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Within a general theoretical framework, we study the effective, deformation-induced interaction
between two colloidal particles trapped at a fluid interface in the regime of small deformations. In
many studies, this interaction has been computed with the ansatz that the actual interface
configuration for the pair is given by the linear superposition of the interface deformations around
the single particles. Here, we assess the validity of this approach and compute the leading term of
the effective interaction for a large interparticle separation beyond this so-called superposition
approximation. As an application, we consider the experimentally relevant case of interface
deformations owing to the electrostatic field emanating from charged colloidal particles. In
mechanical isolation, i.e., if the net force acting on the total system consisting of the particles plus
the interface vanishes, the superposition approximation is actually invalid. The effective capillary
interaction is governed by contributions beyond this approximation and turns out to be attractive.
For sufficiently small surface charges on the colloids, such that linearization is strictly valid, and at
asymptotically large separations, the effective interaction does not overcome the direct electrostatic
repulsion between the colloidal particles. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2781420�

I. INTRODUCTION

The self-assembly of submicrometer colloidal particles
at fluid �e.g., water/air or water/oil� interfaces has gained
significant interest in view of various basic and applied is-
sues such as the study of two-dimensional melting,1 investi-
gations of mesoscale structure formation,2 and engineering
of colloidal crystals on spherical surfaces.3 The colloidal par-
ticles are trapped at the interface if the fluid phases wet the
colloid only partially; this configuration is stable against
thermal fluctuations, and it appears to be even the global
equilibrium state, in accordance with the experimental obser-
vation that the colloids immersed in the bulk phases are at-
tracted toward the interface.1

In order to prevent coagulation, the colloidal particles
are electrically charged. The ensuing repulsive force is well
understood, and at large separations d it varies like a dipole-
dipole interaction �1 /d4 because the monopoles vanish due
to screening by counterions in water.4,5 Nevertheless, several
experimental findings have led to postulating an attractive
effective force between such particles with a range much
larger than that of van der Waals forces6–15 �but see also Ref.
16�. Spherical particles �radii R=0.25–2.5 �m� at flat water-
air interfaces exhibit the spontaneous formation of compli-
cated metastable mesostructures consistent with the presence
of a minimum in the effective intercolloidal potential at sepa-
rations d /R�3–20 and with a depth of at least a few kBT.

Until now, no unequivocal explanation for the appear-
ance of these relatively long-ranged attractions is available.
One possibility, which has been explored intensively in pre-
vious years, consists of an attraction mediated by the defor-
mation of the interface �see Fig. 1�. This is similar to the
so-called flotation force attracting particles floating at the
surface of water, which is deformed by the weight of the
particles.17,18 However, gravity plays no role for micrometer
sized particles as described above. Instead, the electrostatic
field around the charged colloids deforms the interface and
gives rise to effective, capillary-induced interactions. There
have been contradictory results about the properties of this
effective interaction. In Refs. 12 and 19, it has been argued

FIG. 1. �Color online� Schematic drawing of the deformation of a fluid
interface by electric fields due to charged colloidal particles trapped at the
interface. Counterions gather on the side of the electrolytic phase �water�,
and a pressure field arises, which pulls on the interface and on the particles.
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in favor of an attractive force decaying like 1 /d �similar to
the gravity-induced flotation force�. In Refs. 20–24, this line
of thought was shown to be invalid because the decay turns
out to be much faster if the physical system consisting of the
colloidal particles plus the interface is mechanically isolated,
i.e., if the total force acting on this system vanishes in the
limit of a macroscopically extended interface with negligible
borders. This is, in principle, the case for the experiments
conducted in Langmuir troughs with lateral extensions sev-
eral times the capillary length of the interface �i.e., orders of
magnitude larger than the colloid radius�. In this case, the
electrostatic force pulling on the interface is counterbalanced
exactly by the electrostatic force pushing the particles into
water. In particular, the authors of Ref. 20 argue for an at-
tractive force decaying like 1 /d7. However, this was, in turn,
corrected in Refs. 21 and 22, and a repulsive force with an
asymptotic decay �1 /d7 was derived. In Ref. 22, it was no-
ticed that this latter result is actually unreliable because the
linear superposition approximation employed in these calcu-
lations is not valid if mechanical isolation holds. Further-
more, since it is the electric field E, and not the electrostatic
pressure �E2, which obeys a superposition principle, the su-
perposition approximation will be unsuitable if the main con-
tribution to the electrostatic pressure stems from cross terms
in E2. This latter case was studied in Refs. 25 and 26, with
the conclusion that the capillary-induced force is attractive
and decays like 1 /d4, which is the same asymptotic behavior
as the direct dipole-dipole repulsion; whether the capillary
attraction overcomes the electric repulsion must then be de-
termined by a detailed analysis of the electrostatic problem.
The total force is repulsive in the regime of small deforma-
tions of a flat interface �equivalent to the regime of small
colloidal charges�, for which the calculations were carried
out.25,26 Only for sufficiently large colloidal charges, the cap-
illary attraction may asymptotically overcome the electro-
static repulsion, leading to a minimum in the total effective
potential.25 However, further calculations—going beyond the
linearization assumptions in treating the electrostatic pres-
sure on the interface and the energy of the deformed
interface—are necessary to substantiate this claim. The ex-
periment described in Ref. 12 is peculiar in the sense that the
unperturbed interface is actually that of a relatively small
spherical droplet pending from a plate. The importance of
this finite-size effect was studied in Refs. 22, 23, and 27–29.
In Refs. 23, 27, and 29, it was found that the flotationlike
decay 1 /d is present because the plate breaks the condition
of mechanical isolation, but it is quantitatively too small to
explain the experimental observations.30

Here, we follow the approach of Ref. 22 in order to
calculate the capillary-induced effective interaction beyond
the superposition approximation in the case that there is a
pressure field of the general form �̂�r� acting on the inter-
face in the limit of small deformations. The limit of small
deformations corresponds to an analysis to leading order in
the small dimensionless parameters �̂F and �̂�, defined in Eq.
�1� below, which are measures of the force acting on the
colloidal particles and the interface, respectively. In this
manner, inter alia, we provide a mathematically sound deri-
vation of the results reported in Refs. 25 and 26. In Sec. II,

we derive the exact leading-order expressions for the capil-
lary potential and show in which respect the superposition
approximation becomes inconsistent if mechanical isolation
holds. In such a case, the final result depends on the stage at
which the approximation is introduced and applied. In Sec.
II B, we derive the leading asymptotic dependence on d of
the effective interaction using only some rather general as-
sumptions on the form of �̂�r�. The result for the effective
potential energy is summarized in Eq. �27�. In Sec. III, we
analyze the particular case that the pressure field �̂�r� is due
to the electric field created by charged colloidal particles in a
mechanically isolated system. We consider two limiting
cases in order to solve the electrostatic problem: �i� water as
a perfect conductor �i.e., vanishing Debye length� and �ii� the
colloidal particles as pointlike objects �i.e., vanishing particle
radius�. In both cases, we recover the conclusion that the
effective interaction is attractive but can overcome the elec-
tric repulsion only if �̂F�1, which is outside the small-
deformation regime considered here. Finally, in Sec. IV, we
summarize our results and discuss their relevance in connec-
tion with the experiments described in the literature.

II. FREE ENERGY OF EFFECTIVE CAPILLARY
INTERACTION

A. Exact results

We consider N identical31 spherical particles trapped at a
fluid interface �see Fig. 2 for N=2�. We define the reference
configuration as a flat interface in the plane z=0 and the
colloids at a height such that the colloid-interface contact
occurs at Young’s contact angle �� �0,��. In this configura-
tion, S� denotes the circular disk delimited by the contact
line on the colloid �, �S� is the corresponding contact line
�of radius r0=R sin � for a particle of radius R� traced coun-
terclockwise when viewed from the top,32 and Ŝmen is the
fluid interface �with surface tension 	�, enclosed by a bound-
ary CL of typical size of the order of L representing, e.g., the
vessel containing the system. The relative lateral positions of
the colloids are kept fixed, and thus we consider only vertical
displacements û�r= �x ,y�� of the fluid interface and of the
height 
ĥ� of the center of the colloid � relative to the plane
z=0. In the reference configuration, there is a �vertical� force

FIG. 2. Top view �plane z=0� of the reference configuration with two col-
loids. d is the fixed lateral distance between the colloid centers projected
onto the plane z=0. S1 and S2 are disks of radius r0, the corresponding
circumferences �counterclockwise� are �S1 and �S2. The �projected� inter-
face is Ŝmen=R2 \ �S1�S2�. The position of any point on the plane is denoted
with r; in particular, r� is the position of the colloid �.
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F̂� acting on the colloid � and a �vertical� force per unit area
�̂�r� on the meniscus. We define the dimensionless forces

�̂F�
ª −

F̂�

2�	r0
, �̂� ª

1

2�	r0
�

Ŝmen

dA�̂ , �1�

where dA is the element of interface area. The reference
configuration is the equilibrium state in the absence of
forces, F̂��0,�̂�0. Within the approximation of small de-
viations from the reference configuration, the free energy of
the system with respect to this configuration is22

F̂ = 	�
Ŝmen

dA�1

2
	�û	2 −

1

	
�̂û


+ �
�=1

N � 	

2r0


�S�

d��
ĥ� − û�2 − F̂�
ĥ�� + O��̂F, �̂��3,

�2�

where d� is the element of arclength. The free energy con-
tains a contribution from the change of the contact area be-
tween the phases �two fluid phases and the solid particles�
and a contribution from the work done by the forces F̂� and
�̂ via displacements from the reference configuration.

The values of û�r� and 
ĥ� in the equilibrium state are
determined by minimizing this free energy. This leads to the
following equations:


ĥ� = �û�� − r0�̂F�
, �·�� ª

1

2�r0


�S�

d��·� , �3a�

�2û = −
1

	
�̂, r � Ŝmen, �3b�

n� · �û�r� = �̂F�
+

û�r� − �û��

r0
, r � �S�, �3c�

û�r� = 0, r � CL, �3d�

where n� is the unit vector in the outward normal direction
of �S�. Equation �3a� is a geometrical relationship, Eq. �3b�
describes a local mechanical equilibrium �the pressure �̂ is
compensated by the curvature-induced interfacial tension�,
Eq. �3c� describes the mechanical equilibrium of the particle
�the force F̂� is balanced by the interfacial tension exerted at
the contact line�, and Eq. �3d� represents a boundary condi-
tion at the external border CL �for simplicity we take a
pinned interface, but, of course, other physically reasonable
boundary conditions are possible, the details of which are
actually irrelevant in the limit L→� we shall consider22�.
The free energy functional in Eq. �2� evaluated at the equi-
librium configuration can be simplified by using the relation-
ships in Eqs. �3a�–�3d�, and we obtain two equivalent
expressions:

F̂eq = − 1
2	�

Ŝmen

dA	�û	2 + �	�
�=1

N

��û��
2 − �û2�� − r0

2�̂F�

2 �

�4a�

=− 1
2�

Ŝmen

dA�̂û + �	�
�=1

N

r0�̂F�
��û�� − r0�̂F�

� . �4b�

From this point onward, we shall consider the particular
case of two identical colloids. We assume that any external
force acting on the system �e.g., gravity� is independent of
the positions of the particles,33 so that symmetry arguments
will allow one to simplify the expressions. We use the nota-
tions u��r�ªu�	r−r�	�, ���r�ª��	r−r�	�, �Fª �̂F�

, and
Smen,�ªR2 \S� for the corresponding quantities in the pres-
ence of a single colloid located at position r�. This means
that the function u��r���=1,2� satisfies

�2u� = −
1

	
��, r � Smen,�, �5a�

n� · �u��r� = �F, r � �S�, �5b�

u��r� = 0, r � CL. �5c�

In terms of these single-colloid solutions, the configuration
in the presence of two colloids can be written without loss of
generality as

�̂ = �1 + �2 + 2�m, �6a�

û = u1 + u2 + um, �6b�

�̂F = �F + �m, �6c�

where we have introduced �̂Fª �̂F1
= �̂F2

, reflecting the sym-
metry of the problem. The fields um�r� and �m�r�, and the
quantity �m introduced this way represent the corrections to
the so-called superposition approximation, which is defined
by setting

um = 0, �7a�

�m = 0, �7b�

�m = 0, �7c�

i.e., the effects of other particles on the single-particle con-
figuration are neglected altogether. From Eqs. �3a�–�3d� and
�5a�–�5c�, one can derive the following equations linking
um�r�, �m�r�, and �m �with � ,�=1,2�:

�2um = −
2

	
�m, r � Ŝmen, �8a�

n� · �um −
um − �um��

r0
= �m − n� · �u� +

u� − �u���

r0
,

r � �S� �� � �� , �8b�

um�r� = 0, r � CL. �8c�

The superposition approximation is violated even if �m=0
and �m=0 because of the boundary conditions at the contact
lines �Eq. �8b��, as pointed out in Ref. 22. The case of non-
vanishing �m was addressed in Refs. 25 and 26.
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The capillary-induced effective interaction energy is de-
fined as Vmen�d�ª F̂eq−2Feq, where 2Feq is the sum of the
equilibrium free energies of the single-colloid configurations,
i.e., for d→�. Vmen�d� depends parametrically on the �lat-
eral� separation d of the colloid centers in the reference con-
figuration. This is not the total interaction potential, which
must include, e.g., the direct electrostatic repulsion between
charged colloids, not considered in expression �2� for the free
energy. The effective interaction energy can be written as
Vmen=Vsup+Vcorr, where Vsup is the result of imposing the
superposition approximation �Eqs. �7a�–�7c�� and Vcorr is the
correction to this approximation. If we use expression �4a�,
we obtain

aVsup = − 	�
Ŝmen

dA��u1� · ��u2� + 	�
S1

dA	�u2	2

− 2�	�u2
2 − �u2�1

2�1, �9a�

aVcorr = − 1
2	�

Ŝmen

dA��um� · ��um + 4u2�

− 2�	�um�um + 2u2� − �um�1�um + 2u2�1�1

− 2�	r0
2�m�2�F + �m� . �9b�

On the other hand, using expression �4b�, we obtain

bVsup = − �
Ŝmen

dA�1u2 + �
S1

dA�2u2 + 2�	r0�F�u2�1,

�10a�

bVcorr = − �
Ŝmen

dA��2um + 2�mu2 + �mum�

+ 2�	r0���F + �m�um + �m�u1 + u2��1

− 2�	r0
2�m�2�F + �m� . �10b�

We emphasize that the two alternative expressions of Vsup

and Vcorr are not equivalent �but their sum Vmen is�, and they
in turn differ from Vsup as computed in Ref. 22 �see Eq. �39�
therein�, which was derived by inserting the superposition
ansatz directly into Eq. �2� here. The application of Gauss’
theorem with Eq. �5a� leads to

aVsup − bVsup = 2�	�r0�u1 + u2�
�u2

�n1
− �u2 − �u2�1�2�

1

= bVcorr − aVcorr. �11�

The superposition approximation is inconsistent asymptoti-
cally in cases in which aVsup− bVsup does not decay more
rapidly than aVsup as a function of the separation d. As re-
marked in Ref. 22, there are indeed relevant cases in which
this consistency condition is not fulfilled �see next section�.

B. Effective potential in the intermediate asymptotic
regime r0™d™L

In this section, we compute Vmen�d� asymptotically in
the intermediate range r0dL. For this purpose, we have
to make some restricting assumptions which, however, seem

to be satisfied in the experimental setups investigated so far.
First, in view of the discussion in the Introduction concern-
ing the electrical fields, we assume the proportionality

�m
2 � 	�1�2	 . �12�

This is valid if the interface stress is quadratic in a field
satisfying linear superposition in the two-particle configura-
tion. Examples are given below by some specific electro-
static models �see Eqs. �31� and �49��. Second, we assume
that the single-colloid pressure � decays far from the colloid
as

��r� � r−n, n � 4. �13�

In the experimentally relevant case of charged particles at
water interface, it has been established both theoretically4

and experimentally34 that n=6. �This can be understood eas-
ily: the charge of a particle induces a screening image charge
in the water, so that the distant electric field is dipolar.� The
constraint n�4 will allow us to estimate the integrals ap-
pearing in Eqs. �9a�, �9b�, �10a�, and �10b� by approximating
them by the contribution of the regions near the colloids.
This condition excludes, however, the effect of an external
electric field �in that case, the resulting pressure does not
have to decay at all� and the case that the colloidal charge is
not perfectly screened so that the distant electric field corre-
sponds to a monopole, i.e., n=4 �this would occur if both
fluid phases are dielectric, e.g., air and insulating oil�.

The quantity �̂�−2�̂F is the net �vertical� force by an
external agent acting on the total system consisting of two
colloids plus the interface �see Appendix A�. This can be,
e.g., gravity �if the colloid is large enough for it to be quan-
titatively relevant�, dispersion forces by a substrate closely
beneath the interface �this effect can be modeled similarly as
gravity, see Appendix B�, or an optical tweezer pushing the
colloid vertically. Since we have assumed previously that
this external force is independent of the positions of the par-
ticles, it is given by the sum of the net forces in the single-
particle configuration �i.e., if they are infinitely far apart
from each other�:

�̂� − 2�̂F = 2��� − �F� . �14�

From the definitions in Eqs. �1� and �6a�, we can write

�̂� = 2��� + ��m
− �12� , �15a�

with

��m
ª

1

2�	r0
�

Ŝmen

dA�m, �12 ª
1

2�	r0
�

S1

dA�2.

�15b�

For d→�, it is clear that

�12 �
1

dn . �16�

In this limit, we note that ��m
receives its main contribution

from the regions around S�, implying
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��m
�

2

	r0
�

r0

�

drr�m�r� �
1

dn/2�
r0

�

dr
r

rn/2 , �17�

provided n�4, because 	�m�r�	����d���	r−r�	� in those
regions which provide the dominant contribution to the inte-
gral. Therefore, from Eqs. �6c� and �14�, one obtains asymp-
totically

�m = ��m
− �12 � ��m

�
1

dn/2 . �18�

With these simplifying assumptions, we shall compute
analytically the behavior of Vmen�d→�� to leading order in
1 /d. More precisely, on dimensional grounds35 the expansion
parameter is r0 /d. In principle, �̂ can contain and thus intro-
duce additional length scales, for example, the Debye length
if the fluid phase is an electrolyte. This complicates the prob-
lem, which then has to be analyzed numerically �see Sec.
III B�.

1. The superposition approximation

Within the superposition approximation, Vmen�d� was
computed in detail in Ref. 22. Here, we sketch briefly the
estimate of the asymptotic behavior of bVsup �compare the
three terms in Eq. �10a��,

�
Ŝmen

dA�1u2 � 2�	r0��u�d� + ��d�

��2�
Smen,2

dAu2 − 1
2�r0

3�� + �r0
2�u2�2
 ,

�19a�

because the main contribution stems from the regions around
S�, and

�
S1

dA�2u2 � ��d�u�d��
S1

dA , �19b�

2�	r0�F�u2�1 � 2�	r0�F�u�d� −
1

4	
r0

2��d�
 �19c�

after expanding around r2=d. Thus,

bVsup�d� � 2�	r0��F − ���u�d� − ��d�

��2�
Smen,2

dAu2 + �r0
2�u2�2
 �19d�

because ��d� is asymptotically subdominant compared with
u�d� �see Eqs. �13� and �A1��. The difference aVsup− bVsup in
Eq. �11� between the two implementations of the superposi-
tion approximation can be estimated as22 �see Eq. �A1��

��u1 + u2�
�u2

�n1
�

1
�

1

2
r0�u1�1�

2u�d� � ��d� �
1

dn , �20a�

��u2 − �u2�1�2�1 �
1

2
r0

2	�u�d�	2

� �1/d2�n−1� if �F − �� = 0

1/d2 if �F − �� � 0.
� �20b�

Thus, whenever �F−���0 �i.e., the system is not mechani-
cally isolated in the sense that there must be a force acting on
the boundary CL of the interface to compensate this nonva-
nishing net force�, one finds

bVsup�d� � 2�	r0��F − ���u�d�

� 2�	r0
2��F − ���2 ln

d

L
+ const, �21�

corresponding to an attractive force irrespective of the pre-
cise form of the function ��r�. �The additive constant, which
does not affect the physical conclusions, depends on the pre-
cise form of the boundary condition at CL.� Physically, bVsup
is the work done by the net force 2�	��F−��� upon a ver-
tical shift of the subsystem consisting of one colloid plus its
surrounding interface �behaving like an “effective particle”�
by an amount u�d� due to the deformation induced by the
second colloid. In this case �i.e., �F−���0�, the difference
aVsup− bVsup decays more rapidly than bVsup�d�, and both ex-
pressions aVsup and bVsup agree asymptotically. Equation �21�
exhibits the same dependence on d as the potential energy
associated with the flotation force; this is discussed briefly in
Appendix B.

If �F−��=0 �corresponding to mechanical isolation�,
bVsup�d→���1 /dn �see Eq. �13��. This decay agrees with
previous findings,20–22 but the reliability of this result is un-
clear because the difference aVsup− bVsup decays with the
same power law. As a matter of fact, the amplitudes of the
asymptotic decay of aVsup and bVsup differ and are, in turn,
different from Eq. �52� in Ref. 22 because there actually
neither of the two representations of F̂eq was used. However,
for the leading behavior, this is unimportant because Vmen is
asymptotically dominated by the correction to the superposi-
tion approximation.

2. Beyond the superposition approximation

If the interface deformation field in Eq. �6b� is evaluated
near colloid 1, the term u2+um is dominated by u2 in the
absence of mechanical isolation and by um in the case of
mechanical isolation �see Eqs. �A1� and �A9��,

u2 + um � �um�d� � d−n/2 if �F − �� = 0

u2�d� � ln d if �F − �� � 0.
� �22�

Thus, the superposition approximation holds if and only if
the system is not mechanically isolated. Otherwise, the cor-
rection um is dominant, and for asymptotically large separa-
tions d, Vmen�Vcorr. Hence, in the following, we take �F

−��=0. Since the main contributions to the integrals stem
from the regions around S�, one obtains the estimates
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− �
Ŝmen

dA��2um + 2�mu2 + �mum�

� − �
Smen,2

dA��2um + 2�mu2� �
1

dn/2 . �23�

Using the asymptotic decay of um given by Eq. �A9�, we find

bVcorr�d� � − �
Smen,2

dA��2um + 2�mu2�

+ 2�	r0��Fum + ��m
u1�1 − 4�	r0

2�F��m
�

1

dn/2

�24�

because each term scales like d−n/2 and there is no reason for
mutual cancellations. In this expression, one can identify two
distinct contributions with a simple physical meaning. After
inserting Eqs. �6b� and �6c� into relationship �3a�, we write

ĥ2=
h2+
hm with


h2 ª �u1 + u2�2 − r0�F ���u2�2 − r0�F + O�d−n�� ,

�25a�


hm ª �um�2 − r0�m ��d−n/2� , �25b�

where the asymptotic decays are given by Eqs. �18� and
�A9�. Accordingly, expression �24� shows that bVcorr is domi-
nated asymptotically by36 �i� the work done by the additional
pressure 2�m if the single-colloid configuration is deformed
relative to the reference configuration, that is, −�dA2�mu2

+2�	r0��m

h2, and �ii� the work done by the forces acting

in the single-colloid configuration upon the additional dis-
placement um, that is, −�dA�2um+2�	r0�F
hm.

The asymptotic behavior of aVcorr�d→�� can be derived
by estimating the behavior of the terms in Eq. �9b� individu-
ally, as in the case of Eq. �10b�, with the following result:

aVcorr�d� � − 2	�
Smen,2

dA��um� · ��u2�

− 4�	r0
2�F��m

�
1

dn/2 . �26�

The asymptotic decay predicted by Eqs. �24� and �26� must
agree both with respect to the decay exponents and the am-
plitudes because the difference aVsup− bVsup decays asymp-
totically more rapidly �see Eqs. �20a� and �20b� for �F−��

=0�. The sign of the force described by Vcorr�d� is not evident
from the outset, but in the applications we shall consider
later, it turns out to be always attractive.

It is interesting to compare our result with the corre-
sponding one in Ref. 26. After noting the equivalence
um↔2u12 in the notations, one finds that Eq. �7� in Ref. 26 is
identical with the integral term in Eq. �26� here. We obtain an
additional term ��F��m

because we treat the contribution by
the colloid to the free energy functional in full detail, while
in Ref. 26 the point-particle approximation �r0→0� is used
from the outset �compare Eq. �4a� here with Eq. �1� in Ref.
26�. As a consequence, in Ref. 26 our additional term is lost
as a singularity of the integral term, which is regularized

there by introducing an unknown cutoff length expected to
be of the order of r0 �see also Refs. 21 and 22�. The analysis
of realistic models in Sec. III will show that the quantitative
contribution of the term ��F��m

to the effective interaction
Vmen is actually larger than, but proportional to, the contribu-
tion from the other term in Eq. �26�.

To summarize, the capillary-induced effective interac-
tion between two colloids is given by �compare Eq. �13�
defining n�

Vmen�d� � �Vcorr�d� � d−n/2 if �F − �� = 0

Vsup�d� � ln d if �F − �� � 0
� �r0  d� .

�27�

III. APPLICATIONS

In this section, we compute Vmen�d� for �F=�� �me-
chanical isolation� for different realistic models of �̂ derived
from the solution of the electrostatic problem within various
approximations. We note that the asymptotic decay of
Vmen�d� is the same as that of the direct electrostatic repul-
sion, so that these detailed calculations beyond the
asymptotic analysis of Sec. II B are necessary in order to be
able to address this fine-tuning problem and to determine
whether the total force is asymptotically attractive or repul-
sive.

A. Ideally conducting fluid phase

The simplest model consists of approximating water by
an ideal conductor. Formally, this corresponds to the limit of
zero temperature, so that the osmotic pressure of the mobile
charges accumulated at the interface vanishes and the Debye
length �−1 is zero �see Eq. �41��. In this case, the electric
field Ê= Êez is always normal to the interface and the pres-
sure is given by Maxwell’s stress tensor evaluated at the
insulating side of the interface �we use Gaussian units�,

�̂ =
1

4�
�ez · ��ÊÊ −

1

2
�Ê21� · ez�

z=0+
=

�1

8�
Ê2�z = 0+� ,

�28�

where �1 is the dielectric constant of the insulating phase
�z�0�.

In the present context, the electrostatic problem of a
charged sphere partially immersed in a conducting fluid has
been solved numerically and semianalytically in Ref. 37.
There, it has been shown that the single-colloid pressure field
exhibits an integrable divergence upon approaching the
three-phase contact line and that asymptotically it displays
the familiar dipole behavior. The following approximate pa-
rametrization �Eq. �1.4� in Ref. 37 expressed in terms of our
notation� incorporates these properties and is sufficiently ac-
curate for our present purposes:
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��r� =
	�F

r0
b���� r

r0
− 1
�−1� r

r0

−�−5

,

�29�
b��� ª 1

6��� + 1��� + 2��� + 3� ,

where 0���1 is a fitting parameter, the precise value of
which depends on the contact angle � and the dielectric con-
stant �1. This expression is normalized so that ��=�F, and it
corresponds to an exponent n=6 independent of the choice
for �. Therefore, far from a colloid, the single-colloid elec-
tric field 	E	=�8�� /�1 is that of a dipole perpendicular to
the interface, the strength of which is given by

	p	 = lim
r→�

�1r3	E�r�	 = �1r0
3�8�	�Fb���

�1r0
. �30�

In the presence of two colloids, we take Ê�E1+E2.
This approximation allows a simplification of the calcula-
tions and should not alter the physical picture significantly.
The approximative character is due to possible violations of
the electrostatic boundary conditions at the surfaces of the
colloidal particles: The additional polarization of colloid 1
induced by E2 will actually lead to an electric field Ê=E1

+E2+�E in the neighborhood of colloid 1, with an induced
electric field 	�E�r ,d�	���r�E2�d�, where the “effective sus-
ceptibility” ��r� is expected to be at most of order unity.
Thus, our conclusions will be qualitatively correct with a
quantitative error of a factor of order unity. Under these con-
ditions, the field �m�r� defined by Eq. �6a� is given within
this approximation by

�m�r� = ���	r − r1	���	r − r2	� . �31�

The integrals in Eq. �26� are computed by using the expres-
sions in Eqs. �A1� and �A9� so that in the limit r0d, one
obtains �for details, see Appendix C�

��m
�

4b���
� + 1

�F� r0

d
�3

�32a�

and

�
Smen,2

dA��um� · ��u2� �
8�b���
� + 1

M���r0
2�F

2� r0

d
�3

,

�32b�

with

M��� ª 1
8 �� + 1�b���

��
0

1

dvv4
2F1�1 − �,4;5;v�2F1�1 − �

2
,1;2;v�

�33�

and 2F1�� ,� ;	 ;z� is the hypergeometric function �see Sec.
9.1 in Ref. 38�. We have checked numerically that M���
�� /5 with a maximum error of �1.3% within the range 0
���1. The final result reads

Vmen�d� � aVcorr�d�

� −
16�b���

� + 1
�1 + M����	r0

2�F
2� r0

d
�3

. �34�

This corresponds to an attractive force. We note that the
dominant contribution to Vmen�d� stems from the term pro-
portional to ��m

in Eq. �26�; the more so the smaller � is.
Smaller values of � correspond to an increasing importance
of the electric field near the colloid �see Eq. �29��.

Vmen�d� is to be compared with the potential energy due
to the direct electrostatic repulsion Vrep�d� of the charged
colloids. The potential energy of one dipole in the field of
another identical dipole is p2 / ��1d3� so that Vrep�d�
� p2 / �2�1d3� for large d. �One must divide by a factor of 2
because within our model no work is done on the image
charge inside the conducting phase forming the dipole.� Col-
lecting the results, we find that the total interaction energy at
large separations is given by

Vtotal�d� = Vrep�d� + Vmen�d�

� 4�	r0
2�Fb���� r0

d
�3�1 −

4

� + 1
�1 + M�����F
 .

�35�

Hence, we see that the attractive capillary potential is pro-
portional to �F

2 and the direct electrostatic repulsion is pro-
portional to �F. Thus, in the limit �F1, on which our cal-
culations are based, the electrostatic repulsion is always
larger than the capillary attraction. The leading-order analy-
sis of this model predicts an attraction only if the charge of
the colloid is large enough so that �F=O�1�. The critical
value above which there is attraction is given by

�F,crit��� =
� + 1

4�1 + M����
, �36�

which lies in the range 1 /4��F,crit�5 /12 for 0���1.

B. Finite Debye length

Consider now the more general case of an upper insulat-
ing phase �dielectric constant �1� and a lower electrolytic
phase �dielectric constant �2, electrolyte concentration n0� at
a finite temperature T. The stress tensor acting on the inter-
face is due to the difference of Maxwell’s stress tensor just
above and below the interface, plus an osmotic pressure p̂osm

by the excess of ions concentrated close to the interface,

�̂ =
1

4�
�ez · ��ÊÊ −

1

2
�Ê21� · ez�

z=0−

z=0+

+ p̂osm. �37�

With �̂�r� denoting the electrostatic potential at the inter-
face, Êz,±�r�ªez · Ê�r ,z=0±� the normal component of the
electric field at the interface �with �1Êz,+=�2Êz,−�, and
Ê��r ,z=0� the �continuous� parallel component at the inter-
face, we have
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1

4�
�ez · ��ÊÊ −

1

2
�Ê21� · ez�

z=0−

z=0+

=
�2 − �1

8�
� �1

�2
Êz,+

2 + Ê�
2
 ,

�38�

with 
n�r� as the excess ion concentration at the interface,

p̂osm � kBT
n = n0kBT�exp� e�̂

kBT
� + exp�−

e�̂

kBT
� − 2
 ,

�39�

assuming that the electrolyte is dilute and consists of
monovalent ions.

In order to solve the electrostatic problem, we introduce
two simplifications: We apply the Debye-Hückel approxima-
tion for dilute electrolytes, and we approximate the extended
colloid by a point charge q at its center; i.e., we retain only
the monopole term of the source of the field. This “monopo-
lar” approximation corresponds formally to the limit of van-
ishing contact radius, r0→0, and it can be expected to pro-
vide the correct field at distances from the colloid which are
large compared to r0. This is, in fact, complementary to the
limiting case �r0�1 considered in the previous section.
From Eq. �39�, we find

p̂osm �
�2

8�
�2�̂2, �40�

where the screening length is given by

�−1 =� �2kBT

8�n0e2 . �41�

For pure water, �2=81 and n0�10−7 mol / l �that is, pH=7�
lead to a screening length �1 �m at room temperature.

We consider first the case of a single colloid correspond-
ing to a point charge q located at the flat interface between
an insulator and an electrolyte. Proceeding along the lines of,
e.g., Refs. 4 and 5, we find

��r� =
2q

�2r
Ia��r� , �42a�

Ez,+�r� = −
2q

�2r2Ib��r� , �42b�

E��r� = −
d�

dr
er =

2q

�2r2Ic��r�er, �42c�

where er is the unit radial vector pointing away from the
center of the colloid, and the auxiliary functions In�k� are
given by integrals over a Bessel function,

Ia�k� ª �
0

�

dxJ0�x�
x

��1/�2�x + �x2 + k2
, �43a�

Ib�k� ª
�2

�1
�

0

�

dxJ0�x�
x�x2 + k2

��1/�2�x + �x2 + k2
, �43b�

Ic�k� ª Ia�k� − k
dIa

dk
�k� . �43c�

These integrals have been computed numerically; the ana-
lytic expressions for their asymptotic behaviors are derived
in Appendix D. Thus, taking �2 /�1�1 �the ratio �2 /�1 is
approximately 81 for water in contact with air� in the inter-
mediate asymptotic regime 1�r ��2 /�1�2, one obtains the
following expressions for the potential and the field compo-
nents �see Eqs. �42a�–�42c��:

��r� �
2q

�2r
� �1

�2

1

��r�2 + e−�r
 , �44a�

Ez,+�r� �
2q

�2r2�−
1

�r
+��

2

�1

�2
��r�3/2e−�r
 , �44b�

E��r� �
2q

�2r2�3
�1

�2

1

��r�2 + �re−�r
er. �44c�

Asymptotically, ��r� decays as 1 /r3 and the electrostatic in-
teraction energy q��d� of a second charge q at a distance d
from the first one decays likewise as 1 /d3. This is the cel-
ebrated dipole repulsion between charged colloidal particles
first conjectured in Ref. 1. However, due to the large value of
the ratio �2 /�1, closer to the charge there is a crossover to a
screened Coulomb potential ��r��exp�−�r� /r. One can in-
troduce a crossover length rcross defined from the asymptotic
behavior given by Eqs. �44a�–�44c� as

�1

�2

1

��rcross�2 = e−�rcross. �45�

This equation has solutions only if �1 /�2� �2 /e�2�0.54, in
which case the relevant solution �rcross is larger than 2 and
depends only weakly, i.e., logarithmically on the precise
value of the ratio �1 /�2. For �2 /�1=81, this gives �rcross

�8.7. The parallel component E� exhibits the same cross-
over, but the normal component Ez,+ always decays algebra-
ically and is much larger than the parallel component. Nev-
ertheless, the contribution of Ez,+ to the pressure field ��r� is
reduced by a factor �1 /�2 �see Eq. �38��, so that ��r� will
also exhibit the crossover at a distance r�rcross. From Eqs.
�38� and �39�, one finds

��r� = 	r0�2 �F

��r�4P��r0�� �1

�2
�1 −

�1

�2
�Ib

2��r�

+ �1 −
�1

�2
�Ic

2��r� + ��r�2Ia
2��r�
 , �46�

where �see Eq. �1��

�F = �� =
q2�2

2��2	r0
P��r0� , �47�

with the dimensionless function
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P��r0� ª �
�r0

�

dx
1

x3� �1

�2
�1 −

�1

�2
�Ib

2�x�

+ �1 −
�1

�2
�Ic

2�x� + x2Ia
2�x�


� � 1

�r0
+

1

2��r0�2
e−2�r0, �48�

where the last line is the leading �zeroth order� contribution
in an expansion in terms of the small parameter �1 /�2. Equa-
tion �47� allows one to express the parameter q, the value of
which is often uncertain, in terms of the more convenient
parameter �F. Figure 3 shows how ��r� attains the dipole
limiting behavior �1 /r6 due to the electrostatic pressure
�Ez,+

2 beyond the crossover distance; at shorter distances,
��r� is dominated by the term �E�

2 and, to a lesser extent, by
the osmotic pressure. The figure indicates also that the main
contribution to the total force �� stems from the regions
close to the particle, as evidenced also by the formal diver-
gence of P��r0→0� �see Eq. �48��. Thus, the precise value
of �� will be affected by the fact that our solution of the
electrostatic problem within the monopolar approximation is
expected to be reliable, in principle, only sufficiently far
from the particle.

We consider now two identical point charges at the in-
terface separated by a distance d. Within the Debye-Hückel
and point-charge approximations, the solution of this electro-
static problem is given by the superposition of the single-
colloid fields. In this case, the field �m�r� in Eq. �6a� reads
as follows �as in Sec. II A, the subscript ��=1,2� denotes
that the corresponding field is evaluated with respect to par-
ticle �; see Fig. 2 for the notation�:

�m�r� =
�2 − �1

8�
� �1

�2
�Ez,+�1�Ez,+�2 + �E��1 · �E��2


+
�2

8�
�2�1�2

=
q2�4

2��2

1

�4�	r − r1		r − r2	�2� �1

�2
�1 −

�1

�2
�Ib��	r

− r1	�Ib��	r − r2	� + �1 −
�1

�2
�Ic��	r − r1	�Ic��	r

− r2	�
r − r1

	r − r1	
·

r − r2

	r − r2	
+ �2	r − r1		r − r2	Ia��	r

− r1	�Ia��	r − r2	�
 . �49�

Therefore, one has �see Eqs. �15b� and �47��

��m
=

Pm��r0,�d�
P��r0�

�F, �50�

where

Pm��r0,�d� ª
1

2�
�

Ŝmen

d2x
1

�x1x2�2

�� �1

�2
�1 −

�1

�2
�Ib�x1�Ib�x2�

+ �1 −
�1

�2
�Ic�x1�Ic�x2�

x1 · x2

x1x2

+ x1x2Ia�x1�Ia�x2�
 �51�

in terms of xª�r and x�ª��r−r��. Dependences on r0 and
d enter through the specification of the integration domain
Ŝmen. Using this expression and Eqs. �43a�–�43c�, we have
integrated numerically Eqs. �8a�–�8c� using bipolar coordi-
nates in a domain corresponding to a size L�100 /�. Taking
this numerical solution and the exact expression in Eq. �A1�,
we have subsequently computed numerically the effective
interaction energy as Vmen�d�� bVcorr�d� by using Eq. �10b�.
As in the case studied in Sec. III A �see the text after Eq.
�34��, the last term in Eq. �10b� turns out to be larger in
magnitude than the remaining terms, but they are approxi-
mately proportional to each other, so that for the purpose of
understanding the numerical results, we can consider the fol-
lowing proportionality �upon the application of Eq. �18��:

Vmen�d� � − 2�	r0
2�m�2�F + �m� � − 4�	r0

2�F��m

= − 4�	r0
2�F

2 Pm��r0,�d�
P��r0�

. �52�

Figure 4 shows indeed that for two choices of �r0 this ap-
proximation is reasonable at large d. Numerically, we find
that the term ��F��m

contributes �70% of the total
meniscus-induced potential Vmen. Asymptotically, for large d
it exhibits the predicted 1 /d3 behavior �Eq. �27� with n=6�.
More precisely, the asymptotic behavior of Vmen can be ob-

FIG. 3. �Color online� The dimensionless stress �̄ª� / �	r0�2�F /P��r0��
due to a single point charge at the interface for �2 /�1=81, as given by Eq.
�46� �thick solid line�. The thin lines represent each of the three additive
contributions in Eq. �46�: due to Ez, only given by Ib; due to E�, only given
by Ic; and due to the osmotic pressure, only given by Ia. As expected, one
observes a crossover in �̄ at a distance r comparable with rcross defined by
Eq. �45�.
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tained as an expansion in terms of 1 /d by utilizing the two-
peak structure of �m �as for the general discussion in Sec.
II B�: One assumes that for d→� the main contribution to
the integral in Eq. �51� stems from the regions near the col-
loidal particles. The leading asymptotic behavior of Pm is
given simply by the lowest-order term of a Taylor expansion
about x1��r0, x2��d and x1��d, x2��r0 in the integral in
Eq. �51� with the asymptotic decay for the I functions ob-
tained in Appendix D,39

Pm��r0,�d� �
�1

�2

pm��r0�
��d�3 , �53�

where

pm��r0� ª 2�
�r0

�

dx��1 −
�1

�2
�Ib�x�

x
+ Ia�x�


� 2��r0I0��r0

2
�K1��r0

2
� − 1 + e−�r0
 , �54�

and the second line is the leading �zeroth order� contribution
in an expansion in terms of the small parameter �1 /�2, ob-
tained from applying Eqs. �D2� and �D13�. According to this
expression, pm��r0→0�=4 and p��r0� decreases monoto-
nously with an asymptotic decay p��r0→���2 / ��r0�. This
result for Pm��r0 ,�d� means that the asymptotic 1 /d3 decay
is determined by the normal component Ez�d� of the field and
by the potential ��d� stemming from the osmotic pressure.
There is no contribution from E� to the leading order in 1 /d
due to the geometrical factor x1 ·x2 appearing in Eq. �51�.
Finally, from Fig. 4 we infer that if �r0 is large enough, the
asymptotic decay breaks down as a reliable approximation
and a minimum appears in Vmen�d� at a separation d which is
a few times �−1.

The energy due to the direct repulsion of the two col-
loids is given by Eq. �42a�,

Vrep�d� = q��d� = 4�	r0
2�F

Ia��d�
��d���r0�P��r0�

, �55�

and the total energy is Vtot�d�=Vrep�d�+Vmen�d�. With ap-
proximation �52�, one has

Vtot�d� �
4�	r0

2�F

�r0P��r0�
�Ia��d�

�d
− �F�r0Pm��r0,�d�
 . �56�

Asymptotically, for �d�1 this expression reduces to �see
Eqs. �53� and �D3��

Vtot�d� � 4�	r0
2�F

�1/�2

��r0�4P��r0�� r0

d
�3

��1 +
�2

�1
��d�2e−�d − �r0pm��r0��F
 , �57�

to be compared with the potential obtained in the previous
subsection �Eq. �35��. As in that case, the capillary-induced
potential Vmen is reduced by a factor �F1 with respect to
Vrep, and the total potential can be asymptotically attractive
only if �F is above a critical value,

�F,crit =
1

�r0pm��r0�
, �58�

which to the leading order is independent of the small ratio
�1 /�2 and turns out to be bounded as �F,crit�0.38 �see Fig.
5�. Moreover, we note that even if �F�1 the term in brackets
in Eq. �57� changes sign at a separation d comparable with
the crossover length rcross �see Eq. �45��. This is a conse-
quence of the crossover in Vrep�d����d� and suggests that
although the potential is asymptotically attractive, it reaches
a minimum at a distance d�rcross and turns repulsive for
closer separations. This effect can only be enhanced by the
deviation from the asymptotic 1 /d3 decay in Vmen�d� ob-
served in Fig. 4 for �r0�1.

These conclusions based on approximation �52� are sup-
ported by the corresponding full numerical calculations.
More precisely, from a fit to these numerical results in the
range 0.1��r0�2.0 for the ratio �2 /�1=81, we find that the
critical value is given approximately by

�F,crit��r0� � 0.34�1 +
0.30

��r0�2 . �59�

Figure 6 shows a plot of Vtot�d� for a typical value �F=0.6,
exhibiting a shallow minimum if it is asymptotically attrac-
tive. In summary, the capillary-induced attraction can domi-
nate asymptotically only if �r0 is sufficiently large so that
�F��F,crit, in which case one necessarily has �F�1.

FIG. 4. The dimensionless capillary-induced potential energy V̄men

ª102Vmen / �	r0
2�F

2 /P��r0�� for two different values of �r0 and the choice
�2 /�1=81. Thick lines correspond to the capillary-induced potential given by
Eq. �10b� �see Eq. �27��, whereas thin lines show the approximation ��F��m
given by Eq. �52�. If �r0 is large enough, a minimum appears.

FIG. 5. �Color online� The solid line gives the critical value �F,crit as a
function of �r0 specified by the fit to the numerical results �Eq. �59��. The
dashed line corresponds to the approximate expression provided by Eq. �58�.
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IV. SUMMARY AND DISCUSSION

We have carried out a thorough analysis of the effective
interaction potential Vmen�d� between two colloidal particles
floating a distance d apart from each other at a fluid interface
due to the deformation of the interface caused by the par-
ticles. The main result is summarized in Eq. �27� for the
asymptotic behavior of Vmen�d� as d→�. One finds two
qualitatively different cases depending on the �dimension-
less� force �F acting on the particle and the one, ��, acting
on the interface �see Eqs. �1� and �14��: �a� If the system is
not mechanically isolated ��F−���0�, the superposition ap-
proximation is valid and the asymptotic dependence Vmen�d
→�� is universal in the sense of being independent of the
detailed distribution of the forces which deform the interface.
The physical reason for this is that each particle, together
with its surrounding interface, can be considered as an effec-
tive particle. �b� In the opposite case of mechanical isolation
��F−��=0�, the corrections to the superposition ansatz are
dominant and the asymptotic decay of Vmen�d� depends on
the asymptotic properties of the pressure field acting on the
interface. We identified two sources of violation of the su-
perposition approximation: The boundary conditions of the
deformation at the particle-interface contact line are violated,
and the pressure field acting on the interface does not satisfy
a superposition principle.

These results hold under the rather general assumptions
that �i� the interfacial deformation is small ��F ,��1�, �ii�
the pressure field �̂=�1+�2+2�m exerted by the particles
on the interface satisfies the scaling relations in Eqs. �12� and
�13�, and �iii� the external force acting on the particles is
additive �Eq. �14��. Assumptions �i� and �iii� are quite gen-
eral, and there is no evidence that they are not fulfilled ex-
perimentally. Assumption �ii� can be viewed as a conse-
quence of the condition that the pressure �̂ is derivable from
the stress tensor of a Lagrangian quadratic in an underlying
field, as it is typically the case for physical systems: Besides
stresses induced by electric fields as addressed here, there
can be, e.g., elastic stresses which arise if one of the fluids is
in a nematic phase.40 �This latter case also provides an ex-

ample in which the asymptotic decay �Eq. �27�� is actually
modified by geometrical constraints which complement the
scaling relation �Eq. �12��.�

As an application for the case of mechanical isolation,
we have considered the paradigmatic system of electrically
charged colloids �see Figs. 1 and 2�, which is also of direct
experimental importance. The pressure deforming the inter-
face is due to the electrostatic field emanating from the par-
ticles and gives rise to an effective attractive interaction
Vmen�d→���1 /d3. Since the direct electric repulsion be-
tween the colloids also decays Vrep�1 /d3, this asymptotic
analysis is insufficient to determine whether the total poten-
tial Vmen+Vrep describes an asymptotically attractive force, as
seemingly observed experimentally. To this end, as a model
for the experiments, it is necessary to consider in detail the
challenging electrostatic problem posed by two charged
spheres partially immersed in an electrolyte. Within this ap-
proach, we have studied the electrostatic problem in two
simplifying limiting regimes: �A� water as one of the fluid
phases is a perfect conductor, and �B� the colloidal particles
are replaced by point charges �monopolar approximation�.
Within both approximations, we concluded that Vmen��F

2 ,
while Vrep��F, so that the direct repulsion dominates asymp-
totically; the capillary-induced attraction is predicted to
dominate only if �F is larger than a threshold value �F,crit

�1 �see Eqs. �36� and �59��; i.e., the deformation of the
interface has to be large, which is outside the range of valid-
ity of the present analysis based on small deformations ��F

1�.
Assumption �A� is a simple model of the experimentally

relevant case of polystyrene or glass colloids floating at the
interface between salty water and air or oil such that the
Debye length �−1 of water is much smaller than the radius of
the particle-interface contact line r0. Only the residual
charges at the interface between the colloid and the air or oil
phase determine �F. The charge density � at this interface is
rather small compared with the nominal surface density of
dissociable groups; we note that in the case of polystyrene
colloids the precise microscopic origin of this charge density
is still unknown. By dimensional analysis, �F

= ��2r0 /�1	�G��C /�1 ,��, where G is a dimensionless func-
tion depending on the contact angle � and the ratio of dielec-
tric constants of the colloidal particle and the insulating fluid,
�C and �1, respectively. The electrostatic solution37 yields
G�1,���3 /sin3 � for hydrophobic colloids. In Ref. 41 the
single-colloid meniscus deformation was measured around
rather large glass spheres �r0�200 �m� at a water-oil inter-
face �	�0.05 N /m, �1�2�, which are slightly hydrophobic
���120° �. Using Eq. �A1�, a value �F�0.4 was inferred
from the measurements, corresponding to a charge density of
��70 �C /m2 �or 5�10−4 e /nm2� according to the simple
formula given above. This value is close to �F,crit given in
Eq. �36�, and thus one could expect a strongly reduced re-
pulsion or even a net attraction between pairs of these glass
spheres. A corresponding extension of this single-sphere ex-
periment would be highly desirable.

For truly nanoscopic colloids �r0�1 �m� with this same
charge density on the air or the oil side, the formula above
predicts �F=O�10−3�; therefore, the electrostatic repulsion

FIG. 6. �Color online� The dimensionless total potential energy V̄tot

ª103Vtot / �	r0
2�F /P��r0�� for different values of �r0 and the choices �2 /�1

=81 and �F=0.6. Note that the total energy is about ten times smaller than
Vmen �the normalization of V̄tot here differs from that of V̄men in Fig. 4 by a
factor of 10 /�F� and exhibits a shallow minimum provided that �r0 is not
too small.
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would always dominate the capillary attraction. This is con-
sistent with the results in Ref. 34 obtained for polystyrene
spheres �r0�1 �m� at the oil/water interface. For highly
salty water, the charge density on the colloid/oil interface is
estimated experimentally to be ��20 �C /m2, and force
measurements between two spheres confirmed the repulsive
dipole-dipole interaction with no sign of capillary attraction.

Assumption �B� amounts to modeling a system in which
the Debye length of water is comparable or larger than the
radius r0. We have studied in detail the case that the dielec-
tric constant of one fluid phase �e.g., water� is much larger
than the dielectric constant of the other fluid phase �e.g., air�.
The capillary-induced potential Vmen is asymptotically attrac-
tive �see Fig. 4�, but the total potential Vmen+Vrep can be
asymptotically attractive for values �F�1 only if �r0�1
�see Fig. 5�. However, unlike the model corresponding to
assumption �A�, even in such a case Vmen+Vrep becomes re-
pulsive at small separations �Fig. 6�. This effect can be traced
back to a crossover in the interfacial stress ��r� from the
asymptotic algebraic decay �as in model �A�� to an exponen-
tial decay at closer distances r�7 /� from the particle �see
Fig. 3�.

In contrast to the experiments carried out with nano- and
microcolloids at interfaces with salty water, some
experiments9,10,12–14 have been performed with microcolloids
at interfaces of ultrapure water such that �−1�r0�1 �m.
These experiments could have explored phenomena beyond
the small-deformation regime. Equation �47� provides a re-
lationship between �F and the relevant parameters of the ex-
perimental system; regrettably, the value of the total charge q
is usually uncertain. In terms of the surface charge density �,
one has q=2���r0 sin ��2�1+cos �� because for ultrapure
water the electrostatic field is dominated by the unscreened
charge of the particle on the water side. For typical values
�2=81, 	=0.05 N /m, �=1 �m−1, and �=� /2 �so that r0

=radius of the particle�, Eq. �47� gives �F�371�2r0
3P�r0�,

with r0 in micrometers and � in units of e /nm2. The values
for � quoted in the literature range from 0.07 e /nm2 �Ref. 7�
to 0.53 e /nm2 �Ref. 8�. Accordingly, Fig. 7 shows that it
seems possible to have capillary attraction �i.e., �F��F,crit

�1� for typical values of the particle radius in the microme-
ter range. However, we emphasize that, unlike the conclusion
concerning the asymptotic decay of Vmen, the expressions
relating the value of �F and �F,crit with the parameters of the
system involve the behavior of the electric field near the
particle �see Eqs. �48� and �53��. Therefore, they are ex-
pected to be affected by corrections to the monopolar ap-
proximation and the Debye-Hückel approximation.42 Thus,
further theoretical work is required to understand these ex-
periments properly and to arrive at reliable predictions.
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APPENDIX A: INTERFACE DEFORMATION FIELDS

In this appendix, we derive the single-colloid deforma-
tion u�r� and the correction um�r� to the superposition ap-
proximation for two colloids.

The deformation field u�r� in the single-colloid configu-
ration is readily obtained as the rotationally symmetric solu-
tion of Eqs. �5a�–�5c�,

u�r� = r0��� − �F�ln
L

r
−

1

	
�

r

L

dss��s�ln
s

r

� �r2−n if �F − �� = 0

ln r if �F − �� � 0
� �r0  r  L and n � 2� .

�A1�

The limit L→� is well defined if �F−��=0; otherwise, the
presence of the boundary condition �Eq. �5c�� is required to
regularize the possible logarithmic divergence.22 The physi-

FIG. 8. The position of a point P near a colloid is parametrized by the polar
coordinates �� ,��. The unit vector normal to the �circular� contact line is
n=e�.

FIG. 7. �Color online� Parameter space spanned by the surface charge den-
sity � �in units of e /nm2� and the contact line radius r0 �in �m� �see text for
the fixed values of the other parameters�. The solid line corresponds to the
loci �F=�F,crit, so that capillary attraction is predicted to occur in systems the
parameters of which fall into the region above this curve. As a reference
curve, the dashed line corresponds to the loci �F=1.
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cal interpretation of this regularization is a force acting on
the boundary CL of the interface, which compensates the net
force 2�	r0��F−��� localized around the particle. Since
these two forces act at well separated locations, there is an
intermediate range of lengths where there is approximately
no force acting on the interface, so that the corresponding
deformation varies logarithmically. �The electrostatic anal-
ogy developed in Ref. 27 provides a transparent visualization
of this explanation.�

The correction um�r� to the superposition approximation
cannot be computed analytically in an easy manner, but we
shall derive several asymptotic properties of the solution as
the interparticle separation d becomes large. In order to fol-
low the arguments, the reader will find the electrostatic anal-
ogy useful, which relies on the formal analogy of Eqs.
�8a�–�8c� with the equations for the two-dimensional electro-
static potential: um plays the role of the potential and 2�m

the role of the charge density. �This analogy is worked out in
detail in Ref. 27.�

First, we approximately compute the function um�r� near
the colloids, i.e., at distances r0��ª 	r−r�	d from the
particle �see Fig. 8�. Concerning the boundary condition �Eq.
�8b�� at �=r0, we note that

− n� · �u� +
u� − �u��

r0

� �12 −
r0

2
�nn:��u�d� −

1

2
�2u�d�


� �12 −
r0

4
�u��d� −

u��d�
d


cos 2� , �A2�

which follows from expanding the single-particle solution
�Eq. �A1�� around r=d, where one finds �see Eq. �A1��

u��d� −
u��d�

d
� �d−n if �F − �� = 0

d−2 if �F − �� � 0.
� �A3�

The field �m�r�, according to the model discussed at the
beginning of Sec. II B, peaks at the colloids and decays far
from them, so that it has an approximately rotational sym-
metry in the range r0��d. More precisely, since �m is
proportional to 	��	�e�+dex	�����	1/2, one finds, after ex-
panding in terms of � /d1 and in view of Eq. �13�,

�m�r� � 	��d�����	1/2 + O�d−n/2−1� . �A4�

Accordingly, in the leading order in 1 /d, Eqs. �8a�–�8c� turn
into

1

�

�

��
��

�um

��

 +

1

�2

�2um

��2 � −
2

	
�m��� � d−n/2, r0 � �  d �A5a�

�n · �um −
um − �um�

r0



�=r0

�� ��m
� d−n/2 if �F − �� = 0

− �r0/4��u��d� − u��d�/d�cos 2� � d−2 if �F − �� � 0.
� �A5b�

Thus, if �F−��=0 the near-particle solution is approxi-
mately rotationally symmetric and dominated by the pressure
field �m,

um��� � A0 + r0��m
ln

�

r0
+

2

	
�

r0

�

dss�m�s�ln
s

�
if �F − �� = 0

� A0 +
2

	
�

r0

�

dss�m�s�ln
s

r0
+

2

	
�

�

�

dss�m�s�ln
�

s
,

�A6a�

where the second expression follows by inserting the esti-
mate �Eq. �17�� for ��m

. Only the last term depends on �,
while the second one is an additive constant proportional to
���d��d−n/2. On the other hand, if �F−���0 the near-
particle solution is dominated by the single-particle solution
for the boundary condition,

um��� � A0 + ��−
r0

2

12
�u��d�

d
− u��d�� +

1

3
A2
� r0

�
�2

+ A2� �

r0
�2�cos 2� if �F − �� � 0. �A6b�

The integration constants A0 and A2 are determined by the
solution far from the particles, and for our purposes here, it
suffices to provide an estimate of how they depend on the
separation d. In view of the electrostatic analogy, the solution
um far from the particles, r�d, can be expressed in terms of
a multipolar expansion. The “capillary monopole”

Qm ª �
Ŝmen

dA2�m + 	
�S1��S2

d�n · �− �um� �A7�

is found to vanish exactly by virtue of the boundary condi-
tion �Eq. �8b��. The “capillary dipole” vanishes due to the
reflection symmetries of the configuration shown in Fig. 2
upon X→−X and Y →−Y. But, in general, the “capillary
quadrupole” Dm will be nonzero. Therefore, the distant field
is �C is a proportionality constant�
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um�r � d� �
dm

r2 + C ln
r

r0
�

r

�

dss�m�s� , �A8�

where we have neglected the angular dependence of the qua-
drupolar field �we are interested only in the decay with dis-
tance� and dm denotes the typical value of the elements of the
quadrupole Dm. The second term is approximately the “po-
tential” created by the “capillary charge” beyond r, which is
not accounted for by the multipolar moments and arises as a
correction to the multipolar expansion because the capillary
charge �m does not have a compact support. It scales as
r2−n ln r. On the other hand, because the capillary monopole
of a single particle is of the order of 	r0��m

, the quadrupole
of the capillary charge distributed over a region of size �d
will be dm�d2	r0��m

�d2−n/2. Thus, the last term is negli-
gible compared to the quadrupolar term if r�d, provided n
�4, so that one finally finds um�r�d��d−n/2. For reasons of
consistency, we expect that the near-particle solutions in Eqs.
�A6a� and �A6b� should scale like this if extrapolated to �
�d: If Eq. �A6a� is evaluated at ��d, one obtains A0

=O�d−n/2�, while from Eq. �A6b� it follows that A2=O�d−4�.
In sum, the amplitude of the near-particle solution scales

with the interparticle separation as follows:

um�� � r0� � �d−n/2 if �F − �� = 0

d−2 if �F − �� � 0
� �n � 4� . �A9�

APPENDIX B: FLOTATION FORCE AND DISJOINING
PRESSURE

In this appendix, we briefly discuss how our results are
modified if the gravitational force is relevant. We also show
how the same formal results hold if the lower fluid phase is
a thin film on which, instead of gravity, dispersion forces due
to a confining substrate are acting, exerting the so-called dis-
joining pressure.

1. Flotation force

The effect of the acceleration of gravity g gives rise to
an additional contribution to the free energy �Eq. �2��: The
gravitational potential energy of the fluids with respect to the
reference configuration is

Fgrav =
1

2
	�

Ŝmen

dA� û

�
�2

, �B1�

where we have introduced the capillary length �
ª�	 / ���−−�+�g� in terms of the mass densities �+ and �−

of the upper and lower fluid phases, respectively. This length
has typical values in the millimeter range. A pressure field
�force per unit area� can be associated with this free energy,

�̂grav�r� ª −
�Fgrav

�û�r�
= −

	

�2 û�r� . �B2�

This expression can be inserted directly into Eq. �3b�, and
one finds that at large distances from the particles, û�r�
�exp�−r /�� and the field �̂grav�r� does indeed decay suffi-
ciently fast. However, one cannot apply the results we have
derived previously without certain changes because �̂grav de-

pends explicitly on û. Nevertheless, in the limit of a large
capillary length, one can neglect Fgrav �and thus �̂grav� alto-
gether and retain only the gravitational force acting directly
on the colloidal particle; i.e., ��=0 and F̂=F is the weight of
the colloidal particle �corrected for buoyancy effects�. In this
case, Vmen�d� is given by the superposition approximation
�see Eq. �21�� and reproduces the flotation force in the re-
gime d�.18

2. Disjoining pressure

If the size of the particle lies below the micrometer,
gravity is quantitatively negligible.22 The same formalism,
however, is applicable in the experimentally relevant case
that the lower fluid phase is a film of thickness h�r�=�
+ û�r� on top of a �solid or liquid� substrate �see Fig. 9�. If �
is within the range of the underlying dispersion forces, an
additional contribution Fdisp to the free energy �Eq. �2��
arises43 �neglecting a constant, û-independent term�,

Fdisp = �
Ŝmen

dA� H

�� + û�2 + �� + û�
n
�
 , �B3�

where H is known as the Hamaker constant, 
n is the num-
ber density difference between the bulk phases the film and
the upper phase belong to, and 
� is the undersaturation of
the upper phase in terms of the chemical potential. The con-
dition that the flat film of thickness � is an equilibrium solu-
tion imposes the relation 
n
�=2H /�3. The corresponding
pressure field associated with Fdisp is called “disjoining pres-
sure,”

�̂disp�r� = −
�Fdisp

�û�r�
=

2H

�� + û�3 −
2H

�3 . �B4�

In the regime of small deformations, one has 	û	� and
Fdisp can be expanded around û=0, yielding

Fdisp � Fdisp�û = 0� +
1

2
	�

Ŝmen

dA� û

�disp
�2

, �B5�

which has the same form as Eq. �B1� with an effective “cap-
illary length” �disp=�	�4 / �6H� �which actually coincides
with the so-called lateral correlation length �� �Ref. 43��.
Thus, �̂disp takes the form of Eq. �B2�, with � replaced by
�disp. If the film is sufficiently thin, the length �disp can be so
small that it becomes relevant, and a phenomenology may
arise which is similar to the macroscopic one induced by
gravity. For typical values H=10−20 J and 	=0.05 N /m, one
has �disp=1 �m for a film thickness �=0.033 �m.

FIG. 9. Schematic drawing of a fluid film on top of a substrate. � is the
thickness of the film in the reference, flat configuration, and û is the defor-
mation of the interface.
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APPENDIX C: EFFECTIVE CAPILLARY POTENTIAL
ENERGY IN THE CASE OF AN IDEALLY
CONDUCTING FLUID

In this appendix, we provide the mathematical steps
leading to Eqs. �32a� and �32b�, which are valid in the limit
d�r0 and from which the effective capillary potential energy
is obtained.

In order to compute ��m
, we insert the ansatz �Eq. �31��

into the definition �Eq. �15b��. In the limit d→�, the main
contribution to the integral stems from the regions around
each particle so that

��m
�

2

	r0

���d��
r0

�

drr���r� . �C1�

With the pressure field given by Eq. �29�, this reduces to

��m
� 2b����F� r0

d
�3�

1

�

dx��x − 1��−1x−��+3�, �C2�

and Eq. �32a� is obtained upon performing the integral �Eq.
3.191.2 in Ref. 38�.

For the evaluation of the integral in Eq. �32b�, we use
the solutions �Eqs. �A1� and �A6a�� valid for �F−��m

=0.
With Eq. �29�, this leads to

�u =
er

	r
�

r

�

dss��s�

= erb����F
r0

r
�

r/r0

�

dx�x − 1��−1x−��+4�

=
1

4
erb����F� r0

r
�5

2F1�1 − �,4;5;
r0

r
� �C3�

and, with the ansatz �Eq. �31��, to

�um �
2er

	r
�

r

�

dss���d���s�

= 2erb����F
r0

r
� r0

d
�3�

r/r0

�

dx�x − 1���−1�/2x−��+3�/2

= 2erb����F� r0

d
�3� r0

r
�2

2F1�1 − �

2
,1;2;

r0

r
� . �C4�

�Concerning the last lines in Eqs. �C3� and �C4�, see Eq.
3.194.2 in Ref. 38.� This enables one to obtain

�
Smen,2

dA��um� · ��u2�

� �b���2�F
2� r0

d
�3�

r0

�

drr� r0

r
�7

�2F1�1 − �,4;5;
r0

r
�2F1�1 − �

2
,1;2;

r0

r
� �C5�

so that Eqs. �32b� and �33� follow upon a change of variable
in the integral.

APPENDIX D: ASYMPTOTIC BEHAVIOR OF THE
ELECTROSTATIC POTENTIAL AND OF THE ELECTRIC
FIELD

In this appendix, we discuss the asymptotic behaviors of
the functions In�k� defined in Eqs. �43a�–�43c�. First, we
mention that at first sight the integrals may appear to be
divergent due to the weak power law decay of the integrands,
which are, however, oscillatory. Actually, the integrals are
regularized by an exponential, so that, for instance,

Ia�k� ª lim
h→0

�
0

�

dxe−hxJ0�x�
x

��1/�2�x + �x2 + k2
, �D1�

reflecting the physical situation that the charge q is posi-
tioned at a �dimensionless� height h�0 above the flat inter-
face. In the following mathematical manipulations, this regu-
larization scheme is implied, which, unless required, we do
not write explicitly to avoid a clumsy notation.

Reference 4 provides a method to obtain the expansion
of Ia�k� in powers of �1 /�21. The idea is to split the inte-
grals into a sum of two terms involving only odd or even
powers of the ratio �1 /�2, respectively. This leads to44

Ia�k� = e−k +
�1

�2
��

2
k�I0�k� − L0�k�� − 1


+ O��1/�2�2, k  ��2/�1�2 �D2�

in terms of the Bessel function I0 and the Struve function
L0.38 We note that the validity of this expression is restricted
to sufficiently small values of k. However, for the typical
values of the ratio �2 /�1 occurring in the experiments so far,
this does not impose any physically relevant constraint on k.
The asymptotic behavior for large k is

Ia�k� � e−k +
�1

�2

1

k2 , 1  k  ��2/�1�2. �D3�

As a general result,4 the coefficients of the odd powers of
�1 /�2 decay algebraically for k�1, while the coefficients of
the even powers decay exponentially. With Eq. �43c�, this
leads to

Ic�k� � ke−k + 3
�1

�2

1

k2 , 1  k  ��2/�1�2. �D4�

The procedure employed in Ref. 4 can be extended to ana-
lyze Ib�k�. The radical is eliminated from the denominator of
the integrand in Eq. �43b�, and the integral is split as follows:

Ib�k� =
�2

�1
�

0

�

dxJ0�x�
x�x2 + k2�

�1 − ��1/�2�2�x2 + k2

− �
0

�

dxJ0�x�
x2�x2 + k2

�1 − ��1/�2�2�x2 + k2 . �D5�

The first term involves only odd powers of �1 /�2, the second
term only even powers. The first integral can be rewritten as
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�2

�1
�

0

�

dxJ0�x�
x�x2 + k2�

�1 − ��1/�2�2�x2 + k2

=
�2/�1

1 − ��1/�2�2�
0

�

dxJ0�x�x

��1 +
k2 − k2/�1 − ��1/�2�2�
x2 + k2/�1 − ��1/�2�2�
 . �D6�

With the identities �see Eqs. 6.623.2 and 6.532.4 in Ref. 38�

�
0

�

dxJ0�x�x = 0 �D7�

and

�
0

�

dxJ0�x�
x

x2 + a2 = K0�a� , �D8�

the first integral in Eq. �D5� can be written as

�2

�1
�

0

�

dxJ0�x�
x�x2 + k2�

�1 − ��1/�2�2�x2 + k2

= −
�1/�2

�1 − ��1/�2�2�2k2K0�k/�1 − ��1/�2�2�

= − ��1/�2�k2K0�k� + O��1/�2�3. �D9�

The second integral in Eq. �D5� can be written to the leading
order in �1 /�2 as

�
0

�

dxJ0�x�
x2�x2 + k2

x2 + k2

= �
0

�

dxJ0�x���x2 + k2 −
k2

�x2 + k2
 . �D10�

We introduce the exponential regularization as exp�
−h�x2+k2� and note the identity �Eq. 6.637.1 in Ref. 38�

�
0

�

dxJ0�x�
e−h�x2+k2

�x2 + k2
= I0� k

2
��h2 + 1 − h��

�K0� k

2
��h2 + 1 + h�� . �D11�

Therefore, the right-hand side of Eq. �D10� can be rewritten
as

�
0

�

dxJ0�x�
x2�x2 + k2

x2 + k2

= lim
h→0

� �2

�h2 − k2
�
0

�

dxJ0�x�
e−h�x2+k2

�x2 + k2

=
1

2
k2�I1� k

2
�K1� k

2
� − I0� k

2
�K0� k

2
�


= k
d

dk
�kI0� k

2
�K1� k

2
�
 . �D12�

Therefore, from Eqs. �D9� and �D12� one finally arrives at
the following expansion:

Ib�k� =
1

2
k2�I0� k

2
�K0� k

2
� − I1� k

2
�K1� k

2
�
 −

�1

�2
k2K0�k�

+ O��1/�2�3. �D13�

This expansion may also be restricted to sufficiently small
values of k, although we have not found this upper bound as
function of �1 /�2. However, as argued above, this possible
constraint is expected to be physically irrelevant because,
typically, �1 /�2 is sufficiently small. The asymptotic behavior
of this expression for k�1 is

Ib�k� �
1

k
−��

2

�1

�2
k3/2e−k, 1  k,�2/�1. �D14�
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