Elements) were available. 

II. RELATED WORKS 

In relation to the representation of digital objects or, 

alternatively, binary digital images, various topological 

models have been exhaustively used. Adjacency trees 

(also called topological, inclusion or homotopy trees [2, 

16, 17], and here AdjT, for short) offer a classical 

region-based representation in terms of rooted tree of 

T 

Parallel Image Processing Using a Pure 

Topological Framework 

Fernando Diaz-del-Rio1, Helena Molina-Abril2, Pedro Real2, Pablo Sánchez-Cuevas1, Antonio Ríos-

Navarro1  

344 Jornadas SARTECO 2019, Septiembre, Cáceres

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/322844336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


certain topological and spatial properties of the 

connected components in a binary image. Within an 

AdjT, each node represents a distinct foreground (FG) or 

background (BG) component, and an edge between two 

nodes means that one of them is surrounded by the other. 

The root in an AdjT always represents the unique BG 

component “surrounding" the image (if it does not exist, 

it can be artificially created) and two 2D binary digital 

images are topologically equivalent if and only if their 

AdjTs are equivalent. An example of an AdjT of the 

binary image in Fig. 1 (Left) is shown in Fig. 1 (Right). 

Aside from image understanding [18] and 

mathematical morphology applications [7, 10, 15], 

AdjTs have encountered exploitation niches in 

geoinformatics, dermatoscopics image, biometrics, etc. 

(see [3, 5, 6] for instance). Therefore, finding fast 

algorithms for segmenting and computing the AdjT of a 

2D digital binary image is crucial for solving important 

problems related to topological interrogations in the 

current technological context. It is evident that the 

compression of those nodes of a CCL tree (CCLT) 

satisfying the neighboring condition “having the same 

color", directly yields to the AdjT.  

Connected component labeling (CCL) of binary 

images is one of the fundamental operations in real time 

applications, like fiducial recognition [6] or classifying 

objects as connected components (CCs). The labeling 

operation transforms a binary image into a symbolic 

matrix in which every element (pixel) belonging to a 

connected component is assigned to a unique label. 

Currently, there are mainly four classes of CCL 

algorithms: Multi-scan algorithms, Two-scan algorithms, 

Tracing-type algorithms and Hybrid algorithms mixing 

the previous ones. All of them (including the fastest one) 

use raster or tracing-type approaches, scanning the 

whole binary image or its contours in a sequential 

manner. For instance, they can label the first pixel; and 

then, the second one is labelled as a function of the first 

pixel label. This local processing runs progressively 

until the last pixel is reached. This fact necessarily 

implies real data dependencies between the labeling of 

one pixel and the previous one, which restricts from 

using a pure parallel approach. In terms of time 

complexity, this means that linear order O(N) (being N 

the number of pixels) cannot decrease independently of 

the number of available processing units. 

Implementations for computing topological 

magnitudes can be achieved using classical approaches. 

These algorithms would contain two main stages: 1) the 

scanning phase where provisional labels are sequentially 

assigned to pixels depending on their neighbors, 2) and 

some kind of union-find technique [33] to detect and 

process label equivalence information of the previous 

assignment. Still, there is some space for parallelism 

when codifying scan or tracing-based CCL algorithms.  

For example, dividing the image into strips is a 

classical data partition technique for obtaining 

parallelism. The second stage must then use a more 

sophisticated union-find technique for the provisional 

labels to get to the CCL. Using this classical divide-and-

conquer approach, many works have addressed different 

implementations [8, 10, 15] including tuning parallel 

algorithms for specific computers [1]. The issue is that 

this division necessarily implies more data dependences 

between the strips in which the original image was 

divided (it makes harder the union-find stage). Thus, a 

pure parallel approach is not allowed. 

Other interesting topological representations of digital 

images are appearing in the last years, thus leading to 

successful applications, for instance, in the field of 

image registration and matching. Most of them are 

hierarchical representations, which can be categorized 

into two classes: inclusion trees and partition trees. 

Leaves in inclusion trees are often image extrema, and 

inner nodes are formed by region growing from the 

leaves until the root which covers the whole image. In 

general, any cut of an inclusion tree does not form a 

complete partition of the underlying image. Typical 

examples are Max- and Min-tree and Tree of Shapes, 

which combines both of them [27]. Partitioning trees, on 

the other side, are initialized from an image partition. 

Then they rely on iterative merges of small regions at 

finer scale into larger regions at coarser levels. One of 

the most commonly used are Binary Partition Trees 

(BPT), α-trees and ω-trees [28]. More concretely, the α-

tree, was first introduced to avoid relying on an ordering 

relation among image pixels (as in Max- and Min- 

trees). It is based on representing quasi-constant color 

regions of the original image. 

 

   

 

 
 

 
 
Fig. 1. Left: possible black attractors (little triangles) and white 
attractors (downwards arrows) for a face-like image. Holes of 4-

adjacent CCs are 8-adjacent CCs and vice versa for 2D binary digital 

images. Right: AdjT (Adjacency tree) of the image. The main attractor 
is the representative of the white component that surround the whole 

image.  

III. TOPOLOGICAL APPROACH  

Topological analysis of digital images studies their 

degree of connectivity, defining specific adjacency 

relations between pixels as “local neighborhood 

measures”. Thus, connectivity and adjacency are the key 

concepts in topological methods. Correctness of a 

framework prevents from paradoxes when an image 

representation is pursued. In relation to topological 

frameworks (Homological Spanning Forest, HSF in our 

case), we take advantage of the powerful duality and 

isotopic properties that the topological invariants of 

connected components and holes have in the context of 

2D binary digital images based on square pixels. In fact, 

our method starts from an AdjT at pixel’s level and 

computes an AdjT at CC’s level. Let us develop this 

notion with a simple example.  

When an object is discretized into a 2D image, it is 

obvious that all pixels can be linked as a tree, simply by 

connecting adjacent pixels using some trivial criterion 

for all of them (Fig. 2, (1)). For instance, the edge goes 
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to the South, if not possible to the West (we call it a 

South-West or simply SW-criterion). Note that this tree 

can be built independently of pixel colors. To sum up, 

we can state that the whole 2D image can be represented 

by one root pixel, which we call “attractor” (because it 

will attract the rest of pixels when building the tree in 

our framework).  

Let us introduce two objects in the image, having 

different colors to distinguish them. According to the 

previous consideration, each object must be represented 

by only one tree, which means that one of the objects 

must contain the attractor of the whole image, and the 

other object can be represented by an attractor that falls 

into the previous object (Fig. 2, (2)). Conditions for one 

pixel to be considered being an attractor depends on 

adjacency criteria. Most common criteria in labelling 

algorithms are 8-adjacency for black pixels and 4-

adjacency for white ones. In this case, tree edges 

connecting two pixels of different colors are candidates 

to attractors (Fig. 3). 

Still, guessing the correct directions so that each object 

can be embodied by a tree cannot be achieved by local 

criterions. Instead, we need a global knowledge of the 

objects to find the correct direction for every pixel; this 

is patent for a spiral-like object. For instance, if we used 

a NE criterion for dark and SW for white pixels, cycles 

can appear. This is the case of Fig. 2, (3), where a simple 

black ‘L’ shape produces an undesirable situation: both 

black and white objects have two attractors. Thus a cycle 

comes out. 

Thus, a meticulous strategy that allows a fast detection 

of incorrect directions and their parallel corrections must 

be found. For two dimensional digital images this can be 

achieved in two stages: 1) using a NE (North-East) 

criterion for dark pixels and a SW one for the white 

pixels; 2) Once a cycle is detected, transport two edges 

so that we get to the correct HSF (having one tree per 

object) (Fig. 2, (4)). Dashed arrows are the new 

transported edges. 

To sum up, edges that connect different colors are 

candidates (attractors) of frontiers between CCs. False 

attractors (in case a cycle is detected) can be transported 

to get to the correct HSF. In the end, any tree covering 

the image plus the region frontier candidates is an 

instance of a connectivity tree that holds the complete 

information of the image. Further details about how to 

implement a fully parallel implementation of this 

process are detailed in next sections.  

 

 
Fig. 2. (1) Any 2D image can be connected as a single tree. (2) 
Guessing the correct directions so that each object is a tree (3) Using 

NE criterion for dark and SW for white pixels can produce cycles. (4) 

A transport pair to get the correct HSF (one tree per object). 

 

 
Fig. 3. The two unique possible patterns for attractors. Left: white 

attractor that is connected to an 8-adj black set of pixels. Right: black 
attractor connected to a 4-adj white set of pixels. Grey star represents a 

pixel of any color 

IV. PARALLEL PROCESSING KEYS 

For the sake of clarity, from now on, this paper 

concentrates on the parallel procedure to label a B/W 

image of mxn pixels (the problem known as CCL, 

Connected Component Labelling). Current CCL 

solutions are fully sequential on their first stage. That is, 

the provisional label of a pixel is written as a function of 

some set of the previous one (Fig. 4). In fact the strength 

of fastest CCL algorithm (according to YACCLAB [22]) 

resides on the use of a big window of neighboring pixels 

and a very ingenious way to reduce the hundreds of 

combinations of this window into a few dozens of cases 

(a Decision Tree or Table strategy) [24].  

After the sequential stage, a ‘Union-Find’ phase 

combines and relabel those labels that are detected to 

belong to the same CC. This will be the case of labels 1 

and 3 in Fig. 4; their label equivalence would be 

discovered when approaching the most South-East black 

corner.   

 

1 1 2 2 2 2 3 

1 1 1 2 2 2 3 

4 4 1 ?    

       

       
Fig. 4. A B/W image showing a sequential labelling (using a South-

East direction). When a new CC is found, it is assigned a new 
incrementing label. Next pixel (e.g. that marked with ‘?’) must be 

labelled as a function of the previously labelled pixels.  

 

Our previous topological framework allows to build in a 

fully parallel manner all the labelling. Instead of 

assigning a non-meaningful label to each pixel, we can 

set them with the jump distance to their attractor. Thus, 

true attractors are to be set as 0, whereas false attractor 

(after a transport) will be given a jump distance to the 

corresponding attractor (see Fig. 5). There are two main 

phases to proceed with the jump distance computation.  

 

+1 0 -1 +4     +1 +6 -1 +4 

-4 +1 0 0  -4 +1 -2 0 
Fig. 5. Left: Jump distances of Fig. 2, (3). A linear address distance is 

followed, being the jump of +/-4 a change of row (because image has 4 
columns). Right: New jump distances assigned to false attractors after 

the transport is done. 

A. First stage: from local to global jump distance. 

In the first stage, every pixel (in parallel) computes its 

jump distance to its attractor. This can be done by using 

exponentially growing jump distances in a logarithm 

number of iterations. Fig. 6 shows an example for 9 

adjacent pixels, which can be completed after three 

iterations. Arrows expresses the memory accesses that 

every pixel must do. For each reading, each pixel must 
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add its previous distance with the new read value. As far 

as we know, the first work that proposed a similar 

scheme was [25] with the purpose of producing highly 

efficient Monte Carlo simulations for two and three-

dimensional critical Ising models.  

Similar procedures can be extended for any dimension. 

Further details for applying this phase to 2D binary 

images can be found in our previous paper [26], which it 

is shown that this phase can be executed in log2(m+n-1) 

iterations at most, due to its exponential nature. 

Supposing that we have p PEs, their complexity is 

O((mn/p)log(m+n)), thus being this phase usually the 

most time consuming. 

 

 
Fig. 6. Three iterations of parallel jump distance computation for 9 
adjacent pixels. Most left pixel is the attractor. Arrows expresses the 

memory accesses that every pixel must do (only one pointed arrow is 

depicted for the second iteration for clarity purposes).  

 

B. Second stage: transports.  

The second stage consists of the parallel transports of 

pairs of false black and white attractors. This supposes a 

transport of edges until a unique tree existed, and no 

cycle remains. Any transport implies the updating of two 

jump matrix elements (or equivalently, redirecting two 

edges for each pair of false attractors). If black and 

white pixels conformed tree structures and followed 

different directions when doing previous jump distance 

computation, all transports can be done in parallel if the 

next concurrency condition is detected for each possible 

transport. This perfect concurrency of executing many 

transports is guaranteed since for each transport there 

are two travels through trees up to their corresponding 

roots (attractors). The condition that the beginning pixel 

must be the same as the destination after the two tree 

travels ensures the unicity of the pair to be cancelled 

(Fig. 7). Hence transport phase has no need for any 

critical section or atomic clause. This cannot be ensured 

in classical Union-Find techniques. 

 

 
Fig. 7. Condition for guarantying the perfect concurrency of executing 
many transports in parallel. First, from the above black attractor a tree 

ensures finding a unique white attractor, which additionally constitutes 

a “barrier” of white pixels. Going back (step 2) from the black adjacent 
pixel to the white attractor also ensures unicity. Finally, dashed arrows 

represent the new jump distances to be computed after the transport is 

done.  

 

This stage must execute several pairs of cycle searching. 

Although this phase seems to be tricky, if there were 

more PE than attractors, its timing complexity is reduced 

to a few iterations. In [26] it is found that the number of 

iterations reached a maximum of six pairs even for the 

most problematic images (big random images -16 

Mpixels- having a 50% of black pixels). Conversely, it 

was only one for the real images tested (having a size 

until 2 Mpixels). The worst-case scenario of this phase 

is left for future research. 

At the end of these two stages, we get to a new 

representation of the 2D image, in which any matrix 

element contains a jump distance to its true attractor, 

that is, to the root of the tree that represents the whole 

CC (see Fig. 10). Obtaining the AdjT is quite 

straightforward; simply by looking for each attractor the 

jump distance of its adjacent opposite color pixel (which 

goes to a new attractor).  

Jump distance information is the basis for many other 

topological representations; some of them are shortly 

discussed in section VI.  

V. EXPERIMENTAL RESULTS 

Two complete implementations were done in 

C++/OpenMP. The first was a direct translation of a 

previous MATLAB/OCTAVE implementation presented 

in [26]. The second is a more optimized version, whose 

results have been submitted to the journal ‘Pattern 

Recognition Letters’. The server where tests were 

carried out was an Intel Xeon E5 2650 v2 with: 2.6 

GHz, 8 cores, 8x32 KB data caches, Level 2 cache size 

8x256 KB, Level 3 cache size 20 MB, maximum RAM 

bandwidth: 59.7 GB/s. Experiments were run 25 times 

and mean times were collected.  
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Fig. 8. Times for 1 to 8 threads as a function of density (random 

images). 

 

For the first implementation, when optimization is 

poor, the scalability is very high. Thus, speedup (time 

for various threads divided by time for 1 thread) is near 

the number of threads (Table I), which points out that 

achieved scalability is excellent for all image sizes and 

densities. Fig. 8 depicts times for a set of 512x512 pixel 

images with different densities, showing that processing 

times are very near to that of current fastest algorithm 

[22]. Taking into account the good scalability, we expect 

that our implementation ran even faster in a massive 
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multicore processor. Although scalability is a little 

inferior for real images (Fig. 9) than for random images, 

times are much smaller. In fact, the processing time for 

the only random image (“633.png”, 4196 Kpixel) in this 

figure is even bigger than that of a real image with a 

double size. This is due to the higher amount of CC that 

random images usually have (in relation to the real 

ones). 

 

0

0,2

0,4

0,6

0,8

1

1,2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Ti
m

es
 (

s)

Image size (Kpixel)

1 2 4 8

 
Fig. 9. Times for 1, 2, 4, 8 threads for real images. 

 
TABLE I 

SPEEDUP FOR RANDOM IMAGES OF DIFFERENT SIZES (DENSITY = 0.9). 

#threads 256x256 512x512 1024x1024 2048x2048 

2 1,88 1,92 1,94 1,95 

3 2,65 2,73 2,89 2,82 

4 3,39 3,48 3,79 3,61 

5 3,92 4,13 4,57 4,33 

6 4,45 4,95 5,30 4,98 

7 5,56 5,59 5,94 5,55 

8 5,93 6,58 6,48 6,19 

 
TABLE II 

MEAN TIMES FOR RANDOM IMAGES OF DIFFERENT SIZES AND 

DENSITIES. BBDT IS FROM [22][23] AND HSF IS OUR METHOD 

(#THREADS IN BRACKETS). 

 
Size BBDT HSF (1) HSF (2) HSF (3) HSF (4) 

1024 0,009 0,023 0,100 0,095 0,127 

4096 0,029 0,064 0,144 0,130 0,158 

16384 0,102 0,221 0,296 0,243 0,268 

65536 0,374 0,839 0,896 0,624 0,666 

262144 1,444 3,305 3,040 2,229 2,129 

1048576 5,706 13,239 10,888 7,660 7,229 

4194304 23,662 65,644 42,131 32,372 28,553 

16777216 117,962 338,320 210,366 154,011 129,632 

 

Size BBDT HSF (5) HSF (6) HSF (7) HSF (8) 

1024 0,009 0,128 0,106 0,110 0,114 

4096 0,029 0,149 0,129 0,135 0,127 

16384 0,102 0,235 0,199 0,203 0,189 

65536 0,374 0,546 0,452 0,410 0,397 

262144 1,444 1,885 1,391 1,252 1,180 

1048576 5,706 6,384 4,811 4,305 3,836 

4194304 23,662 25,878 20,275 18,742 18,170 

16777216 117,962 110,767 90,458 80,713 78,685 

 

Besides, Table II shows the results from the second 

(optimized) version of our method compared with the 

BBDT method, which is the currently fastest CCL 

algorithm according to [22]. The optimization of our 

code introduces more than 7x speedup with respect to 

the timing of Fig. 8, but decreases the multithread speed-

up to only 4x for 8 threads. Of course, for little images 

the extra overhead time (introduced by OpenMP when 

creating the threads) hinders speedup. This supposes that 

speedups are also decreased for medium images.  

For this second optimized implementation, we can beat 

the fastest sequential CCL algorithm when executing on 

a convenient number of cores (in general, 5 or 6 threads 

in our experiments with medium/big random images, see 

Table II). However, scalability begins to be less high 

because data accesses come to be a bottleneck.  

Finally, an additional advantage of our approach is that 

it presents lower deviation for a same size and different 

densities than the BBDT method. This is manifest when 

processing images of very different textures.  

 

VI. FUTURE WORK:  OTHER TOPOLOGICAL 

REPRESENTATIONS 

Jump distances define another image representation 

that allows to obtain topological measures 

straightforwardly (Fig. 10).  
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0 -1 -2 -3 -4 -5 -6 -7 -8 -9 

-10 77 76 75 74 73 72 71 70 -19 

-20 67 66 0 -1 -2 62 0 60 -29 

-30 57 56 -10 10 -12 52 -10 50 -39 

-40 47 46 -20 0 -22 42 41 40 -49 

-50 37 36 -30 -31 -32 32 31 30 -59 

-60 27 26 -40 -41 1 22 9 20 -69 

-70 17 16 15 14 13 0 -1 10 -79 

-80 7 6 5 4 3 2 1 0 -89 

-90 -91 -92 -93 -94 -95 -96 -97 -98 -99 

 
Fig. 10. Up Left: A 10x10 B/W image Attractors are marked with 

upwards (for the white) downwards (for the black) arrows. Up Right: 
Its AdjT. Bottom: The Jump distance matrix. Black pixels follow a SE 

criterion (positive values in general) and white ones a NW (negatives 

values in general). Attractors are assigned a value 0 (highlighted with 
shadow). 

 

Going further, digital images of any dimension and 

with multiple object inside (that is, color images) 

requires more powerful topological description. In this 

case, we can benefit from other duality topological 

properties, like object/border. This concept needs to 

declare a convenient abstract cell complexes (ACC, 

[11]) for dealing with color images. Exploration of this 

approach demonstrates that two dimensional color 

images can be treated with 4 cells per elemental PE [4], 

using cells of dimensions 0, 1 and 2. An example of a 

color image and an elemental PE is found in Fig. 11. 

Each PE covers a pixel in a digital image and can hold 

the information related to flat color zones and their 

borders (called cracks in [4]), that is, a region-contour 
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HSF [31]. That is, a complete image can be composed as 

many trees as correlative dimensions (0-1 tree and 1-2 

tree for the case of Fig. 11). Region-contour information 

can be seen in Fig. 11 (Right) as a set of 0, 1, 2 cells for 

flat zones (regions) and a selected set of 1, 2 cells 

drawing the region interfaces (contours as black 

segments).  

For doing so, we must proceed in a similar manner to 

that explained previous sections, that is, cells (having 

their topological coordinates) of different dimensions 

must be joined together with a bounding function, and a 

combinatorial optimization process must compress the 

whole image into just one pixel. The relationship “to be 

in the boundary of” for the different regions must be 

efficiently computed and stored to preserve the 

topological information of the image. Each of these 

relations can be seen as a division of one tree into 

several sub-trees (Fig. 11, Right).  

Besides, using this previous topological information, a 

potential idea consists of introducing color order 

relations among sub-trees to extract more sophisticated 

features. In this sense, during the last decade, features 

based of pure topological relations (Max- and Min-tree, 

Tree of Shapes, Binary Partition Trees, α-trees and ω-

trees, etc.). Recently the so-called Tree-Based Morse 

Regions (TBMR, [32]) determines local invariant 

“interest” points, with the same complexity as classical 

MSER (Maximally Stable Extremal Regions), and a 

repeatability on par with state-of-the-art methods. In 

addition, it obtains a significantly higher number of 

features, being both accurate and robust enough to be 

applied to image registration and 3D reconstruction. 

 

          
Fig. 11. Left: a fragment (9 pixels) of a color image. Numbers 

represent color values of the original image pixels. For the ACC 
representation, numbers are 0-cells, crosses are 1-cells and solid 

squares are 2-cells. At the most bottom left corner, the dotted square is 

an elemental PE composed of 4 cells. Right: a possible contour tree 
(divided into subtrees) containing the border information of the image 

represented by 1 and 2 cells. 

 

For two dimensional objects, only two homology 

groups must be considered: those representing 

connected components and holes. However, this 

topological framework can be extended to high 

dimensional images by defining the proper elemental PE 

that allows a complete topological representation and, 

afterwards, by building the different k-(k+1) trees (being 

k a dimension) in the most effective way [30]. Then, 

objects immersed on the nD-image would be represented 

by homology groups of dimensions 0, 1, …, n-1. 

CONCLUSIONS  

Most of the image processing algorithms part from 

tracing-type or scan/raster methods. This fact necessarily 

introduces data dependences between the processing of 

one pixel and the previous one, which prevents pure 

parallel implementations. We describe a very different 

approach based on a pure topological framework, which 

allows to implement fully parallel algorithms. This 

yields to an image representation that avoids complex 

data structures. In fact, all the processing can be done 

using matrixes (with the same indexation as the original 

image) and element-wise operations. Theoretical time 

complexity orders of our topological approach for an 

image of m×n pixels is near O(log(m+n)). Being a 

consistent topological framework, this method can be 

extended to color n-dimensional images. 
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