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ABSTRACT 

This thesis explores the safety impact of differential speed limit (DSL) strategy by considering 

gross vehicle weight (GVW) combined with average speed enforcement (ASE) for heavy vehicles. 

The study used one-year of Weigh-in-Motion (WIM) data (2014) and one-month of Global 

Positioning System (GPS) data (Mar 2016) collected from along the Trans-Canada Highway 1 in 

British Columbia. 

The research consisted of a data-driven analysis and a two-part simulation analysis. As the 

DSL investigated was based on GVW, a Modified-Federal Highway Administration (M-FHWA) 

classification that explicitly considered GVW was tested alongside the FHWA classification 

regarding average speed and GVW. The simulation analysis assessed the DSL strategy associated 

with M-FHWA classification and ASE strategy’s impact on the safety of heavy vehicles. 

 In general, the analyses showed that DSL adopted with M-FHWA classes combined with 

ASE would be effective in reducing heavy vehicle speed and improving highway safety. 
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 Introduction  

1.1 Problem Statement 

Heavy vehicle collisions on high-speed rural highways are largely due to human errors such as 

speeding, impaired driving and fatigued driving. Speeding, which is defined in police reports as 

“driving in excess of the posted speed limit” or “driving too fast for environmental conditions,” is 

considered as a major contributing factor for collisions involving heavy vehicles on high-speed 

highways (NHTSA, 2008). The mass and speed of heavy vehicles, contribute to the often severe 

heavy vehicle collisions that occur on roadways, particularly high-speed highways. 

The 2018 Humboldt Broncos collision between a bus and a semi-trailer truck at an 

intersection on HWY 35 in Saskatchewan, Canada resulted in 16 fatalities and 13 serious injuries 

and can be viewed as a representative example of the disastrous consequences that may be 

associated with a heavy vehicle collision (CBC News, 2018). In British Columbia, Canada, 

statistics from 2013 to 2017 show an average of 14,000 heavy vehicle collisions/year involving an 

average of 56 fatalities/year and 3,300 injuries/year (ICBC, 2018).  

Numerous engineering safety countermeasures are already deployed on rural highways in 

North America to reduce the number and severity of collisions involving heavy vehicles. 

Countermeasures include speed limits, medians, transverse marking, transverse rumble strips, and 

speed feedback information (FHWA, 2009; Jonah et al., 2009). Speed limits have been applied in 

various ways and may be enforced through manual or automatic speed measurements, and 

probably have the longest history of scientific and non-scientific debate of any countermeasure 

regarding the impact on safety.  
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In North America, the most common type of speed limit is the maximum speed limit 

(sometimes combined with a minimum speed limit). A speed limit that applies to all vehicles 

equally is known as a uniform speed limit (USL). Some high-speed highways have separate speed 

limits for passenger cars and heavy vehicles. These speed limits are known as differential speed 

limits (DSL) and may be regulated differently depending on the specific by-laws of different 

jurisdictions (Forbes et al., 2012). DSL is used mainly to reduce the severity of collisions involving 

heavy vehicles (Johnson and Pawar, 2005; Saccomanno et al., 2009).  

 Seven of the fifty-two States in the United States operate a DSL for passenger cars and 

heavy vehicles on selected highways (J.Gates et al., 2016). Gross Vehicle Weight (GVW) is one 

of the key criteria used to differentiate speed limits for passenger cars and heavy vehicles. In 

Indiana, the speed limits for vehicles with a GVW of greater than 26,000 lbs are lowered by 10 to 

20 mph on rural interstate highways (J.Gates et al., 2016; NHTSA, 2012). California, Michigan 

and Washington use 10,000 lbs as the GVW criterion for differentiating speed limits on rural 

interstate highways (J.Gates et al., 2016; NHTSA, 2012). Most states with DSLs have only a very 

generic rationale based on the longer braking distances and less flexible lane-changing and/or 

overtaking maneuverability of heavy vehicles compared with passenger cars.  

Canada does not apply DSLs to heavy vehicles, but two Canadian provinces (Ontario and 

Quebec) have mandated the use of an advanced Electronic Control Module (ECM) known as a 

heavy vehicle speed limiter which mechanically limits the maximum traveling speed of heavy 

vehicles to 105 km/h on highways where the maximum speed limit is 100 km/h (Spoerri et al., 

2008). As it is known that passenger cars typically travel at 10 to 20 km/h faster than the posted 

maximum speed limit, the effect of ECM on traffic flow on highways in Ontario and Quebec could 

be similar to the effect of a DSL. Saccomanno et al. reported that mandatory speed limiters can 
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produce safety benefits under various traffic conditions tested using microsimulation (Saccomanno 

et al., 2009). 

In the United Kingdom, which mandated the installation of speed limiters for heavy 

vehicles in 1992, the number of collisions involving a heavy vehicle declined by 26 % from 1993 

to 2005 ( European Commission, 2009; Transport Canada, 2008).  

In general, it seems possible that well-organized speed enforcement tactics/techniques will 

maximize the effect of speed limits on heavy vehicles’ travel speed, and a lack of actual and/or 

perceived law enforcement will reduce the effect of such limits. Various types of speed 

enforcement are currently applied by jurisdictions across North America (D. Soole et al., 2014). 

Enforcement ranges from manual speed enforcement by field police officers to sophisticated 

automatic speed enforcement systems (ASES). Both approaches usually use some kind of radar 

detection system with/without automatic license plate readers to detect and record vehicles’ speed 

limit violations. Neither approach can take into account the GVW of specific vehicles. Heavy 

vehicle speed enforcement simply relies on surrogate weight measures such as the vehicle’s size, 

length, classification, and/or number of axles, and sometimes relies on field police officers’ 

subjective judgment.  

Regular, frequent and efficient speed limit law enforcement on high speed highways is 

greatly hampered by adverse weather conditions (e.g., snow, rain, wind, and extreme 

temperatures), low traffic levels, and the vast distances of many high speed highways in rural areas. 

It is particularly challenging for field officers to enforce speed limits and judge the weight of a 

vehicle on fast moving highways especially at night or when visibility is poor. Weigh-in-motion 

(WIM) scale facilities on high speed highways are designed primarily to measure the weight of 
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heavy vehicles and have potential as a tool for heavy vehicle speed enforcement (IRD, 2017b). 

WIM scale technologies have advanced dramatically and can now provide a vast amount of 

additional traffic information. For each individual vehicle, the systems can record travel speed, 

length (via wheelbase), class (via axle spacing) and, axle load and GVW (Jacob et al., 2010). The 

systems can also collect vehicle count data, and measure the time gap and headway between 

moving vehicles. WIM scale facilities can even identify and access detailed information such as 

the commercial vehicle identification number, the company owning the commercial vehicle, 

profiles of commercial vehicle drivers, etc. (IRD, 2014a). Also, WIM scale facilities were used in 

the United States to monitor traffic and provide real-time traffic volume, occupancy and speed 

data for passenger cars and heavy vehicles during the evacuation for hurricane Irma in 2017 (IRD. 

2017). 

Saifizul et al. (2011) developed a framework based on a data-driven empirical approach 

for determining appropriate DSLs for heavy vehicles. In 2013, Transport Scotland reported a pilot 

study that examined the speed limit violation rate for heavy vehicles and used data from WIM 

scale facilities to screen vehicles above a certain weight (7.5 tons ≈ 16,500 lbs) (A9 Safety Group, 

2013). It is clear that modern WIM scale facilities have evolved into highly sophisticated devices 

with many potential additional applications.  

Vehicle speed may be measured in different ways. All North American jurisdictions 

currently enforce speed limits by measuring the spot speed of the vehicle. In Europe, many 

countries (e.g., Austria, Netherland, England, Scotland, Ireland, Switzerland, Norway, the Czech 

Republic, Italy, France, and Spain) have adopted a new and stricter approach to speed limit 

enforcement known as average speed enforcement (ASE), and it is also named point-to-point 
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enforcement, or section speed enforcement (Soole et al., 2013; Soole et al., 2014). ASE measures 

the average speeds of vehicles traveling from one point to another on a section of highway and 

allows authorities to manage vehicle speed along whole roadway sections rather than only at 

selected locations (Soole et al, 2013). Montella et al. (2012) reported a 31% reduction in the 

number of collisions (all collision types/severities) after applying ASE on Italian Motorway A1 

Milan-Naples. The 31% collision reduction was much higher than the 16.2% collision reduction 

reported for a study of automated spot speed enforcement (SSE) on 14 corridors with a high 

number of collisions in the City of Charlotte, North Carolina (Moon and Hummer, 2010). 

1.2 Research Goal and Objectives 

The goal of the thesis is to explore the safety impacts of a differential speed limit (DSL) for 

different type of heavy vehicles based on GVW combined with average speed enforcement (ASE) 

to improve highway safety for freight transportation. The specific objectives of this research are 

to: 

1. Propose a Modified-Federal Highway Administration (M-FHWA) classification with a 

more precise consideration of GVW compared to Federal Highway Administration 

(FHWA) class; 

2. Investigate the empirical relationship between heavy vehicles’ average speed, GVW, 

FHWA class and M-FHWA class;  

3. Compare traffic performance of heavy vehicles under two different speed limit strategies, 

USL and DSL.  

4. Compare traffic performance of heavy vehicles under two different speed enforcement 

strategies, SSE and ASE.  
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1.3 Scope 

The scope of this study is limited to exploring the safety impact of applying DSL based on GVW 

combined with ASE for heavy vehicles. The research obtained data from two WIM stations on the 

British Columbia Highway 5 and Trans-Canada Highway 1 from Laidlaw to Golden in British 

Columbia, The Two WIM stations are installed around 548 km apart from each other. The study 

also used GPS traffic data collected from the same highway segment.  

The research proposed a M-FHWA class including a more precise consideration of GVW. 

The study conducted a statistical analysis of the empirical relationships between heavy vehicles’ 

average speed, GVW, FHWA vehicle classification and M-FHWA class using the integrated 

dataset developed by combing WIM data and GPS data.  

The study employed a simulation approach using PTV VISSIM as a tool for microscopic 

simulation analysis. No field study was conducted to either calibrate or validate the study 

results. The VISSIM model was used to understand the potential traffic impact of DSL based on 

GVW combined with ASE for heavy vehicles along the study corridor. Three traffic performance 

indicators were evaluated: 1) the longitudinal 85th percentile speed profile, 2) standard deviation 

of speed, and 3) the speed violation rate. The 85th percentile speed is widely used by highway 

agencies to describe operating speeds and to establish speed zones, and speed standard deviation 

and speed violation rate are the important potential contributing factor for collisions on highways 

and has been widely used to evaluate the safety effectiveness of different types of speed limits and 

speed enforcement. 
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1.4 Thesis Organisation 

Chapter 2 is an extensive review of the literature. The topics cover different speed limit 

strategies, speed enforcement strategies, speed data collection methods, and microscopic 

simulation.  

Chapter 3 describes the field data collected from the WIM stations and the GPS data 

collected from the study corridor.  

Chapter 4 presents the statistical methods used to analyze various aspects of the collected 

traffic data. The methods include analysis of variance (ANOVA) test, Quantile-Quantile (QQ) 

plot, linear regression model, Monte Carlo data fusion method and correlation tests. The Chapter 

also discusses the microscopic simulation approach used to evaluate the traffic performance of 

heavy vehicles including the longitudinal speed profile, the speed violation rate and the speed 

standard deviation.  

Chapter 5 introduces M-FHWA class that takes GVW into account used in this study. The 

Chapter presents the study’s data fusion analysis conducted to amalgamate WIM data and GPS 

data in order to develop an integrated dataset. The Chapter also discusses the statistical relationship 

between heavy vehicle speed, GVW, the FHWA vehicle classification, and the proposed M-

FHWA classification.  

Chapter 6 describes using VISSIM simulation to analyze the traffic impact of USL and 

DSL strategies and the traffic impact of SSE and ASE strategies. 

Chapter 7 presents to a summary, the conclusions of the research and recommendations for 

future studies.  
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 Literature Review 

Historically, speed limits designed to reduce vehicle speeds on a section of highway are the most 

popular countermeasure used to improve traffic safety (Kirk & Co. Consulting Ltd. et al., 2014; 

Montella et al., 2012). In order for a speed limit to be effective in reducing vehicle speeds, 

enforcement tactics need to be implemented properly.  

This Chapter reviews three speed limit strategies:1) uniform speed limit (USL), 2) variable 

speed limit (VSL) and 3) differential speed limit (DSL). Two speed enforcement strategies, SSE 

and ASE, are also reviewed. A microsimulation using VISSIM is also described in terms of its 

varied applications for evaluating safety and operational performance.   

2.1 Speed Limit 

Speeding has been recognized as the most important contributing factor for vehicle 

collisions involving heavy vehicles (Monsere et al., 2017; Paton et al., 2018).The most effective 

speeding control strategy, with a long history of application, is the speed limit. In this Chapter, we 

review three particular forms of speed limit: 1) uniform speed limit (USL), 2) variable speed limit 

(VSL), and 3) differential speed limit (DSL). 

2.1.1 Uniform Speed Limit 

The most common type of speed limit is the USL (also known as a fixed speed limit). USL 

is currently applied on most highways in the world. Many researches have conducted studies to 

understand the effectiveness of USL (Al-Ghamdi, 1998; Keall et al., 2001; Monsere et al., 2017). 

However, the USL does not eliminate collisions. For example, nine fatalities on highway A56, an 

urban motorway with an 80 km/h USL and a total length of 20.2 km in Naples, Italy. This was the 
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highest number of fatalities on the motorway (in terms of the number of collisions per kilometer) 

in Italy in 2008 (Punzo et al., 2010). Neuman et al. (2009) reported that USL was applied on the 

A56 with little consideration of potentially important factors that may influence travel speed and 

safety. They overlooked some key characteristics of the A56 that influence speed such as traffic, 

roadway design and environmental characteristics. They concluded that USL might not be the most 

suitable form of speed limit for A56.  

Similarly, a speed limit of 72.4 km/h (45 miles per hour) has been associated with 

considerable delay and a large number of crashes due to high traffic demand during the peak 

periods. An example is a 47-km bi-direction freeway corridor on Interstate 880 in California (Li 

et al., 2016). In this case, a simulation model was used to develop a VSL strategy designed to 

reduce both the number and severity of highway collisions. The results of simulation analyses 

showed that a VSL could reduce the number of collisions by up to 25.88% and reduce the number 

of injury collisions by up to 14.7%.  

2.1.2 Variable Speed Limit 

VSL is designed to take traffic and highway environmental factors into account. VSL can 

apply show variable speed limits appropriate to the traffic and environmental conditions of the 

highway considered.  

For some highways in Europe, Asia and North America, VSL has been implemented in 

response to the adverse weather conditions (Choi and Oh, 2016; Saha at al 2015; Li et al., 2014). 

Saha et al. (2015) investigated the effectiveness of VSL systems and the effect of grades and sharp 

horizontal curves on collision frequency in adverse weather conditions (snow, ice, frost, wind). A 

negative binomial (NB) regression model was employed for modeling collision occurrence to 

determine the effectiveness of a VSL system for reducing crash frequencies. The data was 
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collected from multiple sources including crash data, weather data, roadway geometrics and traffic 

data on four Interstate-80 VSL corridors in Wyoming from 2007 to 2012. The simulation model 

estimated that 29 collisions could be avoided each year. The model also found that horizontal 

curves had no impact on crashes, but was significant under certain weather conditions. VSL had a 

significant effect of reducing collisions for steep grades. Similarly, VSL was also reported to help 

reduce the number of collisions on geometrically challenging corridors (e.g., sharp horizontal 

curves and steep grades through mountain terrain). VSL could also help to reduce the number of 

highway collision on less challenging corridors.  

 Although VSL is a popular form of speed limit in many countries, it is still relatively rare 

in Canada (Ludwar, 2017). The Ministry of British Columbia (B.C.) has installed VSL systems on 

three major highway sections, the Coquihalla Highway 5 through Snowshed Hill (40km), Highway 

99 between Squamish and Whistler (30km), and Highway 1 from Perry River to Revelstoke 

(30km) (Ludwar, 2017). The VSL systems display varying speed limit according to the rapidly 

changing weather conditions as these corridors include high elevation mountain passes with highly 

changeable environments subject to a diverse range of weather that can change very rapidly 

especially in winter. A set of sensors that can instantly detect changes in various traffic, pavement 

and visibility conditions was installed on the target highway sections. The sensors provide 

operational staff with recommended speeds allowing staff to continuously monitor the various 

changes on the highway sections and manually adjust the digital display of the variable message 

signs accordingly. For example, British Columbia had heavy snow during Dec 2016 and the speed 

sign on Highway1 was reduced to 60 km/h from 100 km/h. The 85th percentile speed on the 

corridor was recorded as 59 km/h.  
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VSL has also been implemented in response to highway work zones with high levels of 

congestion and potential safety problems. A work zone along a highway section (I-494) near 

Minneapolis-Saint Paul, Minnesota, had a VSL system installed and operated for three weeks 

(Kwon et al., 2007) . Speed data showed a 25 % to 35% reduction in average speed during morning 

peak hours (6:00 to 8: 00 a.m.) and a 7% increase in total throughput traffic volumes during 

evening peak periods.  

Yang et al. (2017) conducted a study to show the operational and safety impact of a VSL 

system installed in 2011 on a work zone along highway (I-495) near Silver Spring, Maryland. They 

used VISSIM to develop a simulation network covering upstream and downstream from the work 

zone area. The results showed that the VSL system could reduce speed in the upstream to 

downstream congestion and improves the operation efficiency at the work-zone area. The study 

also compared a no-VSL scenario with a VSL-control scenario. The results showed that VSL 

system could smooth speed reduction and prevent a sudden speed drop within one to two segments. 

The speed change rate was 31 km/h in the no-VSL scenario and 14 km/h in the VSL-control 

scenario. 

VSL has also been expected to bring potential safety benefits on non work zone highway 

sections. The benefits include reducing the number of highway collisions (Li et al., 2016; Guebert 

et al., 2012), reducing speed variation which decreased the probability of collisions (Khondaker 

and Kattan, 2015), and reducing the speeding violation rate (Hellinga et al. 2011). 

However, some studies have shown inconclusive and inconsistent results for VSL 

applications on highways and in work zones. An early study investigated a VSL system on a work 

zone on highway I-495 in Minnesota. The highway had heavy congestion due to high traffic 

(Fudala and Fontaine, 2010a; Fudala and Fontaine, 2010b). The VSL evaluation study showed 
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inconclusive results perhaps because of the site conditions and issues such as inconsistent use of 

the VSL due to control algorithm problems. The researchers conducted a simulation study to 

understand the impact of VSL. The results showed that VSL was not recommended for highway 

sections where traffic demand is far above capacity. The study did not consider safety benefits of 

VSL for work zones and also did not look into possible benefits during uncongested hours.  

Nissan and Koutsopoulosb (2011) evaluated the impact of a VSL system on the E4 

motorway in Stockholm, Sweden. The results indicated that there was no significant impact on 

changes in traffic volume and density, both immediately after VSL installation and again several 

months later.  

Kianfar et al. (2015) evaluated the impact of VSL systems on eight different locations on 

the I-270 in Missouri. The study used two separate approaches to analyze traffic conditions before 

and after VSL installation: the nonparametric two-dimensional Kolmogorov-Smirnov Test, and 

parametric flow-occupancy curve fitting. Because the impact of traffic control affected the 

highway traffic conditions at the different sites, the effect of VSL was inconsistent. After VSL 

installation, the study found that maximum traffic flow before breakdown decreased at four 

locations, but increased at the rest of four locations. The study also found the maximum flow after 

breakdown decreased at three locations and increased at five locations. In addition, the average 

duration of congestion decreased at five locations, but increased at three locations. 

2.1.3 Differential Speed Limit 

DSL is another commonly used speed limit. Many jurisdictions in North America have 

introduced lower speed limits for heavy vehicles than for passenger cars (Misaghi and Hassan, 

2005; Transport Canada, 2008; Korkut et al., 2010; Gates et al., 2016; Monsere et al., 2017). DSL 
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is used mainly to reduce the severity of collisions involving heavy vehicles (Johnson and Pawar, 

2005; Saccomanno et al., 2009).  

The DSL is usually based on different maximum speeds for different classifications of 

vehicle (NHTSA, 2012), but some jurisdictions use different criteria such as a vehicle’s size and 

weight, and some DSL approaches are based on weather or other roadway conditions such as 

nighttime speed limits, work zone speed limits, transition zone speed limits, and seasonal speed 

limits (Forbes et al., 2012). DSL does not require the complex speed control algorithms and extra 

cost of purchasing equipment and/or installation and maintenance fees associated with VSL 

systems.  

A typical DSL is set at a maximum speed limit that is around 10-20 km/h lower for heavy 

vehicles than for passenger vehicles (Ghods et al. 2012). As an example, the speed limit for 

passenger cars and motorcycles is typically between 80 km/h to 90 km/h on expressways in 

Singapore and 60 or 70 km/h for heavy vehicles (Yeung et al. 2015). In Malaysia, the speed limits 

on expressways are 110 km/h for passenger cars and 80-90 km/h for heavy vehicles. Federal and 

State Routes in In Malaysia have a speed limit of 90 km/h for passenger vehicles and 70-80 km/h 

for heavy vehicles (Saifizul et al. 2011). The rationale for the lower speed limit for heavy vehicles 

include 1) heavy vehicles require longer braking distance, 2) heavy vehicles are less flexible in 

lane-changing and/or overtaking maneuverability compared with passenger cars, and 3) collisions 

involving heavy vehicles often result in serious fatalities (Montella at al. 2011; Montella et al., 

2015).  

Saifizul et al. (2011) proposed a new approach to DSL based on the vehicles’ GVW rather 

than the vehicles’ classification or size. The approach was based on an observation that there was 
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a higher correlation between vehicles’ travel speed and gross vehicle weight (GVW) than between 

vehicle speed and vehicle classification or size. 

In the United States, seven states currently operate a DSL system based on vehicle GVW. 

Washington, California and Montana use a 15 mph differential between passenger vehicles and 

heavy vehicles. Michigan and Oregon use a 10 mph differential, and Indiana uses a 5 mph 

differential (Gates et al. 2016). Indiana uses 26,000 lbs as the GVW threshold to differentiate the 

speed limit while California, Michigan, and Washington use 10,000 lbs (NHTSA, 2012) (Gates et 

al. 2016). 

In Italy, the maximum speed limit on motorway and expressways is 80 km/h for heavy 

vehicles weighing more than 12 tonnes and 100 km/h for heavy vehicles weighing less than 12 

tonnes (Montella at al. 2011; Montella et al., 2015).  

Some European countries, such as the United Kingdom, Denmark, Finland, and Italy, also 

mandate the use of an advanced speed control device in the form of an electronic control module. 

The device is connected to the truck’s diesel engine and limits the truck’s maximum speed 

according to the vehicle’s GVW (European Commission, 2009). European Council Directive EU-

Directive 92/24/EEC and its recent adaptation (Council Directive 2004/11/EEC) mandated a speed 

limiter on heavy vehicles over 3.5 tonnes and on all vehicles weighing more than 10 tonnes 

including buses/coaches with more than nine seats (European Commission, 2009; Montella et al., 

2015). It is believed that speed limiters have contributed to improving road safety. In the United 

Kingdom, which mandated the installation of speed limiters for heavy vehicles in 1992, the number 

of collisions involving a heavy vehicle declined by 26 % from 1993 to 2005 ( European 

Commission, 2009; Transport Canada, 2008).  
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In Canada, Ontario and Quebec have mandated the use of truck speed limiters in heavy 

vehicles with a GVW greater than 11,794 kg. The maximum speed is set up as 105 km/h 

(Saccomanno et al., 2008; Saccomanno et al., 2009). Saccomanno et al. reported that mandatory 

speed limiters can produce safety benefits under various traffic conditions tested using 

microsimulation (Saccomanno et al., 2009).  

DSL and speed limiters reduce travel speed and the number of collisions involving heavy 

vehicles, and can also improve service reliability and efficiency for backhauls. Most European 

countries, e.g., Italy, Bulgaria, the Netherlands, Estonia, Finland, and Austria, have 20 and 25 % 

of heavy vehicles’ vehicle-kilometers (VKM) running empty (McKinnon, 2010). In Canada 

between 2000 and 2009, it is estimated that approximately 14 % of all heavy vehicles’ VKM 

travelled empty (Natural Resources Canada, 2009).   

Some studies have reported that DSL has little impact on highway capacity and traffic 

safety (Neeley et al., 2011; Ghods et al., 2012; Davis et al., 2015; Ghods and Saccomanno, 2016), 

and some have reported that DSL and truck speed limiters may have an adverse impact on traffic 

flow conditions by increasing travel time (Ghods and Saccomanno, 2016) and increasing speed 

variation between vehicles (Ghods and Saccomanno, 2016; Gates et al., 2016; Russo et al., 2017). 

These negative impacts are expected to apply mainly to two-lane highways (Gates et al., 2016; 

Ghods and Saccomanno, 2016; Russo et al., 2017).  

2.2 Speed Enforcement 

Speeding is recognized as possibly the most important collision contributing factor, 

particularly for fatal collisions (Montella et al., 2015). Speed management can improve traffic 

safety and is therefore important. Effective speed management techniques include the various 
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types of speed limits outlines in Section 2.1 and law enforcement. Governing agencies have 

dedicated significant resources to developing and implementing various speed enforcement 

tactics designed to reduce the number of collisions.  

Section 2.2 chapter reviews two speed enforcement tactics: spot speed enforcement 

(SSE), and average speed enforcement (ASE). 

2.2.1 Spot Speed Enforcement 

All North American jurisdictions currently enforce speed by measuring a vehicle’s spot 

speed. Indeed, this conventional method is the most common method for controlling traffic speed 

around the world. A vehicle’s traveling speed is measured as the target vehicle passes a very short 

section of highway (spot). The speed may be measured manually, by handheld radar guns, or by 

automatic enforcement devices such as photo radar coupled with CCTV and license plate readers. 

Many studies have shown the effectiveness of conventional speed enforcement tactics.  

Liu et al. (2011), for instance, analyzed the effect of automated (fixed) speed camera 

enforcement in Nanjing, China. Speed data was collected from April 2010 to June 2010 at seven 

sites. Three sites were rural highways with a speed limit of 60 km/h, and two sites were located on 

Ningli highway and S341 highway that have employed automated speed cameras for at least two 

years. The third site was the control site located on Ningli highway which did not have speed 

cameras. The left four sites were rural highways with a speed limit of 80 km/h, and three of them 

were located on G104 highway and Ningli highway that have employed automated speed cameras 

for at least two years. The forth site was the control site located on G104 highway which did not 

have speed cameras. Liu et al. (2011) reported that the cameras decreased mean travel speed by 12 

km/h to 16 km/h and decreased the 85th percentile travel speed by 12 km/h to 22.3 km/h. The study 

also reported that the proportion of speeding vehicles (defined as traveling at 10% or more higher 
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than the speed limit) was reduced by 41 % to 58 % for the study sections with the 60 km/h and 80 

km/h speed limit respectively.  

Liu et al. (2011)stressed that spot speed enforcement is, unfortunately, not a very effective 

tool for reducing vehicles’ traveling speeds beyond the area of influence of the speed enforcement 

installation. They observed that drivers usually reduce travel speed from 300 m - 400 m upstream 

of the speed camera location and then recover their vehicle speed at 300 m - 400 m downstream 

of the speed camera location. As a result, the influence area of the speed camera was less than 1 

km.  

In Belgium, Pauw et al. (2014b) looked into the effect of a fixed camera on speed on two 

sections of motorways where the speed limit was 120 km/h. The first section was in Brasschaat on 

the direction of Antwerp on the E19, a two-lane motorway. The second section was in Boutersem 

on the E40 in the direction of Liege, a three-lane motorway. The speed cameras were employed in 

Nov 2011. At the Brasschaat location, Pauw et al. collected 13 months of before data (from 

October 2010) and 10 months of after data (to September 2012). At the Boutersem location, they 

collected 11 months of before data (from Dec 2010) before and 18 months of after data (to May 

2013).  

Pauw et al. (2014b) reported that the installation of the speed cameras resulted in an average 

speed decrease of 6.4 km/h at the two locations. The proportion of drivers exceeding the speed 

limit decreased by 80 %, and the proportion of drivers exceeding the speed limit 120 km/h by 10% 

or more decreased by 86%. Like Liu et al. (2011), Pauw et al. reported that the area of reduced 

speed was limited. A clear V-shaped speed distribution along both highway sections was observed 

as drivers avoided enforcement near the point of speed detection by suddenly reducing, but then 

recovering speed shortly after passing the detector. 
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 Shim et al. (2015) also reported that drivers usually reduce speed near the speed cameras, 

but increase their speeds shortly after passing the cameras. Shim et al. collected traffic data from 

GPS equipped taxis and inductive loop detectors for the month of May, 2013. The study sites were 

selected according to data availability for 259 taxis in Daegu, South Korea. The study used 

geographic information system (GIS) to spatially match the trajectory data with the automated 

speed enforcement locations. Trajectory data was collected from four locations around Taegu. Two 

of them were on Korean Expressways and two of them were on Gyeongbu Expressway. Inductive 

loop detectors data was collected from three sites along Gyeongbu Expressway. The study was 

divided into segments and the researchers conducted a comparative analysis using the Empirical 

Bayes method for each segment before and after the speed camera installation. The results of the 

comparison showed that total crashes decreased by 7.6%, but collision occurrences increased by 

11% at 1500-m and 500-m segments upstream of the speed cameras due to drivers suddenly 

reducing speed as they approached the location of enforcement. These findings are similar to those 

of previous studies (Liu et al., 2011; Pauw et al., 2014b). In the study segments, the magnitude of 

the positive effect of the spot speed enforcement cameras on overall traffic safety was small 

compared to the negative effect.   

 Interestingly, a few studies have found that speed enforcement cameras can affect road 

safety adversely by increasing the number of collisions because the cameras increase speed 

variability along the affected highway sections (Quddus, 2013; Shim et al., 2015; Soole et al., 

2012). These studies found, for example, that some drivers tried to avoid a speeding ticket by 

suddenly decelerating upstream of speed enforcement cameras leading to an unprepared following 

rear ending the leading vehicle. Such problems suggest that SSE may not be suitable for reducing 

vehicle speed. It has also been found that increases in acceleration and deceleration associated with 
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spot speed enforcement lead to increases in fuel consumption and pollutant emissions (e.g., CO2, 

CO, NOx, pm10) (Punzo at al., 2010; Soole et al., 2012).  

2.2.2 Average Speed Enforcement 

ASE presents an improved speed control strategy that overcomes spot speed enforcement 

issues and is gaining in popularity. ASE is described differently in different jurisdictions. It is 

known as ASE in the United Kingdom, South Africa and China (Velden, 2017; Akpa et al., 2015; 

Speed Check Services, 2007), as point-to-point speed enforcement in Australia and New Zealand, 

(Soole et al., 2012; Montella et al., 2015) and as section speed enforcement in Italy and Belgium 

(Pauw et al., 2014a; Cascetta et al., 2011).   

Unlike conventional spot speed enforcement, ASE uses the average speed estimated 

between two points of interest along a section of highway as the justification for speed enforcement 

(Soole et al., 2012; Soole et al., 2013). The length of ASE applied in various regions varies widely. 

ASE on Tower Bridge in London (United Kingdom) is for a section of only 300 m, the shortest 

section where ASE is implemented. The Tower Bridge speed limit is 60 km/h (Speed Check 

Services, 2007). The longest ASE application is in the Aberdeen direction on a 71.7 km section of 

the R61 route between Beaufort West and the Eastern Cape border in South Africa. This 

installation was introduced by the Western Cape government in 2011 starting with a pilot project 

(Velden, 2017).  

Many studies conducted from various countries have safety benefits from ASE. The 

benefits include reductions in average travel speed, the 85th percentile travel speed, the number of 

speeding violations, and speed variability and reductions in vehicle emissions (Soole et al., 2013).  
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The first successful ASE application was in Netherlands in 1997. Average travel speed was 

reduced by from 115 km to106 km/h, and the speeding violation rate was reduced by 90% (Soole 

et al., 2012). There was also a reduction in the 85th percentile speeds and speed violation rate for 

both passenger vehicles and heavy vehicles. The Netherlands currently has 11 ASE systems 

operating on sections of various highways such as the A2 motorway (between Amsterdam and 

Utrecht) and the A13 motorway (between Rotterdam and the Hague) (Wegman and Goldenbeld, 

2006; Soole et al., 2012). 

The United Kingdom installed an ASE system in 1999 as a pilot project. The speeding 

violation rate was reduced by 30% (Soole et al., 2012). The ASE is now widely used in the United 

Kingdom . In addition to the benefit of reducing speeding, ASE also reduced the number of 

collisions (Soole et al., 2013; Soole et al., 2012). For instance, an ASE system was installed in 

January, 2012 on a section of the A614 near Nottingham This section had a significant history of 

severe collisions with 289 people killed or injured in a five year period. The study compared speed 

data before the installation of the ASE in January, 2012 and for the 23 months after the installation 

ending in Dec 2013. The study found a 52% reduction in the number of total collisions and a 40% 

reduction in the number of serious injury collisions. No fatalities was reported (Collins and Hurt, 

2014).  

Owen et al. (2016) evaluated the impact of ASE using 15 years of traffic and collision data 

(2000 to 2015) in the United Kingdom. ASE cameras were installed at 25 sites covering 294 km 

of road. The study found a 36.4% reduction in the mean rate of fatal and serious collisions in the 

after-installation period. Personal injury collisions of all severities decreased by 16%. Collins and 

Hurt (2014) reported that ASE helped reduce speed standard deviation that  contributed to reducing 

the number of collisions. The reduced speed standard deviation also contributed to achieving a 
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more homogeneous traffic flow than before the ASE installation and increasing highway capacity 

as well as reducing congestion (Collins and Hurt, 2014; Soole et al., 2012).  

In Italy, the first ASE system was introduced in 2006 and by 2015, 320 motorway sections 

with 2,900 km of roadway had ASE installed (Montella et al., 2015). In 2009, Punzo et al. (2010) 

conducted a before-after study to evaluate the safety impact of the ASE installed on the A56 

motorway near Naples. The section’s speed limit was 80 km/h. The researchers reported a 9.1 

km/h reduction in average speed, from 80.8 km/h to 71.7 km/h, and a decreased percentage of 

speed violations, from 51.6% to 17.4%. Speed variability was reduced from 18.1 km/h to 12.1 

km/h (Soole et al., 2012; Punzo et al., 2010). The study found that the ASE system significantly 

reduced travel speed and speed variance leading to homogeneous traffic flow conditions.  

In 2015, Montella et al. (2015) evaluated ASE associated with DSL on two motorways in 

Italy, the A56 (an urban motorway) and the A3 (a rural motorway). The speed limits for heavy and 

light vehicles were 70 km/h and 80 km/h respectively on the A56 and 80 km/h and 100 km/h 

respectively on the A3,. The study reported that the ASE systems on the A56 urban motorway 

resulted in a 84% and 77% reduction respectively in the number of light and heavy vehicles 

exceeding the speed limits by more than 20 km/h, and that the ASE systems also reduced the 

standard deviation of the speed of light vehicles (by 26%) and heavy vehicles (by 20%). The ASE 

safety improvements on the A3 motorway were less significant than those achieved on the A56 

motorway. The researchers concluded that this was due to the lack of public education and public 

involvement about the ASE on the A3 motorway where approximately 25% of drivers did not 

know how the ASE systems work and 22% on the A56. The percentage of people unaware of the 

presence of ASE was 35% on A3 and 26% on A56. 
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 In Scotland, Summersgill and Neil (2012) found that ASE combined with DSL could 

improve traffic safety by changing drivers’ operational behaviours especially for vehicles in excess 

of 7.5 tonnes by increasing the speed limit from 40 mph to 1) 50 mph and 2) 60 mph. The study 

involved the development of an S-Paramics microsimulation model to simulate the route between 

Dalwhinnie and Moy. The results indicated that the ASE with an increased speed limit for heavy 

vehicles would result in a reduction of 3 mph average speed for all vehicles, a reduction of 

approximately 13% in the desire to overtake on single carriageway sections, and a reduction of 

speed variance of approximately 35%. 

In Canada, few public agencies have endorsed the use of ASE on Canadian highways (Plant 

and Perry, 2018; Coulter, 2018; Fletcher, 2018; Kendall and Young, 2014; Antweiler, 2016). The 

Traffic Safety Commission of the Capital Regional District has proposed and recommended that 

ASE be installed on the Malahat highway, a high traffic corridor in British Columbia (Plant and 

Perry, 2018). Local politicians in Squamish and Lion Bay in British Columbia have recommended 

considering ASE as a way to reduce speeding violations on Highway 99 (Coulter, 2018). Similarly, 

municipal officials in the vicinity of the Sea to Sky Highway and the Coquihalla Highway in 

British Columbia have discussed the possible implementation of ASE on these highways (Fletcher, 

2018; Kendall and Young, 2014; Antweiler, 2016). Although many local jurisdictions in Canada, 

especially in British Columbia, have discussed the potential use of ASE as a speed enforcement 

tactic, ASE has not been introduced officially in Canada. 

2.3 Microsimulation 

In recent years, transportation engineers and researchers have used different 

microsimulation models to analyze the performance of heavy vehicles (F. Saccomanno et al., 2008; 
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Summersgill and Neil, 2012; Llorca et al., 2015). A popular microsimulation tool is PTV VISSIM 

(PTV VISSIM, 2011). VISSIM can simulate traffic performance by considering speed, density, 

travel time, weight, vehicle type, and other related parameters.  

Wang and Wang (2011) used VISSIM to evaluate the impact of various speed limits 

targeting different sections of rural highways in China. In Scotland, Transport Scotland developed 

a microsimulation traffic model to understand the impact of ASE for heavy vehicles (Summersgill 

and Neil, 2012). 

In Canada, VISSIM simulation has been applied to evaluate truck speed limiters on 

highways in Ontario and Quebec. Saccomanno et al. (2008) have also used VISSIM in Ministry 

of Transportation of Ontario (MTO) research designed to evaluate the safety impact of speed 

limiters for heavy vehicle with GVW greater than 11,794 kg. The analysis of the safety impact 

included the expected the number and severity of collisions involving heavy vehicles under 

different traffic scenarios and speed control strategies, and included 1) various geometric 

configurations (straight segments, off-ramp segments, and on-ramp segment), 2) various traffic 

conditions (traffic volume, heavy vehicle percentage, and rates of speed limiter compliance) and 

3) different speed control strategies (105 km/h and 110 km/h). The results of the simulation found 

that speed limiters set to 105 km/h would increase safety on uncongested roadways for all types 

of geometry highway configuration, that the safety impact of the 105 km/h speed limiter would be 

reduced when traffic volume and the percentage of heavy vehicles increased, and that the safety 

gains of speed limiters would be reduced as vehicle compliance increased.  

Microscopic simulation has also been used to evaluate the safety aspects of differential 

speed limits on a Canadian highway.  Lee et al. (2006) applied a PARAMICS microsimulation 

model to understand the impact of various speed limits on the Gardiner Expressway in Toronto. 
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The study showed that variable speed limits could substantially reduce collision potential, i.e., by 

5% to 17% depending on time of day (peak/off-peak and morning/ afternoon.  

Some studies have developed microsimulation models to show the impact of various 

intelligent transportation system (ITS) such as WIM systems and GPS-based detecting devices. 

Gu (2005) developed a simulation model using VISSIM to compare the performance of two WIM 

threshold strategies regarding traffic volume, weight distribution, and WIM accuracy and static 

scale service time. The two types of threshold strategies were the fixed-threshold algorithm, mainly 

focusing on weight limit and WIM accuracy, and the floating-threshold algorithm which also 

considered traffic volume, heavy vehicle weight distribution, and static service time. The 

simulation results showed that the floating-threshold algorithms resulted in a more effective 

performance than did the fixed-threshold algorithm, and that the floating-threshold algorithm was 

more effective than the fixed-threshold algorithm for WIM systems regarding weight enforcement 

and reducing delay.  

It is worth noting that the development of a traffic simulation model requires proper 

calibration of the model. The calibration is aimed at finding the appropriate combination of various 

input parameters to reduce the size of the errors between observed and simulated measures of 

performance (e.g., travel time, speed and traffic volume) to assure the accuracy and reliability, in 

this case, the VISSIM microsimulation model (Appiah et al., 2012).  

An approach to calibrating a microsimulation model is to use a genetic algorithm (GA) 

which is a stochastic algorithm that can maximize the goodness-of-fit values (Yu et al., 2011; 

Appiah et al., 2012; Fan et al., 2013). Appiah et al. (2012) applied a GA to a VISSIM model and 

compared the average speed estimation of the calibrated and uncalibrated models. The researchers 
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found that the calibrated model errors ranged from 10% to 16% while the uncalibrated model 

errors ranged from 15% to 35%.  

Some researches have argued that GA can evaluate only one measure of performance per 

simulation and that a large set of simulations is required to fully evaluate many performance 

measures. In such cases, GA is not efficient (Duong et al., 2010).  

Alternative approaches have been developed for calibrating the VISSIM model. They 

include multi-criteria calibration and two-stage calibration (Duong et al., 2010; Fan et al., 2013). 

Fan et al. (2013) found that the two-stage calibration procedure could improve consistency 

between simulation and observation. Later, Havers of the Wisconsin DOT proposed a goodness-

of-fit measure known as the GEH (for Geoffrey E. Havers) to calibrate the VISSIM simulation 

model and this is now the most widely used measure of performance (Ramezani et al. 2018a; Choi 

and Oh, 2016; Ramezani et al. 2018b). Although the GEH approach provides a good assessment 

of how accurately the traffic model reflects observed conditions, there were still some concerns 

with the approach (Wisconsin DOT, 2014). An updated calibration approach has since been 

proposed. This is a new goodness of fit metric called the Root Mean Square Percent Error 

(RMSPE) that has been endorsed by Wisconsin DOT. It can be applied to various calibration 

parameters including traffic volume, speed, travel time, queues, and lane use (Wisconsin DOT, 

2018).  

2.4 Chapter Summary 

This chapter focused on reviewing three topics: 1) speed limit, 2) speed enforcement tactics, and 

3) microsimulation.  

The speed limit discussion reviewed three different speed limit strategies and their impact 

on operational and safety aspects of traffic flow condition. The conventional uniform speed limit 
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does not differentiate the maximum speed for passenger vehicles and heavy vehicles. For the 

variable speed limit, the safety impact particularly for heavy vehicles was not consistent. Some 

studies have shown meaningful safety benefits, but others have shown inconclusive results or even 

no significant impact on safety. The differential speed limit has been applied in many countries 

with some safety gains for heavy vehicles, but it is not currently used in Canada.    

The speed enforcement tactics discussion noted that conventional spot speed enforcement 

has a limited area of enforcement (i.e., speed is reduced near the speed enforcement location only). 

Possible negative impacts included an increased number of collisions, and increased fuel 

consumption and pollutant emissions. As an alternative, average speed enforcement is used in 

many countries and significant safety benefits such as significant reductions in highway speed, the 

number of collisions and the speed violation rate are reported, but the approach has not been used 

in North America.  

The discussion of microsimulation concentrated on VISSIM model. These models have been 

applied widely to evaluate the safety and operational performance of heavy vehicles. Various 

approaches to model calibration are available to maximize the accuracy of VISSIM as a simulation 

tool for evaluating performance measures such as speed, travel time and traffic volume.    
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 Study Data 

3.1 Study Location 

This study obtained heavy vehicle travel speed and GVW data from the British Columbia 

(BC) HWY 5 and Trans-Canada HWY 1 from Laidlaw to Golden in B.C. See Figure 3-1. The 

corridor has two WIM stations installed about 548 km apart from each other.  

We used one year (2014) of WIM data collected from the two WIM stations and one month 

(March, 2016) of GPS data collected from a sample of heavy vehicles travelled along the corridor. 

 
 

Figure 3-1: Study Corridor 

3.2 Data Collection Method 

3.2.1 Weigh-in-Motion  

Back in the early 1950s, WIM scales were mainly used in the United States to collect data 

on vehicles’ weight and axles (Norman and Hopkins, 1952). The information was used largely to 
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improve pavement maintenance and design. Over the years, WIM scale technologies have 

advanced tremendously and can now provide a vast amount of additional traffic information. For 

each individual vehicle detected, the WIM system can record travel speed, length (via wheelbase), 

class (via axle spacing) and, of course, axle load and GVW (Jacob and Feypell-de La Beaumelle. 

2010). The system can also collect vehicle count data and measure travel speed and the time gap 

and headways between travelling vehicles.  

Some studies have explored the technical feasibility of using WIM scale facilities equipped 

with automatic license plate readers to enforce speed limits. Han and Hargrove (2007) used WIM 

scale facilities near Knoxville, TN to enforce heavy vehicle speed limits, but did not consider 

GVW explicitly. This study was the first such study in North America.   

In Malaysia, Saifizul et al. (2010) developed a conceptual framework using speed and 

GVW data from WIM scale facilities for heavy vehicle speed enforcement. They expanded the 

framework by suggesting a data-driven empirical approach for determining appropriate differential 

speed limits for heavy vehicles (Saifizul et al., 2011). 

In Scotland, WIM systems have been applied to collect the speed of vehicles by weight for 

HGVs to study speeding offence rates on single carriageway sections (Summersgill and Neil, 

2012). A pilot project then examined the speed limit violation rate for heavy vehicles. The pilot 

used data from WIM scale facilities to screen vehicles above a certain weight (7.5 tonnes ≈ 16,500 

lbs) (A9 Safety Group. 2013).  
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In Canada, the B.C. Ministry of Transportation proposed the Weigh2GoBC program. In 

Weigh2GoBC, WIM systems are equipped with automatic license plate readers and the system 

enforces vehicle weight limits and identifies and accesses detailed information such as the 

commercial vehicle identification number, the company owning the commercial. Modern WIM 

scale facilities are clearly a sophisticated tool for collecting traffic data with many potential 

applications.    

In this study, we used WIM station data supplied by International Road Dynamics (IRD) 

Inc. (IRD, 2017a). The data provided information for selected heavy vehicles travelling from west 

to east in the 12 months of 2014.  

The dataset we developed could be categorized into two types: 1) the single dataset, and 2) 

the link dataset.  

The single dataset presents vehicle traffic data collected from each WIM station. The data 

for each vehicle includes time stamps, lane number used, vehicle speed, vehicle length, number of 

axles, each axle’s weight, spacing between axles and vehicle classification. 

Vehicle classification was made according to the Federal Highway Administration’s 

(FHWA) (FHWA 2016) 13 classes which are grouped into six major classifications: 1) 

motorcycles (class 1), 2) passenger vehicles (classes 2 and 3), 3) buses (class 4), 4) single-unit 

trucks (classes 5 to 7), 5) single trailers (classes 8 to 10) and 6) multi-trailers (classes 11 to 13). 

Appendix A provides more detailed classification information.  

As this study was interested in investigating speed enforcement for heavy vehicles, we used 

traffic data showing headways greater than 9 seconds and speeds between 60 and 140 km/hr. We 

discarded data containing any improper value originating from a WIM sensor error. We have also 

used data collected under favourable weather conditions. We did not use data for days with adverse 
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weather conditions such as snow, rain, fog, wind speeds greater than 60 km/hr, and temperatures 

lower than -25°C.   

The weather data was collected from Environment and Climate Change Canada 

(Government of Canada, 2014). The 2014 weather data was obtained from the two weather stations 

located near Golden and Laidlaw (AGASSIZ RCS and GOLDEN A). The weather data was 

updated three times per hour and contained temperature (in Celsius), wind speed (in km/hr), and a 

description of the weather condition.  

Our final single dataset contained information including lane number used, vehicle speed, 

vehicle length, number of axles, vehicle weight, vehicle classification, day of the week, headway, 

time gap and weather conditions. In total, 1,337,921 vehicles passed through the Laidlaw station 

and 285,025 vehicles passed through the Golden station.  

The link dataset was based on trip records for heavy vehicles equipped with the Automatic 

Vehicle Identification (AVI) electronic vehicle tag which is part of the B.C. Weigh2GoBC 

program (International Road Dynamics Inc., 2014a). The AVI and Weigh2GoBC program allow 

registered heavy vehicles to be identified at each weighing station. The vehicles in this program 

are only heavy vehicles with good vehicle history that can be said very conservative. As a result, 

we were able to use data from the two WIM stations to identify individual heavy vehicle trip 

records on the study corridor and generate the link dataset.  

The link data for each trip included the trip time (travel from Laidlaw to Golden) down to 

a hundredth of a second, the lane number, the vehicle speed, the vehicle length, and GVW, and 

each axle’s weight and spacing. The data also included the FHWA vehicle class from class 6 to 

class 13. As the GPS data (described in Chapter 3.2.2) focused on heavy vehicles larger than a 
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single unit truck, the WIM dataset excluded FHWA classes 6 and 7. FHWA class 11 was excluded 

due to a WIM systems error concerning vehicle types.  

To evaluate the impact of the introduction of ASE on heavy vehicles on highways, we 

analyzed mainly the link dataset rather than the single dataset. Our final link dataset contained 

information including 9,363 heavy vehicle trips from the Laidlaw WIM station to the Golden WIM 

station in 2014. Table 3-1 shows the FHWA vehicle classification, average speed, and number and 

percentage of vehicles speeding. Speeding was defined as exceeding the average speed limit 

calculated for the 9,363 heavy vehicle trips. 

 

Table 3-1: Average Speed and Speeding Distribution for FHWA class in Link Dataset  

Vehicle Classes 

(FHWA) 

Number of 

Vehicles 

Average 

Speed (km/h) 

Number of 

Speeding 

Vehicles 

Percentage of 

Speeding 

Vehicles 

Class 8 18 86.12 9 50% 

Class 9 6429 74.13 281 4.37% 

Class 10 2299 72.82 73 3.18% 

Class 12 247 71.76 6 2.43% 

Class 13 370 67.93 1 0.27% 

Total 9363 - 370 3.95% 

 

The average speed limit was estimated based on Equation 3-1, which was using total distance 

travelled divided by total travel time spent from Laidlaw to Golden: 

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑺𝒑𝒆𝒆𝒅 𝑳𝒊𝒎𝒊𝒕 =  
∑(𝑺𝒑𝒆𝒆𝒅 𝑳𝒊𝒎𝒊𝒕)(𝑺𝒆𝒄𝒕𝒊𝒐𝒏 𝑳𝒆𝒏𝒈𝒕𝒉)

𝑻𝒐𝒕𝒂𝒍 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆
     Equation 3-1 
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The average speed limit was 88 km/h and 3.95% (see Table 3-1) of heavy vehicle exceeded this 

speed limit. These vehicles were considered to be speeding.   

Table 3-2 shows interesting differences in the single dataset for all vehicles collected at 

each station (Laidlaw and Golden). At the Laidlaw station, 2.96 % of heavy vehicles (class 8 to 

class 13) and 36.90 % of all vehicles (class 1 to class 13) exceeded the local speed limit of 110 

km/h. At the Golden station, the speed limit violation rate was much higher: 20.71 % of heavy 

vehicles (class 8 to class 13) and 56.49 % of all vehicles (class 1 to class 13) exceeded the local 

speed limit of 90 km/h. Passenger cars and smaller vehicles (smaller GVW) usually travel faster 

that would lead high speed violation rate. Heavy vehicle with large GVW travel slower and have 

lower speed violation rate. Also, the speed violation rate in Golden is higher then Laidlaw. It could 

be caused by that the speed limit in Laidlaw station is 110 km/h and the speed limit in Golden 

station is 90 km/h. Lower speed limit would cause higher speed violation rate and vice versa.  

Table 3-2: Speeding Distribution for FHWA Class in Two Single Dataset  

Vehicle Classes 

(FHWA) 

Number of 

Vehicles at 

Laidlaw 

Percentage of 

Vehicles 

Speeding at 

Laidlaw 

Number of 

Vehicles at 

Golden 

Percentage of 

Vehicles 

Speeding at 

Golden 

Class 1- Class 13 1,337,921 36.90 % 285,025 56.49% 

Class 8- Class 13 355,305 2.96 % 99,246 20.71 % 

 

The percentage of heavy vehicles speeding at Golden single station based on spot speed is 

higher than the percentage of heavy vehicles speeding based on exceeding the average speed limit 

for heavy vehicles driving along the study corridor. This difference is due partly to the difficulty 

involved in tracking each heavy vehicle’s travel accurately along the 548 km of study corridor. 
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Some heavy vehicles travelled continuously without stopping and other heavy vehicles could have 

made one or more stops during the trip for rest, gas, and/or loading/unloading.  

To alleviate this problem, the data were categorized into two different types of trip: 1) 

travel without stops (nonstop), and 2) travel with stop (stopping) (s). To do this, we looked at both 

the total travel time and the GVW measured at the two trip ends (i.e., the WIM stations at Golden 

and Laidlaw). 

 The average travel time for heavy vehicles is 7.6 hours and the minimum travel time is 5.5 

hours. We assumed that a heavy vehicle travelled without a stop if it travelled the study corridor 

in less than 8 hours.  

We also assumed that a heavy vehicle travelled without a stop if the GVW was the same 

or approximately the same at both WIM stations. Static WIM systems detecting vehicles travelling 

at low speed can measure GVW with an accuracy of ±0.5% (IRD, 2014b). Unfortunately, dynamic 

WIM systems detecting vehicles travelling at high speed (up to 200 km/h) have an error tolerance 

of ±5% to ±15% (IRD, 2017a; Al-Qadi et al., 2016; Papagiannakis et al., 2008). This study 

assumed that a vehicle did not stop if the GVW difference at the two stations was within ±10%.  

We removed trips that likely have extremely long travel time, more than 12 hours. The 

travel time between 8 hours to 12 hours was considered as heavy vehicle stopped one or more 

times during the trip. The study found that the GVW difference between a fully loaded truck and 

an unloaded truck can be up to approximately 300% for heavy combination trucks (Gardner and 

Merlo, 2014). The GVW changing exceeding 300% could be considered as measurement errors or 

erroneously large. We removed all heavy vehicles for which the change in GVW exceeded ±300%. 

This study assumed that the travel time was between 8 hours to 12 hours and GVW changing was 

between ±10% to ±300% would be travel with stop category.  
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Table 3-3 shows the number and percentage of nonstop and stopping heavy vehicle trips 

in the link dataset. More vehicles travelled nonstop than stopping: 5,525 (59%) compared with 

3,838 (41%).  

Table 3-3: Nonstop and Stopping Vehicle Distribution in Link Dataset 

Classification 

(FHWA) 

Number of 

Nonstop 

Vehicles 

Percentage of 

Nonstop 

Vehicles 

Number of 

Vehicles with 

Stops 

Percentage 

of Vehicles 

with Stops 

Class 8 5 27.78% 13 72.2% 

Class 9 3,854 59.95% 2,575 40.05% 

Class 10 1,395 60.68% 904 39.32% 

Class 12 109 44.13% 138 55.87% 

Class 13 162 43.78% 208 56.22% 

Total 5,525 59.01% 3,838 40.99% 

 

Existing WIM systems are not primarily used to collect and record the average travel speed 

of individual heavy vehicle travelling along a corridor since they can not detect whether trucks 

stop or rest along their journey. Global Positioning System (GPS) data, however, may provide 

additional insight regarding individual vehicles’ travel information including speed measurement, 

and vehicles’ stop time, rest time and re-fueling time on long-distance trips. The polling rate of a 

GPS makes it possible to detect moving vehicles in real-time. The higher polling rate indicate that 

the collected information is closer to real-time. 

3.2.2 Global Positioning System 

A GPS device installed in a heavy vehicle can be used to track origin and destination (OD) 

and other performance measures associated with freight transportation. Various studies that used 
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GPS data to evaluate freight movement and performance. The City of Portland, Oregon, for 

example, conducted a GPS analysis to investigate travel time reliability on 10 different segments 

of northbound Interstate 5 (Sarkar et al., 2011), and GPS data was used in Minnesota for a study 

evaluating heavy vehicle mobility and reliability (Liao, 2014). Such studies provided meaningful 

inputs for infrastructure improvement and for developing operational strategies for freight 

transportation. 

GPS technologies can also be used to measure and monitor the travel speed of freight 

vehicles. In 2010, a study found that GPS data can estimate heavy vehicles’ average speed along 

a route by measuring the vehicles’ location and attached time stamp, and can also accurately 

estimate the vehicles’ spot speed (Zhao et al., 2011). The City of Calgary, Alberta conducted a 

study to evaluate different variable speed limit systems by using average speed estimated from 

GPS devices (Kattan et al., 2015). In 2017, a GPS data was used in China to evaluate variation in 

vehicles’ travel speed in relation to road geometry (road curvature, gradient, etc) (Dai, 2017).  

It appears that GPS can play an important role in measuring and monitoring freight 

vehicles’ travel speed. However, speed enforcement for freight vehicles is a complex problem that 

requires more studies to achieve a deeper understanding. For instance, GVW is a key factor 

affecting freight travel speed and other freight performance measures (NHTSA, 2012), but GPS 

does not provide information about vehicles’ weight and classification.  

In this study, we obtained one month (March, 2016) of GPS heavy vehicle data (defined as 

FHWA vehicle Classes 8 to 13) travelling in both directions along the study corridor between 

Laidlaw and Golden. The GPS traffic data for each trip included: 1) unique trip identification (ID), 

2) start and end latitude-longitude reading for each trip, 3) stopping hours (duration that the heavy 

vehicle stopped), 4) total trip hours, and 5) total driving hours (total trip hours minus stopping 
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hours). In total, there were 1,727 (raw) heavy vehicle trips from Laidlaw to Golden and 1,858 trips 

(raw) from Golden to Laidlaw. See Table 3-4.  

The raw GPS data contained the geospatial points (i.e., the location) of the start and end 

points, and the stop points where the stopping duration exceeded 300 seconds (5 minutes). To 

geocode the GPS data to the study roadway network, shape files were developed using ArcGIS to 

create 5 km by 5 km square zones centered on both WIM stations to capture the start and end 

(Laidlaw and Golden) points of the heavy vehicle trips. A 5 km wide buffer zone was created using 

ArcGIS to exclude trips with stops outside the main study corridor. See Figure 3-2 which shows 

the raw data (a) and the adjusted data (b). We analyzed only the trips with all ping points located 

within the buffer zone.   

 
 

 
 

a) Raw GPS Data  b) GPS Data within Buffer Zone  

Figure 3-2: GPS Data Between Laidlaw to Golden 

The GPS data was divided into two groups: 1) travel without stops (nonstop), and 2) travel 

with stop(s). The travel without stops group included no vehicles stops or the stop duration of each 

stop was less than 300 seconds (5 minutes) between Laidlaw and Golden. For consistency with the 

WIM data, we considered only the trips from Laidlaw to Golden. 
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Abnormal trips were also screened and excluded. Examples include trips for which the total 

time exceeded 24 hours or the driving time exceeded 13 hours without a stopping time of at least 

8 hours (as required by Hours-of-Service regulations) (Goverment of B.C., 2012). For consistency 

with the WIM dataset, only trips of less than 12 hours were included in the final sample.  

The final GPS traffic dataset included 1,241 vehicles of which 332 made non-stop trips and 

909 made stopping. The Table 3-4 shows interesting differences compared to Table 3-3. The 

percentage of nonstop trip in GPS data (Table 3-4) is 27 % (73% of stopping trip). The percentage 

of nonstop trip in WIM data is 59 % (41 % of stopping trip).  It could be caused by different criteria 

to differentiate nonstop and stopping trips. The detail comparison between two datasets would be 

discussed in Chapter 5.2  

Table 3-4: GPS Traffic Data for Laidlaw to Golden Direction 

Type of Data 

Total 

Number of 

Vehicles 

Number of 

Non-Stop 

Vehicles 

Percentage of 

Non-Stop 

Vehicles 

Number of 

Vehicles 

with Stops 

Percentage 

of Vehicles 

with Stops 

Raw Laidlaw 

to Golden 
1,727 334 0.19 1,393 0.81 

Final Laidlaw 

to Golden 
1,241 332 0.27 909 0.73 

 

3.3 Chapter Summary 

This chapter describes the WIM and GPS study datasets. Both datasets were collected along the 

same study corridor.  

The WIM data consisted of a single dataset and a link dataset. The datasets included data 

for trips made in favourable weather and traffic conditions only. The study mainly focused on 
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processing link dataset. The average speed limit was estimated for link dataset and the speed 

violation rate was able to calculate for the heavy vehicles traveling from Laidlaw to Golden. The 

link data were also categorized into nonstop trips and stopping trips according to the total travel 

time less than 8 hours and the GVW measured within 10% at the two trip ends. 

 GPS dataset was also included to improve the accuracy of the speed estimates for this 

study. The GPS data excluded data for abnormal trips for processing the raw GPS data to obtain 

the ready-to-use GPS study data. GPS data was also categorized into nonstop trips and stopping 

trips based on the duration of stops less than 5 minutes for each trip. 

Chapter 4 describes the detailed methodology used in the examining proposed M-FHWA 

class, the development of an integrated database, the investigation of relationships, the simulation 

model development and the model calibrations.  
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 Methods of Analysis 

This chapter introduces the six methodologies used in the detailed data analysis presented 

in Chapter 5 and the simulation study presented in Chapter 6. The methodologies are: analysis of 

variance (ANOVA) test, Quantile-Quantile (QQ) plot, linear regression model, Monte Carlo data 

fusion method, statistical correlation tests, and a microsimulation model.   

Section 4.1 discusses the statistical approaches as Figure 4-1 showing. The conventional 

FHWA class scheme largely depends on the configuration of vehicles. A Modified-Federal 

Highway Administration (M-FHWA) classification that takes GVW into account was created. 

First, ANOVA tests with Tukey’s HSD tests were used to exam whether the average speed in each 

M-FHWA class was distinctive enough to suggest that setting different speed limits for each M-

FHWA class would be appropriate. The study used three different approaches to develop an 

integrated dataset that combined WIM data with GPS data to include more accurate speed 

distribution with nonstop and travel with stops information. Firstly, a QQ plot was used to check 

whether the speed distributions of the WIM and GPS data were similar. Secondly, a linear 

regression model was used to estimate the linear relationship between the WIM speed data and 

GPS speed data. Thirdly, the Monte Carlo method was applied to develop the integrated dataset 

that incorporated WIM data and GPS data. The study then evaluated the FHWA heavy vehicle 

classification and a proposed M-FHWA classification to decide which scheme would be suitable 

for developing a DSL strategy based on GVW. Two types of correlation tests, Spearman and 

Pearson, were employed to examine the empirical relationships between heavy vehicle speed and 

GVW for FHWA classes and M-FHWA classes.  
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Figure 4-1: Process of Data-Driven Analysis  
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 Section 4.2 describes the microsimulation and the two-stage calibration approach in a 

VISSIM environment.  

To analyze and interpret the large amount of data available, we used the R statistical 

language (R Core Team, 2018).  

4.1 Statistical Approaches 

4.1.1 Analysis of Variance Tests  

Analysis of variance tests (ANOVA) is a widely used statistical approach that analyzes the 

data by comparing the means of subsets of data. The base case is the one-way ANOVA which has 

one independent variable. One-way ANOVA compares the means of three or more groups and 

determines whether the means are significant different from each other (Williams, 2004).  

The null hypothesis for the one-way ANOVA test is that the means of the different groups 

are equal. In other words, the null hypothesis implies that there is not enough evidence to prove 

the means of the group are different from others. The alternative hypothesis is that at least one 

sample mean is not equal to the others. In the one-way ANOVA test, an F value indicates whether 

the variance between the means of two groups is significant. F value is the ratio of the variability 

between the groups to the variability within the groups, i.e., an F value of 10 indicates that the 

variability between the groups is 10 times than the variability within the groups. The F-value is 

close to 1 if the ANOVA null hypothesis is true (Frost, 2017a).  

The F value must be used together with the P value. In one-way ANOVA, F value indicates 

whether some group mean is significant, but the P value indicates whether the overall results are 

significant. If the P value is less than the significance level of 0.05 and the F value is large (larger 
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than 1), the null hypothesis should be rejected indicating that there is a significant difference 

between the groups (Webb and Pajak, 2014; Frost, 2017b).  

At this point, it is important to note that ANOVA tests only investigate whether the results 

are significant different overall. The tests do not provide deeper insights, i.e., they do not indicate 

which specific groups are significant statistically different from other groups (Stevens, 1999; 

Newsom, 2018). In our study, more than two groups needed to be compared. Specifically, there 

are four groups of M-FHWA classes (class 1, class 2, class 3, class 4) and 11 sub-groups that can 

be found in Table 5-1 of Chapter 5.1. After completing one-way ANOVA test, a Post Hoc test, 

also known as multiple comparisons, was needed to make all of the pairwise comparisons between 

groups. Different Post Hoc tests are available. For one-way ANOVA, Tukey’s Honest Significant 

Difference test (Tukey’s HSD) is a popular approach when the sample size of the groups is 

unequal. Tukey’s HSD calculates one critical values and the differences between all possible pairs 

of means. Each difference is then compared to the Tukey’s HSD critical value. If the absolute 

value of the difference between the two pairs’ means is greater than or equal to the Tukey’s HSD 

critical value which represents the P value equal to 0.05, the comparison is statistically significant 

(Stevens, 1999; Newsom, 2018). Equations 4-1 and 4-2 show the calculation of the critical value 

and the comparison:  

𝑯𝑺𝑫 = 𝒒√
𝑴𝑺𝑬

𝒏
           Equation 4-1 

|𝒀𝒊 − 𝒀𝒋| ≥ 𝑻𝒖𝒌𝒆𝒚′𝒔 𝑯𝑺𝑫          Equation 4-2 

where:   

MSE is the mean square value within a group;  

n is the number of values in a group;  
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q is the relevant critical value obtaining from the studentized range statistic table (Stevens, 1999); 

Y1 is the mean of group i; and  

Y2 is the mean of group j. 

In this study, we conducted a series of one-way ANOVA tests and Tukey’s HSD tests for each M-

FHWA class and sub- M-FHWA classes to check whether the average speeds estimated for each 

M-FHWA class and sub- M-FHWA classes are significantly different from each other. Chapter 

5.1 provides details. 

4.1.2 Quantile-Quantile Plot 

A quantile-quantile (QQ) plot is a probability plot and a non-parametric graphical method. 

It can be easily constructed by the R language (Ford, 2015). Although a QQ plot is generally a 

more powerful approach than simply comparing histograms of the two samples, it requires skill to 

interpret properly. 

The QQ plot is a scatterplot that plots two dataset’s quantiles against one another as shown 

in Figure 4-2 (Perktold et al., 2019). It can be used to virtually inspect the similarity between the 

distributions of two datasets. If the distributions of two datasets are similar, the points in the 

scatterplot lie approximately on the 45-degree line (the red line in Figure 4-2). Greater departure 

from the 45-degree line indicates greater evidence that the distributions of the two data sets are 

different (Ihaka, 2007).   

 



 

44 

 

Figure 4-2: Example of Quantile-Quantile Plot (Perktold et al., 2019) 

An advantage of the QQ plot is that the two datasets tested does not require the strong 

assumption of equal distribution. For instance, two test datasets do not both need to have a normal 

distribution. QQ plots can detect shifts in location, shifts in scale, changes in symmetry, and the 

presence of outliers. If the two data sets come from populations whose distributions differ only by 

a shift in location, the points should lie along a straight line that is displaced either up or down 

from the 45-degree line.  

This study conducted QQ plotting to examine similarities in the speed distributions 

between the WIM and GPS speed datasets and to determine whether or not there exists a 

relationship between the WIM and GPS speed datasets.  
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4.1.3 Linear Regression Model 

After examining the similarities in the speed distributions, it is time to establish whether there is a 

relationship between WIM speed distribution and the GPS speed distribution. Regression 

modeling has been widely used to estimate the relationships between one or more independent 

variables and dependent variables (Myers, 1990). Linear regression, the basic and commonly used 

type of regression model, finds the best-fitting straight line that describes the relationship between 

two continuous variables, an independent variable and a dependent variable. Equation 4-3 presents 

a linear regression model (Zou et al., 2003): 

𝒚 = 𝒂 + 𝒃𝒙              Equation 4-3 

where: 

x is the independent variable; 

y is the dependent variable; 

a is the intercept of the regression line; and 

b is the slope of the regression line. 

The equations for the intercept “a” and the slope “b” can be calculated as follows (Kutner et al., 

2005): 

𝒂 =
(∑ 𝒚)(∑ 𝒙𝟐)−(∑ 𝒙)(∑ 𝒙𝒚)

𝒏(∑ 𝒙𝟐)−(∑ 𝒙)𝟐          Equation 4-4 

𝒃 =
𝒏(∑ 𝒙𝒚)−(∑ 𝒙)(∑ 𝒚)

𝒏(∑ 𝒙𝟐)−(∑ 𝒙)𝟐          Equation 4-5 

where: 

a is the intercept of the regression line;  

b is the slope of the regression line; 
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x is the independent variable; 

y is the dependent variable; and 

n is the number of observations. 

4.1.4 Monte Carlo Data Fusion Method 

After calculating the relationship between the WIM speed data and the GPS speed data 

using a linear regression model, we created an integrated dataset containing information such as 

travel speed, vehicle classifications, weight, stop pattern (non-stop trips and stopping trips) for 

further analysis. This data fusion process is discussed below. 

As mentioned earlier, the WIM data included information such as vehicle classifications 

and GVW for all vehicles, but it did not include details of non-stop trips and stopping trips along 

the study corridor. The GPS data contained information that was not recorded in the WIM system 

such as stopping duration and stopping locations and for each heavy vehicle, but it did not include 

weight and vehicle class information.  

In order to create an integrated dataset that contained all the information in the two distinct, 

but incomplete sources of information (WIM and GPS), this study relied on data fusion technology 

known as the Monte Carlo method (Reichstein and Richardson, 2011).  

The Monte Carlo method is applied to create a single integrated database that maintained 

the distributions of the various factors inherited from the two distinct datasets. In simple terms, the 

integrated dataset created by the through Monte Carlo method was able to present the equivalent 

ratio for each important characteristic considered (e.g., vehicle class, GVW, stopping and non-

stopped ratio) compared to those characteristics in each dataset. 

The Monte Carlo data fusion method is a set of computational algorithms that conduct 

repeated random sampling to obtain desired numerical outcomes. The approach is often used to 
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solve problems in the area of physics and mathematics and can also be found in many engineering 

applications (Reichstein and Richardson, 2011; Kroese et al, 2014; Trieu et al, 2014). To minimize 

uncertainty in the process, instead of using a single value (e.g., an average) as a representative 

input for a particular variable, the Monte Carlo method provides a better approach (Shapiro, 2003; 

Kroese et al., 2014). Figure 4-3 shows an outline of the Monte Carlo data fusion method adopted 

in this study.  
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Figure 4-3: Process of Monte Carlo Data Fusion Method  
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Figure 4-3 shows the multiple steps of the Monte Carlo data fusion method. The method 

first created a multiple partitioned dataset according to the percentage of nonstop vehicles in each 

speed interval obtained from the GPS dataset. The percentage of nonstop vehicles in the first speed 

interval (40 km/h to 41 km/h) can be interpreted as X1 %, and the percentage of stopping vehicles 

in the first speed interval (40 km/h to 41 km/h) can be interpreted as (1- X1) %.The percentage of 

nonstop vehicles in the last speed interval (109 km/h to 110 km/h) can be interpreted as Xm %, and 

the percentage of stopping vehicles in the first speed interval (109 km/h to 110 km/h) can be 

interpreted as (1- Xm) %. The subscript letter m represents the maximum value and Xm represents 

the maximum speed interval.  

From the precise speed interval, first speed interval (minimum speed interval from 40 km/h 

to 41 km/h) to the last speed interval (maximum speed interval from 109 km/h to 110 km/h), the 

percentage of nonstop vehicles in each speed interval can be interpreted from X1 % to Xm % and 

the percentage of stopping vehicles in each speed interval is from (1- X1) % to (1- Xm) %. Based 

on the precise speed interval, we obtained the precise percentage of nonstop and stopping vehicles 

in each speed interval from GPS dataset. Then, the partitioned dataset was used as criteria to re-

categorize WIM dataset. The detail was explained as below. 

The method used randomly sampling to obtain the percentage of nonstop and stopping 

vehicles in each speed interval for WIM dataset (all trips in WIM dataset) and compared the 

random sample results of all trips in WIM dataset with the partitioned dataset obtained in the first 

step for each speed interval from GPS dataset. If the sampling value of the trip in WIM dataset 

was smaller than the percentage value of the GPS dataset for the same speed interval, the iteration 

output (the trip in WIM dataset) moved on to the nonstop trips group. If the sampling value of the 

trip in WIM dataset was bigger than the percentage value of the GPS dataset for the same speed 
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interval, the iteration output moved on to the stopping trips group. The iterations continued until 

we obtained the numerical results for each speed interval and all speed intervals were exhausted. 

(See Figure 4-3) After the first iteration, the simulation iterated an additional nine times until 

completed ten times.  

Each trip in WIM dataset contained the detail travel information including average speed, 

GVW and vehicle classification. When all the trips in WIM dataset were randomly sampled and 

re-distributed into nonstop and stopping categories after integrating the dataset through this 

resampling process, the distribution of vehicle speed, GVW and classification were also re-

distributed and signed into nonstop and stopping categories. Finally, we had a set of non-stop trips 

information and a set of stopping trips information. 

4.1.5 Correlation Analysis 

The degree of linear relationship between variables can be measured by correlation 

analysis. There are different types of correlation analysis. The two most popular types, Pearson 

correlation and Spearman correlation, were used in this study (Statistics Solutions, 2019).  

Spearman’s rank-order correlation (Spearman Correlation)  

Spearman correlation is a non-parametric correlation test used to measure the degree of ranking 

association between two variables. Unlike the Pearson correlation, this analysis does not assume a 

linear relationship between the variables. It also does not assume any distribution for the variables 

tested. The equation for the Spearman correlation is shown in Equation 4-6 (Mukaka, 2012): 

𝝆 = 𝟏 −
𝟔 ∑ 𝒅𝒊

𝟐

𝒏(𝒏𝟐−𝟏)
                                                           Equation 4-6 

where: 

di is the difference between rank xi and rank yi; and 
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n is the number of data. 

Spearman’s coefficient will be close to 1 if the relative position (rank) of each observation from 

the two variables is positively and strongly associated. Spearman’s coefficient will be close to -1 

if the relative position (rank) of each observation rank from the two variables is negatively and 

strongly associated (Hauke and Kossowski, 2011; Statistics Solutions, 2019). 

 

Pearson product moment correlation (Pearson correlation)  

Pearson correlation is the most widely used method. Both variables should be normally distributed. 

The correlation coefficient ranges from -1 to +1 and indicates the strength of the monotonic 

relationship between the two variables. A monotonic relationship is a relationship that does one of 

the following: 1) as the value of one variable increases, so does the value of the other variable; or 

2) as the value of one variable increases, the other variable value decreases. The equation for 

calculating the Pearson correlation is shown in Equation 4-7 (Mukaka, 2012): 

𝒓 =
∑ (𝒙𝒊−�̅�)(𝒚𝒊−�̅�)𝒏

𝒊=𝟏

√[∑ (𝒙𝒊−�̅�)𝟐𝒏
𝒊=𝟏 ][∑ (𝒚𝒊−�̅�)𝟐]𝒏

𝒊=𝟏

                          Equation 4-7 

where: 

R is the correlation coefficient between variable x and variable y;  

�̅� is mean of variable x; 

ȳ is the mean of variable y; 

xi is the value of variable x in a sample; 

yi is the value of variable y in a sample; and 

n is the number of data in a sample. 
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A correlation coefficient of around +1 implies a strong positive monotonic association, and a 

correlation coefficient of around -1 implies a strong negative association. A coefficient value of 

zero implies no monotonic association (Hauke and Kossowski, 2011; Statistics Solutions, 2019). 

4.2 Microsimulation Approach 

The use of microsimulation models in traffic operations, traffic safety, transportation 

design and planning is becoming popular due to the increased need for transportation engineers to 

solve complex transportation problems. Some real world problems cannot be easily answered 

using a data-driven empirical data analysis that requires observing vast amounts of real world data 

(Appiah et al., 2012).  

This study used VISSIM simulation to understand the potential safety impact of DSL for 

different type of M-FHWA classes combined with ASE. The simulation study investigated the 

safety impact by comparing two speed limit strategies (USL and DSL) and two speed enforcement 

strategies (SSE and ASE). We selected three traffic performance indicators to help evaluate the 

safety impact in the simulation study: 1) the longitudinal 85th percentile speed profile, 2) standard 

deviation of speed, and 3) the speed violation rate. The framework of the VISSIM model is shown 

in Figure 4-4.  
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Figure 4-4: Process of VISSIM Simulation 
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The input parameters for the VISSIM model required three types of traffic data. The first 

was road parameters which includes road geometry and the number and width of lanes. The second 

was vehicle parameters such as vehicle classification, vehicle weight, and engine power of 

different types of heavy vehicles. The third was traffic parameters which includes traffic volume, 

vehicle distribution, and travel speed. The detail input parameters for simulation model would be 

described in Chapter 6.1.  

The VISSIM model was calibrated to mimic existing traffic conditions as closely as 

possible. The terms “calibration” and “validation” are used to differentiate phases of the process 

used to ensure that the model accurately represents real-world traffic conditions, but for simplicity 

the word “calibration” is used throughout this study as recommended by Wisconsin DOT (2018). 

We used a two-stage calibration procedure.  

In the first stage, we used integrated dataset to calibrate traffic volume, travel time and 

average speed to check whether the traffic volume, travel time and travel speed outputs from the 

simulation model represented input traffic conditions accurately. For that, the goodness-of-fit 

(GOF) endorsed by Wisconsin DOT (Wisconsin DOT, 2018) were used. 

The GOF tests were conducted in two steps: test 1 and test 2 (Wisconsin DOT, 2018). If 

the model passed the test 1, a global calibration test, it was not necessary to perform test 2 which 

is a local test for the same metric. In test 1 (global) tests, the Root Mean Square Percentage Error 

(RMSPE) was used as the primary calibration metric. RMSPE is defined in Equation 4-8 

(Wisconsin DOT, 2018): 

𝑹𝑴𝑺𝑷𝑬 =  √
𝟏

𝑵
∑ (

𝑴𝒊−𝑶𝒊

𝑶𝒊
)𝟐𝑵

𝒊=𝟏                             Equation 4-8  

where:  
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M is simulated data;  

O is input data; 

N is total number of data points in the dataset; and  

i is data point i.  

The RMSPE threshold was 5% for traffic volume, 10% for travel time, and 10% for vehicle speed 

that were endorsed by Wisconsin DOT. If all the RMSPE values for the different parameters are 

smaller than the threshold values, the model works well and can provide reasonable and reliable 

simulation results (Wisconsin DOT, 2018). 

However, the integrated dataset only included heavy vehicle (FHWA class 8 to class 12 

vehicles) and did not have completed traffic volume information (FHWA class 1 to class 7 

vehicles). Therefore, the traffic volume information was used in the first stage calibration was 

estimated based on three years (2010, 2013 and 2016) of Annual Average Daily Traffic (AADT) 

data provided by the British Columbia Ministry of Transportation and Infrastructure (BC MTI, 

2019). The data was collected around 4 km downstream of the simulation segment. We used a 

linear interpolation method to estimate the traffic volume and Appendix G provides details of the 

method used to estimate traffic volume.  

In the second-stage, we focused on finding suitable values for two traffic parameters, traffic 

volume and heavy vehicle percentage, for our base scenario. These two parameters had significant 

influence on heavy vehicle speed, but could not be evaluated from the integrated data directly. A 

sensitivity analysis was conducted to examine different levels of traffic volume and different heavy 

vehicle percentage to determine suitable values of the two input parameters for the base scenario.  

After examining different combinations of traffic volume and heavy vehicle percentage, speed 
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distribution was used as rationale to compare the calibration results and integrated data and find 

the most appropriate values for traffic volume and heavy vehicle percentage for base scenario.  

Once the model accurately estimated traffic parameters such as travel speed, various 

mixtures of heavy vehicle classes and various traffic volumes, the model could be used to evaluate 

different scenarios. These included the comparison of USL and DSL and the comparison between 

SSE and ASE to assess the potential safety impact of heavy vehicles on highway by evaluating the 

three traffic performance indicators, i.e., 1) longitudinal speed distribution, 2) standard deviation 

of speed, and 3) speed violation rate.  

4.3 Chapter Summary 

This Chapter discussed the six methodologies used in the study: 1) ANOVA, 2) QQ plot, 3) linear 

regression model, 4) Monte Carlo data fusion method, 5) two correlation tests, and 6) a 

microsimulation model. One-way ANOVA tests with Tukey’s HSD tests for each M-FHWA class 

and sub- M-FHWA classes were used to check that the average speeds estimated for each M-

FHWA class and sub- M-FHWA classes were statistically significantly different. The QQ plot was 

used to check differences in the speed distributions obtained from the WIM and GPS datasets. A 

linear regression model was applied to estimate the speed relationship between the WIM and GPS 

speed datasets. The Monte Carlo data fusion method was applied to develop a more accurate and 

integrated nonstop and stopping trips dataset. The study then applied Pearson and Spearman 

correlation tests to examine the statistical relationship between the heavy vehicles’ speed, GVW, 

FHWA vehicle classification and M-FHWA classification in our integrated traffic dataset. The 

general aspects of the VISSIM simulation model and the two-stage model calibration process were 

also included.  
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 Data-Driven Analysis 

This Chapter discusses three empirical data analyses. Firstly, this Chapter proposes a Modified-

Federal Highway Administration (M-FHWA) classification that explicitly considered heavy 

GVW. Secondly, this Chapter discusses the development of the integrated dataset using the data 

fusion process discussed in Chapter 4.1.4 to amalgamate WIM data and GPS data. Lastly, this 

Chapter evaluated the FHWA heavy vehicle classification and a proposed M-FHWA classification 

to decide which scheme would be suitable for developing a DSL strategy based on GVW. The 

study examined the empirical relationships between heavy vehicle speed and GVW for FHWA 

classes and M-FHWA classes. 

5.1 Proposed Vehicle Classification  

As one of the purposes of this study was to investigate the possibility of setting a new differential 

speed limit by considering GVW in detail, an in depth analysis was conducted to develop a new 

heavy vehicle classification scheme which differs from the FHWA vehicle classification because 

it includes a more precise consideration of heavy vehicle weights.  

Figure 5-1 showed the existing FHWA vehicle classification scheme including 

motorcycles (class 1), passenger cars (class 2 and 3), buses (class 4), single-unit truck (class 5 to 

7) and multi-unit trucks (class 8 to class 13). FHWA classification largely depends on the 

configuration of vehicles, for example, the presence or absence of trailers and/or the number of 

axles (FHWA, 2013). This means that the GVW of heavy vehicles belonging to a particular FHWA 

class can have widely different GVWs. The FHWA classification is not the most suitable 

classification to be used for DSL associated with GVW.  
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Figure 5-1: FHWA 13 Vehicle Classification Scheme (FHWA, 2013) 

A different heavy vehicle classification scheme was also presented by U.S. Environmental 

Protection Agency with consideration of vehicle GVW as Appendix A showing (EPA, 2017). The 

main criterion of the EPA classification was GVW, and the maximum GVW threshold suggested 

in the classification is 60,000 lb (27,200 kg). However, the current classification was not precise 

enough for this study’s objectives. Specifically, about 64 % of heavy vehicles in our sample had a 

GVW of more than 27,200 kg, while the average GVW for vehicles travelling in our study corridor 

was 31,045 kg with the highest GVW as 67,020 kg. 
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Thus, we proposed a Modified-Federal Highway Administration (M-FHWA) classification 

based on the current conventional FHWA classification. We considered one important threshold 

value of GVW, 27,200 kg which was the maximum GVW threshold suggested by EPA 

classification. Another higher threshold(s) of GVW for vehicles exceeding 27,200 kg should be 

considered. The threshold of GVW was selected to ensure that the speed distribution of the 

category created was distinctive (avoiding overlapping where possible) and that there was a 

sufficient number of vehicles in each category. When we tried GVW values from 30,000 kg to 

60,000 kg with an increment for every 5,000 kg, we found that the speed distributions of each 

group overlapped when the threshold value was less than 45,000 kg and that the number of vehicles 

in the groups was not sufficient when the threshold value was higher than 45,000 kg. There were 

3 % (372 vehicles) of heavy vehicles with GVW higher than 45,000 kg. There were 2.50 % (234 

vehicles) of heavy vehicles with GVW higher than 50,000 kg, 2.10 % (196 vehicles) of heavy 

vehicles with GVW higher than 55,000 kg and 1.1% (103 vehicles) of heavy vehicles with GVW 

higher than 60,000 kg. Therefore, 45,000 kg was considered as the second threshold value of GVW 

to categorize heavy vehicles. Appendix B provides more details. 

Based on the three criteria, GVW, FHWA class and average speed, we developed four 

main classes with a total of 11 sub-M-FHWA classes. We then conducted a series of ANOVA tests 

and Tukey’s HSD tests for each M-FHWA class and sub-M-FHWA class to check whether the 

average speeds were statistically significantly different. Table 5-1 presents the proposed M-FHWA 

class and its relationship with the other criteria used to create the M-FHWA class. Total, there are 

four categories in M-FHWA classification scheme: class 1, class 2, class 3 and class 4 from lightest 

heavy vehicles to heaviest heavy vehicles according their GVWs.   
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Table 5-1: Number of Vehicle and Speed Distribution for Proposed Four M-FHWA Class 

M-FHWA 

Class 

Average 

Speed 

(km/h) 

Sub-

Class 

FHWA 

Class 
GVW (kg) 

Number 

of 

Vehicles 

Average 

Speed 

(km/h) 

Class 1 86.12 1-8 8  <27,200  18 86.12 

Class 2 75.35 

2-9 9  <27,200  2,973 75.20 

2-10 10  <27,200  311 76.62 

2-12 12  <27,200  49 76.92 

Class 3 72.84 

3-9 9 27,200-45,000 3,456 73.22 

3-10 10 27,200-45,000 1,895 72.41 

3-12 12 27,200-45,000 185 70.76 

3-13 13 <45,000 104 71.87 

Class 4 66.92 

4-10 10 >= 45,000 93 68.51 

4-12 12 >= 45,000 13 66.37 

4-13 13 >= 45,000 266 66.39 

 

If we compare the M-FHWA classification with the FHWA classification, as shown in 

Table 5-1, M-FHWA class 1 included FHWA Class 8 only. The GVW in this class was less than 

27,200 kg and the average speed (87.40 km/h) was substantially higher than that of other M-

FHWA classes. M-FHWA class 2 included FHWA Classes 9, 10 and 12 and the GVW for each 

sub-class was less than 27,200 kg. The average speed for M-FHWA class 2 was 76.51 km/h. M-

FHWA class 3 included FHWA classes 9, 10, 12, and 13 with GVW ranging from 27,200 kg to 

45,000 kg. The average speed ranged from 70.76 km/h to 73.22 km/h. M-FHWA class 4 included 

FHWA Classes 10, 12 and 13. The GVW was more than 45,000 kg and the average speed ranged 

from 66.37 km/h to 68.51 km/h. 

Table 5-2 summarizes the results of the ANOVA test for the four M-FHWA classes. If the 

ANOVA null hypothesis is true (i.e., if the F-value is close to 1 and the P-value is more than 5%), 
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the speed means between the M-FHWA classes were not statistically significantly different. In 

Table 5-2, the F-value was 117.5 and the P-value was 0, so we rejected the null hypothesis at the 

5% significance level and concluded that there was a statistically significant difference in vehicle 

speeds between M-FHWA class 1, M-FHWA class 2, M-FHWA class 3 and M-FHWA class 4.  

Table 5-2: ANOVA Test for the Four M-FHWA Classes 

Source 
Degrees of 

Freedom 

Sum of 

Squares 

Mean 

Square 
F-Value P-Value  

Type 3 33,150 11,050 117.5 0 

Residuals  9,361 880,286 94 - - 

 

The ANOVA test results in Table 5-3 indicate that the average speed differences between 

the four M-FHWA classes are statistically significant, but the results did not indicate exactly which 

classes had statistically different mean speeds. We applied Tukey’s Post Hoc test to investigate. 

This test was used to compare all possible pairs of average speeds between the four M-FHWA 

classes. Table 5-3 shows the results. The analysis showed that the four M-FHWA classes were 

statistically significantly different at the 5% level of significance. 

Table 5-3: Tukey Post Hoc Test for Four M-FHWA Classes 

M-FHWA Class 

Pair 

Mean  

Difference  

Lower 

Bound  

Upper  

Bound  

Adjusted P-

Value  

Class 2 - Class 1 -10.74 -16.63 -4.85 0.0000 

Class 3 - Class 1 -13.28 -19.16 -7.40 0.0000 

Class 4 – Class 1 -19.20 -25.21 -13.19 0.0000 

Class 3 - Class 2 -2.53 -3.08 -1.99 0.0000 

Class 4 - Class 2 -8.46 -9.82 -7.10 0.0000 

Class 4 - Class 3 -5.92 -7.26 -4.59 0.0000 
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Additional Tukey’s Post Hoc tests were conducted for each pair of sub- M-FHWA classes 

(see Appendix B for details). The result showed that some sub- M-FHWA classes that were not 

statistically significantly different from each other. This implies that the four M-FHWA classes 

may be adequate for developing a new differential speed limit and that 11 sub-M-FHWA classes 

may be too many for this purpose. 

5.2 Development of an Integrated Dataset Using WIM and GPS Datasets 

This section discussed the development of the integrated WIM and GPS dataset. Section 5.3 

discusses the relationships between heavy vehicles’ travel speed, GVW, FHWA classification, and 

M-FHWA classification based on integrated dataset. 

The WIM system could not detect whether a heavy vehicle keeps continuously travelling 

or stopped at somewhere for rest or refuel. To overcome this problem and reduce possible bias due 

to the lack of stop duration information, we considered GPS data which included information such 

as speed, rest locations and stop times along the study corridor to combine with WIM data and 

develop an integrated dataset including more accurate nonstop and stopping information.  

Table 5-4 show the speed violation rate for the all trips, nonstop trips and stopping trips for 

GPS data. We used 5 minutes as the threshold for defining a stop and separating nonstop trips from 

stopping trips. The speed violation rate (i.e., average travel speed faster than 88 km/h) for nonstop 

trips was 20% and stopping trips was 2%. The speed violation rate for all vehicles travelling along 

the study corridor was 7%.  

Table 5-4: Speed Limit Violation Rate Distribution for GPS Data 

GPS Data All Vehicle Nonstop Vehicles Stopping Vehicles  

Number of Vehicle 1,241 332 909 

Speed Limit Violation Rate 7 % 20 % 2 % 
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While the average speed information from GPS is acknowledgeable, it did not contain 

information about the weight and classification of heavy vehicles. WIM system provided such 

information, we decided to combine both WIM and GPS dataset through a series of data fusion 

process as discussed in Chapter 4.  

Before starting the data fusion process, we checked similarities in the WIM and GPS data 

distributions to check whether data integration through a data fusion process was feasible. Figure 

5-2 confirms that the WIM and GPS data have very similar speed distributions. (Appendix D shows 

additional sets of data comparison between the WIM and GPS datasets.) 

 

 

a) Cumulative Percent Frequency of 

Average Speed 

b) Percent Frequency of Average Speed 

Figure 5-2: Speed Data Comparison between GPS and WIM 

Figure 5-3 shows the quantile-quantile (QQ) plot developed to examine the relationship 

between the WIM and GPS datasets. Each black point (x,y) in Figure 5-3 is a plot of GPS average 
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speed distribution along the vertical axis against the corresponding WIM average speed 

distribution along the horizontal axis.  

 

Figure 5-3: QQ Plot between WIM Data and GPS Data  

 

The red line in Figure 5-3 is the 45-degree line with slope as 1. Points along this line 

indicate that the distribution of the GPS average speed perfectly equals the distribution of the WIM 

average speed. Figure 5-3 shows that the black points are close to the red line, but not exactly on 

the red line. Points above the red line indicate that the distribution of GPS average speed is slightly 

higher than the distribution of WIM average speed.  

From Figure 5-3, it is reasonable to infer that the WIM and GPS speed distributions are 

very similar in shape and differ only slightly in location and scale. We developed a linear 

regression line (Equation 5-1) to show the relationship between the two datasets quantitatively: 

𝒚 = 𝒂 + 𝒃 𝒙                                                Equation 5-1  
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where 

x is the speed of WIM data; 

y is the speed of GPS data; 

a is 0.26; and 

b is 1.01. 

  Using the statistical relationship between the WIM and GPS data (Equation 5-1), the 

speed in WIM speed was updated. After updating the speed for integrated dataset, we applied the 

Monte Carlo data fusion method to create two distinct datasets including speed, GVW and 

vehicle classification, one for nonstop trips and one for stopping trips as discussed in Chapter 4.  

Monte Carlo data fusion method considered the distribution of vehicle speed, class and 

GVW and generated simulations using random dawning of WIM data based on the partitioned 

dataset from GPS data instead of using a single value, such as the average value. The outcome of 

simulation allows us to compute the distribution of vehicle speed, class and GVW for nonstop and 

stopping trips. To check the minimum number of simulations required for a proper Monte Carlo 

data fusion method analysis, we investigated the average speed distribution for 10 simulations and 

100 simulations (see Appendix E). As the results were statistically identical, we used 10 

simulations to integrate the speed, class and weight distributions for nonstop trips and stopping 

trips.   

We compared the integrated dataset (Table 5-5) with the original WIM dataset (Table 5-

6) and GPS data (Table 5-7). In Table 5-5, the total number of vehicles in each vehicle class 

from integrated data is the same as the total number of vehicles in each class from the WIM 

dataset (Table 5-6). There is a total of 9,363 heavy vehicles with 18 vehicles in Class 8, 6,429 in 
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Class 9, 2,299 numbers in Class 10, 247 in Class 12, and 370 in Class 13. This is to be expected 

as the integrated data was derived from the WIM data. 

The percentage of nonstop trips (26.75%) and stopping trips (73.25%) in the integrated data is 

the same as the percentage of nonstop and stopping trips in the GPS data (Table 5-7). This is to 

be expected as the integrated data was derived from the GPS data.  

These findings show that the Monte Carlo data fusion method successfully incorporated 

the class and weight information from the WIM dataset, and the nonstop and stopping trips from 

the GPS dataset into integrated data.
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Table 5-5: Frequency and Speed Distribution for Integrated Dataset   

Type of Vehicle Trip Average Speed (km/h) 

Vehicle 

Class 
All Nonstop Trips 

Percentage of 

Nonstop Trips 

Stopping 

Trips 

Percentage of 

Stopping 

Trips 

All Nonstop Trips 
Stopping 

Trips 

Class 8 18 9 0.10% 9 0.10% 87.41 91.12 83.41 

Class 9 6,429 1,827 19.51% 4,602 49.15% 75.28 82.44 72.56 

Class 10 2,299 558 5.96% 1,741 18.59% 73.95 81.21 71.68 

Class 12 247 55 0.59% 192 2.05% 72.87 80.40 70.86 

Class 13 370 56 0.60% 314 3.35% 69.00 74.47 68.17 

Total 9,363 2,505 26.75% 6,858 73.25% 74.92 82.53 72.14 
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Table 5-6: Frequency and Speed Distribution for WIM Dataset 

Vehicle 

Class  

Number of 

Vehicles  

Average 

Speed 

(km/h) 

Class 8 18 86.12 

Class 9 6,429 74.14 

Class 10 2,299 72.84 

Class 12 247 71.76 

Class 13 370 67.93 

Total 9,363 73.53 

 

 

Table 5-7: Frequency and Speed Distribution for GPS Dataset 

Type of Vehicle Trip Average Speed (km/h) 

Vehicle Class All 
Nonstop 

Trips 

Percentage of 

Nonstop Trips 

Stopping 

Trips 

Percentage of 

Stopping Trips 
All 

Nonstop 

Trips 

Stopping 

Trips 

8-13 1,241 332 26.75% 909 73.25% 74.92 82.53 72.14 
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5.3 Analysis of the Integrated Dataset 

Using the integrated dataset, we explored the statistical relationships among heavy 

vehicles’ speeds, GVW for FHWA classification and M-FHWA class. The first step was to 

undertake Spearman and Pearson correlation analyses (discussed in Chapter 4.1) to examine 

whether the relationships were statistically significant.  

Table 5-8 shows the test results of the Spearman test at the 5% significance level. There 

are three major findings that need to be noted 1) Average speed has a strong negative correlation 

with GVW (-0.98), M-FHWA class (-1) and FHWA class (-1), 2) GVW has relatively stronger 

positive correlation with M-FHWA class (1) than FHWA class (0.98), and 3) FHWA class has a 

moderate positive correlation with M-FHWA class (0.41). 

Table 5-9 shows that the results of the Pearson test are similar to the Spearman results. All 

three variable (GVW, FHWA class and M-FHWA class) have strong negative correlation with 

speed. GVW has relatively stronger positive correlation with M-FHWA class (0.97) than FHWA 

class (0.93), and FHWA class has a moderate positive correlation with M-FHWA class (0.46). 

Tables 5-8 and 5-9 show that the M-FHWA class/speed and M-FHWA class/GVW 

correlations are stronger than the FHWA class/speed and FHWA class/ GVW correlations. These 

results suggest that the M-FHWA class would be more appropriate vehicle classification scheme 

than FHWA class when considering a DSL associated with GVW for heavy vehicles. (Appendix 

F provides a detailed scatter plot of these results.) 
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Table 5-8: Spearman Correlation Test Result 

Variables Average Speed GVW FHWA Class 
M-FHWA 

Class 

Average Speed 1.00       

GVW -0.98** 1.00   

FHWA Class -1.00** 0.98** 1.00  

M-FHWA 

Class 
-1.00** 1.00** 0.41** 1.00 

 

Table 5-9: Pearson Correlation Test Result 

Variables 
Average 

Speed 
GVW FHWA Class 

M-FHWA 

Class 

Average Speed 1.00    

GVW -0.96** 1.00   

FHWA Class -0.92** 0.93** 1.00  

M-FHWA 

Class 
-0.94** 0.97** 0.46** 1.00 

** significant at 0.05 level  

Figure 5-4 shows the coefficient of determination (R2) between average speed and FHWA 

Class, M-FHWA class and GVW. A value of R2 that is close to 1.0 indicates a strong linear 

relationship between two variables (Dufour, 2011). It is clear that FHWA Class, M-FHWA class 

and GVW all have a very strong decreasing linear relationships with average speed.  

The R2 value for FHWA class in Figure 5-4 (a) is 0.80 which is smaller than the 0.93 R2 

value for M-FHWA class in Figure 5-4 (b). Both the Spearman and Pearson tests showed that the 

M-FHWA class/speed relationship was stronger than the FHWA class/speed relationship. The R2 

value for GVW in Figure 5-4 (c) (0.91) shows that GVW also has a very strong decreasing linear 
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relationship, a finding that also reflects the results of the Pearson and Spearman tests. Figure 5-4 

also suggests that M-FHWA class is a reasonable classification scheme to use for setting DSL by 

considering precise GVW for heavy vehicles.  

 

 

a) FHWA Class 

 

b) M-FHWA Class 
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c) GVW (tonnes) 

Figure 5-4: Average Speed Distribution for FHWA Class, M-FHWA Class and GVW 

Figure 5-5 shows two boxplots. Figure 5-5 (a) shows the relationship between GVW and 

FHWA Class, and Figure 5-5 (b) shows the relationship between GVW and M-FHWA class.  

Figure 5-5 (a) and (b) show that higher vehicle classes (FHWA classes and M-FHWA 

class) clearly have higher GVW and greater variance in GVW. FHWA class is less clearly 

associated with GVW (see Figure 5-5 (a)). There is more GVW variation in the FHWA classes 

and the GVW variation show overlap between class 9, class 10 and class 12. Figure 5-5 (b) shows 

the GVWs in each M-FHWA class is clearly differentiated and the variance of GVW is smaller 

for each M-FHWA class. The findings also suggest that M-FHWA class is a more suitable 

classification scheme than FHWA class for setting DSL based on GVW for heavy vehicles. 
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a) FHWA Class b) M-FHWA Class 

Figure 5-5: Boxplot of GVW Distribution for Different Classifications 

Figure 5-6 (a) shows the cumulative percentile distribution of average speed for each 

FHWA heavy vehicle class, and Figure 5-6 (b) shows the distribution for each M-FHWA class. In 

general, vehicles belonging to a lower vehicle class have a higher speed distribution than do 

vehicles in a higher vehicle class. It is clear, for example, that FHWA Class 8 and M-FHWA class 

1 (the same group of vehicles and the lightest) have the highest average speed distribution, and 

FHWA class 13 and M-FHWA class 4 (the heaviest) have the lowest average speed distribution.  

The speed distributions for FHWA classes 9,10 and 12 (Figure 5-6 (a)) are very close to 

each other: the speed distributions are very crowded at the 85th percentile speed values (the 

horizontal red dash line). This is because the GVW of these three FHWA classes includes overlap 

due to the large variance in the classes. This finding is consistent with a previous finding 
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suggesting that vehicle weight is the primary factor affecting travel speeds of heavy vehicles 

(Saifizul et al., 2011). 

The speed distributions for the M-FHWA class (Figure 5-6 (b)) are more clearly separated, 

and the 85th percentile speed values (the red dash line in Figure 5-6 (b)) are distinctive. This is a 

major finding that 1) supports the idea that GVW is the primary factor affecting the travel speed 

of heavy vehicles, and 2) shows that FHWA heavy vehicle classes (classes 8-13) have a large 

variation in GVW (especially classes 10 and 12) that leads to overlapping in the travel speed of 

each class. (See Appendix G for more details of the integrated data analysis including the 

frequency distributions for vehicle class, GVW intervals and average speed distribution for vehicle 

class and GVW).  

  

a) Speed Percentile Distribution for 

FHWA Classes 8 to 13 

b) Speed Percentile Distribution for M-

FHWA Class 

Figure 5-6: Cumulative Speed Distribution for FHWA Classes and M-FHWA Class  

Based on the previous evaluations, we found both vehicle average speed and GVW had 

stronger monotonic relationships with M-FHWA classes than conventional FHWA classes. The 

GVW variance in each M-FHWA class was smaller and differentiated from each class, and the 
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GVW variance in each FHWA class was bigger and overlapped with each other. Additionally, the 

speed distribution in each M-FHWA class was clearly separated compared with the speed 

distributions of FHWA classes. Also, we found that GVW was an important factor to affect heavy 

vehicle travel speed, and lighter vehicles (smaller GVW) usually travel faster and heavier vehicles 

(large GVW) travel slowly. It would be more reasonable to set higher speed limit for M-FHWA 

class 1 (small GVW) and lower speed limit for M-FHWA class 4 (higher GVW). Therefore, the 

findings here demonstrated that the proposed M-FHWA classification is a more appropriate 

vehicle classification scheme than FHWA classification to be used for setting a differential speed 

limits by considering GVW. 

5.4 Chapter Summary 

This chapter proposed a new heavy vehicle classification (M-FHWA) with a more precise 

consideration of GVW than FHWA class. M-FHWA class was created by considering three 

criteria: 1) two GVW threshold values (27,200 kg, 45,000 kg), 2) FHWA class, and 3) the average 

speed of heavy vehicles in each class.  The ANOVA test was conducted for the four M-FHWA 

classes and showed that the difference in average travel speed associated with each M-FHWA 

class was statistically significant.  

The chapter also developed the integrated dataset from WIM and GPS data by employing 

QQ plot, linear regression model and Monte Carlo data fusion methods. The QQ plot was 

employed to find the speed distribution of WIM data was similar to the speed distribution of GPS 

data. A linear regression line was used to help find the existed speed relationship between WIM 

data and GPS speed data. Then, Monte Carlo data fusion method was used to successfully 
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incorporate the class and weight information from WIM data and the nonstop and stopping 

information from GPS into integrated dataset. 

After developed the integrated dataset, evaluated the FHWA heavy vehicle classification 

and a proposed M-FHWA classification to decide which scheme would be suitable for developing 

a DSL strategy based on GVW. Firstly, we inspected the relationship between heavy vehicle speed, 

GVW between FHWA class and M-FHWA class using two type of correlation tests, Spearman 

and Pearson. We found that vehicle average speed and GVW both had stronger monotonic 

relationships with M-FHWA class than FHWA class. Secondly, we compared the speed 

distributions between M-FHWA class with FHWA class. The histograms also showed that average 

speed had a stronger relationship with M-FHWA classes than the FHWA classes. Thirdly, we 

examined the relationship between vehicle classification and GVW. The boxplots showed that 

GVW in each M-FHWA class was differentiated with each other, and the GVW variance was 

smaller in each M-FHWA class compared with each FHWA class. GVW in each FHWA class was 

overlapped together, especially between class 9 to class 12, and GVW variance was quite large in 

each FHWA class compared with the GVW variance in each M-FHWA classes, especially for 

heavy vehicles with large GVW (class 12 and class 13). Then, we examined the cumulative speed 

distributions between M-FHWA class than FHWA class. The speed distribution for each M-

FHWA class was clear and separated, while the speed distribution for each FHWA class was 

overlapping, especially for class 10 and 12. All the evaluations suggested that M-FHWA class 

scheme with differentiated GVW variance and separated speed distribution in each class is a more 

suitable vehicle classification scheme than the FHWA classification when setting a differential 

speed limit by considering GVW. 
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 Microsimulation Analysis 

This study relied on VISSIM simulation to understand the potential safety impact of 

various speed limit and speed enforcement strategies. As illustrated in Figure 4-3, the VISSIM 

simulation adopted in this study consist of four procedural steps: 1) Specification of traffic 

performance indicators; 2) selection of input parameters; 3) calibration of input parameters; 4) 

comparing two speed limit strategies (USL and DSL) and two speed enforcement strategies (SSE 

and ASE) to assess the strategies’ impact on the safety of heavy vehicles. 

6.1 Overview of Simulation 

6.1.1 Traffic Performance Indicators  

The first step in this simulation model was to determine appropriate performance indicators 

to study the safety impact of different speed limit and speed enforcement strategies, three traffic 

performance indicators are selected: the longitudinal 85th percentile speed profile, standard 

deviation of speed, and the speed violation rate. 

The longitudinal speed distribution of speed reflects the amount of speed fluctuation when 

different types of heavy vehicle travel along a simulation segment and provides a good indication 

of the effects of SSE and ASE speed enforcement. The 85th percentile heavy vehicle speed profile 

for the simulated section of highway was selected as the first performance indicator. The 85th 

percentile speed is widely used by highway agencies to describe operating speeds and to establish 

speed zones. The 85th percentile is adopted to include most vehicles travelling at or below the 
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speed limit that help to reduce speed differences and minimize vehicle contacts and create 

harmonized traffic flow (Neuman et al., 2009). 

The second performance indicator was the standard deviation of speed. Different speed 

limit and enforcement strategies may affect not only 85th percentile speed, but also the standard 

deviation of speed. The standard deviation of speed is often represented by the difference between 

the 85th and 50th percentile travel speed. Many studies have observed that the standard deviation 

of speed, which partly measures the interaction among vehicles, is an important potential 

contributing factor for collisions on highways (Montella et al., 2011; Summersgill and Neil, 2012; 

Pauw et al, 2014b; Shim et al., 2015). A large standard deviation in travel speed has generally been 

shown to be associated with higher crash rates (Russo et al., 2017).  

The third performance indicator was the speed violation rate. A high rate of speed 

violations is also known to be associated with an adverse impact on the safety of both speeding 

and non-speeding vehicles. In 2017, speeding was a contributing factor in 26% of all traffic 

fatalities (NHTFA, 2019). The speed violation rate is especially important for collisions involving 

heavy vehicles as these collisions often have severe consequences (Monsere et al., 2017). The 

speed violation rate has been widely used to evaluate the safety effectiveness of different types of 

speed limits. Johnson and Murray (2010), for example, found that the safety implications of DSL 

were significantly affected by the speed violation rate.  

6.1.2 Model Overview 

The input parameters for the base scenario were estimated from the integrated dataset. As 

the integrated dataset was composed of data collected for the single uniform speed limit used from 

two existed WIM stations that could be assumed as the average speed enforcement on the 548 km 
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of study corridor (see Chapter 3-1 for details), the base scenario was used to evaluate the USL 

strategy (Chapter 6.3.1) and the ASE strategy (Chapter 6.4.2).  

 As it is not reasonable to apply average speed enforcement to 548 km of roadway, a shorter 

segment was considered in the simulation exercises. The total simulation segment was 10 km of 

Trans-Canada HWY 1 to the east of Kamloops, BC. The first kilometer and the last kilometer of 

the simulation segment were considered warm-up and cool-down zones used to check that each 

vehicle (each record) traveled the completed length of the 8 km segment of interest. The warm-up 

and cool-down zones were not included in the simulation results. The corridor used for simulation 

was 8 km of uninterrupted free flow highway as shown in Figure 6-1. 

 

Figure 6-1: Location of Simulation Segment 

The simulation period was 1.5 hours. This included 15 minutes of warm-up and 15 minutes 

of cool-down to allow the slowest vehicles to travel through the completed segment of the model. 
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The warm-up and cool-down periods were disregarded in the analysis giving and effective 

simulation period of 1 hour. On average, 10 runs were carried out for each speed limit and 

enforcement strategy with different random seeds. The random seed values were dependent on the 

number of runs. For 10 runs, the first random seed value was 199 with an increment of 210 for 

each subsequent run (Wisconsin DOT, 2018). 

6.1.3 Selected Input Parameters 

VISSIM includes a number of input parameters that allow the user to fine-tune the model 

to match existing traffic conditions. This study included only parameters that affected the three 

safety performance indicators (see Chapter 6.1.1 for details) under freeway conditions. These 

parameters can be categorized into three components: roadway parameters, vehicle parameters and 

traffic parameters. 

In the case of the roadway input parameters, the highway segment is an undivided highway 

with two-lanes in each direction. The measured lane width is 3.7 m (7.4 m for two lanes). We 

simulated only eastbound direction traffic because we had WIM traffic data for Laidlaw (west) to 

Golden (east). The average slope in the simulation segment was ±1.1% which can be ignored. The 

segment grades were assumed to be level (0%). 

The vehicle input parameters included the horsepower of different types of heavy vehicle, 

the GVW distribution for different types of heavy vehicles, and the vehicle classifications. 

Abanotu (1999) and Yoon (2005) estimated the distribution of horsepower of heavy vehicles and 

identified two distinct groups of heavy vehicles. For FHWA Class 8 vehicles, the average 

horsepower was estimated as 216 kw. For FHWA Class 9 to FHWA Class 13, the average 

horsepower was estimated as 272 kw. See Table 6-1.  
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Table 6-1: Horsepower Distribution of Heavy Vehicles (Abanotu, 1999; Yoon, 2005) 

Cumulative Percentile  Class 8 (kw) Class 9 - Class 13 (kw) 

0 128.71 165.00 

20 160.16 225.84 

40 195.77 258.48 

50 215.50 272.00 

60 223.97 273.32 

80 240.29 292.61 

100 312.59 349.00 

 

Vehicle GVW distribution was estimated from the integrated dataset. The study used two heavy 

vehicle classifications in the simulation. Our proposed Modified-Federal Highway Administration 

(M-FHWA) classification was used to understand the safety impact of adopting a differential speed 

limit strategy. The FHWA classification was used to understand the safety impact of speed 

enforcement strategy. 

The traffic input parameters considered mainly speed distribution, traffic volume, detail 

heavy vehicle composition and total heavy vehicle percentage in traffic volume. Speed distribution 

was obtained from the integrated dataset. The detail heavy vehicle composition was described in 

Chapter 6.1.4. Chapter 6.2.2 investigates the suitable values for traffic volume and total heavy 

vehicle percentage in traffic volume using sensitivity analysis in the second stage calibration. 

It should be emphasized that some traffic input parameters, such as driving behaviour and 

car following model, that do not have a significant impact on the safety performance under free 

flow traffic conditions were based on default or recommended values provided in the relevant 

simulation manuals or in the literature. The VISSIM default values for headway and other driving 
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behaviour parameters were adopted. (See Table 6-2.) When traffic is very low with no congestion, 

there is little difference in vehicle headways for different types of vehicle (e.g., passengers cars 

and heavy vehicles) (Ye and Zhang, 2009). The VISSIM simulation focused on speed rather than 

driving behaviour and car following model. In the case of the car following model, and the 

Wiedemann 90 default values were adopted. Table 6-2 provides a summary of the input 

parameters.   

Table 6-2: Selected Simulation Parameters 

Input Parameters Values 

Road Grade 0 (Level) 

Number of Lanes 2 lanes (West to East Direction) 

Lane Width 3.7 m 

Horsepower Table 6-1 

GVW Distribution Calculate from Integrated Data 

Speed Distribution Calculate from Integrated Data 

Vehicle Classification M-FHWA and FHWA Classes 

Traffic Volume Unknown 

Heavy Vehicle Percentage Unknown 

Car Following Model Wiedemann 99  

CCO: Standstill Distance 1.5 meters 

CC1: Time Headway 0.9 second 

CC2: Following Variation 4 meters 

CC3: Threshold Entering Following -8 

 

6.1.4 Detail Heavy Vehicle Composition 

As mentioned before, the input parameters of the base scenario were mainly estimated from 

the integrated dataset. The integrated dataset was developed by combining WIM and GPS traffic 
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data, and it included detail nonstop and travel with stops information for different types of heavy 

vehicles (See Table 5-5). However, if we assume that total heavy vehicle percentage was 25% 

(with the remaining 75% being passenger cars) and traffic volume was 600 vehicles per hour as 

the second stage calibration showing (see details in Chapter 6.2.2), the VISSIM model can not 

obtain the detail simulation results for some types of vehicles. Specifically, when the total heavy 

vehicle percentage was 25% and traffic volume was 600 vehicles per hour as the Table 6-3 

showing, the both number of nonstop and stopped Class 8 vehicle would be 0. Thus, the simulation 

model was not able to obtain the completed nonstop and stopped information for all types of heavy 

vehicles, especially for Class 8. 

Table 6-3: Detail Vehicle Compositions for Nonstop and Stopped Travel Information in 

Integrated Dataset 

Vehicle Types 
Estimated Percent of 

Vehicle 

Estimated Number of 

Vehicle 

Passenger Cars 75% 450 

Nonstop Class 8 0.02% 0 

Nonstop Class 9 4.88% 29 

Nonstop Class 10 1.49% 9 

Nonstop Class 12 0.15% 1 

Nonstop Class 13 0.15% 1 

Stop Class 8 0.02% 0 

Stop Class 9 12.29% 74 

Stop Class 10 4.65% 28 

Stop Class 12 0.51% 3 

Stop Class 13 0.84% 5 

Total 100% 600 
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Therefore, this simulation analysis would only focus on the completed integrated dataset 

without the consideration of the non-stop or travel with stops categories. Moreover, in order to 

meet the minimum input value of the VISSIM simulation model for each class of vehicles, an 

adjusted vehicle composition was estimated from the average vehicle composition between the 

two single WIM stations, Laidlaw and Golden as shown in Table 6-4. With these modifications, 

the input parameters for VISSIM simulation are feasible for further data analysis.  

Table 6-4: Adjusted Detail Vehicle Composition for Integrated Dataset 

Classification Percentage of Vehicle Number of Vehicle 

Vehicle Types Laidlaw Golden Average Laidlaw Golden Average 

Passenger Cars 0.75 0.75 0.75 450 450 450 

Class 8 1.85% 1.50% 1.67% 11 9 10 

Class 9 10.71% 12.71% 11.71% 64 76 70 

Class 10 7.28% 7.36% 7.32% 44 44 44 

Class 12 1.39% 0.96% 1.18% 8 6 7 

Class 13 3.77% 2.47% 3.12% 23 15 19 

 

Chapter 6.2 discussed the two-stage calibration process. The second stage calibration is the 

sensitivity analysis used to select appropriate values for two of the traffic parameters in the base 

scenario. 

6.2 Model Calibration 

The calibration process is essential for any microsimulation to mimic local traffic 

conditions properly. The VISSIM model developed in this study started with default values for 

many input parameters. The model was then calibrated with different values for some parameters 

to achieve a more accurate representation of the real traffic conditions (Wisconsin DOT, 2018). 
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Proper calibration of the microsimulation model was essential before using the model to explore 

the effects of changes in the input parameters and/or the introduction of a differential speed limit 

strategies and the average speed enforcement.  

As discussed in Chapter 4, this study employed a two-stage calibration process. The first 

stage evaluated traffic volume, travel time, travel speed and vehicle composition to check the 

accuracy of the model developed. The second stage employed a sensitivity analysis to select 

suitable values for traffic volume and vehicle percentage in the base scenario.  

6.2.1 First Stage Calibration 

In the first stage, the VISSIM simulation models were calibrated to check whether the 

traffic volume, travel time and travel speed outputs from the simulation model represented input 

traffic conditions accurately. For that, goodness-of-fit (GOF) measures were used (i.e., Root Mean 

Square Percent Error (RMSPE)) as described in Chapter 4.2. 

As the total calibration time of 1.5 hour included a 15 -minute warm-up and a 15-minute 

cool-down period, the effective calibration period was 1 hour. The basic input parameters can be 

found in Tables 6-1 and 6-2. 

For heavy vehicle percentage, we used the average proportion of heavy vehicles for the 

two single WIM datasets. The average heavy vehicle percentage was 22.7% for the Laidlaw WIM 

and 28.2% for the Golden WIM. On average, the traffic consisted of approximately 75% passenger 

cars and 25% heavy vehicles.  

For traffic volume, we used three years (2010, 2013 and 2016) of Annual Average Daily 

Traffic (AADT) data provided by the British Columbia Ministry of Transportation and 

Infrastructure (BC MTI, 2019). The data was collected around 4 km downstream of the simulation 



 

86 

segment. We used a linear interpolation method to estimate traffic volume which was found to be 

700 vehicles per hour. Appendix G provides details of the method used to estimate traffic volume.  

Table 6-5 shows the calibration results for hourly traffic volume. The Root Mean Square 

Percent Error (RMSPE) for traffic volume calibration was 0.04% which is much lower than the 

5% threshold.  

Table 6-5 also showed the calibration results for travel time. The RMSPE for travel time 

was 2% which is much smaller than the 10% threshold.  

Table 6-5: Calibration Results for Traffic Volume and Travel Time 

Parameter Calibration Parameter Value 

Traffic Volume 

(veh/h) 

Input  700.00 

Simulation (Start Point) 699.83 

Simulation (End Point) 700.33 

RMSPE 0.04% 

Threshold RMSPE < 5.00 % 

Travel Time 

(Seconds) 

Input  60 

Simulation 61 

RMSPE 1.64% 

Threshold RMSPE < 10% 

 

Table 6-6 shows the calibration results for speed and vehicle composition. The RMSPE for 

speed was smaller than the 10% threshold for each type of vehicle, and the RMSPE for vehicle 

composition was within the 5% threshold for each type of vehicle. The results of the calibration 

showed that the estimated values are acceptable and that the VISSIM model provided a reasonable 

and reliable simulation result. 
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Table 6-6: Calibration Results of Speed and Vehicle Distributions 

Parameters 
Calibration 

Parameters 
 Cars Class 8 Class 9 

Class 

10 

Class 

12 

Class 

13 

Vehicle 

Speed (km/h) 

Input  103.78 87.41 75.28 73.95 72.87 69.00 

Simulation 98.35 84.85 72.73 71.60 70.12 67.07 

RMSPE  5.23% 2.93% 3.39% 3.17% 3.78% 2.80% 

 RMSPE < 10.00 % 

Vehicle 

Composition  

Input  525 12 82 51 8 22 

Simulation 527 12 81 51 8 22 

RMSPE  0.38% 1.18% 1.59% 0.12% 1.18% 1.54% 

RMSPE < 5.00 % 

 

6.2.2 Second Stage Calibration  

The second stage of the calibration focused on two parameters, traffic volume and heavy vehicle 

percentage. These parameters had significant influence on heavy vehicle speed, but could not be 

evaluated from the integrated data. A sensitivity analysis was conducted to determine suitable 

values for the two input parameters in the base scenario. 

In the first stage of the calibration, a traffic volume of 700 vehicles per hour was used to 

calibrate the accuracy of model. However, this volume was based on traffic data collected from a 

location near the study corridor and did not represent real traffic conditions exactly. In the 

sensitivity analysis, we assumed four different levels of traffic volume, i.e., 200, 600, 1,000, and 

1,400 vehicles per hour, to find the appropriate value for traffic volume. The truck percentages 

(for class 8 to class 13) obtained from the two WIM datasets were 22.7 % and 28.2 % respectively. 

However, the link WIM data, GPS data and integrated data were only obtained for heavy vehicles 
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(vehicle classes 8, 9 ,10, 12 and 13). The study used five truck percentages, i.e., 15%, 20%, 25%, 

and 30%, to test different traffic compositions. 

Figure 6-2 shows that heavy vehicle speed decreased with increased traffic volume and 

with increased truck percentage.  

  

a) Traffic Volume b) Heavy Vehicle Percentage 

Figure 6-2: Impact of Traffic Volume and Truck Percentage on Travel Speed 

After examining different combinations of traffic volume and heavy vehicle percentage, 

the speed distributions for different classes of heavy vehicles were calculated and used to find the 

most appropriate values for traffic volume and heavy vehicle percentage.  

The study compared different cumulative speed distributions for different combinations of 

traffic volume and heavy vehicle percentage (see Appendix H). Figure 6-3 clearly shows that the 

simulated cumulative speed distribution (Figure 6-3 b)) was a good match with the integrated 

dataset’s observed speed distribution when traffic volume was 600 vehicles/hour/direction and 

heavy vehicle percentage was 25%. This combination of traffic volume and heavy vehicle 

percentage was therefore selected as the most appropriate source for the input parameters in the 

base scenario. We then used this base scenario to evaluate the differential speed limit and speed 
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enforcement strategies. Appendix H provided result of the sensitivity analysis when traffic volume 

was 600 vehicles per hour and heavy vehicle percentage was 25%.   

  

a) Integrated Data b) Simulation Results 

Figure 6-3: Cumulative Speed Distribution of FHWA Class for Traffic Volume of 600 

Vehicles per Hour with 25 Heavy Vehicle Percentage 

6.3 Comparison of Different Speed Limit Strategies  

The Chapter 6.3 described the two speed limit strategies (USL and DSL) and their impact 

on heavy vehicle travel. The proposed Modified-Federal Highway Administration (M-FHWA) 

classifications was used for this exercise. A data-driven empirical study was conducted to analyze 

operational performance again using three traffic performance measures: the longitudinal 85th 

percentile speed profile, standard deviation of speed, and the speed violation rate. 
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6.3.1 Uniform Speed Limit Strategy 

As mentioned in Chapter 6.1.2, a base scenario was used to evaluate USL strategy. Therefore, 

most of the input parameters required for the USL strategy were the same as those for the base 

scenario (see Tables 6-1 and 6-2). Traffic volume was 600 vehicles per hour with 25 percent heavy 

vehicles. The average speed limit was 88 km/h (see Chapter 3.2.1 for the calculations), but the 

local speed limit in the SSE scenario (see Chapter 6.4) was 90 km/h. A rounded speed limit of 90 

km/h was used in all the simulation studies to ensure a consistent and realistic value. The 

evaluation was based on the M-FHWA classification for heavy vehicles proposed in Chapter 5, 

and the vehicle speed distribution and vehicle weight distribution were calculated using the M-

FHWA classification (see details in Appendix I). 

6.3.2 Differential Speed Limit Strategy 

The basic input parameters for the DSL strategy were the same as the input parameters used for 

the USL strategy, but the speed limit and speed distribution were different. We proposed a new 

differential speed limit for heavy vehicles based on the M-FHWA classification proposed in 

Chapter 5. 

This study proposes a differential speed limits for the different M-FHWA classes. The 85th 

percentile speed is currently the critical speed for posting speed limits. Much traffic engineering 

work dealing with speed zoning or the installation of traffic control devices specifies the 85th 

percentile speed as the primary indicator of the prevailing speed for considering the establishment 

of speed zones (Agent et al., 1998) (Al-Ghamdi S., 1998). The 85th percentile speed for each M-

FHWA class was calculated using the integrated dataset (USL scenario) and used to suggest the 

differential speed limit for each M-FHWA class. Table 6-7 shows the results.  
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Table 6-7: Speed limit Table for M-FHWA Classes 

M-FHWA classification Class 1 Class 2 Class 3 Class 4 

Uniform Speed Limit (km/h) 90 90 90 90 

85th-Percentile Speed (km/h) 95 87 83 75 

Proposed Differential Speed Limit 

(km/h) 
95 85 80 75 

 

The second row of Table 6-7 shows that the 85th percentile speed for M-FHWA class 1 was 

95 km/h, 87 km/h for M-FHWA class 2, 83 km/h for M-FHWA class 3, and 75 km/h for M-FHWA 

class 4. The current uniform speed limit of 90 km/h is noticeably higher than the operational speeds 

(85th percentile speed) for M-FHWA classes 3 and 4, and the current USL is clearly not 

satisfactory, because the higher USL could be increasing the frequency and severity of road 

collisions rather than promoting a safer driving environment.  

The third row of Table 6-7 shows the speed limit proposed for each of the four M-FHWA 

classes. The proposed new speed limit for M-FHWA class 1 was 95 km/h in accordance, the same 

as the estimated 85th-percentile speed and 5 km/h higher than the existing USL of 90 km/h. The 

proposed speed limits for M-FHWA classes 2, 3 and 4 were 85, 80 and 75 km/h respectively. 

These values considered the 85th percentile speed, but use rounded values. They are 5 km/h, 10 

km/h and 15 km/h lower than the existing USL respectively.  

It is important to recognize that changing the speed limits also affects the average speed 

and the standard deviation and therefore affects the input information required to develop the DSL 

strategy in the simulation model. It is necessary to explored how much the average speeds and 

standard deviations would change due to the introduction of a DSL based on the M-FHWA class. 
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Table 6-8 provides a summary of the speed characteristics associated with the USL and 

DSL in various North American jurisdictions. The average speed and standard deviation for all 

vehicles, passenger cars and heavy vehicles were collected from a range of studies (Johnson and 

Pawar, 2005; Russo et al., 2015; Ghods and Saccomanno, 2016; Gates et al., 2016). For example, 

Gates et al. (2016) compared speed data under DSL (113 km/h and 97 km/h) on two-lane rural 

highways in Montana with speed data under USL (105 km/h) on two-lane rural highways in 

neighbouring states including Idaho, North Dakota, South Dakota, and Wyoming. Analysis of 

truck speed data shown that a DSL with a lower speed limit (97 km/h) for trucks had a smaller 

speed standard deviation (7.93) and lower average speed (97.46 km/h) than the corresponding 

values for a USL (9.48 and 99.75).  

Similarly, other studies in Table 6-8 showed that lower speed limits were associated with 

lower standard deviations and lower average speeds. The standard deviation for heavy vehicle 

speed appeared to depart from Lave's theory (1985) that the standard deviation decreases as the 

speed limit and average speed increase. One explanation for this is that the Lave’s theory was used 

to describe passenger cars. Most researchers did not consider detailed circumstances such as traffic 

interactions between different types of heavy vehicle with a differential speed limit (Dixon et al., 

2012; Savolainen et al., 2014). For large heavy vehicles, travel performance is governed largely 

by the vehicles’ mechanical characteristics. Heavy vehicles with a range of GVW and travelling 

on a roadway with a high USL would contribute to creating widely different travel speeds since 

each heavy vehicle’s acceleration/deceleration capability and each heavy vehicle’s weight-to-

power ratio can be very different. As a result, higher speed limits may show a larger standard 

deviation. Another reason for the pattern in Table 6-8 could be the fact that many heavy vehicles 

in the United States are equipped with speed limiters and cannot travel at higher speeds. Higher 
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speed limits would allow heavy vehicles without speed limiters to travel at a higher speed and 

could result in the higher standard deviation of speed (Johnson and Pawar, 2005). 
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Table 6-8: Summary od Speed Characteristics of USL and DSL 

Year States Approach 
Speed Limit 

Strategy 

Vehicle 

Type 
Speed limit  

Average 

Speed  
Standard Deviation 

2016 Montana 

Compare 

USL and 

DSL in 

Different 

Locations 

USL 

All 105 102.58 8.16 

Car 105 103.87 7.90 

Truck 105 99.75 9.48 

DSL 

All 113/97 104.49 6.31 

Car 113 105.88 6.66 

Truck 97 97.46 7.39 

2016 NA 
Before and 

After Study  

USL 

All 90/90 - - 

Car 90 90.00 10.80 

Truck 90 85.00 10.20 

DSL 

All 90/80 - - 

Car 90 90.00 10.80 

Truck 80 80.00 9.60 

2015 

Indiana, 

Michigan 

and Ohio 

Compare 

USL and 

DSL in 

Different 

Locations 

USL 

All 113/113 115.23 8.69 

Car 113 117.96 6.44 

Truck 113 105.57 8.69 

DSL 

All 113/97 115.39 11.10 

Car 113 118.29 7.56 

Truck 97 100.10 5.15 

2005 
Arkansas 

and Illinois 

Compare 

USL and 

DSL in 

Different 

Locations 

USL 

All 113/113 115.07 8.30 

Car 113 116.84 7.97 

Truck 113 110.40 7.32 

DSL 

All 113/105 114.91 8.35 

Car 113 118.29 6.95 

Truck 105 107.34 5.94 
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Table 6-8 implies that there could be a relationship between speed limit, average speed and 

standard deviation for heavy vehicles and that this relationship appears to be somewhat different 

than Lave's theory (1985). We developed linear regression models to evaluate the relationships. 

Firstly, we used Equation 6-1 to evaluate the relationship between the speed limit and 

average speed of heavy vehicles under USL and DSL using data from the four studies shown in 

Table 6-8: 

�̅� = ∑

(𝑹𝒅−𝑹𝒖)

𝑹𝒖

𝑳𝒖−𝑳𝒅

𝟒
𝒊=𝟏                                           Equation 6-1 

where: 

Rd is the ratio between heavy vehicles’ average speed and heavy vehicles’ speed limit under a DSL 

strategy;  

Ru is the ratio between heavy vehicles’ average speed and heavy vehicles’ speed limit under a USL 

strategy;  

Lu is the uniform speed limit;  

Ld is the differential speed limit;  

Y is the indicator that measures how the ratio of average speed and speed limit changes when USL 

changes to DSL; and 

Ȳ represents the average of all Y values estimated in four studies reported in the literature (Table 

6-8). 

 After obtaining the Ȳ value from Equation 6-1, the ratio (Rd) of each M-FHWA class can 

be calculated for the integrated dataset. The parameters Lu, Ld and Ru for each M-FHWA class 
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could be obtained directly from the integrated dataset. The ratio (Rd) for each M-FHWA class can 

be calculated using Equation 6-2, and the average speed (Ad) for each M-FHWA class under a 

DSL strategy can be calculated from Equation 6-3: 

𝑹𝒅 = [(𝑳𝒖 − 𝑳𝒅) × �̅� + 𝟏] × 𝑹𝒖                    Equation 6-2 

𝑨𝒅 = 𝑹𝒅 × 𝑳𝒅                       Equation 6-3 

 After obtaining the average speeds under a DSL strategy, the standard deviations of the 

speeds were obtained when the speed limit changed from a USL to a DSL. See Equation 6-4:   

�̅� = ∑

𝑆𝐷𝑑−𝑆𝐷𝑢
𝑆𝐷𝑢

𝐴𝑑−𝐴𝑢

4
𝑖=1                                     Equation 6-4 

where: 

SDd is the standard deviation of heavy vehicle speed in a DSL strategy;  

SDu is the standard deviation of heavy vehicle speed in a USL strategy;  

Ad is the average speed of heavy vehicles in a DSL strategy;  

Au is the average speed of heavy vehicles in a USL strategy;  

Z is the indicator that measures how the standard deviations of heavy vehicle speeds change from 

USL to DSL when the average speed changes from a USL to a DSL; and 

 �̅� represents the average of all Z values estimated in the four Table 6-8 studies.  

 Parameters Au and SDu were estimated directly from the integrated dataset. The standard 

deviation (SDd) for each M-FHWA class under a DSL strategy was calculated using Equation 6-

5:  
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𝑺𝑫𝒅 = [(𝑨𝒅 − 𝑨𝒖) × �̅� + 𝟏] × 𝑺𝑫𝒖                  Equation 6-5    

Table 6-9 presents the results of the estimated average speeds and standard deviations for 

the M-FHWA classes. When the speed limit of M-FHWA class 1 was increased from 90 km/h 

(USL) to 95 km/h (DSL), the average speed and standard deviation increased from 87.41 km/h to 

89.95 km/h and from 9.54 to 11.02 respectively. For M-FHWA classes 2 to 4, a decrease in the 

speed limit was associated with decreases in vehicle average speed and standard deviation. After 

estimating the speed limit, average speed and standard deviation of each M-FHWA class for DSL 

strategy, it was possible to develop the DSL scenario. 

Table 6-9: Speed Comparisons under USL and DSL for M-FHWA Classes 

Parameters Class 1 Class 2 Class 3 Class 4 

USL (km/h) 90 90 90 90 

DSL (km/h) 95 85 80 75 

USL Average Speed (km/h) 87.41 76.51 73.97 67.98 

DSL Average Speed (km/h) 89.95 75.39 70.84 62.96 

USL Standard Deviation 9.54 10.67 9.40 7.15 

DSL Standard Deviation 11.02 9.94 7.60 4.96 

 

6.3.3 Discussion and Analysis  

The simulation results for two speed limit strategies (USL and DSL) are based on the 

assumptions discussed previously. We showed the impact of these speed limit strategies on the 



 

98 

four M-FHWA classes, using three performance indicators: 1) the longitudinal 85th percentile 

speed profile, 2) standard deviation of speed, and 3) the speed violation rate.  

Firstly, we focused on the simulation results for the travel patterns of the two speed limit 

strategies, and considered the 85th percentile speed profile along the 8 km study segment. We 

calculated the 85th percentile speed for each M-FHWA class at each meter. As the speed profiles 

for every meter fluctuated too much for useful visualization, we aggregated the speed information 

for every 200 m segment to smooth the speed profile.  

Figure 6-4 shows the 85th percentile speed profile distribution for the two speed limit 

strategies. The different colours represent the different M-FHWA classes.  

The patterns for the M-FHWA classes under USL and DSL were similar. M-FHWA class 

1 had the highest 85th percentile speed profile and M-FHWA class 4 had the lowest. Appendix J 

presents the detailed results.  

  

a) Uniform Speed Limit b) Differential Speed limit 

Figure 6-4: 85th-Percentile Speed Profile Distribution for Each M-FHWA Class 
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In Figure 6-4 a) (USL), the 85th percentile speed for M-FHWA class 1 was about 5 km/h 

higher than the 90 km/h speed limit. The 85th percentile speeds for M-FHWA classes 2, 3 and 4 

were about 3 km/h, 7 km/h and 15 km/h lower than the 90 km/h speed limit respectively.  

Figure 6-4 b) (DSL) shows the profiles for the DSL strategy. The pattern was as expected. 

The 85th percentile speeds for M-FHWA classes 2, 3 and 4 were all lower than the speed 

distributions in Figure 6-4 a) (USL). The 85th percentile speeds for M-FHWA classes 2, 3 and 4 in 

Figure 6-6(b) were also lower than the DSL speed limits of 85 km/h, 80 km/h and 75 km/h 

respectively.  

However, M-FHWA class 1 had a different result. The 85th percentile speed for M-FHWA 

class 1 was 5 km/h higher than its DSL speed limit of 95 km/h. The higher speed could have several 

causes. Firstly, the original speed of M-FHWA class 1 under USL (Figure 6-4 a)) was 5 km/h 

higher than the uniform speed limit of 90 km/h (Table 6-7). Using the assumptions for the DSL 

strategy described in Chapter 6.3.2, the speed limit was increased from 90 km/h to 95 km/h for M-

FHWA class 1. The 85th percentile speed of M-FHWA class 1 was also increased from 95 km/h to 

99 km/h. Another reason for higher 85th percentile speed of M-FHWA class 1 could be that the 

simulation results for the travel patterns under the DSL strategy were based on the assumptions. 

Under a future DSL strategy with proper speed enforcement strategy, the speed limit for M-FHWA 

class 1 should be reduced to below the current posted speed limit (95 km/h) with fine penalties 

imposed for exceeding the DSL. 

In general, the results were as expected: lighter vehicles travelled at faster speeds and 

heavier vehicles travelled at slower speeds. When the speed limit was decreased from 90 km/h to 



 

100 

85 km/h for M-FHWA class 2, to 80 km/h for M-FHWA class 3, and to 75 km/h for M-FHWA 

class 4, the 85th percentile speed profiles decreased. The DSL speed profiles for the M-FHWA 

classes (Figure 6-4 b)) were more widely spread than the USL speed distributions (Figure 6-4 a)). 

Table 6-10 summarizes the results of the USL and DSL strategies. It compares the speed 

limit, 85th percentile speed, average speed, and standard deviation of speed for all heavy vehicles 

and for each M-FHWA class under the USL and DSL strategies. The 85th percentile speed for each 

M-FHWA class was estimated from the average 85th percentile of each relevant vehicle’s speed of 

along the 8 km corridor. The average speed for each M-FHWA class was estimated from the 

average of each relevant vehicle’s mean speed along the 8 km corridor. The standard deviation for 

each type of M-FHWA class was estimated from the average speed of each relevant vehicle along 

the 8 km corridor.  

In Table 6-10, the 85th-percentile speed for all heavy vehicles was 84.39 km/h under USL 

and 82.09 km/h under DSL, a reduction of 2.72 % under DSL. The average speed was 74.36 km/h 

under USL and 71.55 km/h under DSL, a reduction of 3.77% under DSL. The standard deviation 

of speed for all heavy vehicles was 10.79 under USL and 10.44 under DSL, a reduction of 3.19 % 

under DSL.  

Similar reductions occurred for M-FHWA classes 2, 3 and 4 with the biggest reductions 

being for M-FHWA class 4 (8.99 % reduction in 85th percentile speed, 7.52 % reduction in average 

speed, and 20.39 % reduction in standard deviation). For M-FHWA class 1, the 85th-percentile 

speed increased by 3.07 km/h when the speed limit increased from 90 km/h to 95 km/h.  
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The findings were consistent with Table 6-8 and the findings of Dixon at al. (2012), but 

differ from Lave's (1985) theory that as the speed increases, the standard deviation of speed 

decreases as discussed in Chapter 6.3.2. The difference could be caused by the different approach 

to estimating the standard deviation used in this study. The standard deviation for each M-FHWA 

class was obtained by estimating the average speed of each vehicle over the simulation corridor (8 

km) for each M-FHWA class rather than by estimating the standard deviation of spot speeds for 

each vehicle type.  

Table 6-10: Comparison of Speed Characteristics between USL and DSL 

Speed Limit 

Strategies 
Parameters 

All 

Heavy 

Vehicles 

M-

FHWA 

Class 1 

M-

FHWA 

Class 2 

M-

FHWA 

Class 3 

M-

FHWA 

Class 4 

USL 

Speed Limit (km/h) 90 90 90 90 90 

85th Percentile (km/h) 84.39 94.16 85.80 82.48 73.65 

Average Speed (km/h) 74.36 86.54 75.60 73.50 67.65 

Standard Deviation 10.79 8.07 11.47 9.90 7.48 

DSL 

Speed Limit (km/h) - 95.00 85.00 80.00 75.00 

85th Percentile (km/h) 82.09 97.23 84.05 77.86 67.03 

Average Speed (km/h) 71.55 86.89 73.95 70.18 62.56 

Standard Deviation 10.44 9.61 10.66 8.54 5.96 

Percentage 

Change  

85th Percentile  -2.72% +3.26% -2.04% -5.60% -8.99% 

Average Speed  -3.77% +0.40% -2.18% -4.52% -7.52% 

Standard Deviation  -3.19% +19.00% -7.10% -13.68% -20.39% 

 

Finally, we examined the speed violation rate under USL and DSL. Speed violation was 

defined as an average speed that exceeded the proposed speed limit for the vehicle’s proposed M-
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FHWA class. Figure 6-5 shows the speed violation rate for each M-FHWA class under the USL 

and DSL strategies.  

  

a) Uniform Speed Limit b) Differential Speed Limit 

Figure 6-5: Speed Violation Rate for M-FHWA class 

The results shown in Figure 6-5 were similar to those of the previous analyses. M-FHWA 

class 1 had the highest speed violation rate and the rate decreased for higher M-FHWA classes. 

The overall speed violation rate was 9.4% under USL and 10.54 % under DSL. The speed violation 

rate for M-FHWA class 1 decreased from 50.45% under USL to 20.72% under DSL (see Appendix 

J for details). The violation rate for M-FHWA classes 2, 3 and 4 slightly increased when DSL was 

adopted as the speed limits for M-FHWA classes 2, 3 and 4 decreased from 90 km/h to 85 km/h, 

80 km/h and 75 km/h respectively.   
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Compared with Figure 6-4 b), it was noted that the 85th percentile speed profiles for M-

FHWA classes 2, 3 and 4 were all lower than the DSL profiles. Figure 6-5 b), however, shows 

speed violations for M-FHWA classes 2, 3 and 4 and especially for M-FHWA class 4 where the 

85th percentile speed was approximately 7 km/h lower than the speed limit of 75 km/h (Figure 6-

4 b), but there was a 2.84% speed violation rate (Appendix J). This situation may be due to the 

different approaches used for creating the two figures. In Figure 6-4 b), the 85th percentile speed 

for each M-FHWA class was estimated at each 200 meters, but the average speed for some vehicles 

along the 8 km corridor might be higher than the DSL. Hence, it is reasonable to expect that 

although some vehicles had an average speed than was higher than the speed limit for its M-FHWA 

class, the overall 85th percentile speed distribution for each M-FHWA class was lower than the 

speed limit. Additional speed violation rate analysis, such as the number of speed violations for 

each M-FHWA class under USL and DSL, can be found in Appendix J.   

The comparison of the two speed limit strategies in terms of the three traffic performance 

indicators found that a DSL strategy produced more separated and relatively lower 85th percentile 

speed profiles than did the USL strategy. The DSL strategy also reduced the 85th percentile speed, 

average speed and standard deviation of speed for each M-FHWA class compared to the USL 

strategy. The DSL strategy designed for the M-FHWA classes would increase heavy vehicle safety 

on high-speed free flow highways as a smaller standard deviation of speed is expected to reduce 

the probability of vehicle interactions and therefore reduce the risk of highway collisions. Russo 

et al. found that a reduction in average speed and the speed standard deviation reduced the fatality 

rate (Russo et al., 2017).  
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The next section introduces two speed enforcement strategies and compare the traffic 

performance by considering the same performance indicators.  

6.4 Comparison of Two Speed Enforcement Strategies  

This section discusses the two speed enforcement strategies, spot speed enforcement (SSE) 

and average speed enforcement (ASE), and uses a set of performance indicators to compare their 

effect on heavy vehicles’ speed. It is useful to investigated the possibility of using a WIM system 

installed on a section of highway as a speed enforcement tool. As a typical WIM system can 

classify vehicle types and collect the spot speed of passing vehicles, it may be possible to use the 

system as a speed enforcement device. If a pair of WIM systems are installed on a section of 

highway, it may be possible to add a speed enforcement system based on measuring each vehicle’s 

average travel speed on the segment. 

We used three performance measures: the longitudinal 85th percentile speed profile, 

standard deviation of speed, and the speed violation rate to show differences between SSE 

enforcement and ASE enforcement. We used the FHWA classification in the SSE and ASE 

simulations as previous studies have based their model calibration and assumptions on FHWA 

class (see Chapter 6.2). 

6.4.1 Input Parameters for Spot Speed Enforcement 

For the SSE scenario, Tables 6-1 and 6-2 supplied most of the data. For example, traffic volume 

was 600 vehicles per hour and the heavy vehicle percentage was 25%. However, vehicle travel 
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speed and GVW were changed. The speed and GVW of heavy vehicles were estimated from a 

single dataset collected at the Golden WIM station. The speed data collected at the Golden WIM 

was spot speed, and the local speed limit is 90 km/h which was close to the calculated average 

speed limit of 88 km/h (see Chapter 3.2). As mentioned in Chapter 6.3.1, the study used a speed 

limit of 90 km/h in all the simulation studies as this provided consistency and 90 km/h was a 

convenient rounded value.  

A spot speed enforcement system using photo radar or speed camera usually includes 

upstream warning signs to warn drivers of the possible speed enforcement ahead. Drivers 

travelling past a highway location with fixed photo radar typically reduce their travel speed just 

before reaching the enforcement location and then speed up later (Shim et al., 2015). The two 

WIM systems installed on our study corridor provided spot speed data, but have never been used 

for real speed enforcement. As a result, the speed data unfortunately does not show the temporary 

change in speed. To simulate the impact of a speed enforcement device properly, it is necessary to 

reflect the speed fluctuation phenomenon before and after the speed enforcement location. We 

made some few assumptions, such as the degree of speed reduction. The assumptions were based 

on findings from previous research and were adopted to reflect the speed fluctuation phenomenon 

to make our simulation more realistic.  

Shim et al. (2015) conducted their study by collecting traffic data from GPS equipped taxis 

and inductive loop detectors. The study did not consider heavy vehicles. The study sites were 

selected according to the availability of taxi driving records and included data for 259 taxis in 

Daegu, South Korea for every day in May, 2013. The study found that speed enforcement 
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significantly reduced average speed (by 6.7% to 7.0%) for passenger cars driving on the Gyeongbu 

Expressway which has a 110 km/h speed limit. Drivers reduced speed around 700 m upstream of 

the speed enforcement system and then recovered speed shortly after passing the system.  

Pauw et al. (2014b) showed similar results for passenger cars. The study did not consider 

heavy vehicles. The researchers found that fixed speed cameras reduced passenger car vehicle 

speeds by an average speed of 4.6% to 5.6 %. The data showed that drivers started braking between 

250 m and 700 m upstream of the speed enforcement location and returned to their normal speed 

after driving 1,000 m downstream from the location.  

Similar findings were also reported by Liu et al. (2011) who investigated the effect of spot 

speed enforcement between 1 km upstream and 1 km downstream of the speed enforcement 

location. Liu et al. observed that speed reduction started about 300 m to 400 m upstream of the 

enforcement location and recovered to the initial speed at 300 m to 400 m downstream.  

The literature review suggested that passenger cars reduce speed by 4% to 7% under spot 

speed enforcement. The studies were based on higher local speed limits (110 km/h to 120 km/h) 

than our speed limit (90 km/h) (Pauw et al., 2014b; Shim et al., 2015). The area of influence for 

fixed speed devices was generally less than 1,000 m (Liu et al., 2011).  

Truck performance regarding acceleration and deceleration at fixed speed detecting 

devices is less flexible than passenger car performance due to the heavy weight and longer brake 

distance required (Abanotu, 1999; Yang et al., 2016; Ramezani et al, 2018). We assumed that 

heavy vehicles would reduce travel speed by an average of 4% at the enforcement location. We 

also assumed that a warning sign was located 750 m upstream of the enforcement detector, that 
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speed reduction would start 750 m before the enforcement location, and that speed recovery would 

occur 750 m after the enforcement location making the total area of influence 1.5 km. 

To investigate whether the heavy vehicles could meet our speed reduction and recovery 

assumptions within 1.5 km, we first evaluated heavy vehicle weight-to-power ratio (w/p). W/p is 

a measurement of a heavy vehicle’s maximum acceleration and deceleration rate. Using the 

estimated w/p ratio and current speed, we could find the typical maximum acceleration rate and 

deceleration rate from the Traffic Engineering Handbook (Institute of Traffic Engineers, 1999). 

Then, we estimated the acceleration and deceleration required by the assumption of 4% of a speed 

reduction with recovery within 1.5 km. Then, we compared the estimated acceleration and 

deceleration values with the typical acceleration and deceleration values in the Handbook to check 

whether the assumptions made met the requirements.   

Firstly, we estimated w/p for different types of heavy vehicle. A heavy vehicle’s w/p has 

an important effect on the heavy vehicle’s ability to maintain speed control as the vehicle reaches 

and maintains a certain travel speed. The weight of the heavy vehicles was calculated using data 

from the Golden WIM system. Appendix I shows the detailed weight estimation for five vehicle 

classes (Classes 8, 9, 10, 12 and 13). Table 6-1 shows the horsepower. According to Harwood et 

al. (2003), the 85th percentile w/p is appropriate for a loaded truck on a freeway especially when a 

heavy vehicle is partially loaded. Table 6-11 shows the 85th-percentile w/p for the five classes 

heavy vehicle represented in the Golden dataset. A lower w/p is associated with better truck 

performance on any grade and a greater final crawl speed. Class 13 vehicles had the highest w/p 

which means either that they had low power or that they were heavily loaded as they were passed 
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the Golden WIM station. Using the value of the w/p ratio in the Traffic Engineering Handbook 

(Institute of Traffic Engineers, 1999), the w/p ratio for different types of heavy vehicle can be 

categorized into three groups. Class 8 was categorized as 100 lb/hp, Classes 9 to Class 12 were 

categorized as 200 lb/hp, and Class 13 was categorized as 300 lb/hp. 

Table 6-11: Weight-to-Power Ratio of Golden Dataset 

Weight-to-Power Ratio 

(lb/hp) 
Class 8 Class 9 Class 10 Class 12 Class 13 

85th Percentile  131.59 187.58 226.34 221.98 322.51 

Weight to power ratio 

Group 
100 200 200 200 300 

 

Based on the estimated w/p ratio and the current travel speed of different types of heavy 

vehicle, the typical maximum acceleration rates of different classes of heavy vehicle can be found 

in Table 6-12 (ITE, 1999). For example, for speeds of greater than 50 miles per hour (mph), 

maximum acceleration for Classes 8, 9, 10 and 12 was 0.12 m/s2. For class 13, maximum 

acceleration was 0.09 m/s2 (G. Yang et al., 2016; Ramezani et al., 2018).  

Table 6-12: Typical Maximum Acceleration Rate on Level Road (ITE, 1999) 

Vehicle Type Class 8 Class 9 Class 10 Class 12 Class 13 

w/p Group 100 200 200 200 300 

Speed Range (mph) >50  >50 >50 >50 >50 

Max Acceleration (m/s2) 0.18 0.12 0.12 0.12 0.09 
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Table 6-13 shows the deceleration rate and brake distance of heavy vehicles recorded by 

Harwood et al. (2003). The worst and best performance represents the efficiency of the driver in 

modulating the brake to obtain optimum braking performance. The worst performance requires a 

longer brake distance and the best performance requires a shorter brake distance (Harwood et al., 

2003). When speed was around 50 mph, the deceleration rates were between 1.57 m/s2 and 2.45 

m/s2 for the worst and best performance respectively. These rates refer to empty heavy vehicles on 

a wet pavement. Ramezani et al. (2018) estimated a smaller average value of 1.77 m/s2 for 

maximum deceleration for a loaded heavy vehicle. The lower value implies that a driver may avoid 

using higher deceleration rates when making smooth speed changes. This study considered the 

same approach as Ramezani et al. (2018) used and estimated a maximum deceleration rate for 

loaded heavy vehicles of 1.79 m/s2 at 50 mph and 1.77 m/s2 at 60 mph. The brake distances were 

476.5 ft. and 659.4 ft. at 50 mph and 60 mph respectively. See Table 6-13.  

Table 6-13: Maximum Deceleration Rate Table (Harwood et al., 2003) 

Parameters Speed Range (mph) 50 60 

Deceleration 

Rate (m/s2) 

Worst-Performance 1.57 1.57 

Best Performance  2.45 2.55 

Average for Empty Truck 2.01 2.06 

 Average for Loaded Truck 1.75 1.77 

Brake 

Distance (ft) 

Worst-Performance 538 744 

Best Performance  333 462 

Average for Empty Truck 435.50 603.00 

 Average for Loaded Truck 476.50 659.40 
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After finding the typical maximum acceleration and deceleration from the guidelines 

available, it was possible to estimate acceleration and deceleration for heavy vehicles in the Golden 

WIM dataset. The deceleration rates were calculated using Equation 6-6 (Barth at al., 2001):  

𝒂 =  
𝑽𝑭

𝟐−𝑽𝑺
𝟐

𝟐×𝑺
                      Equation 6-6  

Where: 

a represents the deceleration; 

VF is the travel speed at the end of deceleration that was collected at WIM system;  

VS is the initial speed before deceleration started which was assumed at 750 m upstream of WIM 

system; and  

S is the distance travelled during deceleration. 

Acceleration can be estimated using the same Equation 6-6. 

Table 6-14 shows the maximum acceleration or deceleration required for the different 

heavy vehicle classes to reduce and recover speed by 4 % within 1.5 km of enforcement location. 

The estimated maximum acceleration and deceleration of class 8 was 0.04 m/s2, which was smaller 

than the typical maximum acceleration (0.18 m/s2) and deceleration (1.75 m/s2) according to the 

Traffic Engineering Handbook (ITE, 1999) and Harwood et al. (2003).  

The estimated maximum acceleration and deceleration of classes 9 to 12 was 0.03 m/s2, 

and all the values were smaller than the typical maximum acceleration (0.12 m/s2) and deceleration 

(1.75 m/s2) given in the Traffic Engineering Handbook (ITE, 1999) and Harwood et al. (2003). 

The estimated acceleration and deceleration for class 13 (0.03 m/s2) was also smaller than the 
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typical maximum acceleration (0.06 m/s2) and deceleration (1.75 m/s2). The assumption of brake 

distance of 750 m was longer than the typical brake distance of 145.24 m (476.50 ft.) to 200.99 m 

(659.40 ft.) provided by Harwood et al. (2003).  

Overall, the estimated acceleration, deceleration and brake distance estimated using this 

study’s assumptions were smaller than the maximum acceleration or deceleration rates provided 

in the Traffic Engineering Handbook (ITE, 1999) and Harwood et al. (2003). Therefore, the 

assumption that speed changed and recovered on average by 4 percent within 1.5 km is reasonable.  

Table 6-14: Estimated Acceleration/Deceleration for Different Classes in Golden Dataset 

Parameters Percentile Class 8 Class 9 
Class 

10 

Class 

12 

Class 

13 

Initial Speed (VS ) (m/s) 85th Percentile 26.73 24.44 24.19 24.70 24.19 

Final Speed (VF ) (m/s) 85th Percentile 28.06 25.56 25.28 25.83 25.28 

Acceleration/Deceleration 

(m/s2) 
85th Percentile 0.04 0.03 0.03 0.03 0.03 

6.4.2 Input Parameters for Average Speed Enforcement 

The input parameters for the ASE scenario were the same as for the base scenario (see 

Tables 6-1 and 6-2): traffic volume was 600 vehicles per hour, the heavy vehicle percentage was 

25 %, the average speed limit was 90 km/h, and the analysis used the FHWA classification of 

heavy vehicles. The ASE analysis used different vehicle speed and GVW distribution. Vehicle 

speed and GVW in the ASE scenario were estimated from the integrated dataset. In the ASE 

scenario, it was assumed that all heavy vehicle speeds are monitored by a pair of WIM systems on 
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the section of highway, and that no spot speed detection system was required on the travel corridor. 

We did not consider any assumptions regarding speed fluctuations including weight-power ratio, 

and acceleration and deceleration estimation.  

6.4.3 Analysis of Speed Enforcement 

The first step in the ASE simulation was an analysis of the speed profile (longitudinal speed 

distribution) along the 8 km of study section. We used VISSIM to collect each vehicle’s speed 

data for each meter along the 8 km corridor and evaluate the 85th speed percentile for each FHWA 

class for each meter. As the speed profiles for every meter fluctuated too much for useful 

visualization, we aggregated the speed information for every 200 m segment to smooth the speed 

profile.  

Figure 6-6 shows the simulated longitudinal speed profile for SSE (a) and ASE (b). The 

different colours represent the different heavy vehicle classes.  

  

a) Spot Speed Enforcement b) Average Speed Enforcement 
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Figure 6-6: 85th-Percentile Speed Profile Distribution for Each FHWA Class (8-13) 

Figures 6-6 a) and b) show that the SSE 85th percentile speed profiles were higher and less 

smooth than the profile were the ASE profiles. The speed profiles for SSE were also mostly closely 

spaced whereas the ASE speed profiles were far more widely separated. There were several 

interesting details. 

The profile for Class 8 vehicles was much higher than for other vehicle classes. As Class 

8 vehicles usually had a lower GVW than Class 9, 10, 12 and 13, they were expected to have faster 

travel speeds.  

Figure 6-4 a) (SSE) showed that operating speed of Class 8 vehicles was 10 km/hr higher 

than the speeds of other vehicle classes. The speed profile was also 9 km higher than the speed 

limit of 90 km/h. The speed profiles for Classes 9 to 13 were all around the speed limit of 90 km/h. 

In Figure 6-6 a) (SSE), the results show the result expected from the assumptions we made. 

All classes started to reduce operating speed approximately 750 m upstream of the speed 

enforcement location. The lowest speeds were observed at the location where the speed 

enforcement device was assumed to be installed. After passing the enforcement location, vehicles 

started to accelerate. They recovered their initial speed 750 m downstream of the enforcement 

location. The Figure showed a clear V-shaped speed profile for this 1,500 m segment of roadway 

for all heavy vehicle classes. Interestingly, Class 8 vehicle speeds fluctuated more than the other 

vehicle classes. One reason could be that the speeds collected for Class 8 were much higher than 

the speeds for other classes (see Table 3-1 in Chapter 3.2.1). Another reason could be that the small 
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sample of Class 8 vehicles in the integrated dataset (only 18 vehicles) might not give an accurate 

indication of Class 8 travel speed.  

 Figure 6-6 b) (ASE) shows that all the speed profiles were smooth and widely distributed 

and that the Classes 9, 10, 12, and 13 speed distributions were significantly lower than the SSE 

speed profiles over the entire 8-km-length section. The 85th percentile speeds for Classes 9, 10 12, 

and 13 were lower than the speed limit of 90 km/h by about 6 km/h, 7 km/h, 9 km/h and 15 km/h 

respectively, but Class 8 vehicles maintained their higher speed profile and their average speed 

was above the speed limit (90 km/h). However, in the real world, Class 8 vehicles would be 

expected to reduce their speeds to under the posted speed limit to avoid fines under ASE.  

Figures 6-6 a) and b) show that both SSE and ASE contributed to reducing vehicles’ 

operating speed, but for SSE, the speed reduction effect appeared to be very localized around the 

point of enforcement. ASE contributed to reducing vehicles’ operating speed consistently and 

substantially along the entire study segment. Appendix J shows the speed profiles for all heavy 

vehicles, the speed profiles for every 1,000 m segment, and the 50th percentile speed profiles.  

Table 6-15 summarizes the analysis of speed characteristics for the SSE and ASE 

strategies. It shows the speed limits, 85th percentile speed, average speed and standard deviation 

of speed for each FHWA class. For all heavy vehicles combined, the ASE reduced the 85th 

percentile speed, average speed and standard deviation by 6.97 %, 8.07 % and 9.56 % respectively. 
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Table 6-15: Comparison of Speed Characteristics between SSE and ASE 

Scenario FHWA Class All 
Class 

8 
Class 9 Class 10 

Class 

12 

Class 

13 

Spot Speed 

Enforcement 

85th Percentile 

(km/h) 
90.86 97.36 90.82 88.74 89.22 88.58 

Average Speed 

(km/h) 
80.76 88.66 80.65 79.82 80.93 78.71 

Standard 

Deviation 
11.91 12.13 11.98 11.20 12.61 11.10 

Average 

Speed 

Enforcement 

85th Percentile 

(km/h) 
84.52 94.23 84.12 82.64 80.46 74.49 

Average Speed 

(km/h) 
74.24 86.36 74.64 73.62 71.75 68.19 

Standard 

Deviation 
10.77 8.29 10.74 10.04 10.00 8.12 

Percent 

Change 

85th Percentile  -6.97% -3.21% -7.39% -6.88% -9.82% -15.90% 

Average Speed  -8.07% -2.60% -7.45% -7.77% -11.34% -13.37% 

Standard 

Deviation  
-9.56% -31.65% -10.40% -10.37% -20.70% -26.88% 

 

The Table 6-15 shows that vehicles in Class 13 had lower 85th percentile speeds, average 

speeds and standard deviations. Vehicles in the lowest class (Class 8) had a lower GVW and could 

travel at higher speeds.  

The largest differences between ASE and SSE were for class 13 vehicles for which average 

speed reduced from 78.71 km/h to 68.19 km/h, and standard deviation reduced from 11.1 to 8.12 

under ASE. SSE introduced a larger speed standard deviation compared to ASE.  
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(a) Spot Speed Enforcement (b) Average Speed Enforcement 

Figure 6-7: Speed Violation Rate for FHWA Class 

The speed violation rate for the two speed enforcement strategies was also analyzed for a 

90-km/h average speed limit. The overall speed violation rate was 23 % for SSE and 9 % for ASE. 

Appendix K provides details of speed violation rates  

For SSE, the speed violation rate for each vehicle class is shown in Figure 6-7 (a). The 

highest speed violation rate occurred for class 8 vehicles, around 59 %. The rate generally 

decreased for higher vehicle classes (with the exception of Class 12) and Class 13 vehicles had the 

lowest speed violation rate (about 16 %).  

For ASE, the speed violation rate for each vehicle class is shown in Figure 6-7 (b). The 

pattern is similar with Class 8 vehicles having the highest speeding violation rate.  

By comparing the traffic performance indicators for SSE and ASE, we found that the ASE 

85th percentile speed profiles were lower, smoother and more separated than the speed profiles for 
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SSE. ASE can monitor vehicle travel along a whole section encouraging drivers to maintain an 

average travel speed below the speed limit for the whole of the monitored section. This result 

suggest that ASE is a more effective speed reduction strategy than SSE. SSE showed a very clear 

V-profile indicating its limited area of speed enforcement. The speed violation rate in each FHWA 

class was also reduced under the ASE strategy compared to the SSE strategy. The introduction of 

ASE can be expected to reduce vehicle speeds more substantially and more effectively than can a 

SSE strategy.  

The 85th percentile speed, average speed, standard deviation of speed, and speed violation 

rate for each FHWA class under the ASE strategy were also reduced compared to the USL strategy. 

A lower speed standard deviation is associated with a reduced likelihood of crashes due to the 

similarity in vehicle speeds. An ASE strategy can also, therefore, be expected to lead to more 

steady speed and homogenized traffic flows and fewer collisions than can a SSE strategy. 

6.5 Chapter Summary 

This chapter compared heavy vehicle traffic performance under two speed limit strategies and two 

speed enforcement strategies. The analyses used VISSIM as the traffic simulation tool. We 

selected three traffic performance indicators: 1) the longitudinal 85th percentile speed profile, 2) 

standard deviation of speed, and 3) the speed violation rate to evaluate the safety impacts of the 

two speed limit strategies and two speed enforcement strategies. Two-stage calibration was carried 

out to improve the accuracy of the VISSIM simulation. In the first stage, we calibrated parameters 

such as traffic volume, travel time, travel speed and vehicle composition. The outputs were all 
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within an acceptable error level. The second stage used sensitivity analysis to establish appropriate 

values for traffic volume and the percentage of heavy vehicles as this information was not available 

from the observed conditions. Traffic volume of 600 vehicles per hour with 25 percentage of heavy 

vehicle were found to match observed conditions and were the values used for the base scenario 

analysis. The sensitivity analysis also showed that speed decreased with increases in traffic volume 

and/or heavy vehicle percentage. 

The first simulation model compared USL to DSL using the three performance indicators. 

The study’s objectives included setting four different speed limits associated with the four 

proposed M-FHWA classes used in the simulation analysis.  

The new differential speed limits for each M-FHWA class were based on the 85th percentile 

speed for each M-FHWA class under USL. For each M-FHWA class, a new average speed and 

standard deviation of speed were estimated as input for the DSL scenario. 

The 85th percentile speed profiles for DSL showed the results expected from the way we 

designed the DSL strategy. The 85th percentile speed profiles for M-FHWA classes 2, 3 and 4 were 

lower than their DSL speed limits of 85 km/h, 80 km/h and 75 km/h respectively. M-FHWA class 

1 was different: the 85th percentile speed profile for M-FHWA class 1 was 5 km/h higher than the 

class’s DSL speed limit of 95 km/h. This result could be because the original M-FHWA class 1 

85th percentile speed in the integrated dataset (USL scenario) was 5 km/h higher than the uniform 

speed limit of 90 km/h. The result could also be due to the simulation assumptions made for the 

DSL strategy, for example, the assumption that M-FHWA class 1 vehicles would reduce their 

driving speed to below the posted speed limit (95 km/h) to avoid fines. 
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The analysis of the standard deviation of speed compared the USL and DSL strategies. The 

DSL simulation found that DSL reduced 85th percentile speed by 2.72 %, average speed by 3.77 

%, and standard deviation by 3.19 % for all heavy vehicles and for each M-FHWA class except 

M-FHWA class 1. The biggest speed reduction occurred for M-FHWA class 4 vehicles which 

showed an 8.99% reduction in 85th percentile speed. The average speed reduction was 7.52 % and 

the standard deviation reduction was 20.39 %. As the speed limit increased, the 85th percentile 

speed, average speed and standard deviation all increased and vice versa.  

The analysis of the speed violation rate showed that the speed violation rate for all heavy 

vehicles was slightly increased in the DSL strategy. This overall increase was due to decreased 

speed limits for M-FHWA class 2, 3 and 4. In general, the DSL travel speed of each M-FHWA 

class for considerably less than the USL travel speed.  

The results suggest that the introduction of a DSL strategy associated with the M-FHWA 

class would increase heavy vehicle safety on high-speed free flow highways by reducing travel 

speeds and speeding violation rates and thereby reducing the number and severity of highway 

collisions involving heavy vehicles. The reduction in the standard deviation of speed would be 

expected to reduce the probability of vehicle interactions and lead to reduced risk of highway 

collisions.  

 The second simulation model compared SSE with ASE using the same three traffic 

performance indicators. The assumption of a 4% speed change (in acceleration and deceleration) 

within 1,500 m of the speed enforcement location was shown to give a reasonable simulation of 

the speed fluctuations typical of a SSE strategy.  
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The 85th percentile speed profiles for SSE and ASE were compared. Compared to SSE, 

ASE produced a steadier traffic speed with a more homogenized traffic flow. This result was 

evident in the ASE’s lower, smoother and more separated 85th percentile speed profiles. Compared 

to SSE, ASE reduced speed substantially and effectively because ASE monitors vehicle travel 

along a whole section encouraging drivers to keep their average travel speed below the speed limit 

for the whole monitoring section. The SSE 85th percentile speed profiles were as expected given 

the assumption of a clear V-shaped reduction in speed near the speed enforcement location 

indicating a very limited area of speed enforcement. SSE also produced 85th percentile speed 

profiles around 90 km/h and very close profiles for Classes 9, 10, 12 and 13.  

The analysis of the standard deviation of speed for the SSE and ASE strategies found that, 

compared to USL, ASE reduced the 85th percentile speed by 6.97%, average speed by 8.07 %, and 

the speed standard deviation by 9.56 % for all heavy vehicles. Lower speed standard deviation 

reflects more homogenized vehicle speeds and can be expected to reduce the likelihood of crashes 

suggesting that an ASE strategy would lead to fewer collisions than the current SSE strategy. 

The analysis of the speed violation rate showed that the ASE speed violation rate in each 

FHWA class was lower than the SSE rate. It appears that ASE would be more effective in enforcing 

vehicle speed on high-speed highways than conventional SSE.  

Overall, the simulation exercise showed that DSL associated with the proposed M-FHWA 

classification combined with ASE would substantially and effectively reduce heavy vehicle travel 

speeds and produce smoother and more harmonized travel speeds that can be expected to reduce 
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the number and severity of highway collisions involving heavy vehicles, improving safety for the 

freight transportation sector.  
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 Conclusions  

This Chapter summarizes the study, presents the conclusions, and proposes recommendations for 

future research.  

7.1 Summary  

The research consisted of two technical components, a data-driven analysis and a 

simulation analysis. The simulation analysis consisted of two studies. 

The conventional FHWA class scheme largely depends on the configuration of vehicles. 

Within a particular FHWA class, e.g., class12, the vehicles may have widely different GVWs. This 

range in the GVW means that the FHWA classification is not well suited for a DSL strategy that 

is associated with the GVW. 

A Modified-Federal Highway Administration (M-FHWA) classification that takes GVW 

into account was created. The proposed classification has four M-FHWA classes for heavy 

vehicles. The classes are based mainly on GVW, but they also consider the FHWA class and the 

average speed of the vehicles as measured in the study sample. The classification was designed to 

ensure that the speed distribution within each class was distinctive (avoiding overlapping where 

possible) and that there was a sufficient number of vehicles in each category. ANOVA tests with 

Tukey’s HSD tests were used to exam whether the average speed in each M-FHWA class was 

distinctive enough to suggest that setting different speed limits for each M-FHWA class would be 
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appropriate. The test results showed that average speed in each proposed M-FHWA class was 

statistically significantly different. 

The study used three different approaches to develop an integrated dataset that combined 

WIM data with GPS data to include more accurate speed distribution with nonstop and travel with 

stops information. Firstly, a QQ plot was used to check that the speed distributions of the WIM 

and GPS data were similar. Secondly, a linear regression model was used to estimate the linear 

relationship between the WIM speed data and GPS speed data. Thirdly, the Monte Carlo method 

was applied to develop the integrated dataset that incorporated WIM data and GPS data.  

 The study then evaluated the FHWA heavy vehicle classification and a proposed M-FHWA 

classification to decide which scheme would be suitable for developing a DSL strategy based on 

GVW. The study examined the empirical relationships between heavy vehicle speed and GVW for 

FHWA classes and M-FHWA classes. The results showed that the M-FHWA classes had a 

stronger correlation with speed and GVW than did the FHWA classes. Each M-FHWA class had 

less variance in GVW, less overlapping of GVW between M-FHWA classes, and more clearly 

distinctive speed distributions than did the FHWA classes. These results suggested that the M-

FHWA classification would be the more appropriate classification scheme for assessing a DSL 

strategy that includes consideration of GVW.   

The study proposed the new speed limit strategy (DSL) and the new speed enforcement 

strategy (ASE). The simulation analysis conducted two comparison studies: 1) to compare the 

traditional speed limit strategy (USL) with a new speed limit strategy (DSL); and 2) to compare 

the traditional speed enforcement strategy (SSE) with a new speed enforcement strategy (ASE). 
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Three traffic performance indicators, the longitudinal 85th percentile speed profile, standard 

deviation of speed, and the speed violation rate, were used to evaluate the safety impact of the 

different speed limit and speed enforcement strategies. As it is not reasonable to apply ASE on 

548 km of highway, an 8 km highway section was selected as the simulation study segment.  

VISSIM was used to conduct the simulation analysis. Two stages of calibration improved 

the accuracy of the simulation model. The first stage calibration evaluated traffic volume, travel 

time, travel speed, and vehicle composition to check the accuracy of the model. All the calibration 

results were under the threshold values. The second stage calibration was a sensitivity analysis 

conducted to help determine suitable values for traffic volume and heavy vehicle percentage for 

the base scenario. The sensitivity analysis found that appropriate values for the base scenario were: 

traffic volume of 600 vehicles per hour per direction, and heavy vehicle percentage of 25 %.  

In the first comparison simulation analysis, new speed limits were created for the four M-

FHWA classes. The four new speed limits were selected based on the 85th percentile speeds in  

USL strategy. The comparison of the two speed limit strategies was based on the three traffic 

performance indicators. The results showed that DSL generally performed better than USL: DSL 

produced more separated and relatively lower 85th percentile speed profiles, larger reductions in 

the 85th percentile speed, average speed and standard deviation of speed for each M-FHWA, and 

smaller standard deviations in speed. The findings suggest that DSL would reduce the probability 

of vehicle interactions thereby reducing the risk of highway collisions. In addition, reductions in 

average speed and speed standard deviation have been associated with a reduced fatality rate 

(Russo et al., 2017). Although the DSL speed violation rates in M-FHWA classes 2, 3 and 4 were 
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slightly increased, the travel speeds for M-FHWA classes 2, 3 and 4 under DSL were generally 

reduced compared to USL.  

In general, the DSL strategy associated with the M-FHWA classification appeared to be an 

effective speed limit strategy with the potential for bringing significant improvements to heavy 

vehicle highway safety.  

In the second comparison simulation analysis, which used the three traffic performance 

indictors to compare SSE and ASE, we found that ASE generally performed better than SSE: ASE 

produced lower, smoother and more separated 85th percentile speed profiles. An ASE strategy can 

monitor vehicle travel along a whole section encouraging drivers to ensure that their average travel 

speed remains below the speed limit for the whole monitoring section whereas SSE reduces vehicle 

speeds for only a very localized section of highway around the speed enforcement location leading 

to drivers changing speed over a relatively short distance to avoid a speeding ticket. Compared to 

SSE, ASE also effectively reduced the speed violation rate for each FHWA class. Also, the 85th 

percentile speed, average speed, standard deviation of speed and speed violation rate for each 

FHWA class in ASE strategy was reduced compared to USL strategy. Lower speed standard 

deviation created more consolidated speeds between vehicles that reduced the likelihood of 

crashes. Therefore, ASE strategy would lead to more steady speed with homogenized traffic flow 

and less collisions than SSE strategy. 

In general, it appears that ASE is more effective than SSE as ASE is expected to bring 

about substantial reductions in heavy vehicle speed. 
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In summary, the two comparison simulation studies demonstrated that introducing 

differential speed limits associated with a Modified-Federal Highway Administration 

classification combined with average speed enforcement has clear potential for enhancing highway 

safety for heavy vehicles. Benefits include substantially reducing heavy vehicle travel speeds and 

producing the smoother, the more harmonized travel speeds associated which would reduce the 

number and severity of highway collisions involving heavy vehicles.  

7.2 Recommendations 

Although this study shows that the safety of heavy vehicles is likely to be improved by the 

introduction of DSL associated with GVW and ASE, there are still considerable opportunities for 

future research.  

1. The data fusion method was employed to develop an integrated dataset that included 

accurate information on nonstop and stopping heavy vehicle trips, but the simulation model 

has the limitation of obtaining the detail simulation results for different vehicle 

classification when the percent of heavy vehicle is small (i.e. 0.04%). Future research could 

focus on nonstop-travel heavy vehicles and explore the safety impact of speed limit and 

enforcement strategies under free flow traffic conditions. 

2. The speed limit strategy analysis used the proposed M-FHWA classification, but the speed 

enforcement analysis used the standard FHWA classification. This was to allow the speed 

enforcement analysis to make use of previous model calibrations and the assumption that 

a speed fluctuation is typical of SSE which was based mainly on studies that used FHWA 
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class. It would be useful to explore the traffic performance of DSL combined with ASE 

with a consistent vehicle classification scheme. 

3. The DSL model was built using assumptions based on previous studies all of which 

considered only two levels of differential speed limits, one for passenger cars and one for 

trucks. Future research could investigate a range of DSL strategies with more detailed and 

precise speed limit levels.  

4. The SSE model was developed with a number of assumptions. One assumption was that 

the speed fluctuation phenomenon before and after the spot speed enforcement location 

should be simulated. The related assumptions assumed that heavy vehicles would reduce 

travel speed by an average of 4%, and that speed would recover within 1.5 km. Another 

assumption concerned the weight-to-power ratio and its effect on heavy vehicle 

acceleration and deceleration capabilities. In this case, our assumptions were based on ITE 

(1999) and we used conservative estimates, but heavy vehicle braking systems have 

improved over time. Future research could explore more recent guidelines regarding heavy 

vehicle engine and mechanical capabilities.  

5. Also, future research could consider collecting field data from spot speed enforcement 

devices to develop a more accurate and realistic understanding of drivers’ speed fluctuation 

behaviour. 

6. The location for the ASE simulation was a selected 10 km of highway, but the actual traffic 

data used in the simulation was collected from 548 km of highway. Future research could 

consider collecting the data from a shorter segment, e.g., 20 km or 50 km of highway.  
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7. This study was conducted for a highway corridor in British Columbia. Future research 

could explore other types of roadway, other jurisdictions, and different weather conditions 

to check whether this study’s findings apply under other circumstances. 

8. Future research could be also investigating the application of DSL and ASE 

strategies for connected autonomous vehicles (CAV) and heavy vehicle platooning (HVP). 

As mentioned earlier, heavy vehicles’ operating speed vary greatly depending on the 

GVW. Relatively precise GVW information is especially important for heavy vehicles to 

form HVP is unlikely to be created in reality as it would place the slowest moving vehicle 

(presumably the heaviest vehicle) in the lead with an inevitable loss of travel time and fuel 

savings. If a fast-moving vehicle leads the convoy, the platoon may break up on steep 

segments reducing fuel savings and creating undesirable safety challenges from cars 

cutting in between supposedly platooning vehicles. One of our findings has shown that 

heavy vehicle speed variance would be reduced within each M-FHWA class if they follow 

the proposed DSL (Chapter 6.3). Setting DSL based on GVW allow heavy vehicles with 

similar GVW to follow the same speed limit and be able to travel as a group and form a 

platoon with tight gaps and harmonized speeds even on steep grades without creating the 

issues of concern raised above. Setting differential speed limits associated with GVW 

would become important for the formation of proper HVPs. It would be useful to explore 

whether these concepts would work in a traffic environment when CAV/platooning is 

widely available in our public highway.  
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Appendix 

Appendix A: FHWA Vehicle Classification Scheme 

Table A-1: Vehicle Distribution based on EPA Emission Classification (EPA, 2017) 

Gross Vehicle 

Weight Group 

Average 

GWV 

Intervals (lb) 

Average 

GWV  

Intervals (kg) 

Number of 

Vehicles 

Average 

Speed (km/h) 

Light Duty Trucks 
<6000 <2700 0 - 

6000-8500 2700-3850 0 - 

     

Medium Duty 

8500-10000 3850-4500 0 - 

1000-14000 4500-6350 0 - 

14000-16000 6350-7250 0 - 

16000-19500 7250-8850 0 - 

     

Heavy Duty 

19500-26000 8850-11800 0 - 

26000-33000 11800-15000 11 71.93 

33000-60000 15000-27200 3354 75.44 

>=60000 >=27200 6000 72.47 
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Appendix B: M-FHWA Classification Selection and Evaluation 

  

a) 30 Tonnes b) 35 Tonnes 

  

c) 40 Tonnes d) 45 Tonnes 
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e) 50 Tonnes f) 55 Tonnes 

 

g) 60 Tonnes 

Figure B-1: Speed Distributions for Different GVW Thresholds 
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Table B-1: Number of Vehicle, Average Speed and 85th Percentile Speed Distributions for 

Different GVW Thresholds 

Different GVW Threshold Combinations 

GVW Groups <27,200 27,200 - 30,000 ≥ 30,000 

Number of Vehicles 3363.00 1247.00 4753.00 

Average Speed (km/h) 75.41 74.16 72.03 

85th Percentile Speed 

(km/h) 
85.95 84.46 80.86 

 <27,200 27,200 - 35,000 ≥ 35,000 

Number of Vehicles 3363.00 3384.00 2616.00 

Average Speed (km/h) 75.41 73.53 71.10 

85th Percentile Speed 

(km/h) 
85.95 82.88 79.59 

 <27,200 27,200 - 40,000 ≥ 40,000 

Number of Vehicles 3363.00 4898.00 1102.00 

Average Speed (km/h) 75.41 73.17 69.39 

85th Percentile Speed 

(km/h) 
85.95 82.27 77.29 

 <27,200 27,200 - 45,000 ≥ 45,000 

Number of Vehicles 3363.00 5628.00 372.00 

Average Speed (km/h) 75.41 72.84 66.92 

85th Percentile Speed 

(km/h) 
85.95 81.99 73.85 

 <27,200 27,200 - 50,000 ≥ 50,000 

Number of Vehicles 3363.00 5766.00 234.00 

Average Speed (km/h) 75.41 72.73 66.03 

85th Percentile Speed 

(km/h) 
85.95 81.89 71.92 

 <27,200 27,200 - 55,000 ≥ 55,000 

Number of Vehicles 3363.00 5804.00 196.00 

Average Speed (km/h) 75.41 72.70 65.76 

85th Percentile Speed 

(km/h) 
85.95 81.87 71.50 

 <27,200 27,200 - 60,000 ≥ 60,000 

Number of Vehicles 3363.00 5897.00 103.00 

Average Speed (km/h) 75.41 72.60 65.43 

85th Percentile Speed 

(km/h) 
85.95 81.84 71.41 
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Table B-2: ANOVA Test for M-FHWA Classification (11 Sub-Group) 

Source 
Degree of 

Freedom 

Sum of 

Squares 

Mean 

Square 
F-Value P-Value 

Type 10 36006 3601 38.38 ≪0 

Residuals  9354 877430 94 - - 

 

 

Table B-3: Tukey Post Hoc Test for M-FHWA Classification (11 Sub-Group) 

Groups 
Means 

Difference  
Lower Bound  Upper Bound  

Adjusted P-

Value  

Class2-9 - Class1-8 -10.91 -18.28 -3.54 0.0001 

Class3-9 - Class1-8 -12.90 -20.27 -5.53 0.0000 

Class2-10 - Class1-8 -9.37 -16.93 -1.81 0.0032 

Class3-10 - Class1-8 -13.71 -21.10 -6.33 0.0000 

Class4-10 - Class1-8 -17.61 -25.64 -9.58 0.0000 

Class2-12 - Class1-8 -9.19 -17.79 -0.60 0.0243 

Class3-12 - Class1-8 -15.35 -23.05 -7.66 0.0000 

Class4-12 - Class1-8 -19.75 -31.10 -8.40 0.0000 

Class3-13 - Class1-8 -14.25 -22.21 -6.29 0.0000 

Class4-13 - Class1-8 -19.73 -27.32 -12.13 0.0000 

Class3-9 - Class2-9 -1.99 -2.77 -1.21 0.0000 

Class2-10 - Class2-9 1.55 -0.31 3.40 0.2075 

Class3-10 - Class2-9 -2.80 -3.71 -1.88 0.0000 

Class4-10 - Class2-9 -6.70 -9.98 -3.42 0.0000 

Class2-12 - Class2-9 1.72 -2.77 6.21 0.9789 

Class3-12 - Class2-9 -4.44 -6.80 -2.08 0.0000 
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Groups 
Means 

Difference  
Lower Bound  Upper Bound  

Adjusted P-

Value  

Class4-12 - Class2-9 -8.84 -17.50 -0.17 0.0412 

Class3-13 - Class2-9 -3.34 -6.45 -0.23 0.0234 

Class4-13 - Class2-9 -8.82 -10.81 -6.82 0.0000 

Class2-10 - Class3-9 3.53 1.69 5.38 0.0000 

Class3-10 - Class3-9 -0.81 -1.70 0.08 0.1123 

Class4-10 - Class3-9 -4.71 -7.99 -1.44 0.0002 

Class2-12 - Class3-9 3.70 -0.78 8.19 0.2190 

Class3-12 - Class3-9 -2.46 -4.81 -0.10 0.3321 

Class4-12 - Class3-9 -6.85 -15.51 1.81 0.2784 

Class3-13 - Class3-9 -1.35 -4.46 1.75 0.9478 

Class4-13 - Class3-9 -6.83 -8.81 -4.85 0.0000 

Class3-10 - Class2-10 -4.34 -6.25 -2.44 0.0000 

Class4-10 - Class2-10 -8.25 -11.93 -4.56 0.0000 

Class2-12 - Class2-10 0.17 -4.62 4.96 1.0000 

Class3-12 - Class2-10 -5.99 -8.88 -3.09 0.0000 

Class4-12 - Class2-10 -10.38 -19.21 -1.56 0.0072 

Class3-13 - Class2-10 -4.89 -8.42 -1.36 0.0004 

Class4-13 - Class2-10 -10.36 -12.96 -7.76 0.0000 

Class4-10 - Class3-10 -3.90 -7.21 -0.59 0.0070 

Class2-12 - Class3-10 4.52 0.01 9.03 0.0494 

Class3-12 - Class3-10 -1.64 -4.05 0.76 0.5028 

Class4-12 - Class3-10 -6.04 -14.71 2.64 0.4763 

Class3-13 - Class3-10 -0.54 -3.68 2.60 1.0000 

Class4-13 - Class3-10 -6.02 -8.06 -3.98 0.0000 

Class2-12 - Class4-10 8.42 2.92 13.92 0.0000 

Class3-12 - Class4-10 2.26 -1.70 6.22 0.7593 

Class4-12 - Class4-10 -2.13 -11.37 7.10 0.9997 

Class3-13 - Class4-10 3.36 -1.09 7.81 0.3461 
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Groups 
Means 

Difference  
Lower Bound  Upper Bound  

Adjusted P-

Value  

Class4-13 - Class4-10 -2.11 -5.87 1.64 0.7731 

Class3-12 - Class2-12 -6.16 -11.17 -1.15 0.0037 

Class4-12 - Class2-12 -10.55 -20.28 -0.83 0.0206 

Class3-13 - Class2-12 -5.06 -10.46 0.34 0.0907 

Class4-13 - Class2-12 -10.53 -15.38 -5.69 0.0000 

Class4-12 - Class3-12 -4.39 -13.34 4.55 0.8906 

Class3-13 - Class3-12 1.10 -2.72 4.92 0.9977 

Class4-13 - Class3-12 -4.37 -7.36 -1.39 0.0001 

Class3-13 - Class4-12 5.50 -3.68 14.67 0.6981 

Class4-13 - Class4-12 0.02 -8.84 8.88 1.0000 

Class4-13 - Class3-13 -5.48 -9.08 -1.87 0.0001 
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Appendix C: Comparison Analysis between WIM Speed Data and GPS Speed Data 

  

a) All WIM and Detail GPS b) March of WIM and March of 

GPS 

 
 

c) Twelve Months of WIM and March of 

GPS 

d) March of WIM and March of 

GPS (Bar Plot) 

Figure C-1: Comparison between WIM Speed Data and GPS Speed Data 
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Appendix D: Speed Distribution of Monte Carlo Data Fusion Simulation Results 

  

a) Nonstop Speed b) Speed of Travel with Stops 

Figure D-1: Comparison of Simulated Speed of 10 Runs and 100 Runs with Observed 

Speed 

  

a) Nonstop Speed b) Speed of Travel with Stops 

Figure D-2: Cumulative Speed Distribution of Monte Carlo Data Fusion Method 
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a) Nonstop b) Travel with Stop 

Figure D-3: Speeding Violation Rate of Monte Carlo Data Fusion Method 
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Appendix E: Scatter Plots of Correlation Tests 

  

a) Spearman Test of Speed and Class b) Spearman Test of Speed and GVW 

  

c) Pearson Test of Speed and Class d) Pearson Test of Speed and GVW 
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Appendix F: Average Speed, GVW and Vehicle Class Analysis for Combined Traffic Data 

  

a) FHWA Classes b) GVW Intervals 

 

c) Average Speed Intervals 

Figure F-1: Frequency Distribution for Vehicle Class, GVW and Average Speed 
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a) Overall Frequency Distribution 

  

b) GVW < 20 tons c) 20 tons - 25 tons 

 

 

 

 



 

159 

  

d) 25 tons - 30 tons e) 30 tons - 35 tons 

  

f) 35 tons - 40 tons g) 40 tons - 45 tons 

  



 

160 

h) GVW ≥ 45 tons i) Class 8 

  

j) Class 9 k) Class 10 

  

l) Class 12 m) Class 13 

Figure F-2: Frequency Distribution for FHWA Class and GVW Intervals 
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a) Overall Average Speed Distribution 

  

b) GVW < 20 tons c) 20 tons - 25 tons 
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d) 25 tons - 30 tons e) 30 tons - 35 tons 

  

f) 35 tons - 40 tons g) 40 tons - 45 tons 
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h) GVW ≥ 45 tons i) Class 8 

  

j) Class 9 k) Class 10 

  

l) Class 12 m) Class 13 

Figure F-3: Speed Distribution for FHWA Class and GVW Intervals 
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a) GVW Intervals 

 
 

b) FHWA Class c) M-FHWA Class 

Figure F-4: Average Speed Distribution for GVW Intervals, FHWA Class and Weight 

Class 



 

165 

 
a) Speed Distribution  

 
b) GVW Distribution  

Figure F-5: Speed and GVW Distribution for Detail Vehicle Weight Class 
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a) GVW Intervals b) Sub-M-FHWA Classification 

Figure F-6: Cumulative Speed Distribution for GVW Interval and Detail Vehicle Weight 

Class 

  

a) Relative Speeding Violation Rate of 

FHWA Class 

b) Speeding Violation Rate 

Distribution in FHWA Class 

Figure F-7: Speeding Violation Rate for FHWA Class 
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Appendix G: Traffic Data Calculation for Simulation Corridor  

Table G-1: Traffic Volume Table of Simulation Corridor 

Year 2010  2011  2012  2013  2014  2015  2016  

Annual Average Daily 

Traffic (AADT) 
6324  6073  5821  5570  5939  6307  6676  

Summer Average Daily 

Traffic (SADT) 
8551  8214  7878  7541  8099  8658  9216  

Directional Hour Demand 

Volume (DDHV) 
734  704  675  646  689  732  774  

 

Equations of Traffic Volume Calculation: 

𝐴𝐴𝐷𝑇2014 = 𝐴𝐴𝐷𝑇2013 +  (𝐴𝐴𝐷𝑇2016 − 𝐴𝐴𝐷𝑇2013)/3 

𝐷𝐷𝐻𝑉 = 𝐴𝐴𝐷𝑇2014 × 𝐾 × 𝐷 

𝐾 = 0.116  

𝐷 = 1 

Where: 

the traffic data of 2010, 2013 and 2016 were provided by BC Ministry of Transportation and 

Infrastructure (2019); 

K is the proportional of AADT occurring during the peak hour and average K-factor was 0.116 

AADT is between 1000 to 20000 (TRB, 2010); and 

D is the proportion of peal-hour volume traveling in the peak direction and average D is 1 when 

the study only considered west to east one direction (TRB, 2010). 
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Appendix H: Sensitivity Analysis Results 

Table H-1: Impact of Traffic Volume and Truck Percentage on Average Travel Speed 

Parameters Group All Cars 
Class 

8 

Class 

9 

Class 

10 

Class 

12 

Class 

13 

 Truck 

Percentage: 

25% 

200 94.36 103.57 89.48 72.60 72.97 73.06 67.24 

600 91.27 99.30 85.46 73.15 72.31 71.74 67.20 

1000 87.41 93.99 82.81 72.18 70.97 69.88 67.40 

1400 82.87 88.07 79.46 70.81 69.43 68.78 66.08 

         

Traffic 

Volume: 600 

veh/h 

15% 95.87 101.15 85.88 73.56 73.10 72.35 67.59 

20% 93.74 100.43 85.77 73.19 72.82 69.97 67.57 

25% 91.27 99.30 85.46 73.15 72.31 71.74 67.20 

30% 89.63 99.03 86.69 72.67 72.00 72.33 67.20 
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Appendix I: Vehicle Speed and GVW Distributions for All Classes 

Table I-1: Travel Speed Distribution for M-FHWA Classes 

Speed (km/h) Class 8 Class 9 Class 10 Class 12 Class 13 

Min Speed 60.33 45.76 45.68 46.61 45.90 

10 Percentile 76.67 59.81 58.65 58.61 58.34 

20 Percentile 81.76 66.01 65.26 64.07 62.35 

30 Percentile 83.13 70.11 68.98 67.06 64.39 

40 Percentile 85.05 73.20 71.88 69.52 66.41 

50 Percentile 87.65 75.73 74.24 72.52 68.40 

60 Percentile 91.76 78.12 76.15 74.95 69.89 

70 Percentile 92.34 80.25 78.44 76.94 71.43 

80 Percentile 92.67 82.52 80.87 80.35 73.22 

85 Percentile 93.67 83.90 82.54 81.63 74.53 

90 Percentile 94.90 85.59 84.22 83.29 77.02 

Max GVW 97.61 99.74 96.70 92.38 90.82 

 

Table I-2: GVW Distribution for M-FHWA Classes 

GVW (Tonnes) Class 1 Class 2 Class 3 Class 4 

Min GVW 13.81 12.74 21.80 45.04 

10 Percentile 16.36 19.45 28.41 45.32 

20 Percentile 17.34 20.86 29.73 45.73 

30 Percentile 17.51 22.07 30.97 47.42 

40 Percentile 18.29 23.05 32.39 51.73 

50 Percentile 18.83 23.83 33.68 55.96 

60 Percentile 19.00 24.52 34.97 58.16 

70 Percentile 19.17 25.15 36.22 59.51 

80 Percentile 19.40 25.79 38.05 61.16 

85 Percentile 19.65 26.18 39.31 61.92 

90 Percentile 20.02 26.45 40.99 62.75 

Max GVW 24.04 27.20 44.99 67.02 
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Table I-3: Travel Speed Distribution for FHWA Classes 

Speed (km/h) Class 1 Class 2 Class 3 Class 4 

Min Speed 60.33 45.76 45.68 45.90 

10 Percentile 76.67 60.09 59.21 56.39 

20 Percentile 81.76 66.62 65.42 62.08 

30 Percentile 83.13 70.85 69.06 64.15 

40 Percentile 85.05 74.37 72.09 66.07 

50 Percentile 87.65 77.48 74.38 67.50 

60 Percentile 91.76 79.82 76.48 69.48 

70 Percentile 92.34 82.08 78.53 71.07 

80 Percentile 92.67 84.51 80.76 72.37 

85 Percentile 93.67 85.90 82.00 73.85 

90 Percentile 94.90 87.31 83.40 74.89 

Max GVW 97.61 99.74 96.37 84.47 

 

Table I-4: GVW Distribution for FHWA Classes 

GVW (Tonnes) Class 8 Class 9 Class 10 Class 12 Class 13 

Min GVW 13.81 12.74 16.84 17.11 21.80 

10 Percentile 16.36 21.05 25.64 25.22 32.31 

20 Percentile 17.34 23.23 29.14 27.28 40.04 

30 Percentile 17.51 24.76 31.95 30.46 46.06 

40 Percentile 18.29 26.24 34.04 32.60 52.01 

50 Percentile 18.83 27.83 36.36 34.47 55.99 

60 Percentile 19.00 29.69 38.50 36.87 58.16 

70 Percentile 19.17 31.66 40.40 39.16 59.53 

80 Percentile 19.40 33.79 42.09 40.74 61.18 

85 Percentile 19.65 34.81 42.90 42.58 61.92 

90 Percentile 20.02 35.77 43.69 44.00 62.76 

Max GVW 24.04 41.58 48.65 48.37 67.02 
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Appendix J: Comparison of Uniform Speed Limit and Differential Speed Limit 

  

a) 85th Percentile Speed of Different 

Classes based on 1000-Meters 

Segments (USL) 

b) 85th Percentile Speed of Different 

Classes based on 1000-Meters 

Segments (DSL) 

  

c) 50th Percentile Speed of Different 

Classes based on 1000-Meters 

Segments (USL) 

d) 50th Percentile Speed of Different 

Classes based on 1000-Meters 

Segments (DSL) 
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e) 50th Percentile Speed of Different 

Classes based on 200-Meters 

Segments (USL) 

f) 50th Percentile Speed of Different 

Classes based on 200-Meters 

Segments (DSL) 

  

g) 85th Percentile Speed for All Classes 

based on 200-Meters Segments 

(USL) 

h) 85th Percentile Speed for All Classes 

based on 200-Meters Segments 

(DSL) 
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i) 50th Percentile Speed for All Classes 

based on 200-Meters Segments 

(USL) 

j) 50th Percentile Speed for All Classes 

based on 200-Meters Segments 

(DSL) 

Figure J-1: Speed along the Distance for Two Speed Limit Strategies 

 

Table J-1: Speed Violation Rate for Each M-FHWA Class for Two Speed Limit Strategies 

Groups Parameters Class 1 Class 2 Class 3 Class 4 

USL 
Percent Speeding 49.55 8.91 6.20 0.00 

Percent None-Speeding 50.45 91.09 93.80 100.00 

      

DSL 
Percent Speeding 20.72 12.89 9.59 2.84 

Percent None-Speeding 79.28 87.11 90.41 97.16 
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a) Speed Violation Rate for USL b) Speed Violation Rate for DSL 

  

c) Number of Speed Violation for USL d) Number of Speed Violation for DSL 

Figure J-2: Speed Violation Rate of M-FHWA classes for Two Speed Limit Strategies 

 



 

175 

Appendix K: Comparison of Spot Speed Enforcement and Average Speed Enforcement 

  

a) 85th Percentile Speed of Different 

Classes based on 1000-Meters 

Segments (SSE) 

b) 85th Percentile Speed of Different 

Classes based on 1000-Meters 

Segments (ASE) 

  

c) 50th Percentile Speed of Different 

Classes based on 1000-Meters 

Segments (SSE) 

d) 50th Percentile Speed of Different 

Classes based on 1000-Meters 

Segments (ASE) 
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e) 50th Percentile Speed of Different 

Classes based on 200-Meters 

Segments (SSE) 

f) 50th Percentile Speed of Different 

Classes based on 200-Meters 

Segments (ASE) 

  

g) 85th Percentile Speed for All Classes 

based on 200-Meters Segments 

(SSE) 

h) 85th Percentile Speed for All Classes 

based on 200-Meters Segments 

(ASE) 
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i) 50th Percentile Speed for All Classes 

based on 200-Meters Segments 

(SSE) 

j) 50th Percentile Speed for All Classes 

based on 200-Meters Segments 

(ASE) 

Figure K-1: Speed along the Distance for Two Speed Enforcement Strategies 

 

Table K-1: Speed Violation Rate for each FHWA Class for Two Speed Enforcement 

Strategies 

Groups Parameters 8 9 10 12 13 

SSE 
Percent Speeding 58.56 23.24 16.81 21.59 15.68 

Percent None-Speeding 41.44 76.76 83.19 78.41 84.32 

       

ASE 
Percent Speeding 50.45 7.65 5.63 7.95 2.13 

Percent None-Speeding 49.55 92.35 94.37 92.05 97.87 
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a) Speeding Violation Rate for SSE b) Speeding Violation Rate for ASE 

  

c) Number of Speeding Violation for 

SSE 

d) Number of Speeding Violation for 

ASE 

Figure K-2: Speed Violation Rate of FHWA classes for Two Speed Enforcement Strategies 


