
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/273398783

NEH-based heuristics for the permutation flowshop scheduling problem to

minimise total tardiness

Article in Computers & Operations Research · August 2015

DOI: 10.1016/j.cor.2015.02.002

CITATIONS

33
READS

422

2 authors:

Some of the authors of this publication are also working on these related projects:

Collaboration strategies in de centralized supply chains with partial information sharing View project

Models and algorithms for the order scheduling problems considering setup times View project

Victor Fernandez-Viagas

Universidad de Sevilla

34 PUBLICATIONS 401 CITATIONS

SEE PROFILE

Jose M. Framinan

Universidad de Sevilla

188 PUBLICATIONS 3,125 CITATIONS

SEE PROFILE

All content following this page was uploaded by Victor Fernandez-Viagas on 06 November 2017.

The user has requested enhancement of the downloaded file.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/322844307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.researchgate.net/publication/273398783_NEH-based_heuristics_for_the_permutation_flowshop_scheduling_problem_to_minimise_total_tardiness?enrichId=rgreq-896e9f965b314422075cfcaa1050d4f6-XXX&enrichSource=Y292ZXJQYWdlOzI3MzM5ODc4MztBUzo1NTc2MjIyNTc1NTc1MDRAMTUwOTk1ODkxNDQ1Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/273398783_NEH-based_heuristics_for_the_permutation_flowshop_scheduling_problem_to_minimise_total_tardiness?enrichId=rgreq-896e9f965b314422075cfcaa1050d4f6-XXX&enrichSource=Y292ZXJQYWdlOzI3MzM5ODc4MztBUzo1NTc2MjIyNTc1NTc1MDRAMTUwOTk1ODkxNDQ1Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Collaboration-strategies-in-de-centralized-supply-chains-with-partial-information-sharing?enrichId=rgreq-896e9f965b314422075cfcaa1050d4f6-XXX&enrichSource=Y292ZXJQYWdlOzI3MzM5ODc4MztBUzo1NTc2MjIyNTc1NTc1MDRAMTUwOTk1ODkxNDQ1Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Models-and-algorithms-for-the-order-scheduling-problems-considering-setup-times?enrichId=rgreq-896e9f965b314422075cfcaa1050d4f6-XXX&enrichSource=Y292ZXJQYWdlOzI3MzM5ODc4MztBUzo1NTc2MjIyNTc1NTc1MDRAMTUwOTk1ODkxNDQ1Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-896e9f965b314422075cfcaa1050d4f6-XXX&enrichSource=Y292ZXJQYWdlOzI3MzM5ODc4MztBUzo1NTc2MjIyNTc1NTc1MDRAMTUwOTk1ODkxNDQ1Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victor_Fernandez-Viagas?enrichId=rgreq-896e9f965b314422075cfcaa1050d4f6-XXX&enrichSource=Y292ZXJQYWdlOzI3MzM5ODc4MztBUzo1NTc2MjIyNTc1NTc1MDRAMTUwOTk1ODkxNDQ1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victor_Fernandez-Viagas?enrichId=rgreq-896e9f965b314422075cfcaa1050d4f6-XXX&enrichSource=Y292ZXJQYWdlOzI3MzM5ODc4MztBUzo1NTc2MjIyNTc1NTc1MDRAMTUwOTk1ODkxNDQ1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Sevilla?enrichId=rgreq-896e9f965b314422075cfcaa1050d4f6-XXX&enrichSource=Y292ZXJQYWdlOzI3MzM5ODc4MztBUzo1NTc2MjIyNTc1NTc1MDRAMTUwOTk1ODkxNDQ1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victor_Fernandez-Viagas?enrichId=rgreq-896e9f965b314422075cfcaa1050d4f6-XXX&enrichSource=Y292ZXJQYWdlOzI3MzM5ODc4MztBUzo1NTc2MjIyNTc1NTc1MDRAMTUwOTk1ODkxNDQ1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Framinan?enrichId=rgreq-896e9f965b314422075cfcaa1050d4f6-XXX&enrichSource=Y292ZXJQYWdlOzI3MzM5ODc4MztBUzo1NTc2MjIyNTc1NTc1MDRAMTUwOTk1ODkxNDQ1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Framinan?enrichId=rgreq-896e9f965b314422075cfcaa1050d4f6-XXX&enrichSource=Y292ZXJQYWdlOzI3MzM5ODc4MztBUzo1NTc2MjIyNTc1NTc1MDRAMTUwOTk1ODkxNDQ1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Sevilla?enrichId=rgreq-896e9f965b314422075cfcaa1050d4f6-XXX&enrichSource=Y292ZXJQYWdlOzI3MzM5ODc4MztBUzo1NTc2MjIyNTc1NTc1MDRAMTUwOTk1ODkxNDQ1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Framinan?enrichId=rgreq-896e9f965b314422075cfcaa1050d4f6-XXX&enrichSource=Y292ZXJQYWdlOzI3MzM5ODc4MztBUzo1NTc2MjIyNTc1NTc1MDRAMTUwOTk1ODkxNDQ1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victor_Fernandez-Viagas?enrichId=rgreq-896e9f965b314422075cfcaa1050d4f6-XXX&enrichSource=Y292ZXJQYWdlOzI3MzM5ODc4MztBUzo1NTc2MjIyNTc1NTc1MDRAMTUwOTk1ODkxNDQ1Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

NEH-based heuristics for the permutation flowshop
scheduling problem to minimise total tardiness∗

Victor Fernandez-Viagas1†, Jose M. Framinan1

1 Industrial Management, School of Engineering, University of Seville,

Ave. Descubrimientos s/n, E41092 Seville, Spain, {vfernandezviagas,framinan}@us.es

November 6, 2017

Abstract

Since Johnson’s seminal paper in 1954, scheduling jobs in a permutation flowshop
has been receiving the attention of hundreds of practitioners and researchers, being
one of the most studied topics in the Operations Research literature. Among the
different objectives that can be considered, minimising the total tardiness (i.e. the
sum of the surplus of the completion time of each job over its due date) is regarded
as a key objective for manufacturing companies, as it entails the fulfilment of the due
dates committed to customers. Since this problem is known to be NP-hard, most
research has focused on proposing approximate procedures to solve it in reasonable
computation times. Particularly, several constructive heuristics have been proposed,
with NEHedd being the most efficient one, serving also to provide an initial solution
for more elaborate approximate procedures. In this paper, we first analyse in detail
the decision problem depending on the generation of the due dates of the jobs, and
discuss the similarities with different related decision problems. In addition, for the
most characteristic tardiness scenario, the analysis shows that a huge number of
ties appear during the construction of the solutions done by the NEHedd heuristic,
and that wisely breaking the ties greatly influences the quality of the final solution.
Since no tie-breaking mechanism has been designed for this heuristic up to now,
we propose several mechanisms that are exhaustively tested. The results show that
some of them outperform the original NEHedd by about 25% while keeping the same
computational requirements.

Keywords: Scheduling, Flowshop, Heuristics, NEH, tie-breaking mechanism,tardiness,
PFSP.
∗Preprint submitted to Computers and Operations Research, http://dx.doi.org/10.1016/j.cor.2015.02.002.
†Corresponding author

1

1 Introduction

The Permutation Flowshop Scheduling Problem (denoted as PFSP) is one of the most studied

problems in the Operations Research literature (see the reviews by Framinan et al., 2004; Ruiz

and Maroto, 2005). This decision problem deals with scheduling n jobs that have to be processed

on m machines in the same order and with the same job sequence on every machine. Different

criteria have been considered in the literature for this decision problem (see e.g. the reviews

by Framinan et al., 2005; Vallada et al., 2008; Pan and Ruiz, 2013), such as the maximum

completion time among the jobs or makespan, the total flowtime (sum of completion times of all

jobs), and the total tardiness (sum of the tardiness of each job). Makespan and total completion

time are related to the fast processing of the products and to a balanced use of resources, both

issues being of great importance in make-to-stock manufacturing scenarios. In contrast, total

tardiness focuses on the satisfaction of customers and it is therefore better suited for make-to-

order manufacturing scenarios as due dates play a key role (Panwalkar et al., 1982; Kim et al.,

2001). Thereby, among the objectives considered for the PFSP, the total tardiness highlights a

critical concern for manufacturing systems (see e.g. Raman, 1995; Panwalkar et al., 1973), since

delays may lead to an increase in costs such as penalty clauses in a contract, loss of customers

and/or bad reputation for other customers (Sen and Gupta, 1984). The PFSP with total tardiness

minimisation objective is denoted as Fm|prmu|
∑
Tj (see e.g. Pinedo, 1995).

Since the problem is known to be NP-hard, most researchers have focused on developing

solution procedures (i.e. heuristics) that do not guarantee the optimality of the solution, but

that can provide a (hopefully) good solution in a reasonable time interval. More specifically,

several heuristics and metaheuristics have been proposed in the literature for the Fm|prmu|
∑
Tj

problem, such as those by e.g. Gelders and Sambandam (1978); Kim et al. (1996); Rajendran

and Ziegler (2003); Framinan and Leisten (2008); Vallada and Ruiz (2010). Among them, the

NEHedd heuristic (Kim, 1993) stands out since, as we will discuss later, many works employ

it to obtain an initial solution. The NEHedd is an adaptation for the tardiness objective of

the well-known NEH heuristic by Nawaz et al. (1983) for makespan minimisation. In the NEH

heuristic, jobs are initially arranged in non ascending order of their processing times. Then, a

2

job sequence is constructed by evaluating the partial schedules originating from the initial order:

Assuming a sequence already set for the first k− 1 jobs, k candidate (sub)sequences are obtained

by inserting job k in the k possible slots of the current sequence. Out of these k (sub)sequences,

the one yielding the minimum makespan is kept as the relative (sub)sequence for these first k

jobs. Then, job k + 1 from the initial order is considered analogously, and so on until all n jobs

have been sequenced. In order to reduce the computational burden of the NEH heuristic, Taillard

(1990) proposed a mechanism (known as Taillard’s acceleration) to reduce the complexity of the

NEH heuristic from n3 · m to n2 · m. The excellent performance of the NEH heuristic and its

easy adaptation to similar problems have led to its application to other scheduling decisions,

such as the PFSP with total completion time minimisation (see e.g. Framinan et al., 2003),

denoted as Fm|prmu|
∑
Cj , or the hybrid flowshop scheduling problem (see e.g. Brah and Loo,

1999). For these problems, Taillard’s acceleration cannot be applied, but Li et al. (2009) present

a mechanism that saves between 30-50% of CPU time for the Fm|prmu|
∑
Cj problem, however

without reducing its complexity.

The NEHedd heuristic differs from the NEH heuristic in the starting order (jobs are arranged

now according to the Earliest Due Date or EDD rule), and in the evaluation of the partial

sequences (as the one with lowest total tardiness is selected). Taillard’s acceleration cannot be

applied to the NEHedd, and, although Vallada and Ruiz (2010) propose a mechanism similar to

that by Li et al. (2009), the complexity of the NEHedd remains O(n3 ·m).

The extensive computational evaluation of heuristics for the Fm|prmu|
∑
Tj problem carried

out by Vallada et al. (2008) shows that NEHedd is a key constructive heuristic for the problem

since, aside to being very efficient, the rest of efficient heuristics in the literature with more

average CPU time employ NEHedd as an initial solution. More specifically, more than half of

the state-of-the-art improvement heuristics or metaheuristics for the problem use NEHedd as a

starting solution. This fact can be also seen in more recent works, such as Vallada and Ruiz

(2010), or Schaller (2012).

Despite the excellent performance of the NEHedd heuristic, we believe that additional im-

provements could be gained by further analysis of the problem under consideration. First, the

tardiness minimisation problem could resemble different scheduling problems depending on the

3

due dates of the jobs for each specific instance: Intuitively, it is clear that, for an instance with due

dates much greater than the sum of the processing times of its jobs, almost every schedule may

yield zero total tardiness, thus turning the problem into a trivial one. Analogously, unachievable

due dates for each job results in an instance for which almost every sequence yields tardiness

for every job and therefore the problem resembles that of minimising flowtime. By conducting

an analysis of these possible scenarios, further insights on the problem can be obtained, so the

performance of the NEHedd procedure can be enhanced. More specifically, we will show in this

paper that such an analysis reveals the importance of adequately addressing the high number

of ties appearing in the constructive phase of the NEHedd. In order to handle these ties in an

efficient way, we propose several tie-breaking mechanisms for the problem and conduct an ex-

tensive computational experiment to test their performance. The results show that one of these

mechanisms (based on machine idle time) improves the original results obtained by NEHedd by

roughly 25% while requiring the same CPU time. Another one (based on Taillard’s acceleration

for makespan) outperforms the NEHedd by 15% while employing less CPU time. Furthermore,

when using the idle time- based version of the NEHedd as starting solution for the metaheuristic

by Vallada and Ruiz (2010) (which is the state-of-the-art metaheuristic for the problem), the

metaheuristic improves its result for different stopping criteria.

The remainder of the paper is organized as follows: in Section 2 the problem under consid-

eration is described and analysed to derive some properties of the problem that may serve to

identify the different scenarios and related decision problems. As a result, it is shown that there

is a high number of ties for the instances in the most tardiness-specific scenario (i.e. that one

not leading to trivial problems or to flowtime minimisation). Therefore, in Section 3, eight tie-

breaking mechanisms are proposed. An extensive comparison among them and with the original

NEHedd procedure are performed in Section 4. Finally, conclusions and future research lines are

discussed in Section 5.

4

2 Analysis of the Problem

The problem under study can be stated as follows: n jobs have to be scheduled in a flowshop

composed of m machines. Each job j has a processing time, tij , on each machine i. Considering

a sequence π := (π1, . . . πn), the processing time of the job in position j, i.e. job πj , is denoted

as pij , where pij = tiπj . Cij denotes the completion time of job πj on machine i. The completion

time of the last job of the sequence in the last machine, Cm,n = Cmax, is defined as the maximum

completion time or makespan of the sequence. Let dj be the due date of job j, and pj =
∑m

i=1 pij

the sum of the processing times of job j across all machines. The tardiness (earliness) of job j is

defined as Tj = max{Cmj − dj , 0} (Ej = max{dj − Cmj , 0}). Finally, total tardiness is defined

as
∑
Tj =

∑
∀jmax{Cmj − dj , 0}.

As discussed in Section 1, our problem is highly influenced by the due dates of the jobs in

the specific instance. In this Section, we make an effort to gain a better understanding of the

problem so the performance of existing solution procedures (most notably the NEHedd) can be

enhanced. To do so, we first state two simple properties of the problem under consideration:

Property 2.1. Let I be an instance of the Fm|prmu|
∑
Tj problem, and WM be the maximum

(worst) makespan that can be obtained for I. If dj ≥ WM, ∀j, then each feasible sequence π is

an optimal solution for I. That is, I has n! optimal solutions.

Proof. The proof of this property is obvious: since WM is the worst makespan of the problem

(i.e. WM ≥ Cm,j , ∀j) and each due date is greater than or equal toWM (i.e. dj ≥WM ≥ Cm,j ,

∀j), then minimising
∑
∀jmax{Cm,j − dj , 0} is equal than minimising

∑
∀jmax{−P, 0} = 0,

where P is a non-negative number, and hence each feasible solution is an optimal solution of the

problem.

Property 2.2. Let I be an instance of the Fm|prmu|
∑
Tj problem with dj ≤

∑m
i=1 pij , ∀j.

Then, an optimal solution for I can be obtained by solving the corresponding Fm|prmu|
∑
Cj

problem for I.

Proof. pj is a lower bound of the makespan of the job j. When dj ≤ pj , then each completion

time Cmj is greater than or equal to its due date, dj , and, hence
∑
∀jmax{Cm,j − dj , 0} =∑

∀j(Cm,j − dj) =
∑
∀j Cm,j −

∑
∀j dj =

∑
∀j Cm,j + const.

5

These two properties formalise the interdependence between the due dates and processing

times of an instance, and the type of optimisation problem. If the due dates are extremely

tight, the problem is similar to that of flowtime minimisation according to Property 2.2 whereas

extremely loose due dates lead to a trivial problem according to Property 2.1. Therefore, a

problem instance can be classified along these two extreme cases. To do so, we first define for

each job j the following indicator vj :

vj =
dj − pj
WM − pj

(1)

Clearly, vj ≤ 0 indicates that the due date cannot be met for job j, regardless of the position

where it is scheduled. Similarly, vj ≥ 1 corresponds to the case where the completion time of job

j is lower than its due date. By adequately truncating vj , we can obtain a normalised indicator

for job j, i.e.: min{1;max{0; vj}} ∈ [0, 1].

Then, the indicator v can be defined as:

v =
n∑
j=1

min{1;max{0; vj}}
n

=
n∑
j=1

min{WM − pj ; max{0; dj − pj}}
n · (WM − pj)

(2)

It can be shown that v ∈ [0, 1], and that if, for a given instance, v = 0 (tight due dates),

then minimising the total tardiness is equivalent to minimising the total flowtime. On the other

extreme, if v = 1 (loose due dates), then any sequence is optimal.

In addition to how tight/loose the due dates are, the variability of the due dates among jobs

also plays an important role in the optimization problem, which is formalised using the following

property:

Property 2.3. The sequence πedd :=
(
πedd1 , · · · , πeddn

)
obtained by the EDD rule, is an optimal

solution of the Fm|prmu|
∑

j Tj problem if dπedd
j
≥ dπedd

j−1
+
∑m

i=1 piπedd
j

(or, equivalently, dπedd
j
≥∑j

k=1

∑m
i=1 piπedd

k
), ∀j > 1, and dπedd

1
≥
∑m

i=1 piπedd
1

.

Proof. Taking into account that Cm,πedd
j−1

+
∑m

i=1 piπedd
j

is an upper bound of Cm,πedd
j

, i.e. Cm,πedd
j−1

+∑m
i=1 piπedd

j
≥ Cm,πedd

j
, the property can be easily proved recursively, as follows: Beginning with

the first job of the sequence, πedd1 , and assuming that dπedd
1
≥
∑m

i=1 piπedd
1

, then Cm,πedd
1
− dπedd

1
≤

6

Cm,πedd
1
−
∑m

i=1 piπedd
1

=
∑m

i=1 piπedd
1
−
∑m

i=1 piπedd
1

= 0, where it has been used that the completion

time of the first job is equal to the sum of processing times, i.e. Cm,πedd
1

=
∑m

i=1 piπedd
1

. Hence, the

first term of the objective function is zero, i.e. Cm,πedd
1
−dπedd

1
≤ 0 −→ max(Cm,πedd

1
−dπedd

1
, 0) = 0.

Following with the job in second position and assuming that dπedd
2
≥ dπedd

1
+
∑m

i=1 piπedd
2

, where

Cm,πedd
1
≤ dπedd

1
by means of the job in the first position. Then dπedd

2
≥ Cm,πedd

1
+
∑m

i=1 piπedd
2

.

Note that Cm,πedd
1

+
∑m

i=1 piπedd
2

is an upper bound of Cm,πedd
2

and, hence dπedd
2
≥ Cm,πedd

1
+∑m

i=1 piπedd
2
≥ Cm,πedd

2
which implies that the completion time of the job in second position is

again lower than its due date and that the second term of the objective function is again zero,

i.e. Cm,πedd
2
− dπedd

2
≤ 0 −→ max(Cm,πedd

2
− dπedd

2
, 0) = 0.

For the job in a position j, we assume dπedd
j
≥ dπedd

j−1
+
∑m

i=1 piπedd
j

. As Cm,πedd
j−1
≤ dπedd

j−1
from

the previous job and Cm,πedd
j−1

+
∑m

i=1 piπedd
j
≤ Cm,πedd

j
, then the completion time of the job in

position j is lower than its due date as well as the jth term of the objective function is zero, i.e.

Cm,πedd
j
− dπedd

j
≤ 0 −→ max(Cm,πedd

j
− dπedd

j
, 0) = 0.

Taking into account the last expression, the minimisation of total tardiness can be written as

max
∑
max{Cm,j − dj , 0} = max(0) and, hence, the EDD rule is optimal.

Property 2.3 suggests that, for instances with high values of indicator v (i.e. loose due dates)

and a high variability in the due dates of the jobs, the EDD rule may have a good performance,

as the due dates would have a greater influence in the objective function than the completion

times of the jobs. Clearly, for such instances, employing more sophisticated algorithms might not

pay off.

The three simple properties stated above determine three extreme cases of the total tardiness

problem where good/optimal solutions can be found by any algorithm (i.e. v ≈ 1), or by algo-

rithms designed for different problems (i.e. by algorithms for flowtime minimisation if v ≈ 0, or

for tardiness minimisation in a single-machine if v is high and there is a high variability in the

due dates). Obviously, the interest lies in finding efficient algorithms for instances in between

these extreme cases. Therefore it is useful to review the different sets of instances that have

been generated in the literature to check whether they adequately cover the specific tardiness

minimisation case, or not.

To the best of our knowledge, testbeds for the Fm|prmu|
∑
Tj problem have been built

7

employing three different methods to generate due dates:

• Gelders and Sambandam (1978) generate the due dates according to a uniform distribution

drawn between the sum of processing time of the job and this sum plus an upper bound.

This method for generating due dates is labelled in the following as GS.

• Potts and Van Wassenhove (1982) generate the due dates using two parameters, T and R,

related to the mean and variance of the due dates, respectively, according to an uniform

distribution between P · (1 − T − R/2) and P · (1 − T + R/2), where P is a lower bound

for the makespan. This method is labelled in the following as PV.

• In Hasija and Rajendran (2004), due dates are generated according to (1+3 ·U [0, 1])
∑
pij .

This method is denoted as HR in the following.

Clearly, these methods produce instances with different values of the indicator v and, in

the case of the PV method, parameter R controls the variability of the due dates among jobs.

To analyse the range of instances generated by each method, three different benchmarks have

been built in the following manner: we consider the data regarding number of jobs, machines,

and processing times as in the testbed by Vallada et al. (2008) (i.e. n = {50, 150, 250, 350},

m = {10, 30, 50} and processing times drawn from a uniform [1, 99] distribution), and generate

three testbeds:

• The first testbed is that by Vallada et al. (2008), which was generated using the PV

procedure with parameters T = {0.2, 0.4, 0.6} and R = {0.2, 0.6, 1.0}, and produced 5

replicates for each combination of m, n, T , and R. In total, 540 instances were obtained.

• The second testbed is generated using the GS procedure. To have the same number of

instances than in the previous testbed, 45 replicates are generated for each combination of

m and n.

• The third testbed is generated in an analogous manner to the previous one (with 45 repli-

cates for each combination ofm and n), but using the HR procedure for due date generation.

8

Figure 1: Distribution of the percentage of instances depending on v for different genera-
tion of due dates (In the left, the percentage of instances of the testbeds in each interval

of v is shown, while the right figure shows the cumulative percentage of instances).

For each instance in the three benchmarks, the indicator v has been calculated according to

expression (2), where the worst makespan, WM has been approximated using a modified version

of the NEH to maximise makespan. The amount of instances for different intervals of v is shown

in Figure 1 for the three benchmarks. In the figure in the left side, the percentage of instances

is classified according to the parameter v whereas the figure in the right shows the cumulative

percentage of instances. As can be seen, HR and specially GS produce many instances with very

low values of v for which the problem is similar to minimising the total flowtime. For HR, 65%

instances have a v lower than 0.15 while with GS all the instances have v lower than 0.20. Hence,

in this paper, we focus in the generation of due dates according to the PV method, which is more

likely to generate instances in the range of interest of the Fm|prmu|
∑

j Tj problem.

To further analyse the similarities between the Fm|prmu|
∑
Tj and to minimise total flowtime

for low values of the parameter v, we solve all instances in the testbed with the PV due date

generation method using the NEHedd heuristic and the NEH heuristic for flowtime minimisation

(denoted as NEH_FT). In addition, we obtain the solution given for each instance by the EDD

rule in order to test the influence of higher values of v and R. Note that there are only two

differences between NEHedd and NEH_FT:

1. The starting order of NEHedd is the EDD rule whereas in NEH_FT the starting order is

the ascending order of the sum of the processing times, and

2. When iteratively constructing the solution, NEHedd selects the best partial sequence with

9

Figure 2: CRDIedd and CRDINEH_FT for different values of v in each instance of the
Benchmark of Vallada et al. (2008).

lowest total tardiness, while NEH_FT selects the one with lowest flowtime.

The usual indicator of the quality of heuristic i with respect to tardiness when applied to a

given instance j is the so-called Relative Deviation Index (RDI), which is defined as follows:

RDIij =
sumTij −Bestj
Worstj −Bestj

· 100

where sumTij is the total tardiness obtained by heuristic i when applied to instance j. Worstj and

Bestj are the worst and best known total tardiness for instance j. RDI is usually employed for

tardiness instead of the average relative deviation (most used indicator for makespan or flowtime

objectives) since tardiness may yield 0 for some instances and therefore the value of the average

relative deviation would be distorted (see Vallada et al., 2008; Kim, 1993; Kim et al., 1996).

To better compare the performance obtained by the different heuristics that are to be tested

in this paper and those by the NEHedd (which is the reference heuristic for the problem under

consideration), we build the Compared Relative Deviation Index (CRDI), which is simply the

difference between the RDI of the heuristic i and that of the NEHedd when both heuristics are

applied to instance j, i.e.:

RDIij −RDINEHedd,j = CRDIij =
sumTij − sumTNEHedd,j

Worstj −Bestj
· 100 (3)

10

Figure 3: CRDIedd and CRDINEH_FT in each instance of the Benchmark of Vallada et al.
(2008) for different values of parameters v and R.

11

Clearly, CRDI ∈ [−100, 100]. In the subsequent experiments,Worst and Best are taken from

the best and worst known total tardiness for the instances recorded in http://soa.iti.es/problem-

instances. The values of CRDIedd and CRDINEH_FT are shown in Figure 2 with respect to

indicator v for each instance of the benchmark, while Figure 3 groups the results for different

values of R. The following conclusions can be obtained according to those results:

• As predicted by Property 2.2, the performance of NEH_FT and NEHedd procedure is very

similar for low values of v. CRDINEH_FT is on average 0.79 for instances with v < 0.1

and 2.91 for instances with v < 0.15.

• NEH_FT outperforms NEHedd when the variance of the due dates is low, i.e. R = 0.2,

even for high values of v. The average CRDINEH_FT for R = 0.2 is -2.71. This fact can

be explained if we analyse the objective function when the variance of the due dates is zero

(common due dates). Then, minimising
∑

jmax{Cm,j − dj , 0} =
∑

j∈late(Cm,j − dj) =∑
j∈lateCm,j −

∑
j∈late dj =

∑
j∈lateCm,j − L · const, where L is the number of jobs late.

The first term is directly included in the minimisation of total flowtime, while the second

term decreases when minimising total flowtime.

• In general, the performance of NEH_FT deteriorates as v increases until it reaches medium-

high values (this is particularly clear for the combination of parameters R = 0.6 and

R = 1.0), i.e. NEH_FT procedure only performs better when the problem can be reduced

to either a flowtime minimisation problem (low v) or to a trivial one (high v).

• The performance of the EDD rule improves as v increases.

• For high values of v and a high variance of the due dates (R = 1.0), the EDD rule performs

roughly as good as the NEHedd procedure, i.e. CRDIedd ' 0. This could be predicted as

a consequence of Property 2.3, since if the variance of the due dates of an instance is high

enough to verify the conditions of Property 2.3, then EDD is optimal.

According to the previous analysis and conclusions, the problem of minimising tardiness on

an instance is bounded by three different problems depending on v and on the variance of the due

dates of the jobs, as shown in Figure 4. Roughly speaking, high values of the mean and variance of

12

Figure 4: Location of the problem based on the mean and variance of the due dates.

the due dates correspond to a problem where the EDD rule is optimal (see Region 3 of Figure 4).

Low values of the mean and variance determine a problem similar to Fm|prmu|
∑
Cj (see Region

1 of Figure 4). Finally, high values of the mean of the due dates combined with a low variance

correspond to a trivial problem where each sequence is optimal (Region 2). The interesting region

to be analysed for the Fm|prmu|
∑
Tj problem is the region between 1, 2 and 3, since otherwise

we would be solving a different decision problem.

The analysis carried out also serves to explain the excellent performance of the NEHedd

procedure and to identify possible improvements. The NEHedd heuristic performs well in the

three regions since it minimises also flowtime in Region 1, and, since it includes the EDD rule

as a sorting order, it guarantees good performance in Region 3. However, it can be seen that its

performance decreases for medium/high values v as compared to that for low/medium values of

v. An explanation of this rather surprising fact could lie in the high number of ties that would

have to broken when, for each iteration of the NEHedd procedure, several partial sequences may

have the same total tardiness. This situation could be rather common, as in the first iterations

of the algorithm the total tardiness of the partial sequence is zero, thus leading to a high number

of ties. In addition, since these ties appear in the first iterations, the mechanism chosen to solve

13

Figure 5: Average number of ties in each instance grouped by the parameter v.

them can greatly influence the final sequence obtained.

To confirm this fact, the number of ties on the well-known benchmark of instances proposed

by Vallada et al. (2008) has been studied. Results are shown in Figure 5 for different values of v,

and yield an average of 10.1 ties per iteration, where 210 is the maximum number of ties found

in an iteration. The number of ties increases with v and is close to zero for low values of v, which

is consistent with the fact that the problem is similar to that of flowtime minimisation. The

analysis also shows that, for some instances with a high value of v, an average of around a 40%

of the positions where the job is to be inserted has the same total tardiness in each iteration,

which represents a huge amount of ties.

In view of the results of the experiments, it can be concluded that the existence of a mechanism

to break ties is extremely important for the NEHedd procedure in the Fm|prmu|
∑
Tj problem.

However, a tie-breaking mechanism is not considered either in the NEHedd procedure, or in the

original NEH algorithm for makespan minimisation. In the next section, we propose different

tie-breaking mechanisms so the performance of NEHedd procedure can be improved in the most

interesting region of the Fm|prmu|
∑
Tj .

14

3 Proposed tie-breaking mechanisms

As mentioned in the previous section, no specific tie-breaking mechanism is mentioned in the

original NEH heuristic for makespan minimisation. Indeed, it is cited (Nawaz et al., 1983) that ‘...

Next, the job with the third highest total process time is selected and the three partial sequences

are tested in which this job is placed at the beginning, middle and end of the partial sequence...’,

which seems to indicate that the first position where a tie is found is selected. In the following,

we will denote this tie-breaking mechanism as FT (First-Tie). Later, in the race for improving

the NEH heuristic, Kalczynski and Kamburowski (2007) established the importance of breaking

ties in the NEH heuristic and proposed a tie-breaking mechanism to improve the results obtained

by the NEH heuristic. Since then, this aspect has been extensively analysed in the literature and

several tie-breaking mechanisms have been proposed for the PFSP to minimise makespan (see

Kalczynski and Kamburowski, 2008, Dong et al., 2008, Kalczynski and Kamburowski, 2009, Ribas

et al., 2010, Kalczynski and Kamburowski, 2011, or Fernandez-Viagas and Framinan, 2014).

To the best of our knowledge, there are no tie-breaking mechanisms proposed for the NEHedd

procedure, which adopts the first-tie mechanism as in the original NEH heuristic. However, it

has to be noted that, since the EDD rule sorts the jobs according to non-decreasing due dates,

in case of ties in the first iterations of NEHedd, the jobs would be finally ordered according

to non-increasing due dates, which would probably lead to a worse final sequence than using a

different mechanism.

In this section, several tie-breaking mechanisms are proposed to improve the traditional tie-

breaking mechanism of the NEHedd procedure. The pseudo-code for the NEHedd algorithm

including a generic tie-breaking mechanism is shown in Figure 6.

The proposed tie-breaking mechanisms involve using a secondary indicator related to the

performance of the partial sequence. The goal is to pick, among those slots with the same

tardiness, the slot yielding the best value of the secondary indicator for the unscheduled jobs.

Thereby, total idle time (IT1 or IT2, see below), total flowtime (CT)), total earliness (ET) and

makespan (MS) are chosen as potential secondary indicators. Note that, since these indicators

have to be computed for every slot where the job is to be inserted in each iteration of the

15

Procedure NEHedd(TBX)
α := Jobs ordered by non-decreasing due dates where α = {α1, ..., αi, ..., αn};
π := {α1};
for k = 2 to n do

Test job αk in any possible position of π.
π := permutation obtained by inserting αk in the position of π with less total
tardiness breaking ties according to an specific mechanism;

end
end

Figure 6: NEHedd with different tie-breaking mechanisms

algorithm, they have to be carefully chosen so that the additional computational effort pays off.

More specifically, the tie-breaking mechanisms analysed in this paper are:

• First tie, NEHedd(TBFT). Original tie-breaking mechanism of the NEHedd algorithm

proposed in Nawaz et al. (1983) where, in case of ties, the first tie is chosen.

• Last tie, NEHedd(TBLT). This tie-breaking mechanism simply consists in selecting the

last tie as reference for the next iteration. This tie-breaking mechanism tries to solve the

problem of TBFT where jobs are sorted according to the reverse EDD rule.

• Total idle time, NEHedd(TBIT1) and NEHedd(TBIT2). Denoting front delay of a

machine as the time until it starts processing the first job, and back delay of a machine as

the time between completing the processing of the last job and the completion of all jobs

in any machine, machine idle time can be ambiguously defined by means of at least three

different ways (Framinan et al., 2003), i.e.: idle time including front delays and excluding

back delays (denoted as IT1); idle time excluding front and back delays (denoted as IT2);

and idle time considering front delays and back delays.

If we adopt the first definition of idle time, then the idle time of machine i can be calcu-

lated as IT1i = Cin −
∑n

j=1 pij . Consequently, the total idle time is IT1 =
∑m

i=1 IT1i.

Minimising IT1 looks for a more compacted schedule of the inserted jobs and it is equiva-

lent to the minimisation of the sum of the completion times of each job in each machine.

On the other hand, the second definition of idle time (excluding both delays) can be cal-

culated as IT2 =
∑n

j=2

∑m
i=2max{Ci−1,j − Ci,j−1, 0}. The heuristics resulting from the

16

use of these tie-breaking mechanisms in NEHedd are denoted as NEHedd(TBIT1) and

NEHedd(TBIT2) respectively. Finally, note that the minimisation of the third definition

of idle time is analogous to the minimisation of makespan and, therefore, it is considered

below when discussing breaking ties according to the makespan.

• Total completion time, NEHedd(TBCT). Total completion time can be defined as

follows: ct =
∑j

j=1Cm,j . As with idle time, this tie-breaking mechanism tries to balance

the use of resources, and the resulting NEHedd heuristic is denoted by NEHedd(TBCT).

• Total earliness, NEHedd(TBET). If a job finishes before its due date, its earliness in-

dicates the time between the due date and the completion time of the job. Given several

sequences with the same total tardiness, sequences with a high value of the total earliness

indicate that, on average, the completion times of the jobs are far from their due dates.

Thus, breaking ties by maximising earliness looks for sequences with a greater buffer against

the due date of each job, which tries to improve the objective function when the follow-

ing jobs are inserted in any position of the sequence. NEHedd(TBET) is denoted when

earliness maximisation is used in the NEHedd algorithm to break ties.

• Makespan, NEHedd(TBMS). Similarly to the first two tie-breaking mechanisms, the

minimisation of the makespan tries to compress the sequence for the subsequent iterations.

The NEHedd heuristic using the minimisation of the makespan as tie-breaking mechanism

is denoted as NEHedd(TBMS).

• Makespan using Taillard’s acceleration, NEHedd(TBMS−Taillard,IT1). As explained

in Section 1, Taillard’s acceleration represents a huge reduction of the computation time of

the NEH algorithm and it is one of the main reasons for its efficiency. However, it cannot

be applied to total tardiness minimisation since the completion time of each job in the

last machine is needed. To reduce the computation time of the NEHedd algorithm for the

tardiness goal, this tie-breaking mechanism applies the NEH algorithm to minimise the

makespan, using Taillard’s acceleration as long as the tardiness of the (partial) sequence is

zero, i.e. in the first iterations of the algorithm when applied. Once the (partial) tardiness is

greater than zero, the proposed algorithm minimises the total tardiness (without Taillard’s

17

Procedure NEHedd(TBMS−Taillard,IT)
α := Jobs ordered by non-decreasing due dates where α = {α1, ..., αi, ..., αn};
π := {α1};
flag := true;
for k = 2 to n do

if flag then
π1 := π;
Test job αk in any possible position of π1 (using Taillard’s acceleration).
π1 := permutation obtained by inserting αk in the position of π1 with less
makespan;
TT := total tardiness of the sequence π1;
if TT > 0 then

flag := false;
else

π := π1;
end

end
if flag 6= true then

Insert job αk in the position of π which minimises the total tardiness breaking
ties according to the total idle time IT1 of the sequence.

end
end

end

Figure 7: NEHedd(TBMS−Taillard,IT)

acceleration) breaking ties according to the total idle time, IT1. The pseudo code of this

method is shown in Figure 7.

• Random, NEHedd(TBrand). A random tie-breaking mechanism is proposed as a baseline

for comparisons with the other mechanisms.

4 Computational Experience

Each proposed tie-breaking mechanism has been compared under the same computer conditions,

which means the same computer and the same programming language (C#). Algorithms were

tested using the set of instances of the benchmark of Vallada et al. (2008) described in Section 2.

The different tie-breaking mechanisms were compared by means of the RDI (described in Section

2) as an indicator of the quality of the solution.

18

Instance TBFT TBLT TBrand TBIT1 TBIT2 TBCT TBMK TBET TBMS−Taillard,IT1
50x10 17.46 17.46 17.25 13.72 15.22 15.21 14.47 15.21 14.53
50x30 19.79 20.31 19.55 18.61 18.69 18.80 18.74 18.80 18.68
50x50 18.17 17.94 17.88 17.57 18.12 17.88 17.98 17.88 17.97
150x10 13.80 13.60 14.45 9.91 10.91 11.11 10.61 11.11 10.69
150x30 20.70 20.35 20.68 15.81 16.47 18.32 17.83 18.32 17.02
150x50 22.04 21.26 21.70 18.57 19.64 19.96 20.14 19.96 19.64
250x10 10.06 9.46 10.02 6.70 7.31 7.45 7.47 7.45 7.26
250x30 17.81 17.03 17.93 11.62 12.19 14.58 13.82 14.58 13.29
250x50 20.21 19.52 20.13 13.96 14.73 17.49 16.87 17.49 15.90
350x10 9.01 8.59 8.86 6.14 6.30 6.47 6.63 6.47 6.65
350x30 15.74 15.43 15.95 9.84 10.41 12.21 11.88 12.21 11.40
350x50 17.38 16.87 17.11 11.10 11.63 14.01 13.74 14.01 13.11
Average 16.85 16.48 16.79 12.80 13.47 14.46 14.18 14.46 13.84

Table 1: Relative deviation index (RDI) for the NEHedd heuristic using different tie-
breaking mechanisms

The results of the heuristics are shown in Table 1 in terms of their values of RDI. The best

overall results are found using IT1 as tie-breaking mechanism with an average RDI (denoted

as ARDI) of 12.80, roughly about a 25% less than in the original FT . Note that each tie-

breaking mechanism (also including the random mechanism) outperforms on average the original

mechanism of the NEHedd algorithm, NEHedd(TBFT), which has an ARDI of 16.85. Although

the difference between this original tie-breaking mechanism and the NEHedd(TBLT) or the

NEHedd(TBrand) is less than 0.37, for the rest of tie-breaking mechanisms the ARDI is at

least a 2.39 lower than that obtained by NEHedd(TBFT), which represents an increase in the

quality of the solution without increasing the complexity of the algorithm. The CPU times of

each algorithm for each combination of n and m are shown in Table 2. The differences between

CPU times are negligible with the exception of the NEHedd(TBMS−Taillard,IT1), which requires

a bit less computational effort and has an ARDI of 5.63, 3.22 lower than that ofFT .

Given that each tie-breaking mechanism is a version of the original NEHedd algorithm and

that the same test bed for all tie-breaking mechanisms is used, it is clear that the random

variables (RDI) are related and the hypothesis of independence can be rejected (see Table 3

for each comparison). However, the hypothesis of normality is not fulfilled, so a paired samples

t-test cannot be used. Two non-parametric statistical hypothesis tests (Wilcoxon signed-rank

19

Instance TBFT TBLT TBrand TBIT1 TBIT2 TBCT TBMK TBET TBMS−Taillard,IT1
50x10 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
50x30 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
50x50 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
150x10 0.43 0.42 0.43 0.42 0.42 0.44 0.42 0.43 0.40
150x30 1.29 1.29 1.29 1.30 1.30 1.30 1.29 1.30 1.27
150x50 2.16 2.16 2.16 2.18 2.18 2.17 2.15 2.16 2.15
250x10 1.92 1.90 1.91 1.89 1.89 1.96 1.90 1.95 1.77
250x30 5.86 5.84 5.86 5.85 5.84 5.94 5.85 5.92 5.67
250x50 9.92 9.91 9.95 9.96 9.97 9.99 9.89 9.94 9.78
350x10 5.15 5.14 5.15 5.08 5.07 5.26 5.12 5.24 4.73
350x30 15.86 15.85 15.89 15.80 15.76 16.10 15.85 16.03 15.23
350x50 26.99 26.98 27.06 27.01 27.01 27.26 27.05 27.18 26.35
Average 5.81 5.80 5.82 5.80 5.80 5.88 5.81 5.86 5.63

Table 2: Average CPU times for the NEHedd heuristic with different tie-breaking mecha-
nisms

Comparison N Correlation Sig.
NEHedd(TBFT) vs NEHedd(TBIT1) 540 0.707 0.000
NEHedd(TBFT) vs NEHedd(TBIT2) 540 0.760 0.000

NEHedd(TBFT) vs NEHedd(TBMS−Taillard,IT1) 540 0.816 0.000
NEHedd(TBFT) vs NEHedd(TBCT) 540 0.876 0.000
NEHedd(TBFT) vs NEHedd(TBMK) 540 0.826 0.000
NEHedd(TBFT) vs NEHedd(TBET) 540 0.876 0.000
NEHedd(TBFT) vs NEHedd(TBLT) 540 0.949 0.000
NEHedd(TBFT) vs NEHedd(TBrand) 540 0.962 0.000

Table 3: Analysis of dependence of samples

test and sign test) are carried out then with a confidence level of 99% to compare the statistical

significance between the mean and the median of the samples, respectively. Results of the tests

are shown in Table 4. For both tests, each tie-breaking mechanism statistically outperforms the

original one with the exception of the random tie-breaking mechanism, for which no statistical

difference was found (p-values of 0.794 and 0.727 for the Wilcoxon signed-rank test and sign test

respectively). Regarding the significance of the different tie-breaking mechanisms, the highest

p-value found was 0.004 when comparing TBLT and TBFT , which indicates the relatively bad

performance of the original tie-breaking mechanism of the NEHedd procedure. The rest of the

p-values are 0.000.

ARDI is shown in Table 5 grouped by the values of the different parameters in the testbed:

20

Comparison Wilcoxon signed-rank test Sign test
Z Sig. Z Sig.

NEHedd(TBFT) vs NEHedd(TBIT1) -14.498 0.000 -12.363 0.000
NEHedd(TBFT) vs NEHedd(TBIT2) -13.665 0.000 -11.446 0.000

NEHedd(TBFT) vs NEHedd(TBMS−Taillard,IT1) -13.829 0.000 -12.020 0.000
NEHedd(TBFT) vs NEHedd(TBCT) -13.616 0.000 -13.207 0.000
NEHedd(TBFT) vs NEHedd(TBMK) -13.246 0.000 -11.810 0.000
NEHedd(TBFT) vs NEHedd(TBET) -13.616 0.000 -13.207 0.000
NEHedd(TBFT) vs NEHedd(TBLT) -3.865 0.000 -2.904 0.004
NEHedd(TBFT) vs NEHedd(TBrand) -0.262 0.794 -0.349 0.727

Table 4: Wilcoxon signed-rank test and sign test

The first and second columns correspond to the value of each parameter in each row according to

the values of T , R, n and m of the testbed. The third and fourth columns represent the average

number of ties per iteration and the maximum number of ties in an iteration, respectively. The rest

of the columns show the ARDI values for each tie-breaking mechanism. ARDI values for each

tie-breaking mechanism are always lower than the ARDI of TBFT regardless of the value of the

parameters, with the exception of TBrand and TBLT . Although NEHedd(TBLT) statistically

outperforms NEHedd(TBFT) in the whole testbed, this does not happen when grouping by

parameters. The minimum difference between the original tie-breaking mechanism and the rest

is found for T = 0.6 and R = 1.0, which corresponds to tighter due dates with high variance.

Obviously, the performance of the tie-breaking mechanism is related to the average number of ties.

Thereby, note that the average and maximum number of ties decreases as m, T , or R increase, or

as n decreases, reaching the maximum value of ties for the following combination of parameters:

T = 0.2, R = 0.2, n = 350 and m = 10. Regarding the behaviour with respect to indicator v,

CRDINEH_TB(IT1) the difference between the best tie-breaking mechanism TBIT1 as compared

to the original one is shown in Figure 8. Most points are below zero in the y-axis, which highlights

the improvement achieved by the heuristic when using IT1 as a tie-breaking mechanism, especially

for v > 0.15 where the problem is far from being of the type Fm|prmu|
∑
Cj .

21

Figure 8: CRDINEH_TB(IT1) in each instance of the Benchmark of Vallada et al. (2008).

Parameter Ties Tie-breaking mechanisms
Mean Max. FT LT rand IT1 IT2 CT MK ET MS-Taillard, IT1

T 0.2 22.5 210 14.57 13.91 14.47 7.18 8.27 10.45 9.71 10.45 8.90
T 0.4 6.5 144 18.14 17.92 18.08 14.15 14.95 15.84 15.67 15.84 15.45
T 0.6 1.1 81 17.83 17.62 17.83 17.06 17.18 17.09 17.17 17.09 17.19
R 0.2 17.1 210 20.86 19.72 20.49 13.14 14.27 15.65 15.02 15.65 14.96
R 0.6 8.3 146 16.83 16.70 16.84 12.88 13.60 15.00 14.84 15.00 14.07
R 1 4.7 112 12.86 12.98 12.95 12.41 12.51 12.69 12.77 12.69 12.57
n 50 0.5 23 18.25 18.28 17.85 16.81 17.32 17.18 17.20 17.18 17.15
n 150 3.8 81 18.85 18.40 18.94 14.76 15.67 16.47 16.19 16.47 15.78
n 250 8.9 153 16.03 15.33 16.02 10.76 11.41 13.17 12.72 13.17 12.15
n 350 14.9 210 14.11 13.70 14.04 9.13 9.55 10.98 10.84 10.98 10.47
m 10 16.0 210 12.37 12.02 12.32 9.13 9.80 9.90 9.82 9.90 9.75
m 30 8.7 182 18.25 18.06 18.38 13.82 14.26 15.79 15.43 15.79 14.97
m 50 5.4 162 19.30 18.78 19.04 15.16 15.86 17.20 17.05 17.20 16.52

Table 5: Average number of ties for iteration, maximum number of ties in an iteration and
ARDI for each tie-breaking mechanism.

22

Stopping Criterion ARDI-GAPR Wilcoxon signed-rank test Sign test
NEHedd(TBFT) NEHedd(TBIT1) p-value p-value

t = 0.5 14.66 11.01 0.000 0.000
t = 1 12.65 9.72 0.000 0.000
t = 2 10.61 8.42 0.000 0.000
t = 5 7.57 6.65 0.000 0.000
t = 10 6.25 5.63 0.000 0.000
t = 20 5.09 4.71 0.000 0.000

Table 6: ARDI, Wilcoxon signed-rank test and sign test for the GAPR algorithm when it
is initialized with NEHedd(TBIT1) and NEHedd(TBFT)

4.1 Influence of the proposed tie-breaking mechanisms on itera-

tive improvement algorithms

In this section, we evaluate the influence of the proposed NEH-based heuristics when they are

incorporated as seed sequences in iterative improvement algorithms. For this comparison, we

use the genetic algorithm, GAPR, proposed by Vallada and Ruiz (2010). Three types of genetic

algorithms were proposed. Each one was shown to be statistically more efficient than other

iterative improvement algorithms in the literature for three different stopping criteria. The GAPR

algorithm uses a fast selection mechanism denoted as n-tournament as well as the path relinking

as crossover mechanism. As initial solution, the algorithm uses 28 random sequences and two

individuals provided by the original NEHedd algorithm and by the EDD despatching rule. To

analyse the influence of the chosen tie-breaking mechanism, we substitute the NEHedd seed

sequence by the best proposed NEHedd-based constructive heuristic, i.e. NEHedd(TBIT1), and

we compare them using the same benchmark as in the previous Section. Average computational

results in terms of ARDI are shown in Table 6 and in Figure 9 for six different stopping criteria

to observe the evolution of the performance for different CPU times, t · n · (m/2) with t ∈

[0.5, 1, 2, 5, 10, 20] expressed in milliseconds.

Obviously, one might expect that the influence of the initial solution on a well-designed

metaheuristic such as the GAPR would decrease with the CPU time. Still, for the range of CPU

times employed (which represents around 3 minutes of CPU times per instance for the biggest

sizes), the results show that our proposal positively impacts on the quality of the solution. In fact,

23

Figure 9: Evolution of the GAPR algorithm with different initial solutions for six different
stopping criteria.

the positive contribution of the tie-breaking mechanism is found to be statistically significant for

every stopping criteria, for both non-parametric statistical hypothesis tests (Wilcoxon signed-rank

test and sign test). The highest found p-value was 0.000 (see Table 6).

5 Conclusions

In this paper, several tie-breaking mechanisms for the NEH heuristics have been proposed to

solve the Fm|prmu|
∑
Tj problem. It is clear that, depending on the due dates, the decision

problem to be solved is different. Extremely tight due dates induce to a Fm|prmu|
∑
Cj problem,

whereas very loose due dates lead to a trivial problem. Thereby, the problem has been first

analysed in detail, depicting the limits between the tardiness problem and other problems. As a

conclusion, it was obtained that several testbeds generate instances for a problem more similar

to Fm|prmu|
∑
Cj . Additionally, it has been found that the number of ties in each iteration of

the NEHedd heuristic is very high outside these limits (i.e. the most interesting setting regarding

tardiness minimisation), and that the original tie-breaking mechanism of NEHedd would result

in worse sequences as it orders the jobs in non-increasing due dates in the very likely case of

ties in the first iterations. To address this problem and to enhance the performance of the

24

NEHedd procedure, a set of eight tie-breaking mechanism have been proposed. These are tested

against the original one in an extensive computational evaluation, and the results show that

some of these mechanisms improve the performance of the NEHedd procedure by more than 25%

while requiring similar computation time. Additionally, when embedding this mechanism as seed

sequence in a state-of-the-art iterative improvement algorithm, the performance of the resulting

algorithm significantly improves that of the original one.

Regarding future research lines, although the due date generation mechanism by Potts and

Van Wassenhove (1982) has been chosen to build the testbed, further analysis could be conducted

to develop more extensive testbeds, including bigger intervals for indicator v.

Acknowledgements

The authors are sincerely grateful to the anonymous referees, who provide very valuable comments

on the earlier version of the paper. This research has been funded by the Spanish Ministry

of Science and Innovation, under projects “SCORE” with reference DPI2010-15573/DPI, and

“ADDRESS” with reference DPI2013-44461-P/DPI.

References
Brah, S. and Loo, L. (1999). Heuristics for scheduling in a flow shop with multiple processors.

European Journal of Operational Research, 113(1):113–122.

Dong, X., Huang, H., and Chen, P. (2008). An improved NEH-based heuristic for the permutation
flowshop problem. Computers & Operations Research, 35(12):3962–3968.

Fernandez-Viagas, V. and Framinan, J. M. (2014). On insertion tie-breaking rules in heuristics for
the permutation flowshop scheduling problem. Computers and Operations Research, 45(0):60
– 67.

Framinan, J., Gupta, J., and Leisten, R. (2004). A review and classification of heuristics for per-
mutation flow-shop scheduling with makespan objective. Journal of the Operational Research
Society, 55(12):1243–1255.

Framinan, J. and Leisten, R. (2008). Total tardiness minimization in permutation flow shops:
A simple approach based on a variable greedy algorithm. International Journal of Production
Research, 46(22):6479–6498.

Framinan, J., Leisten, R., and Ruiz-Usano, R. (2005). Comparison of heuristics for flowtime
minimisation in permutation flowshops. Computers and Operations Research, 32(5):1237–1254.

Framinan, J. M., Leisten, R., and Rajendran, C. (2003). Different initial sequences for the
heuristic of Nawaz, Enscore and Ham to minimize makespan, idletime or flowtime in the

25

static permutation flowshop sequencing problem. International Journal of Production Research,
41(1):121–148.

Gelders, L. F. and Sambandam, N. (1978). Four simple heuristics for scheduling a flow-shop.
International Journal of Production Research, 16(3):221–231.

Hasija, S. and Rajendran, C. (2004). Scheduling in flowshops to minimize total tardiness of jobs.
International Journal of Production Research, 42(11):2289–2301.

Kalczynski, P. J. and Kamburowski, J. (2007). On the NEH heuristic for minimizing the makespan
in permutation flow shops. OMEGA, The International Journal of Management Science,
35(1):53–60.

Kalczynski, P. J. and Kamburowski, J. (2008). An improved NEH heuristic to minimize makespan
in permutation flow shops. Computers & Operations Research, 35(9):3001–3008.

Kalczynski, P. J. and Kamburowski, J. (2009). An empirical analysis of the optimality rate of
flow shop heuristics. European Journal of Operational Research, 198(1):93 – 101.

Kalczynski, P. J. and Kamburowski, J. (2011). On recent modifications and extensions of the
NEH heuristic for flow shop sequencing. Foundations of Computing and Decision Sciences,
36(1):17–34.

Kim, Y.-D. (1993). Heuristics for flowshop scheduling problems minimizing mean tardiness.
Journal of the Operational Research Society, 44(1):19–28.

Kim, Y.-D., Kim, J.-G., Choi, B., and Kim, H.-U. (2001). Production scheduling in a semi-
conductor wafer fabrication facility producing multiple product types with distinct due dates.
IEEE Transactions on Robotics and Automation, 17(5):589–598.

Kim, Y.-D., Lim, H.-G., and Park, M.-W. (1996). Search heuristics for a flowshop scheduling
problem in a printed circuit board assembly process. European Journal of Operational Research,
91(1):124–143.

Li, X., Wang, Q., and Wu, C. (2009). Efficient composite heuristics for total flowtime minimiza-
tion in permutation flow shops. Omega, 37(1):155–164.

Nawaz, M., Enscore Jr., E., and Ham, I. (1983). A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. OMEGA, The International Journal of Management Science,
11(1):91–95.

Pan, Q.-K. and Ruiz, R. (2013). A comprehensive review and evaluation of permutation flowshop
heuristics to minimize flowtime. Computers and Operations Research, 40(1):117–128.

Panwalkar, S., Dudek, R., and Smith, M. (1973). Sequencing research and the industrial problem.
In Symposium on the Theory of Scheduling. Springer, Berlin.

Panwalkar, S., Smith, M., and Seidmann, A. (1982). Common due date assignment to minimize
total penalty for the one machine scheduling problem. Operations Research, 30(2):391–399.

Pinedo, M. (1995). Scheduling: Theory, Algorithms and Systems. Prentice Hall.

Potts, C. and Van Wassenhove, L. (1982). A decomposition algorithm for the single machine
total tardiness problem. Operations Research Letters, 1(5):177–181.

Rajendran, C. and Ziegler, H. (2003). Scheduling to minimize the sum of weighted flowtime
and weighted tardiness of jobs in a flowshop with sequence-dependent setup times. European
Journal of Operational Research, 149(3):513–522.

Raman, N. (1995). Minimum tardiness scheduling in flow shops: Construction and evaluation of

26

alternative solution approaches. Journal of Operations Management, 12(2):131–151.

Ribas, I., Companys, R., and Tort-Martorell, X. (2010). Comparing three-step heuristics for the
permutation flow shop problem. Computers & Operations Research, 37(12):2062–2070.

Ruiz, R. and Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop
heuristics. European Journal of Operational Research, 165(2):479–494.

Schaller, J. (2012). Scheduling a permutation flow shop with family setups to minimise total
tardiness. International Journal of Production Research, 50(8):2204–2217.

Sen, T. and Gupta, S. (1984). A state-of-art survey of static scheduling research involving due
dates. Omega, 12(1):63–76.

Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem.
European Journal of Operational Research, 47(1):65–74.

Vallada, E. and Ruiz, R. (2010). Genetic algorithms with path relinking for the minimum tardiness
permutation flowshop problem. Omega, 38(1-2):57–67.

Vallada, E., Ruiz, R., and Minella, G. (2008). Minimising total tardiness in the m-machine
flowshop problem: A review and evaluation of heuristics and metaheuristics. Computers and
Operations Research, 35(4):1350–1373.

27

View publication statsView publication stats

https://www.researchgate.net/publication/273398783

	Introduction
	Analysis of the Problem
	Proposed tie-breaking mechanisms
	Computational Experience
	Influence of the proposed tie-breaking mechanisms on iterative improvement algorithms

	Conclusions

