
Compact in-line temporal measurement of 
laser pulses with amplitude swing 
BENJAMÍN ALONSO,* WAREIN HOLGADO, AND ÍÑIGO J. SOLA 

Grupo de Investigación en Aplicaciones del Láser y Fotónica, Departamento de Física Aplicada, 
University of Salamanca, Salamanca, E-37008, Spain 
*b.alonso@usal.es  

Abstract: A method of ultrashort laser pulse reconstruction is presented, consisting on the 
analysis of the nonlinear signal obtained from the interference of the pulse with a replica of 
itself at a given time delay while varying the relative amplitude between the pulses. The 
resulting spectral traces are analyzed both analytically and numerically, showing the encoding 
of the input pulse spectral phase. A reconstruction algorithm is discussed and applied to 
extract the spectral phase and, jointly to the measured spectral amplitude, reconstructing the 
pulse. In order to validate the technique, an experimental in-line implementation of the 
characterization concept is compared to the results from a stablished technique, obtaining a 
good agreement at different input pulse cases. In sum, a new technique is presented, showing 
the capability to reconstruct a broad range of temporal pulse durations while its 
implementation is robust and straightforward, able to be easily adapted to diverse pulse 
duration and central wavelength ranges. 

 

1. Introduction 
The arising of ultrafast optics and the increasing of its applications came in parallel to the 
need of characterizing the ultrashort laser pulses [1]. As those are turning into increasingly 
complex and short (to the extreme of single-cycle regime [2,3] or even shorter [4]), the pulse 
measurements are becoming more and more demanding. The first characterization techniques 
were based on the pulse autocorrelation [5], obtained from scanning the time delay between 
two pulse replicas and the measurement of the power of a nonlinear signal depending on the 
time overlap of both replicas. These methods give an approximate idea of the pulse 
characteristics but are not able to reconstruct the actual pulse or to provide its spectral phase. 
Later, the FROG technique [6] used a similar scheme but acquiring the nonlinear signal 
spectra, instead of the overall nonlinear signal power. The so-called FROG spectrograms, 
consisting in the nonlinear spectra depending on the replicas delay, encode information of the 
spectral phase and, by means of reconstruction algorithms [7,8], succeed in reconstructing the 
pulses. Some years later, the SPIDER technique [9] was invented using spectral 
interferometry, where both replica remained at a fixed time delay and a spectral shearing was 
introduced within a nonlinear process. Thus, the derivative of the pulse spectral phase is 
encoded in the spectral interference of both replicas and extracted by means of Fourier 
analysis. Another evolution of the spectral interferometry strategy is the self-referenced 
spectral interferometry (Wizzler) [10], where the reference pulse is cleaned in time, obtaining 
a flat spectral phase. 

A different strategy was presented in 2004 with pulse characterization using phase 
scanning, the so-called multiphoton intrapulse interference phase scan (MIIPS) [11,12]. The 
general idea consists in introducing a known set of spectral phases in the test pulse and to 
observe the second order harmonic generation (SHG) signal of the resulting pulse. The 
unknown pulse group delay dispersion (GDD) can be therefore extracted at a given 
wavelength by calculating the amount of GDD within the scan range needed to optimize the 
SHG signal at that wavelength. Later, the d-scan technique [13] used the spectral phase scan 
concept with some practical modifications and introduced retrieval algorithms [14–17] to 



reconstruct the spectral phase of the test pulse. A related technique was proposed in [18], 
using an acousto-optic programmable dispersive filter (AOPDF) for the known spectral phase 
scan and an algorithm to reconstruct both the spectral amplitude and phase of the pulse.  

In general, the main part of the time pulse characterization operates under laboratory 
stability conditions. A major challenge nowadays is to implement characterization set-ups 
robust and simple enough to work under less controlled conditions. Thus, one of the main 
goals of the present work is to study the idea and implementation of reconstruction systems 
capable of facing those demands. 

It should be noted that, for designing a characterization set-up, it is needed to take into 
account the time duration ranges and central wavelength of the pulse to reconstruct, since 
they are major conditionings for the system implementation. Here, we aimed to develop a 
simple and robust device for pulse characterization, presenting an in-line configuration, being 
able to be easily adapted to a broad range of pulse durations.  

 For this purpose, we explore a different approach of pulse reconstruction technique, 
consisting on the generation of two pulse replicas at a given time delay, and varying their 
relative amplitude, thus the term amplitude swing. The resulting time structure is used to 
generate a nonlinear signal at each case within the range of variation of the pulse replica 
amplitudes. Then, the nonlinear signal spectrum depending on the pulse relative amplitudes 
conforms a pattern (i.e., the amplitude swing trace) that, as it will be shown, encodes the 
spectral phase information, which can be extracted e.g. by applying iterative retrieval 
algorithms. Firstly, we will devote a section to present and obtain an insight of the technique 
concept. We will present the theory and an analytical treatment, showing some cases for 
different GDD and third-order dispersion (TOD) values of the pulses to be characterized, in 
order to understand more intuitively the physics underneath. Secondly, we will present a 
reconstruction algorithm for extracting the test pulse information, studying its convergence 
and errors. Next, one of the possible experimental implementations of the technique will be 
showed, presenting the experimental results, which will be contrasted with the measurements 
obtained with an established technique. Finally, the conclusions will be discussed.  

 

2. Amplitude swing concept  
Some reconstruction techniques (e.g., autocorrelation, FROG) consist in the time delay scan 
of two constant amplitude replicas (it can be done either in collinear or non-collinear 
configurations) and the generation, at each time delay, of a nonlinear signal yield from the 
interaction of the resulting time amplitude overlapped distribution with a nonlinear medium. 
Typically, the creation of the two replicas and the time delay scan is performed by using an 
interferometer, what makes the set-up sensitive to noise, although several alternate and more 
compact configurations have been proposed [19–21]. The SPIDER technique, on the other 
hand, uses spectral interferometry with a fixed delay between the replicas and techniques such 
as MIIPS and d-scan do not use pulse replicas, being more stable because of their in-line 
configuration. 

In this work we propose a different approach for the pulse reconstruction by using two 
pulse replicas shifted by a given temporal delay and varying their relative amplitude before a 
nonlinear process. The temporal delay can be chosen in such a way that the two replicas can 
overlap on time. By varying their relative amplitude, the pulse replica interference in the time 
domain results in a modulation of the evolution of the temporal amplitude and phase of the 
interference pulse. If subsequently the resulting pulse generates a nonlinear signal (e.g., 
second harmonic generation, SHG), the nonlinear spectrum will strongly depend on its time 
evolution, which at the same time depends on the phase of the input pulse. Therefore, by 
scanning the amplitude balance between the two replicas the spectrum of the nonlinear signal 
may change, encoding information about the original input pulse. We refer to the technique as 
amplitude swing. 



In the implementation that we present in this work (depicted in Fig. 1a), the input pulse to 
be measured has horizontal (x-axis) linear polarization. This pulse propagates through a 
multiple-order wave-plate (MWP) in normal incidence, where the propagation axis is chosen 
to be z. For this first analysis, we consider that the MWP operates as a half-wave plate for the 
central wavelength. When the fast axis of the MWP is oriented at different angles θ with 
respect to the x-axis, then the input pulse is projected onto the fast and slow axes of the MWP 
with different amplitudes. Due to the birefringence of the MWP, these projections are delayed 
in time. After the MWP, a horizontal linear polarizer (LP) projects again the two pulse 
replicas onto the x-axis, with the amplitude of each replica depending on θ. The first replica 
(fast axis) is firstly projected from the x-axis to the fast axis of the MWP, and secondly from 
the fast axis to the x-axis in the LP, therefore its amplitude is modulated by 2cos θ .  The 
second replica is projected in a similar way but to the slow axes, thus its amplitude being 
modulated by 2sin θ . By rotating the MWP, the different relative amplitudes range 
continuously from having a single replica if / 2mθ π=  (either the first or the second one) to 
having equal amplitudes if (2 1) / 4mθ π= + . 

 

Fig. 1. (a) Scheme of the experimental implementation: the input beam with horizontal linear 
polarization passes through a multiple-order wave-plate (MWP) that can rotate at angles θ; 
then, a linear polarizer (PL) selects one polarization projection (e.g., horizontal polarization); a 
lens (L) focused the beam onto a nonlinear material (NL), in our case a 20-μm thickness BBO 
crystal; finally, the resulting nonlinear signal is analyzed by means of an spectrometer, where 
the fundamental is filtered out with F. For an example of positively chirped input pulse, (b) the 
temporal intensity of the two interfering fundamental replicas and (c) their second-harmonic 
generation spectrum are represented for a selection of relative amplitudes due to different 
rotation angles θ. In (b), the temporal intensity is colored with the instantaneous wavelength 
(the color scale is the same than the corresponding second-harmonic in (c)). 

 
In Fig. 1b, we show an example of the effect of the amplitude swing on the fundamental 

pulse (after the LP), when the input pulse has positive linear chirp (corresponding to the case 
presented before in Fig. 2 with GDD=+5000 fs2), for a selection of angles θ close to the 
amplitude balance (45°), the first replica is centered in t=−100 fs and the second replica is 
centered in t=0 fs. The interference pulse intensity is colored with the calculated 
instantaneous wavelength in the pulse. For the angle θ=68°, the tendency is that the second 
replica is dominating, showing a gaussian temporal profile and a constant linear chirp (except 
for the pre-pulse tail where there is still interference with the first replica). For other angles 



closer to θ=45°, there is a temporal destructive or constructive interference depending on the 
spectral phase of the input pulse. By observing the instantaneous wavelength, it is seen that 
the interference pulse does not have a pure linear chirp anymore, thus we conclude that the 
temporal amplitude and phase are both varying when the amplitude swing in performed. If 
this signal experiments a nonlinear process, for example SHG in a nonlinear (NL) crystal, 
then the resulting spectrally-resolved signal encodes the pulse information [22], thus allowing 
the pulse characterization. In Fig. 1c, we represented the SHG spectrum of the previously 
described case, where the spectral content for the different angles θ is directly related to the 
temporal interference shown in Fig. 1b. For example, for angles θ>45°, the bluish part of the 
spectrum is dominating, while for θ<45° the reddish part of the spectrum has more signal. 
Thus, a gate in the pulse amplitude can be observed in the front or rear part of the pulse. The 
result would be the opposite in the case of negative GDD and the modulation of the 
interferences is a fingerprint of the magnitude of the GDD. We will get back to this analysis 
in more depth when describing the simulations with a pure GDD. 

For the sake of clarity and to obtain a theoretical insight into the proposed strategy, as 
described before we consider the particular case of an input pulse linearly polarized on the 
horizontal (x-) axis with normal incidence onto the MWP. This MWP introduces a certain 
optical path difference δ(ω)=Δn(ω)·d, where Δn(ω)= ny(ω)−nx(ω) is the material 
birefringence between two orthogonal projections, and d is the thickness of the MWP. 
Therefore, when the linearly polarized pulse propagates through the MWP, its electric field 
vector is decomposed into the projection on the fast and slow MWP axes with a dephase (and 
thus, a time delay) depending on δ(ω). After passing through the MWP oriented at θ , the 
field amplitude in x- and y-axis will be 
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where 0 ( )E ω  is the input pulse complex amplitude. For simplicity in the discussion of the 

technique concept, we disregard in this theoretical analysis the dispersion of the fast axis, but 
it is taken into account in the retrieval algorithm. 

Then, we consider the horizontal component after the MWP, i.e. ( )xE ω , which can be 

obtained experimentally by using a linear polarizer oriented along the x-axis. According to 
Eq. (1), the resulting field will be composed by two replicas, whose relative amplitudes 
depend on θ  and their relative dephase and delay depends on ( )δ ω . Just by Fourier 

transforming ( )xE ω , the time domain evolution can be worked out [Eq. (3)] 
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Then, the SHG signal of this field will be 

 [ ]2
( ) (t)SHG i t

x xE E e dtωω −=    (4) 

And therefore, the final SHG spectrum will be proportional to 

 [ ]
22 2

( ) ( ) (t)SHG SHG i t
x x xS E E e dtωω ω −= =    (5) 



In order to obtain analytical expressions for understanding the process, it is considered a 

test pulse amplitude being ( ) ( )2 2 2
0 0·

0 0( ) e ei bE A ω ω ω ωω − − − − Γ=  with Gaussian spectral amplitude 

(bandwidth Γ ), central wavelength 0ω  and with  quadratic spectral phase given by b (note 

that 2b GDD= ). For the sake of simplicity, we consider ( )δ ω  to be constant along the 

pulse spectral components, that is ( )δ ω δ= . This is a good approximation in the present 

work since, e.g. for α−quartz, ( ) 0.0089δ ω =  in the spectral region ranging from 700 nm to 

850 nm [23]. Thus, both replicas present a constant time delay cτ δ= . 

Then, applying Eq. (3), the time domain distribution will be 
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Applying the result of Eq. (4) to Eq. (6), the SHG field will be 
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whose dependence has a global factor and three terms. The first term is related to the SHG of 
the first replica (fast axis), the last term to the SHG of the second replica (slow axis) and the 
middle term is the SHG of the crossed term of the first and second replicas. I SHG spectrum 

can be calculated as ( )*SHG SHG SHG
x x xS E E= , giving 
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Therefore, the SHG spectrum depends on ܾ  (i.e., 2·GDD), so the ( ),SHG
xS ω θ  trace 

encodes the information concerning the spectral phase (the quadratic component in this 
simplified case). The main dependence on the pulse phase is encoded in the two cosine terms 
depending on b. By comparison with Eq. (7), it is deduced that those terms actually 
correspond to the spectral interference between the crossed SHG described before and the 
SHG of each individual replica. Note that from Eq. (8) it is possible to have an intuitive idea 
of the appropriate time delay (i.e., value of cτ δ= ) for optimizing the ( ),SHG

xS ω θ  trace 

sensitivity to the pulse chirp. For instance, let us consider high δ values (i.e., a high difference 
of optical length between the ordinary and extraordinary components). Since all the cosine 



terms with dependence on b are linked to a negative exponential depending on δ, the higher is 
δ, the smaller are the terms depending on b (except the global scale term), so the phase 
information is lost or, at least, very much faded. On the other hand, the smaller is δ, the less 
sensitive is the ( ),SHG

xS ω θ 	trace to b due to the cosine tending to 1. Notice that the optimal 

value of δ is also linked to the spectral bandwidth Γ: the smaller Γ is, the larger should be δ in 
order to maintain the negative exponential and the cosine arguments. As a trade-off, we find 
that it is a good choice a temporal delay τ of the order of the Fourier-limited pulse duration, 
independently on the possibly longer actual pulse duration due to chirp. This criterion is 
flexible, we have checked that the pulse is correctly reconstructed using an MWP that 
introduces a delay 0.5 and 2 times the Fourier-limit FWHM. 

Fig. 2 shows, for different input pulse GDD values (columns), the fundamental pulse 
intensities (row 1, a-e) and the simulated SHG spectra depending on the MWP angle (row 2, 
f-j), and the corresponding retrievals (row 3, k-o), when a half-wave MWP designed for 
operation at 800 nm is to be considered (note that the trace retrievals will be discussed in the 
next section, but we include them here to better compare the simulated and retrieved traces). 
We use a Gaussian spectrum centered at 800 nm with a Fourier-limit of 100 fs at full-width at 
half maximum (FWHM). Notice that the SHG traces in Fig. 2 have been individually 
normalized, as usual in characterization techniques. As previously discussed, the amplitude 
swing trace depends on the optical path difference δ between the slow and fast components of 
the MWP, and it is convenient to choose a value of δ neither too high nor too low. As 
discussed before, here we select a temporal delay cτ δ=  equal to the FWHM of the Fourier-

transform-limited pulse. 
 

 
Fig. 2. Temporal intensity of the two replicas of the input pulse (linearly polarized on the x-
axis) after the MWP and a linear polarizer oriented along the x-axis, depending on the angle 
θ between the MWP fast axis and the input pulse polarization direction, also along the x-
axis (row 1), and corresponding simulated (row 2) and retrieved (row 3) amplitude swing 
traces of the SHG of the resulting pulses. Different GDD values are represented in the 



columns, GDD= -40000 fs2, -5000 fs2, 0 fs2, +5000 fs2, +40000 fs2, respectively. The traces are 
individually normalized. 

For those simulations we have used the numerical calculations. The results would be the 
same if the analytical expressions derived above were applied, as they are exact under the 
considered assumptions, for which we have checked that the analytical and numerical traces 
are identical. 

Fig. 2c shows the time evolution of the pulses after the MWP and a linear polarizer 
oriented along the x-axis, depending on the angle θ between the MWP fast axis and the input 
pulse polarization direction (along the x-axis), when the input pulse is Fourier limited. 
Because of the selection of δ, the fast and slow pulse projections are close, but they barely 
interfere on the time domain. The resulting ( ),SHG

xS ω θ  trace (Fig. 2h) registers the spectral 

distribution of the two resulting SHG pulses depending on their relative amplitude. If a non-
zero GDD is considered, e.g. GDD=+5000 fs2, the input pulse broadens in time, exhibiting 
the lower (reddish) frequencies in the front part of the pulse and the higher (bluish) 
frequencies in the rear one (or contrarily if the GDD is negative). As a result, the two replicas 
interfere in the time domain (Fig. 2d). This interference depends on the MWP rotation angle 
(i.e., the relative amplitude between the replicas), as seen for the present case in Fig. 1b for a 
selection of angles close to the amplitude balance. Therefore, the ( ),SHG

xS ω θ 	trace changes 

(Fig. 2i), exhibiting a dependence on the GDD, due to the fact that the trace encodes the 
spectral phase. In the particular cases of rotation angles θ=0º, 90º and 180º, the SHG spectrum 
(Fig. 2, row 2) is generated by a single pulse (Fig. 2d), being either the slow or the fast 
component, since one pulse of the replicas has zero amplitude. At angles around θ=30º and 
150º, the first pulse (fast axis) of the two replica has higher amplitude than the rear one (slow 
axis) (Fig. 2d). Therefore, its reddish components (since we are now considering positive 
GDD, they are located at the front of the pulse) will prevail in the resulting interference, as 
observed in the corresponding SHG spectra (Fig. 2i) (see also in Fig. 1b and 1c). Conversely, 
at angles around θ=60º  and 120º, the rear pulse will be predominant in the interference (Fig. 
2d). Thus, its bluish part (i.e., the rear part of the pulse) will prevail, imprinting a bluish 
signal in the SHG spectra (Fig. 2i) (see also in Fig. 1b and 1c). In the cases of equal 
amplitudes of the replicas (θ=45º and 135º), after the interference only the leading part of the 
first pulse and the trailing part of the second one are observed. For low GDD input pulse 
cases, the spectra of both resulting parts may present a certain spectral overlap, arising the 
spectral peak at the center of the SHG spectra (Fig. 2i). This is also seen for θ=45º in Fig. 1b 
and 1c, where the SHG of the two delayed replicas (reddish and bluish, respectively) 
corresponds to a reddish and bluish signal together with the crossed term peaked at the central 
wavelength. However, when the input pulse GDD is high enough, the two peaks from the 
interference (Fig. 2e) will not exhibit any spectral overlap (Fig. 2j): in the considered positive 
GDD case, the first pulse will show low frequency components and the second one, high 
frequency components. Thus, the central frequency peak at the SHG spectra will disappear, 
while the red shift (θ= 30º and 150º) and blue shift (θ=60º and 120º) regions are still 
observed, but in a smoother way. When considering negative GDD of the pulse (columns 1 
and 2), a similar reasoning applies except for the opposite temporal chirp of the replicas, 
therefore being translated into the SHG trace in a similar way but exchanging the blue and red 
terms above.  

Thus, the amplitude swing traces, ( ),SHG
xS ω θ , show some features coming from spectral 

interference and optical gating, depending on the input pulse characteristics. In the 
commented examples, the amount of GDD can be estimated intuitively: when the GDD is 
very low (e.g., in the Fig. 2 example, GDD= 0 fs2), the expected spectral interference of two 
pulses close but not overlapping in time appears (in the example, around 400 nm at θ=45º and 
135º); for intermediate GDD (e.g., in the Fig. 2 example, GDD=±5000 fs2), that feature 



remains at θ=45º and 135º, pointing out that there is still spectral overlapping, while the shift 
of the SHG spectrum at θ=30º and 150º gives an idea of the sign of the GDD. Finally, for 
high values of GDD (e.g., in the Fig. 2 example, GDD=±40000 fs2) the central interference 
disappears as previously commented.  

As previously commented, the selection of the time delay cτ δ=  is important and linked 

to the pulse spectral bandwidth. If τ is much higher than the FL pulse duration, within the 
whole range of GDD values where there is not temporal overlap between the two replicas 
there will not be information from the spectral phase. On the other hand, if τ is much lower 
than the FL duration, the two replicas will interfere destructively almost entirely in the angles 
corresponding to similar replica amplitudes, so no information could be extracted. In sum, the 
value of τ must be around the Fourier-limit pulse duration, which is known from the pulse 
spectrum. To adapt the technique to pulses exhibiting different spectral bands and pulse 
duration ranges, it is necessary to adjust τ consequently (i.e., by changing the MWP by 
another with the correct thickness or by using a pair of birefringent wedges and adjusting 
their insertion), whenever the nonlinear material shows correct phase matching and the 
spectrometer resolves the SHG signal. 

The features of the traces in Fig. 2 come from considering a MWP acting as a half-wave at 
the central frequency. If the phase retardation of the MWP were different, the amplitude 
swing trace structure would change, exhibiting the minima and maxima at different 
frequencies. Nevertheless, the phase information is still encoded and can be extracted using 
reconstruction algorithms, as discussed in Section 3 and shown experimentally in Section 4.  

The effect of the TOD has also been numerically studied (Fig. 3), considering the same 
spectrum (100 fs FWHM Fourier limited centered at 800 nm) and MWP (half-wave at 
800 nm, introducing a delay of 100 fs) than in the previous case. The pulse TOD values range 
from −4·106 fs3 to +4·106 fs3. 

 

 
Fig. 3. Simulated (row 1) and retrieved (row 2) amplitude swing traces depending on the angle 
θ. Different TODs are represented in the columns, TOD= −4000000 fs3, −1000000 fs3, 0 fs3, 
+1000000 fs3, +4000000 fs3, respectively. The traces are individually normalized. 

Here, the TOD is manifested in the ( ),SHG
xS ω θ  traces through a contraction of the trace 

in the spectral dimension. The higher the module of the TOD is, the sharper is the figure in 
the abscise axis. Also, this can be interpreted through the stretching of the minima in the 
angle ߠ dimension. The sign of the TOD is also manifested, mainly in the location and width 
of those minima. In Fig. 3b (TOD=−1000000 fs3), for angles around θ=45º (θ=135º) the 
minima region, is slightly shifted towards higher (lower) angles, contrarily to what happens in 



Fig. 3d (TOD=+1000000 fs3). For higher values of the module of the TOD (e.g., Fig. 3a and 
Fig. 3e), the tendency is the same but the difference in the minima locations becomes less 
perceptible, still distinguishable by the eye if superimposing the traces. Actually, the 
difference between those traces (Fig. 3a and 3e) reaches 3% with respect to the maximum of 
the trace. Furthermore, as we will see in the next section, the algorithm is able to discriminate 
both cases for the high TOD values considered in the examples.  

In order to test the technique sensitivity for those high TODs, we have added 1% white 
noise (noise to signal ratio) to the simulated trace with TOD=+4000000 fs3 (Fig. 4a), correctly 
reconstructing the trace (Fig. 4b). It should be noticed that the similarity of the traces in Fig. 
3a and 3e only arises when the chirp value is very high (either changing the sign in GDD, 
TOD or arbitrary chirp), the spectral amplitude of the pulse is symmetrical and the phase 
retardation introduced by the MWP is exactly (2m+1)π for the central wavelength (half-wave 
plate operation). For example, if the MWP introduces a retardation of 0.8π, the simulated 
traces for that value of TOD, positive (Fig. 4c) and negative (Fig. 4d), become distinguishable 
in the regions of the traces where the replicas interfere with comparable amplitudes. A similar 
conclusion is obtained when the spectral amplitude is not perfectly symmetrical, for example 
by adding a slight spectral tail. Therefore, in a realistic case, it is unusual simultaneously 
fulfilling all the conditions for the similarity (symmetrical spectral amplitude, half-wave 
operation for the central wavelength and very high chirp) and, even in that case and with a 
noisy trace, the pulse could be reconstructed. The discussed cases conform the limits of the 
technique for the present pulse spectrum (in the symmetric case) and the noise is below the 
difference between the two traces for opposite sign phase. We have found that the range of 
measurable GDDs and TODs is large, as we will further experimentally confirm in Section 4. 

 

 
Fig. 4. Simulations for the higher value TOD=±4000000 fs3. (a) Simulated amplitude swing 
trace for TOD>0 and (b) the corresponding retrieved trace. Comparison of the simulated trace 
for (c) TOD>0 and (d) TOD<0 when the MWP has 0.8π (+2πm) phase retardation for the 
central wavelength.  

 

3. Reconstruction algorithm 
We define the electric field of the pulse to be measured as ( )( ) ( ) eiE A ϕ ωω ω= , where its 

amplitude is calculated from the measured power spectrum, ( )S ω , as ( ) ( )A Sω ω= . The 

spectral phase ( )ϕ ω  is encoded in the two-dimensional SHG amplitude swing trace, which is 

given by 
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22

( ') ( ')( ') 2 2 ', ( ') e e cos e sin e ' ef si iSHG i i t i t
xS A d dtρ ω ρ ωϕ ω ω ωω θ ω θ θ ω − = +    (9) 

At this point, we consider the general case of a birefringent plate with the fast axis 
oriented at an angle θ  with respect to the linear polarization of the input pulse (horizontal), 
with the spectral phases introduced by the fast and slow axes, respectively ( )fρ ω  and ( )sρ ω
. Those phases can be calculated from the ordinary and extraordinary refractive indices of the 
MWP from their Sellmeier equations [23], provided that the thickness is known. The relative 
phase of the plate axes may be known if the phase retardation is given by the manufacturer or 
can be calibrated, as we do in the experiments (e.g., using the technique described in [24]). As 



described in Section 2, the expression in Eq. (9) accounts for the input pulse propagation 
through the MWP followed by the horizontal linear polarizer (LP). The sum of the terms 

( ') 2e cosfiρ ω θ  and ( ') 2e sinsiρ ω θ  corresponds to the projection for different orientations θ  of 
the input pulse (x-axis) onto the fast and slow axes, respectively, and then to the x-axis with 
the LP. Then, it is calculated the SHG signal (modeled as the square of the pulse in the 
temporal domain) and finally the spectral detection of the signal. 

In Eq. (9), all quantities are known, except for the pulse phase. We use a guess phase to 
calculate a first retrieved trace, and then we use the measured trace to be compared with the 
retrieved trace for the current spectral phase of the pulse, ( )ϕ ω . To do this, we define a merit 

function, calculating the dissimilarity between the experimental and the retrieved trace as the 
square of the difference between their amplitudes. By minimizing the merit function, the 
phase is iteratively modified until the retrieved trace converges to the experimental trace. We 
can parametrize the phase function in different ways, for example as a Taylor series, Fourier 
series, direct discretization and interpolation of the phase, or combinations of 
them [13,14,16,25]. We deal with the problem as a multi-variable optimization in which the 
phase parametrization is the unknown. This kind of problem has already been solved e.g. with 
d-scan retrievals, using different algorithms, for example non-linear optimization with 
Nelder-Mead Simplex  [13], projections  [15], or differential evolution [17]. We choose to 
perform the phase retrievals with the Levenberg-Marquardt algorithm, which has been 
previously shown to be robust performing retrievals of d-scan [3,16,26] as well as other 
techniques  [27]. The guess spectral phase is arbitrary, it can be kept e.g. to a flat phase or to a 
random phase. We firstly run a fast optimization with a Taylor expansion of the phase up to 
order 10 and then we use the output as a seed for a subsequent optimization, in which we 
optimize the derivative of the spectral phase in 32 points, while interpolating in the rest of the 
frequency sampling. 

 

 
Fig. 5. Row 1: Simulated spectrum (black) and phase (solid blue); retrieved spectral phase 
(dashed red). Row 2: Simulated (solid blue) and retrieved (dashed red) temporal intensity and 
phase. Different GDDs are represented in the columns, GDD= −40000 fs2, −5000 fs2, 0 fs2, 
+5000 fs2, +40000 fs2, respectively. 

Fig. 5 presents the pulse retrievals corresponding to the retrieved S௫ௌுீሺ߱,  ሻ  traces atߠ
different input GDD cases (Fig. 2, third row). Fig. 5, row 1 shows the spectral amplitude 
(black curve), the simulated experimental spectral phase (blue curve) and the reconstructed 
spectral phase (red curve) for GDD values of −40000 fs2 (Fig. 5a), −5000 fs2 (Fig. 5b), 0 fs2 
(Fig. 5c), +5000 fs2 (Fig. 5d) and +40000 fs2 (Fig. 5e), corresponding to the simulations 



presented in Fig. 2. The retrieved traces are shown in Fig. 2k-o (compared to the simulated 
traces in Fig. 2f-j), respectively. The agreement between the expected and retrieved spectral 
phases is good. Consequently, the time domain retrieved pulses (Fig. 5f-5j; red curve) also 
exhibit a good agreement with the simulated (blue curve) at both the pulse intensity and 
phase, spanning cases from Fourier-limited pulse duration (100 fs) to around 1 ps (FWHM) 
characterized by the same set-up. 

 

 
Fig. 6. Row 1: Simulated spectrum (black) and phase (solid blue); retrieved spectral phase 
(dashed red). Row 2: Simulated (solid blue) and retrieved (dashed red) temporal intensity. 
Different TODs are represented in the columns, TOD= −4000000 fs3, −1000000 fs3, 0 fs3, 
+1000000 fs3, +4000000 fs3, respectively. 

 
Similarly, Fig. 6 presents the pulse reconstructions corresponding to the retrieved 

( ),SHG
xS ω θ  traces at different input TOD cases (Fig. 3f-j), which shows a good convergence 

to the simulated traces (Fig. 3a-e). Fig. 6, row 1 shows the spectral amplitude (black curve), 
the simulated experimental spectral phase (blue curve) and the reconstructed spectral phase 
(red curve) for TOD values of −4000000 fs3 (Fig. 6a), −1000000 fs3 (Fig. 6b), 0 fs3 (Fig. 6c), 
+1000000 fs3 (Fig. 6d) and +4000000 fs3 (Fig. 6e), corresponding to Fig. 3f-j, respectively. In 
the time domain (Fig. 6f-6j), the retrieved time intensities (red line) are compared to the 
simulated ones (blue curve). Again, the simulated and reconstructed pulses match very well in 
both the spectral and time domains. The technique is able to retrieve pulses with pre- or post-
pulse structure spanning around 2 ps in the temporal domain. Note that the retrievals shown in 
Fig. 2,3,5,6 for different GDD and TOD values have been all obtained considering the same 
set-up characteristics (i.e., the same MWP introducing a fixed delay τ).  

 

 
Fig. 7. Simulation of a moderate oscillatory spectral phase. (a) Simulated and (b) retrieved 
amplitude swing traces. (c) Spectrum (blue) and retrieved spectral phase (dashed red). (d) 
Retrieved temporal intensity (dashed blue) and phase (dashed red).  Gray curves in (c) and (d) 
correspond to the simulated magnitudes for comparison. 



In this section, we have studied the effect of different amounts of GDD and TOD ranging 
from zero to high absolute values (positive and negative). We have also simulated more 
moderate spectral phase variations for GDD=+300 fs2 and GDD=+600 fs2, corresponding to 
phase variations below 0.5 rad, finding that the reconstruction retrieves those phases and the 
pulse duration with precision. As an example, we show here the simulation of an oscillating 
spectral phase (amplitude of the oscillation 0.25π) for an MWP operating as 0.4λ retarder for 
the central wavelength (Fig. 7a). The reconstructed amplitude swing trace converges correctly 
(Fig. 7b), and the spectral phase retrieved and the temporal intensity and phase (Fig. 7c and 
7d) agree with the simulated input pulse. 

 

4. Experimental set-up and results 
The implementation of the technique was presented in Fig. 1a. The incoming beam (central 
wavelength at 797 nm, 10 nm spectral FWHM, 84-fs Fourier-limit duration), from a chirped 
pulse amplification (CPA) laser system (Spitfire from Spectra Physics), presenting a 
horizontal (X) linear polarization, passes through a 3-mm quartz MWP, mounted in a rotating 
motor and used to split the test pulse into the two replicas and to change their relative 
amplitudes as the angle θ  is varied. The MWP introduces a delay of 95 fs between the fast 
and slow axes pulse projections and behaves as half-wave plate at 800.5 nm. The phase 
retardation introduced for the central wavelength (797 nm) is 0.69π, differing from half-wave 
operation. Notice that in the theoretical analysis we used a dephase of π for the central 
wavelength as an example and, as said in the Section 2, it is not a requirement. After that, a 
linear polarizer (LP) selects the horizontal component of the polarization. The beam is then 
focused by means of a lens (L) onto a BBO type I crystal (NL, 20-μm thickness guaranteeing 
the phase matching for the beam bandwidth). The remaining fundamental radiation is filtered 
out with a linear polarizer (F). The SHG radiation is collected by means of an optical fiber 
connected to a spectrometer (HR4000, Ocean Optics Inc.). The measurement process consists 
in controlling the rotation stage position θ  and acquiring the corresponding spectrum. The 
dispersion of the diverse elements (MWP, LP and L) is taken into account within the 
reconstruction algorithm so that it does not affect the obtained spectral phase. The spectrum 
of the fundamental pulse was recorded by a spectrometer (AvaSpec 2048-USB1, Avantes 
Inc.). 

In order to study the validity of the proposed approach, the experimental results of the 
amplitude swing technique have been compared to those obtained applying an established 
technique, in our case the d-scan technique (already compared to FROG [28] and 
SPIDER [29]) in its self-calibrating version [16]. To that purpose, we have used the internal 
CPA grating compressor to perform the dispersion scan with the same 20-μm thickness BBO 
crystal. The SHG spectra for 118 positions (different values of the grating distance using a 
constant step between consecutive positions) of the laser compressor are measured with the 
spectrometer (HR4000, Ocean Optics Inc.). Fig. 8a shows the experimental d-scan trace. The 
linear tilt of the d-scan trace is an indicator of the optimally compressed pulses presenting an 
almost pure positive TOD leading to post-pulses. As discussed in [16], the self-calibrating d-
scan algorithm is able to simultaneously reconstruct the test pulse and the unknown 
dispersion introduced during the scan. Fig. 8b shows the retrieved d-scan trace obtained by 
applying the self-calibrating algorithm and Fig. 8c presents the experimental pulse spectrum 
used both for the d-scan and amplitude swing retrievals. The dispersion axis in Fig. 8a and 8b 
corresponds to the retrieved GDD introduced by the compressor, considering the zero 
dispersion the position of maximum SHG signal. The dashed lines in Fig. 8a indicate the CPA 
compressor grating positions (A-D) where the comparison between both techniques was 
performed. The different cases, from A to D (scan positions 54, 63, 68, and 75, respectively), 
correspond to adding positive dispersion, i.e., to reduce the gratings distance. From the self-



calibrating d-scan retrieval we calibrate the dispersion per step imparted by the compressor, 
which is GDD=+1685 fs2 and TOD=−14390 fs3. 

 

  

Fig. 8. (a) Experimental and (b) retrieved d-scan trace. (c) Experimental pulse spectrum used 
both for the d-scan and the amplitude swing retrievals shown in Fig. 9. 

Fig. 9 presents the amplitude swing results at those diverse cases of compression of the 
input pulses (rows A-D). The experimental amplitude swing traces for the different 
compressor positions are presented in the first column of Fig. 9, observing a clear change in 
the ( ),SHG

xS ω θ  traces from one case to another. The corresponding retrieved ( ),SHG
xS ω θ  

traces are shown in the second column of Fig. 9, observing good matching with the 
corresponding experimental ones. 

 

 
Fig. 9. Experimental amplitude swing traces (column 1); corresponding retrieved traces 
(column 2). The retrieved spectral phases (column 3, solid red curve) and time domain pulse 
intensities (column 4, solid red curve) with amplitude swing are compared to the 
corresponding retrieved spectral phases (column 3, dashed blue curve) and time domain pulse 
intensities (column 4, dashed blue curve) from the self-calibrating d-scan. In column 3, the 
calculated GDD and TOD values from the spectral phase are given for the amplitude swing 
(red) and for the d-scan (blue). In column 4, the measured pulse duration (FWHM) is given for 
the amplitude swing (red) and for the d-scan (blue). Rows A-D correspond to the compression 
cases A-D indicated in Fig. 8a. 



The amplitude swing retrieved spectral phases (Fig. 9, column 3, red curve) are compared 
to those obtained from the d-scan technique (Fig. 9, column 3, blue curve), where the second 
and third order phase coefficients are given inset for comparison (GDD and TOD of each 
pulse calculated from a third-order polynomial fit of the spectral phase). The average 
discrepancy between the two techniques in the GDD is <3% (excluding point B because of 
being close to GDD=0 fs2), while for the TOD the average discrepancy is below 6% (note that 
the d-scan retrievals have their own error). Nevertheless, the impact of those differences on 
the retrieved pulse is acceptable, which is corroborated by the comparison of the temporal 
domain intensities. 

The corresponding pulse intensities in the time domain are shown in Fig. 9, column 4, 
comparing again the amplitude swing (blue curve) and the d-scan (red curve) retrievals 
(intensity duration FWHM given inset for comparison). The agreement between both 
techniques is good, including cases with almost pure TOD (case B), as well as cases of TOD 
combined with a predominant positive (cases C and D) or negative GDD (case A), thus 
validating the amplitude swing method, so that this technique is able to cover broad ranges of 
pulse chirp. 

In order to interpret the results, it is important to realize that the SHG is different for the 4 
cases shown here. If observing the d-scan trace, the central wavelength of a pulse with TOD 
is shifted from bluer to redder wavelengths when adding positive GDD to the pulse. 
Therefore, the SHG of the pulse in position A is peaked at 396 nm and for position B in 
399 nm (see the sections of the d-scan trace in Fig. 8a). This is the reason of having more 
signal at those wavelengths in the amplitude swing trace (Fig. 9(A1) and 9(B1), respectively). 
It is also seen that, in Fig. 9(B1), the trace is narrower because of having an almost pure TOD 
(case B), while in Fig. 9(A1) the positive TOD is combined with negative GDD. In the case 
of positions C and D, the peak is shifted to around 401 nm and 402 nm, while reducing its 
signal with respect to a contribution at 398 nm that increases when adding positive GDD (see 
sections of Fig. 8a). Those sections of the d-scan trace appear in the amplitude swing traces 
for angles θ=0, 90 and 180º, while for intermediate angles the SHG spectrum is modulated 
according to the spectral phase of the input pulse and the two replicas interference. 

Notice that, compared to the simulations of Sections 2 and 3, in the experiments the MWP 
delay is different from the Fourier-limit FWHM of the pulse, and it introduces a different 
retardation for the central wavelength. This is not a requirement of the technique, so it stands 
to correctly reconstruct the pulses. Taking into account that the MWP operates as half-wave 
for 800.5 nm, for the case of dominating pure TOD (case B), the amplitude swing trace is 
sharp at 399 nm as seen in the simulations shown in Fig. 3 and 5. When adding positive GDD 
(case C) the trace presents a pair of holes at both sides of 400 nm for θ=45 and 135º, with 
orientation similar to the case in Fig. 2, column 4, indicating the presence of moderate 
positive chirp. Therefore, in a general case with an arbitrary MWP, apart from being able to 
retrieve the pulses, it may be possible to identify basic cases of pulse chirp, which may be 
used to optimize the pulse. 

5. Conclusions 
A new strategy for temporal pulse reconstruction is presented, consisting in the collection of 
the nonlinear spectra generated in a nonlinear medium by a pair of replicas of the unknown 
pulse with a given time delay while varying their relative amplitude. The analytical 
description of the technique for pulses presenting Gaussian shaped spectrum and quadratic 
spectral phase has been used for giving an intuition of the technique principles when it is 
scanned the amplitude balance between the replicas. Other cases (e.g., third-order spectral 
phases) have been numerically studied. The retrieval method here presented for the pulse 
reconstruction is based on the Levenberg-Marquardt optimization algorithm. It has been 
tested in the explored theoretical cases, obtaining good convergence and accurateness. The 



technique has been validated experimentally by comparison with the pulse reconstructions of 
a stablished technique, observing good agreement at different spectral phase cases.  

Therefore, the amplitude swing is a simple and robust inline technique, which can be 
implemented with common and inexpensive optical elements (e.g., wave-plates, optical 
polarizers). The in-line configuration of the interferometer (i.e., the multiorder wave-plate) 
confers the set-up stability, compactness and makes the beam alignment direct as it does not 
present beam recombination or moving beam-lines. In addition, the set-up could be easily 
adapted to cover a broad range of pulse durations (from few-cycle to several picosecond 
pulses) just by changing the waveplate thickness (by replacing the element itself or by using a 
varying thickness wave-plate made up, for example, by a pair of birefringent wedges), 
provided that the nonlinear medium shows correct phase matching. 
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