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Abstract

In this dissertation, we focus on statistical modeling techniques for exploring

complex data with features such as high dimensionality, nonstationary structure,

heavy-tailed distributions, missing data, etc. We study four problems: dimension

reduction in high-dimensional data, clarifying complex patterns in nonstationary

spatial data, improving hierarchical Bayesian modeling of spatio-temporal data with

staircase pattern of missing observations, and detecting change points in spatio-

temporal data with outliers and heavy-tailed observations.

Sufficient dimension reduction draws a lot of attention in the last twenty years due

to the largely increasing dimensions of the covariates. The semiparametric approach

to dimension reduction proposed by Ma and Zhu [2012] is a novel and completely

different approach to dimension-reduction problems from the existing literature. We

present a theoretical result that relaxes a critical condition required by the semipara-

metric approach. The asymptotic normality of the estimators still maintains under

weaker assumptions. This improvement increases the applicability of the semipara-
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metric approach.

For spatial data, nonstationarity brings difficulties to learn the underlying pro-

cesses, more specifically, to find spatial dependency using the semivariogram model.

We improve the modeling technique through dimension expansion proposed by Bornn

et al. [2012] by considering the correlation structure. We propose two generalized

least squares methods. Both of the methods provide more accurate parameter es-

timations than the least squares method, which has been demonstrated through

simulation studies and real data analyses.

As spatio-temporal data are usually observed over a large area and in many years,

modeling spatio-temporal data is non-trivial. Missing data makes the task even

more challenging. One of the problems discussed in this dissertation is to model

ozone concentrations in a region in the presence of missing data. We propose a

method without assumptions on the correlation structure to estimate the covariance

matrix through dimension expansion method for modeling the semivariograms in

nonstationary fields based on the estimations from the hierarchical Bayesian spatio-

temporal modeling technique [Le and Zidek, 2006]. For demonstration, we apply the

method in ozone concentrations at 25 stations in the Pittsburgh region studied in

Jin et al. [2012]. The comparison of the proposed method and the one in Jin et

al. [2012] are provided through leave-one-out cross-validation which shows that the



proposed method is more general and applicable.

The last problem which is also related to spatio-temporal data is to detect struc-

tural changes for spatio-temporal data with missing in the presence of outliers and

heavy-tailed observations. We improve the estimation algorithm of a general spatio-

temporal autoregressive (GSTAR) model proposed by Wu et al. [2017]. We propose

M-estimation-based EM algorithm and change-point detection procedure. Through

data examples, we compare the proposed algorithm and the proposed change-point

detection procedure with the existing ones and show that our method provides more

robust estimation and is more accurate in detecting change points in the presence of

outliers and/or heavy-tailed observations.
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1 Introduction

Following the advancement in science and technology, scientific data tend to grow

in both size and complexity. The growing size and complexity of data bring chal-

lenges to the field of statistics as they demand more sophisticated statistical modeling

techniques. This dissertation focuses on statistical modeling techniques for exploring

complex data with features such as high dimensionality, heavy-tailed distribution,

nonstationary structure in the underlying process, and missing observations. In

this dissertation, we study four different problems: dimension reduction in high-

dimensional data, clarifying complex patterns in nonstationary spatial data, improv-

ing hierarchical Bayesian modeling of spatio-temporal data with a staircase pattern

of missing observations, and detecting change points in spatio-temporal data with

outliers and heavy-tailed observations. We introduce the problems in the following

four sections.
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1.1 Sufficient Dimension Reduction

High dimensional and complex data bring tremendous challenges to statisticians.

One central problem in high-dimensional regression setting is dimension reduction.

Research in Sufficient Dimension Reduction (SDR) [Cook and Weisberg, 1991] has

received great attention in recent years. The SDR reduces the covariate dimension

to a few linear combinations of the covariates, which contain all the regression infor-

mation between the response variable and the covariates. More specifically, the goal

of the SDR is to identify a few linear combinations of the covariate x, say xTβ, to

substitute the original x without loss of information about the response. The model

is as follows

F (y|x) = F (y|xTβ), for all y ∈ R, (1.1)

where Y is a univariate response variable, x is a p× 1 covariate vector, β is a p× d

matrix, and F (y|x) denotes the conditional distribution function of Y given x. This

model assumes that given the linear combinations xTβ, the response variable Y is

statistically independent of x [Cook, 1998]. Note that the estimator of β is not unique

and identifiable. The column space of β is called dimension reduction subspace. It

is of interest to identify the intersection of all β′s, which is the central subspace,

denoted by SY |x. It is defined as the column space of β which satisfies (1.1) with

the smallest number of columns d [Cook, 1998]. Cook [1998] proved that the central
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subspace itself is a dimension reduction subspace. If one is only interested in the

mean of Y conditional on x, the corresponding model will be

E(y|x) = E(y|xTβ), for all y ∈ R. (1.2)

Then the subspace with the smallest number of columns d is called the central mean

subspace.

The SDR methodology has been developed in recent years in mainly two streams:

inverse regression and non-parametric methods [Ma and Zhu, 2013]. The inverse re-

gression methods include Sliced Inverse Regression (SIR) by Li [1991], Sliced Average

Variance Estimation (SAVE) by Cook [1998], Directional Regression (DR) by Li and

Wang [2007] and so on. All of the inverse regression methods require the following

two assumptions on the covariates:

1. Linearity condition: E(x|xTβ) is a linear function of x;

2. Constant variance condition: cov(x|xTβ) is a constant matrix.

Linearity condition requires the covariate to be elliptically contoured distributed

[Eaton, 1986]. To meet both of the aforementioned conditions, the covariate has to

be multivariate normal distributed. The non-parametric method, Minimum Average

Variance Estimation (MAVE), was first introduced by Xia et al. [2002]. Later, Xia

[2007] proposed density-based MAVE (dMAVE) which concerned the central mean
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subspace estimation. The non-parametric methods require the covariates to be con-

tinuous. In practice, however, it is very common to have categorical or discrete

covariates in a regression problem.

To eliminate all of the stringent assumptions on the covariates, recently Ma and

Zhu [2012] provided a dimension reduction method based on the semiparametric

framework. The likelihood of one observation for model (1.2) can be written as

η1(x)η2(Y,xTβ),

where η1 and η2 are the probability mass function (pmf) or probability density func-

tion (pdf) of x and the conditional pmf/pdf of Y on xTβ. By applying the geometric

tool [Bickels et al., 1993] on this particular model, Ma and Zhu [2012] derived the

estimating function for the parameter of interest, β, as follows

E
[(
g(Y,xTβ)− E

[
g(Y,xTβ)|xTβ

]) (
α(x)− E

[
α(x)|xTβ

])]
= 0,

for any functions g and α. The different choices of functions g and α lead to different

traditional methods SIR, SAVE, DR, and so on. The estimate from the influence

function is
√
n-consistent and asymptotically normal distributed. The details of this

result are stated in Theorem 1 of Ma and Zhu [2012].

However, the asymptotic results presented in Theorem 1 of Ma and Zhu [2012]

require a set of conditions. One crucial condition requires the density functions
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of x and xTβ to be bounded away from 0. Such a condition narrows down the

application of the method in a variety of situations. The most commonly used

multivariate normal distribution, for example, does not meet this requirement. In

this dissertation, we present theoretical results which allow us to relax this condition

and at the same time to maintain the same asymptotic normality of the estimators.

In the literature, there are mainly two methods for relaxing the “bounded away

from 0” condition. One is to add a positive constant sequence in the denominator.

Fan [1993] used this technique to avoid zero in the denominator by adding n−2 to the

denominator. The other method is the trimming method which uses the modified

version of the kernel estimator in Zhu and Fang [1996]. We adopt the second method

because it will theoretically relax the conditions on x and xTβ in the semiparametric

approaches in Ma and Zhu [2012]. In Chapter 2, we present theoretical results

which allow us to relax this condition and, at the same time, to maintain the same

asymptotic normality of the estimators.

1.2 Modeling Nonstationary Processes through Dimension Ex-

pansion

Spatial statistics focuses on modeling environmental processes such as agricultural

output or air pollution. The goal of spatial statistics is to improve understanding
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of the environmental random processes and make predictions for the locations of

interest. Those environmental processes often have complex spatial features. Most of

the existing spatial statistical methods for analyzing environmental processes assume

that the processes are stationary [Cressie, 1993]. This assumption may be violated

since the environmental processes are vulnerable to change and are easily affected by

unstable environmental factors such as climate change, urban sprawl, and ozone layer

depletion. We are interested in the development of the spatial statistical methods

that can be applied to model nonstationary spatial random processes.

Let {Y(x) : x ∈ S} , S ∈ Rd, be an environmental random process, where x is a

d-dimensional spatial index that varies continuously throughout the region S. At n

spatial locations denoted by {xi : i = 1, ..., n}, we observe realizations of the random

process Y(x), i.e. {Y(xi) : i = 1, ..., n}. We are interested in learning the spatial

dependence of the process through the observed data. Semivariogram function which

describes the degree of spatial dependency of an intrinsic stationary random process

is a cornerstone of spatial statistics. An intrinsic stationary random process satisfies

the following two conditions [Cressie, 1993]:

1. E (Y(x)) = µ, for x ∈ S,

2. var (Y(xi)−Y(xj)) = 2γ(xi − xj),

where semivariogram is defined as γ(xi−xj) = 1
2
var (Y(xi)−Y(xj)) for two different
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locations, xi and xj, in the monitored region. Since an intrinsic stationary random

process has a constant mean, Wackernagel [2003] also defined semivariogram as

γ(xi − xj) =
1

2
E (Y(xi)−Y(xj))

2 .

The most popular method for estimating semivariogram can be found in Matheron

[1962] as following

γ̂(xi − xj) =
1

2 |τ |
∑
τ

(Y(xi)−Y(xj))
2 , (1.3)

where |τ | is the number of distinct pairs at the locations xi and xj. A semivariogram

is called isotropic, if γ (xi − xj) is only a function of ‖xi − xj‖, where ‖xi − xj‖ is

the Euclidean distance dij between the two locations, that is

2γ(dij) = E (Y(xi)−Y(xj))
2 .

In Figure 1.1, we show two plots of two empirical semivariograms. There are 10

locations in both cases. The left side in Figure 1.1 is a nonstationary semivariogram

that the correlation is not spatially dependent, and the right side is a stationary

semivariogram where we can see the clear pattern of the spatial dependence.
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Figure 1.1: Semivariogram plots

According to the “First law of geography” [Tober, 1970], the observations are

more related if their locations are closer. A stationary empirical semivariogram can

be approximated by some functions. There are mainly three mathematical function

forms that are used to approximate the semivariogram in applications [Cressie, 1993].

Each model is defined as the function of Euclidean distance d and some parameters.
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• Exponential model

γ(d, φ) =


0 d = 0

φ1 + φ2

(
1− exp

(
− d
φ3

))
d 6= 0,

where φ = (φ1, φ2, φ3)T , φ1 ≥ 0, φ2 ≥ 0, and φ3 ≥ 0.

• Spherical model

γ(d, φ) =



0 d = 0

φ1 + φ2

(
3
2

(
d
φ3

)
− 1

2

(
d
φ3

)3
)

0 < d < φ3

φ1 + φ2 d ≥ φ3,

where φ = (φ1, φ2, φ3)T , φ1 ≥ 0, φ2 ≥ 0, and φ3 ≥ 0.

• Gaussian model

γ(d, φ) =


0 d = 0

φ1 + φ2

(
1− exp

(
− d2

φ23

))
d 6= 0,

where φ = (φ1, φ2, φ3)T , φ1 ≥ 0, φ2 ≥ 0, and φ3 ≥ 0.

Bornn et al. [2012] proposed a novel approach to finding the latent dimensions over

which the nonstationary fields exhibit stationarity through dimension expansion.

They expanded the original field to a higher dimensional space over which the pro-

cess achieves stationarity. Their idea is based on the theoretical work of Perrin
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and Merring [2003] and Perrin and Schlather [2007]. In Bornn et al. [2012], the

least-squares criterion does not consider the covariance structure of the empirical

semivariogram, which are generally correlated. For example, assuming there are n

locations, at the location xi, the observations of the Gaussian process Y(xi) at this

location contributes to the calculation of the empirical semivariogram. In Chapter

3, we take consideration of the covariance structure of the empirical semivariograms

and propose two generalized least-squares methods following Muller [1998]. Both

methods provide more accurate latent dimensions estimation than the least-squares

method. In Chapter 4, we apply the proposed method to estimate the covariance

matrix for gauged and ungauged stations in modeling the spatio-temporal data.

1.3 Modeling Spatio-temporal Data with Monotone Missing

Pattern

Spatio-temporal data has drawn a dramatically increasing attention due to their

wide availability in many research fields including environmental study, climate

change, and biology. They are usually spatially correlated and/or temporally corre-

lated. In the literature, there are many approaches to model the spatial dependence

structure as well as the temporal dependence structure in the spatio-temporal data.

Examples can be found in Cressie [1993] and Cressie and Wikle [2011]. Modeling
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spatio-temporal data is non-trivial since such data varies over space and time, and the

interaction exists across different scales. Missing data makes the task even more chal-

lenging. As commented in Wikle et al. [1998], although we cannot escape the “curse

of dimensionality”, we can take advantage of recent developments in computational

speed and numerical advances (e.g. Markov Chain Monte Carlo) that allow us to

implement Bayesian spatio-temporal dynamical models in a hierarchical framework.

Such a framework provides simple strategies for incorporating complicated spatio-

temporal interactions at different stages of the models’ hierarchy, and the models

are feasible to be implemented for high dimensional data. Two popular hierarchical

Bayesian spatio-temporal models can be found in [Wikle et al., 1998] and [Le et al.,

2001]. Le et al. [2001] introduced the hierarchical Bayesian spatio-temporal mod-

eling approach for spatio-temporal data with the monotone missing pattern. The

monotone missing pattern appears when the data is reassembled in increasing order

of monitoring periods, the data matrix is an ascending staircase as shown in Figure

1.2 [Le and Zidek, 2006]. In Figure 1.2, “o” represents the observed data, and “x”

represents the missing data. Within each of the k blocks, the monitoring stations

have the same pattern of missing data. Moreover, the numbers of missing data are

in ascending order.

Note that the missingness in raw data is mostly at random and has no patterns
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Figure 1.2: Monotone missing pattern of data

at all. When only a few observations within the blocks are missing, we can impute

missing values by the predictions from regression models. Jin et al. [2012] success-

fully proposed a regression model to impute the missing values and then applied a

hierarchical Bayesian spatio-temporal modeling technique to model the ground-level

ozone concentration data in 4-consecutive summer months in the Pittsburgh region

of the United States. They estimated the spatial correlation function for the gauged

stations and obtained the covariance matrix for all of the stations to derive the pre-

dictive distribution. To estimate the spatial covariance matrix for all of the stations,

first, they selected the generalized linear model with the quasi-Poisson family to fit
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the correlation function by examing the pattern in the plot of spatial correlations

based on the estimations from the hierarchical spatio-temporal modeling approach.

Then, they obtained the covariance matrix using the estimated correlation. How-

ever, the generalized linear model with the quasi-Poisson family is not appropriate if

there are negative correlations because it only applies to positive responses. This is

a strong restriction because negative correlations are common for the ozone concen-

trations. Moreover, model selection only based on observed plots is naive and may

cause overfitting.

In Chapter 4, we propose a method to estimate the covariance matrix through di-

mension expansion in the context of semivariogram modeling in nonstationary fields.

For demonstration, we apply the proposed method on the same data set discussed

in Jin et al. [2012]. Using the covariance matrix estimated by the proposed method

on the entropy criterion in the environmental network design problem, the proposed

method obtains interesting findings and the locations of the selected ungauged sta-

tions are more reasonable. We also evaluate the performance of the proposed method

by leave-one-out cross-validation.
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1.4 Detection of Change Points in Spatio-temporal Data

Research interest also arises on the topic to detect sudden changes occurring in

spatio-temporal data over a long period. These changes could be due to exposure

changes, instrument/observer changes, the implementation of government regulari-

ties and policies [Wu et al., 2015], etc. Under the framework of Bayesian approaches,

Wyse et al. [2011] presented methods for analyzing multiple change-point models

when dependency in the data is modeled through a hierarchical Gaussian Markov

random field, and Altieri et al. [2015] proposed methods for detecting multiple change

points over time in the heterogeneous intensity of a spatio-temporal point process

with spatial and temporal dependence within segments. On the other hand, under

the framework of maximum likelihood methods, Nappi-Choulet and Maury [2009]

and Otto and Schmid [2016] introduced methods for modeling spatio-temporal or

spatial data containing changes over time or space. More specifically, Nappi-Choulet

and Maury [2009] proposed a hybrid method for incorporating a temporal regime

switch into the spatio-temporal autoregressive model to deal with exogenous macroe-

conomic factors. For spatial data, Otto and Schmid [2016] proposed a test procedure

to detect change points of multidimensional autoregressive processes. Their method

works well to find possible structural breaks in the process that can occur at a cer-

tain distance from the predefined center. Most recently, Wu et al. [2017] proposed a
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general spatio-temporal autoregressive (GSTAR) model which takes into account the

effect of station surroundings, seasonality, temporal correlation among observations

at the same spatial location and spatial correlation among observations from differ-

ent spatial locations. The model is so multi-functional that it can also be used to

detect new influences that can largely affect the measurements in the treatment area

compared to the control area. However, their method is dependent on the normality

assumption.

Chapter 5 studies the problem of change-point detection in spatio-temporal data

with undetectable outliers and/or heavy-tailed observations. As the spatio-temporal

data is usually observed over a large area and in many years, undetectable outliers

can easily occur unexpectedly in any day for any small area because of measurement

error or other reasons. The parameter estimation method which is given in Wu et al.

[2017] may not be stable or robust. There is a great need to develop a parameter

estimation method for the GSTAR model that is resistant to outliers and/or heavy-

tailed observations. In the development of robust methods, M-estimation plays an

important and complementary role [Huber, 1973]. We propose a robust version

of EM-type algorithm, namely MEM-type algorithm, which provides more robust

estimation in the presence of outliers and/or heavy-tailed observations.
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2 Semiparametric Approach to Dimension

Reduction

The asymptotic results presented in Theorem 1 of Ma and Zhu [2012] required

a set of conditions. One crucial condition requires the density functions of x and

xTβ to be bounded away from 0. Such a condition narrows down the application of

the method in a variety of situations. The most commonly used multivariate normal

distribution, for example, does not meet this requirement. In this dissertation, we

present theoretical results which allow us to remove this condition and at the same

time to maintain the same asymptotic normality of the estimators.

2.1 Main Results

In the literature, there are mainly two methods for removing the bounded away

from 0 condition. One is to add a positive constant sequence in the denominator.

Fan [1993] used this technique to avoid zero in the denominator by adding n−2 to
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the denominator. The other method is the trimming method which uses a modified

version of the kernel estimator in Zhu and Fang [1996]. We adopt the second method

in this dissertation because it will theoretically relax the conditions on the density

functions of x and xTβ in the semiparametric approaches in Ma and Zhu [2012]. In

the next section, we state the main results of the trimming method. The proofs are

given after.

Let x be a p × 1 covariate vector and Y a univariate response. For each b > 0,

let fb = max{f(xTβ), b} , and f̂b = max{f̂(xTβ), b}. Here for simplicity, we define

R(xTβ) = r1(xTβ)
f(xTβ)

. We estimate R(xTβ) by Nadaraya-Watson kernel estimator:

R̂(xTi β) = Ê
[
α(xi)|xTi β

]
=

1
n−1

∑
j 6=i

Kh(xT
j β−xT

i β)α(xj)

1
n−1

∑
j 6=i

Kh(xT
j β−xT

i β)
=

r̂1(xT
i β)

f̂(xT
i β)

.

Now we formulate a set of weaker conditions D1 to D4 under which the asymptotic

normality of the estimator of β still holds.

D1. The univariate kernel function K(·) is Lipschitz with compact support. It sat-

isfies
∫
K(u)du = 1,

∫
uiK(u)du = 0, 1 ≤ i ≤ m − 1, 0 6=

∫
umK(u)du < ∞.

The d-dimensional kernel function is a product of d univariate kernel functions,

that is, Kh(u) = K(u/h)/hd =
d∏
j=1

Kh(uj) for u = (u1, ..., ud)
T .
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D2. Define

r1(xTβ) = E
[
α(x)|xTβ

]
f(xTβ),

r2(xTβ) = E
[
g(Y,xTβ)|xTβ

]
f(xTβ).

The mth derivatives of r1(xTβ), r2(xTβ) and f(xTβ) are locally Lipschitz-

continuous.

D3. The density functions, fx(x) and f(xTβ), are bounded from above. Each entry

in the matrices E
[
g(Y,xTβ)gT (Y,xTβ)|xTβ

]
and

E
[
α(x)αT (x)|xTβ

]
is locally Lipschitz-continuous and bounded from above

as a function of xTβ.

D4. As n→∞, h ∼ n−c1 , b ∼ n−c2 with positive numbers c1 and c2 satisfying that

2c2
m
< c1 < min

(
1−c2
d+1

, 1−4c2
d

)
, and 0 < c2 < 1/4.

Condition D1 states the regularity conditions for the kernel. Conditions D2 and D3

are concerned with the smoothness of the density functions, which are similar to the

conditions C2 and C3 in Ma and Zhu [2012]. Condition D4 is the key condition to

remove the bounded from below constraint on density functions of x and xTβ. The

order of the bandwidth h and the trimming value b are defined in Condition D4.

By finding the appropriate b defined in these conditions, we relax the condition of

bounded from below on the density functions of the covariates. Our empirical studies
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suggest that when b is small enough, the trimming method and Ma and Zhu (2012)’s

method give the same result. For small to moderate sample sizes (n=50, 100, 200,

500), we suggest b = 0.1n−
1
5 based on our empirical studies. In the following, we

summarize the main result in Theorem 1.

Theorem 1. Under Conditions D1 to D4, the estimator β̂ obtained from the

estimating equation

n∑
i=1

[(
g(Yi,x

T
i β)− Êb

[
g(Yi,x

T
i β)|xTi β

]) (
α(xi)− Êb

[
α(xi)|xTi β

])]
= 0 (2.1)

satisfies
√
nAvec(β̂ − β) → N (0,B) in distribution, where A and B are defined as

following

A = E

{
∂
[(
g(Y,xTβ)− E

[
g(Y,xTβ)|xTβ

]) (
α(x)− E

[
α(x)|xTβ

])]
∂ {vec(β)}T

}
,

B = cov
{

vec
[(
g(Y,xTβ)− E

[
g(Y,xTβ)|xTβ

]) (
α(x)− E

[
α(x)|xTβ

])]}
,

where vec(M) denotes the vector formed by concatenating the columns of M, Êb
[
α(xi)|xTi β

]
=

r̂1(xT
i β)

f̂b(xT
i β)

and Êb
[
g(Yi,x

T
i β)|xTi β

]
=

r̂2(xT
i β)

f̂b(xT
i β)

.

The following two lemmas are crucial results to get Theorem 1.

Lemma 1. Assume that Conditions D1 to D4 hold. Then

1

n

n∑
i=1

{
g(Yi,x

T
i β)− E

[
g(Yi,x

T
i β)|xTi β

]}
×
{
Êb
[
α(xi)|xTi β

]
− E

[
α(xi)|xTi β

]}
= op(n

−1/2),
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and

1

n

n∑
i=1

{
Êb
[
g(Yi,x

T
i β)|xTi β

]
− E

[
g(Yi,x

T
i β)|xTi β

]}
×
{
α(xi)− E

[
α(xi)|xTi β

]}
= op(n

−1/2).

Lemma 2 is a modified version of Lemma 3 in Ma and Zhu [2012].

Lemma 2. Assume that Conditions D1 to D4 hold. Let

Ωβ =
{

(x, Y, β̂) : x ∈ Rd, Y ∈ R,
∥∥∥β̂ − β∥∥∥ ≤ Cn−1/2

}
,

where ‖·‖ is the Euclidean norm and C is a constant. Then there exists a basis of β

of SY |x such that

sup
Ωβ

∣∣∣Êb [α(x)|xT β̂
]
− Êb

[
α(x)|xTβ

]
− E

[
α(x)|xT β̂

]
+ E

[
α(x)|xTβ

]∣∣∣ = op(1),

and

sup
Ωβ

∣∣∣Êb [g(Y,xT β̂)|xT β̂
]
− Êb

[
g(Y,xTβ)|xTβ

]
−E

[
g(Y,xT β̂)|xT β̂

]
+ E

[
g(Y,xTβ)|xTβ

]∣∣∣ = op(1).

We provide the details of proof in the following.
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Proof of Lemma 1

We show the proof of the first equality since the two equations are similar. Here

we relax the condition on fx(x) and f(xTβ) in Ma and Zhu [2012] which requires

the bounded below on both pdfs. For each b > 0, let fb(xTβ) = max{f(xTβ), b} and

f̂b(x
Tβ) = max{f̂(xTβ), b}. Define R(xTβ) = r1(xTβ)

f(xTβ)
and Rb(x

Tβ) = r1(xTβ)
fb(xTβ)

=

R(xTβ) · f(xTβ)
fb(xTβ)

. Then

R̂(xTi β) = Ê
[
α(xi)|xTi β

]
=

1
n−1

∑
j 6=i

Kh(x
T
j β − xTi β)α(xj)

1
n−1

∑
j 6=i

Kh(xTj β − xTi β)
=
r̂1(xTi β)

f̂(xTi β)
,

R̂b(x
T
i β) =

r̂1(xTi β)

f̂b(xTi β)
.

We define εi = g(Yi,x
T
i β)−E

[
g(Yi,x

T
i β)|xTi β

]
. In the following, we will show that

the order of 1√
n

n∑
i=1

εi

{
Êb
[
α(xi)|xTi β

]
− E

[
α(xi)|xTi β

]}
= op(1).
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We expand Êb
[
α(xi)|xTi β

]
as follows

1√
n

n∑
i=1

εiÊb
[
α(xi)|xTi β

]
=

1√
n

n∑
i=1

εi
r̂1(xTi β)

f̂b(xTi β)

=
1√
n

n∑
i=1

εi

 r̂1(xTi β)

fb(xTi β)
−
r1(xTi β)

(
f̂b(x

T
i β)− fb(xTi β)

)
f 2
b (xTi β)

−

(
r̂1(xTi β)− r1(xTi β)

) (
f̂b(x

T
i β)− fb(xTi β)

)
fb(xTi β) · f̂b(xTi β)

+
r1(xTi β)

(
f̂b(x

T
i β)− fb(xTi β)

)
2

f̂b(xTi β) · f 2
b (xTi β)


=

1√
n

n∑
i=1

εi (Ii1 − Ii2 − Ii3 + Ii4) .

Now we show that
∣∣∣∣ 1√

n

n∑
i=1

εiIik

∣∣∣∣ = op(1), for k = 2, 3, 4. First we examine the case

for k = 2. ∣∣∣∣∣ 1√
n

n∑
i=1

εiIi2

∣∣∣∣∣ =

∣∣∣∣∣∣ 1√
n

n∑
i=1

εi
r1(xTi β)

(
f̂b(x

T
i β)− fb(xTi β)

)
f 2
b (xTi β)

∣∣∣∣∣∣ .
By the uniform convergence of non-parametric regression [Mack and Silverman,

1982], one can get that

sup
Ωβ

∣∣∣f̂b(xTβ)− fb(xTβ)
∣∣∣ = Op

(
hm +

log n√
nhd

)
,

sup
Ωβ

∣∣r̂1(xTβ)− r1(xTβ)
∣∣ = Op

(
hm +

log n√
nhd

)
.

Under Conditions D2 and D3, according to Chebyshev’s inequality, it is easy to show
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for any η > 0 and some C1 > 0 and C2 > 0, we have

P

(∣∣∣∣∣ 1√
n log n

n∑
i=1

εi

∣∣∣∣∣ > η

)
≤

E
(

n∑
i=1

εi

)2

η2n log n

≤
C1

n∑
i=1

E (εi)
2

η2n log n

≤
C2

n∑
i=1

E
(
g(Yi,x

T
i β)gT (Yi,x

T
i β)

)
η2n log n

→ 0, as n→∞.

Therefore, we have∣∣∣∣∣ 1√
n log n

n∑
i=1

εi

∣∣∣∣∣ = op(1),

∣∣∣∣∣ 1√
n log n

n∑
i=1

εir1(xTi β)

∣∣∣∣∣ = op(1).

By the definitions of fb(xTβ) and f̂b(x
Tβ), we have 1

fb(xTβ)
≤ 1

b
, and 1

f̂b(xT
i β)
≤ 1

b
,

then ∣∣∣∣∣ 1√
n

n∑
i=1

εiIi2

∣∣∣∣∣ = Op

(
(hm + n−1/2h−d/2 log n)b−2 log1/2 n

)
= Op(∆1).

Next we examine the cases for k = 3, 4:∣∣∣∣∣ 1√
n

n∑
i=1

εiIi3

∣∣∣∣∣ =

∣∣∣∣∣∣ 1√
n

n∑
i=1

εi

(
r̂1(xTi β)− r1(xTi β)

) (
f̂b(x

T
i β)− fb(xTi β)

)
fb(xTi β) · f̂b(xTi β)

∣∣∣∣∣∣
= Op

[
(h2m + n−1h−d log2 n)b−2 log1/2 n

]
= Op(∆2),∣∣∣∣∣ 1√

n

n∑
i=1

εiIi4

∣∣∣∣∣ =

∣∣∣∣∣∣ 1√
n

n∑
i=1

εi
r1

(
f̂b(x

T
i β)− fb(xTi β)

)
2

f̂b(xTi β) · f 2
b (xTi β)

∣∣∣∣∣∣
= Op

[
(h2m + n−1h−d log2 n)b−3 log1/2 n

]
= Op(∆3).
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According to the conditions 2c2
m

< c1 < min
(

1−c2
d+1

, 1−4c2
d

)
and 0 < c2 < 1/4, we

have Op(∆j) = op(1), j = 1, 2, 3. Then we show that 1√
n

∣∣∣∣ n∑
i=1

εi

[
r̂1(xT

i β)

fb(xT
i β)
− r1(xT

i β)

f(xT
i β)

]∣∣∣∣ =

op(1). When f(xTβ) > b, then fb(xTβ) = f(xTβ), we have

sup
Ωβ

∣∣∣∣ r̂1(xTi β)

fb(xTi β)
− r1(xTi β)

f(xTi β)

∣∣∣∣ =
1

f
sup
Ωβ

∣∣r̂1(xTi β)− r1(xTi β)
∣∣ = Op

(
hm +

log n√
nhd

)
.

Otherwise, when f(xTβ) ≤ b, then

sup
Ωβ

∣∣∣∣ r̂1(xTi β)

fb(xTi β)
− r1(xTi β)

f(xTi β)

∣∣∣∣
= sup

Ωβ

∣∣∣∣ r̂1(xTi β)− r1(xTi β)

b
+
r1(xTi β)

f(xTi β)

(
f(xTi β)

b
− 1

)∣∣∣∣
≤ 1

b
sup
Ωβ

∣∣r1(xTi β)− r1(xTi β)
∣∣+ sup

Ωβ

∣∣∣∣r1(xTi β)

f(xTi β)

(
f(xTi β)

b
− 1

)∣∣∣∣ .
Since

∣∣∣f(xT
i β)

b
− 1
∣∣∣ I(f(xTi β) ≤ b) ≤ I(f(xTi β) ≤ b) , we have

sup
Ωβ

∣∣∣∣r1(xTi β)

f(xTi β)

(
f(xTi β)

b
− 1

)
I(f(xTi β) ≤ b)

∣∣∣∣ ≤ sup
Ωβ

∣∣∣∣r1(xTi β)

f(xTi β)
I(f(xTi β) ≤ b)

∣∣∣∣ .
Under Condition D3, we have E

[
α(x)αT (x)|xTβ

]
bounded from above. Because

E
[
α(x)αT (x)|xTβ

]
≥ E

[
α(x)|xTβ

]
ET
[
α(x)|xTβ

]
, we have E

[
α(x)|xTβ

]
bounded

from above. Therefore, for each 1 ≤ i ≤ n,

E
∣∣∣∣r1(xTi β)

f(xTi β)
I(f(xTi β) ≤ b)

∣∣∣∣ = E
∣∣E [α(xi)|xTi β

]
I(f(xTi β) ≤ b)

∣∣ = O(b),

which implies sup
Ωβ

∣∣∣r1(xT
i β)

f(xT
i β)

I(f(xTi β) ≤ b)
∣∣∣ = Op(b). Then under Condition D4,

sup
Ωβ

∣∣∣∣r1(xTi β)

f(xTi β)
I(f(xTi β) ≤ b)

∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
i=1

εi

∣∣∣∣∣ = Op

(
b log1/2 n

)
= op(1).
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Meanwhile,

1

b
sup
Ωβ

∣∣r̂1(xTi β)− r1(xTi β)
∣∣ ∣∣∣∣∣ 1√

n

n∑
i=1

εi

∣∣∣∣∣ =Op

(
hm log1/2 n

b
+

log1/2 n

b

log n√
nhd

)

=op(1).

Hence we have shown 1√
n

n∑
i=1

εi

{
Êb
[
α(xi)|xTi β

]
− E

[
α(xi)|xTi β

]}
= op(1), and

hence, completed the proof of Lemma 1.

Proof of Lemma 2

Because of the similarity of the two terms, we only prove the first term as follows

sup
Ωβ

∣∣∣Êb [α(x)|xT β̂
]
− Êb

[
α(x)|xTβ

]
− E

[
α(x)|xT β̂

]
+ E

[
α(x)|xTβ

]∣∣∣ . (2.2)

Following Ma and Zhu [2012], we treat the nominators and denominators separately.

We define Êb
[
α(x)|xT β̂

]
as follows

Êb
[
α(x)|xT β̂

]
=

1
n

n∑
i=1

Kh(x
T
i β̂ − xT β̂)α(xi)

f̂b(xT β̂)
.

Therefore, (2.2) becomes

sup
Ωβ

∣∣∣∣∣∣∣∣
1
n

n∑
i=1

Kh(x
T
i β̂ − xT β̂)α(xi)

f̂b(xT β̂)
−

1
n

n∑
i=1

Kh(x
T
i β − xTβ)α(xi)

f̂b(xTβ)

−r1(xT β̂)

f(xT β̂)
+
r1(xTβ)

f(xTβ)

∣∣∣∣∣ .
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Ma and Zhu [2012] showed that

sup
Ωβ

∣∣∣∣∣ 1n
n∑
i=1

Kh(x
T
i β̂ − xT β̂)α(xi)−

1

n

n∑
i=1

Kh(x
T
i β − xTβ)α(xi)

−r1(xT β̂) + r1(xTβ)
∣∣∣ = Op(h

m/
√
n+ n−1h−d−1 log n).

For the denominator, we let α(xi) = 1 and consider f(xTβ) in the following two

cases.

• Case 1, f(xTβ) ≥ b, then fb(xTβ) = f(xTβ), we have

sup
Ωβ

∣∣∣f̂b(xT β̂)− f̂b(xTβ)− fb(xT β̂) + fb(x
Tβ)

∣∣∣
=Op(h

m/
√
n+ n−1h−d−1 log n).

• Case 2, f(xTβ) < b, then fb(xTβ) = b , (2.2) becomes

sup
Ωβ

1

b

∣∣∣∣∣ 1n
n∑
i=1

Kh(x
T
i β̂ − xT β̂)α(xi)−

1

n

n∑
i=1

Kh(x
T
i β − xTβ)α(xi)

−r1(xT β̂) + r1(xTβ)
∣∣∣ = Op(

1

b
hm/
√
n+

1

b
n−1h−d−1 log n).

Here we need − 1
2

+c2
m

< c1 <
1−c2
d+1

to achieve the convergence which is insured

by Condition D4. Therefore in both cases, (2.2) is of order op(1).
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Proof of Theorem 1

The left side of (2.1) can be written as

n∑
i=1

(
g(Yi,x

T
i β̂)− Êb

[
g(Yi,x

T
i β̂)|xTi β̂

])(
α(xi)− Êb

[
α(xi)|xTi β̂

])
=

n∑
i=1

(
g(Yi,x

T
i β̂)− E

[
g(Yi,x

T
i β̂)|xTi β̂

])(
α(xi)− E

[
α(xi)|xTi β̂

])
+

n∑
i=1

(
g(Yi,x

T
i β̂)− E

[
g(Yi,x

T
i β̂)|xTi β̂

])(
E
[
α(xi)|xTi β̂

]
− Êb

[
α(xi)|xTi β̂

])
+

n∑
i=1

(
E
[
g(Yi,x

T
i β̂)|xTi β̂

]
− Êb

[
g(Yi,x

T
i β̂)|xTi β̂

])(
α(xi)− E

[
α(xi)|xTi β̂

])
+

n∑
i=1

(
E
[
g(Yi,x

T
i β̂)|xTi β̂

]
− Êb

[
g(Yi,x

T
i β̂)|xTi β̂

])
×
(
E
[
α(xi)|xTi β̂

]
− Êb

[
α(xi)|xTi β̂

])
. (2.3)

The first term quantity is of orderOp(
√
n). By Taylor’s expansion, it can be expanded

as

n∑
i=1

[(
g(Yi,x

T
i β)− E

[
g(Yi,x

T
i β)|xTi β

]) (
α(xi)− E

[
α(xi)|xTi β

])]
+

n∑
i=1

dvec

{
∂vec

[(
g(Yi,x

T
i β)− E

[
g(Yi,x

T
i β)|xTi β

]) (
α(xi)− E

[
α(xi)|xTi β

])]
∂ {vec(β)}T

}

×vec(β̂ − β) + op(
√
n).
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Heredvec indicates that dvec (vec (M)) = M, for any matrix M. By Central Limit

Theorem, if the other three terms in (2.3) are of order op(n1/2), then

√
nAvec(β̂ − β)→ N(0,B),

where A and B are given in the Theorem 1 earlier. First we show the second term

in (4) is of order op(
√
n). By Lemma 2, the second term becomes

n∑
i=1

[(
g(Yi,x

T
i β̂)− E

[
g(Yi,x

T
i β̂)|xTi β̂

])(
E
[
α(xi)|xTi β

]
− Êb

[
α(xi)|xTi β

])]
× {1 + op(1)} .

By Taylor’s expansion, this term asymptotically becomes

n∑
i=1

[(
g(Yi,x

T
i β)− E

[
g(Yi,x

T
i β)|xTi β

]) (
E
[
α(xi)|xTi β

]
− Êb

[
α(xi)|xTi β

])]
× {1 + op(1)} .

Lemma 1 indicates that the above term is of order op(
√
n) under Conditions D1 to

D4. Next we turn to the third term in (2.3). By Lemma 2, the term becomes

n∑
i=1

[(
E
[
g(Yi,x

T
i β)|xTβ

]
− Êb

[
g(Yi,x

T
i β)|xTβ

]) (
α(xi)− E

[
α(xi)|xTi β̂

])]
× {1 + op(1)}

=
n∑
i=1

[(
E
[
g(Yi,x

T
i β)|xTβ

]
− Êb

[
g(Yi,x

T
i β)|xTβ

])
×
(
α(xi)− E

[
α(xi)|xTi β

]
+ E

[
α(xi)|xTi β

]
− E

[
α(xi)|xTi β̂

])]
{1 + op(1)} .
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Since E
[
α(xi)|xTi β

]
is locally Lipschitz-continuous, we have

∣∣∣E [α(xi)|xTi β
]
− E

[
α(xi)|xTi β̂

]∣∣∣ ≤ c
∣∣∣xTi (β − β̂)

∣∣∣ .
We have assumed that

∥∥∥β − β̂∥∥∥ ≤ cn−1/2, therefore

n∑
i=1

(
E
[
g(Yi,x

T
i β)|xTβ

]
− Êb

[
g(Yi,x

T
i β)|xTβ

])
×
{
α(xi)− E

[
α(xi)|xTi β

]}
= op(

√
n),

n∑
i=1

(
E
[
g(Yi,x

T
i β)|xTβ

]
− Êb

[
g(Yi,x

T
i β)|xTβ

])
×
(
E
[
α(xi)|xTi β

]
− E

[
α(xi)|xTi β̂

])
= op(

√
n).

For the last term in (2.3), by Lemma 2, it can be written as

n∑
i=1

[(
E
[
g(Yi,x

T
i β)|xTβ

]
− Êb

[
g(Yi,x

T
i β)|xTβ

])
(
E
[
α(xi)|xTi β

]
− Êb

[
α(xi)|xTi β

])]
× {1 + op(1)}

which is of the order op(
√
n) under Condition D4. Finally, the proof is completed by

combining all the results for the four terms in (2.3).

2.2 Trimming Parameter Selection

We suggest selecting the trimming parameter b to be 0.1n−
1
5 .We present some simula-

tions to show how the choice of b affects the estimates. Each experiment is conducted
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500 times. Let x = (X1,...,Xp). We let p = 6, and x are generated from normal popu-

lation with mean zero and variance-covariance matrix (σij)p×p where σij = 0.05|i−j|.

The model is defined as follows

Y = (xTβ1)2 + (xTβ2)2 + 0.5ε,

where ε′is are independently generated from the standard normal population, β1 =

(1, 1, 1, 1, 1, 1)T/
√

6 and β2 = (1,−1, 1,−1, 1,−1)T/
√

6. The performance of the

estimators is tested using the Euclidean distance between β̂ = (β̂1, β̂2) and β =

(β1, β2), defined as the Frobenius norm of the matrix β̂(β̂
T
β̂)−1β̂

T
− β(βTβ)−1βT .

In the simulations, the distance ranges from zero to two, and a smaller distance

means a better estimate. We choose the trimming value d to be n−
1
5 and 0.1n−

1
5 .

The results of the simulations are presented in Table 2.1 for different sizes of sample

size, n = 50, 100, 200, 500. In Table 2.1, Semi-PHD refers to the semiparametric

approach on PHD method in Ma and Zhu (2012), while Trimmed Semi-PHD refers

to the proposed approach. The results show that when b is too large (e.g. b = n−
1
5 ),

the proposed estimator performs significantly worse than Ma and Zhu [2012]. Our

empirical studies suggest that when b is small enough, the trimming method and

Ma and Zhu [2012] give the same result. For small to moderate sample sizes (n =

50, 100, 200, 500), we suggest b = 0.1n−
1
5 based on our empirical studies.
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Table 2.1: Mean and standard deviation of the Euclidean distances

n=50 n=100 n=200 n=500

Semi-PHD 0.12(0.32) 0.14(0.29) 0.11(0.26) 0.09(0.29)

Trimmed Semi-PHD b = n−
1
5 0.40(0.30) 0.38(0.33) 0.42(0.34) 0.39(0.30)

Trimmed Semi-PHD b = 0.1n−
1
5 0.12(0.32) 0.14(0.29) 0.11(0.26) 0.09(0.29)
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3 Generalized Least-Squares in Modeling

Nonstationary Processes

Bornn et al. [2012] proposed a novel approach to finding the latent dimensions

over which the nonstationary fields exhibit stationarity through dimension expan-

sion. They expanded the original field to a higher dimensional space over which the

process achieves stationarity. Their idea is based on the theoretical work of Per-

rin and Merring [2003] and Perrin and Schlather [2007]. Perrin and Merring [2003]

proved that any low-dimensional nonstationary random field in Rp can be viewed as

a projection of a second-order stationary field in R2p. Later, Perrin and Schlather

[2007] proved that a Gaussian random process in Rd can be interpreted as a sample

from a stationary random field in Rd+p, p ≥ 2, under the moment constraints that

all components of the Gaussian process have the same expectations and variances.

Bornn et al. [2012] justified that for a nonstationary Gaussian process Y(x), where

x ∈ Rd, there exists extra dimensions z ∈ Rp, p > 0, such that the expanded process
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Y ([x, z]) was stationary under appropriate moment constraints. Note that [x, z] is

the concatenation of the dimensions x and z. The stationary semivariogram with

latent dimensions can be expressed by

γ ([xi, zi]− [xj, zj]) =
1

2
E (Y ([xi, zi])−Y ([xj, zj]))

2 ,

where [xi, zi] is the expanded spatial index for the ith location.

In the geostatistical study, the 2-dimensional space constituted by longitude and

latitude is quite commonly recorded for the locations of interest. The nonstationary

semivariogram for space with only longitude and latitude can achieve stationarity by

including an extra dimension such as the elevation. To learn the latent dimensions

non-parametrically from information contained within the data, Bornn et al. [2012]

proposed the lasso-penalized least-squares criterion (OLS) as following

(
φ̂,Z

)
OLS

= argmin
φ,Z

∑
i<j

{γ̂i,j − γφ (di,j ([X,Z]))} 2 + λ

p∑
k=1

‖Z.k‖1 , (3.1)

where γ̂i,j is the estimated semivariogram by (1.3) and di,j ([X,Z]) is the Euclidean

distance between the locations [xi, zi] and [xj, zj], Z.k is the kth column of Z, and

‖·‖1 is the L1 norm. [X,Z] is the concatenation of the matrices X and Z. The tuning

parameter λ in the group lasso is used to determine the number of latent dimensions

and regularize the estimation of Z to prevent overfitting. Note that γφ (di,j ([X,Z]))

is a parametric semivariogram model with the parameter φ for stationary fields.
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Bornn et al. [2012] pointed out that their method produced similar results if any

other parametric stationary semivariogram models were used.

However, the least-squares criterion (3.1) does not consider the covariance struc-

ture of the γ̂i,j, for j 6= i, which are generally correlated. For example, assuming

there are n locations, at the location xi, the observations of the Gaussian process

Y(xi) at this location contribute to the calculation of the γ̂i,j, for j 6= i. Follow-

ing Muller [1998], we take consideration of the covariance structure of the empirical

semivariograms and propose two generalized least-squares methods. Both methods

estimate the latent dimensions more accurate than the least-squares method.

The remainder of the chapter is organized as follows: Section 3.1 discusses the

details of the generalized least-squares fitting of the semivariogram. Section 3.2

gives the algorithms for generalized least-squares estimation. Section 3.3 provides

extended simulations to show the performance of the methods. Section 3.4 presents

two real data applications.

3.1 Generalized Least-Squares Methods

The crucial step of the dimension expansion approach is the lasso-penalized least-

squares method to estimate the latent dimensions. Ignoring the complex covariance

structure of the γ̂i,j produces inefficient parameter estimation as demonstrated in
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Muller [1998]. For the dimension expansion method, the generalized least-squares

method is more appropriate for learning the latent dimensions. In the following, we

introduce the generalized least-squares fitting criterion. First, we define an upper

triangular matrix U of the form

U =


γ̂i,j, for i ≤ j,

0, for i > j.

Let vec
(
UT
)
denote the vector formed by concatenating the columns of UT . We

define W ([X,Z]) be the vector form of the distance matrix of di,j ([X,Z]) , for i ≤ j.

The lasso-penalized generalized least-squares criterion (GLS) is defined as follows

(
φ̂,Z

)
GLS

=argmin
φ,Z

(
vec
(
UT
)
− γφ (W ([X,Z]))

)
T
[
cov

(
vec
(
UT
))]−1

(
vec
(
UT
)
− γφ (W ([X,Z]))

)
+ λ

p∑
k=1

‖Z.k‖1 ,

where cov
(
vec
(
UT
))

is the covariance matrix of γ̂i,j, for i ≤ j, and γφ (W ([X,Z]))

is a parametric stationary semivariogram model with parameter φ. We propose

the generalized least-squares method based on Cressie [1985] to estimate the latent

dimensions. In the following, we assume that Y(x) is a mean-zero Gaussian process.

For demonstration, we use the exponential semivariogram model throughout our
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implementations. For given φ, Cressie [1985] showed that

cov
(
γ̂i,j, γ̂i′ ,j′

)
=

1

2

[
γφ
(
dj,i′
)

+ γφ
(
di,j′
)
− γφ

(
di,i′
)
− γφ

(
dj,j′

)]2
,

where, for example, dj,i′ is the Euclidean distance between locations [xj, zj] and

[xi′ , zi′ ]. As an illustration example, for a region with 4 locations, the upper trian-

gular matrix U is defined as 

γ̂1,1 γ̂1,2 γ̂1,3 γ̂1,4

0 γ̂2,2 γ̂2,3 γ̂2,4

0 0 γ̂3,3 γ̂3,4

0 0 0 γ̂4,4


.

Then cov
(
vec
(
UT
))

is a 10×10 matrix where, for example, the covariance between

γ̂1,2 and γ̂3,4 is estimated by

cov (γ̂1,2, γ̂3,4) =
1

2
[γφ (d2,3) + γφ (d1,4)− γφ (d1,3)− γφ (d2,4)]2 . (3.2)

However, the Euclidean distances in (3.2) are calculated based on the known dimen-

sions for stationary processes. The distances used in dimension expansion method

are based on the latent dimensions. Therefore, the covariance between γ̂i,j and γ̂i′ ,j′

with latent dimensions becomes

cov(γ̂i,j, γ̂i′ ,j′ ) =
1

2

[
γφ
(
dj,i′ ([X,Z])

)
+ γφ

(
di,j′ ([X,Z])

)
−γφ

(
di,i′ ([X,Z])

)
− γφ

(
dj,j′ ([X,Z])

)]2
. (3.3)
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We propose the lasso-penalized generalized least-squares criterion as following:

(
φ̂,Z

)
GLS

= argmin
φ,Z

(
vec
(
UT
)
− γφ (W ([X,Z]))

)
T Σ̂−1

(
vec
(
UT
)
− γφ (W ([X,Z]))

)
+ λ

p∑
k=1

‖Z.k‖1 , (3.4)

where the entries in Σ̂ is obtained from (3.3), and ‖Z.k‖1 has the same definition as

in (3.1).

3.2 Algorithm

There exists a technique issue in the implementation of the above generalized

least-squares fitting. The estimated covariance matrix Σ̂ may not be positive def-

inite, and/or not be invertible. There are mainly two methods to this end. One

popular method is to perform the eigen-decomposition first. Then set the smallest

eigenvalue to be an arbitrary small number [Knol and Berge, 1989]. This method

is intuitive, however, the choice of the fixed small value can be problematic. The

other method proposed by Higham [2002] guarantees that the resulting matrix is

the nearest positive definite matrix by convex analysis using the Frobenius distance.

In this dissertation, we adopt Higham [2002]’s approach to find the nearest positive

definite matrix of Σ̂.

Because the estimated covariance matrix Σ̂ depends on φ and Z, following Cressie
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[1985], Genton [1998] and Muller [1998], we apply an iterative reweighing strategy

to find the estimation in the lasso-penalized generalized least-squares fitting as fol-

lowing:

1. Empirically estimate semivariogram γ̂i,j using (1.3).

2. Set
(
φ(0),Z(0)

)
GLS

=
(
φ̂,Z

)
OLS

.

3. At the kth step, calculate all the entries for the estimated covariance matrix

Σ̂(k), for example,

cov (γ̂1,2, γ̂3,4)(k) =
1

2

[
γφ(k)

(
dj,i′

(
[X,Z(k)]

))
+ γφ(k)

(
di,j′

(
[X,Z(k)]

))
−γφ(k)

(
di,i′

(
[X,Z(k)]

))
− γφ(k)

(
dj,j′

(
[X,Z(k)]

))]2

.

Calculate the inverse matrix of Σ̂(k). If Σ̂(k) is not invertible, use R function

nearPD (Higham, 2002) to obtain its nearest positive definite matrix.

4. Update
(
φ(k+1),Z(k+1)

)
GLS

by the BFGS method [Broyden, 1979]:

(
φ(k+1),Z(k+1)

)
GLS

= argmin
φ,Z

(
vec
(
UT
)
− γφ (W ([X,Z]))

)
T
(

Σ̂−1
)(k)

(
vec
(
UT
)
− γφ (W ([X,Z]))

)
+ λ

p∑
k=1

‖Z.k‖1 .

5. Stop if
∥∥∥φ(k+1) − φ(k)

∥∥∥
1

+
∥∥Z(k+1) − Z(k)

∥∥
1
≤ δ, otherwise repeat Steps 3 and

4. In practice, we choose a small number for δ.
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The simulations in the next section show that the generalized least-squares method

improves accuracy. However, its computational complexity increases exponentially

with a growing number of locations. Computations of the nearest positive definite

matrix of Σ̂ and its inverse are both computational intensive. Based on our extensive

empirical study, we find that the proposed generalized least-squares criterion is not ef-

ficient when the number of locations is over 30. Therefore, we introduce an alternative

method which is more computationally efficient than the GLS. We adopt the simpli-

fied covariance structure for computational simplicity which assumes the off-diagonal

elements for the covariance matrix of γ̂i,j are zero [Cressie, 1985]. Moreover, for a

Gaussian random process {Y(x) : x ∈ S} , S ∈ Rd, var (γ̂i,j) ' 2γ2
φ (‖xi − xj‖)

[Cressie, 1985]. Accordingly, we propose the lasso-penalized weighted least-squares

criterion (WLS) as follows

(
φ̂,Z

)
WLS

=argmin
φ,Z

∑
i<j

1

γ2
φ (di,j ([X,Z]))

{γ̂i,j − γφ (di,j ([X,Z]))} 2 + λ

p∑
k=1

‖Z.k‖1 .

(3.5)

A similar iterative reweighing algorithm to the GLS method is adopted to the WLS

method. Essentially, at the kth iteration, the estimation
(
φ(k−1),Z(k−1)

)
from the

(k−1)th step are used for the weights γ−2
φ (di,j ([X,Z])). Our empirical study suggests

that its computational time is comparable with the OLS in Bornn et al. [2012].
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The simulations in the next section show that this method also increases estimation

accuracy compared to the OLS. We recommend this WLS method when the number

of locations is more than 30.

The dimension expansion methods involve the unknown latent dimensions of the

monitored locations. Due to this special feature, we propose a modified leave-one-

out cross-validation method for choosing the tuning parameter λ. Here, the leave-

out method means leaving the locations out. As we mentioned earlier, the observed

Gaussian process Y(xi) at the location xi, i = 1, ..., n, contributes to obtain all

of the γ̂i,j, for j 6= i. When we take the location xi out, we need to predict n − 1

semivariograms related to the location xi. The other problem is how to find the latent

dimensions for the location xi. We use the thin-plate spline method to predict the

latent dimensions for the location xi. We propose the modified Root Mean Squared

Error for cross-validation (MRMSECV ) as follows

MRMSECV =

√√√√ 1

n(n− 1)

n∑
i=1

n∑
j 6=i

(
γ̂i,j − γ∗φ̂−i

(di,j ([X,Z∗]))
)2

, (3.6)

where γ∗
φ̂−i

(di,j ([X,Z∗])) is the predicted semivariogram for the location xi. Note

that Z∗ = (z1, ..., zi−1, z
∗
i , zi+1, ..., zn), where z∗i are the predicted latent dimensions

for the location xi using the thin-plate spline method. The algorithm for determining

the tuning parameter λ is given in the following:

1. Choose a set of {λ1, ..., λm}, for example, {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.
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2. For each λ, apply the dimension expansion method to obtain
(
φ̂−i,Z−i

)
for

the locations 1, ..., i− 1, i+ 1, ..., n by taking the location xi out.

3. Use the thin-plate spline method to find the function f(·) such that f(X−i) =

Z−i. Predict z∗i = f(xi) and obtain di,j ([X,Z∗]).

4. Obtain γ∗
φ̂−i

(di,j ([X,Z∗])) using the distances di,j ([X,Z∗]) in Step 3 and φ̂−i

in Step 2. Calculate MRMSECV .

5. Choose λ corresponding to the smallest MRMSECV .

3.3 Simulation Studies

In this section, we consider the illustrative simulation example in Bornn et al.

[2012]. The locations are simulated on a three-dimensional half-ellipsoid centered at

(0, 0, 0) and the projection of the first two dimensions is a disk centered at the origin.

At each location, 1000 realizations of the Gaussian process Y(x) are simulated.

Figure 3.1 shows the empirical semivariograms for the three-dimensional space and its

projected two-dimensional space for n = 30. The red solid lines are fitted exponential

semivariograms.

41



Figure 3.1: Empirical semivariogram plots of the original three dimensional

space(left) and a two-dimensional projection (right)

In Figure 3.1, on the left side, the plot is the semivariograms versus the Euclidean

distances based original three dimensions. On the three dimensional space, the sim-

ulated Gaussian field is stationary. The right side is the plot of semivariograms vs.

Euclidean distances based on two dimensions. The red line is the fitted exponential

semivariogram. The field is nonstationary with one dimension hidden. In Bornn

et al. [2012], the tuning parameter λ is chosen to be 0.1 which induces that the di-

mension of Z is one. They recovered the latent dimension successfully resulting in

a semivariogram that is close to the original (Figure 3.3). The contour plot of the

original coordinates with the learned dimension by Bornn et al. [2012] is shown in

Figure 3.2.
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Figure 3.2: The origin coordinate with the learned dimension by OLS

Then we apply the proposed methods to find the latent dimension. The semivar-

iogram plots with the learned dimension using three different methods are shown in

Figure 3.3. The tuning parameter λ chosen for the WLS and the GLS are respec-

tively 0.010 and 0.013 by usingMRMSECV in (3.6). In Figure 3.3, we see that all of

the three methods can recover the true distances well. We plot the learned distances

d̂i,j among the locations with the true distances di,j in Figure 3.4. The distance plots

show that both GLS and WLS methods recover the locations better than the OLS

method. The red line is 45 degrees from the origin. The closer of the plots to the red

line, the better the learned distances d̂i,j to the true distances di,j. We can see from

these plots that the points in OLS depart away from the red line, while the points

in GLS and WLS follow the red line closely.
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Figure 3.3: Semivariogram with learned locations
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Figure 3.4: Distance plot
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Next, we conduct simulations to assess the performance of the two proposed meth-

ods numerically and demonstrate the benefit of considering the covariance structure

of γ̂i,j. In the simulations, the locations are simulated on a three-dimensional half-

ellipsoid centered at (0, 0, 0) and the projection of the first two dimensions is a disk

centered at the origin for different numbers of locations n = 10, 15, and 50. At each

location, 1000 realizations of the Gaussian process Y(x) are simulated. The Sum

of Squared Errors (SSE) between the true distances and the learned distances are

computed to compare these three methods, i.e.

SSE =
∑
i<j

(di,j[X,Z]− d̂i,j[X,Z])2.

The boxplots of SSE based on 1000 replications are shown in Figure 3.5 for n = 10, 15.

Throughout the simulations, we show that both of the proposed methods are better

than the OLS method for n = 10, 15. Moreover, when the number of locations is

larger than 30, we conduct some simulations to compare WLS and OLS. For n = 50,

the results of 1000 replications are shown in Figure 3.6. Table 3.2 is the mean and

standard deviation of SSE for both methods which show that WLS is better than

OLS.
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Figure 3.5: Boxplot of the SSE for n = 10 (left) and n = 15(right)

Table 3.1: Mean and standard deviation of SSE for OLS, GLS and WLS

OLS GLS WLS

n = 10 8.84(10.89) 1.58(2.08) 2.26(3.17)

n = 15 9.36(12.31) 1.61(4.25) 2.06(4.01)
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Figure 3.6: Boxplot of the SSE for n = 50

Table 3.2: Mean and standard deviation of SSE for OLS and WLS

OLS WLS

n = 50 120.41(79.09) 17.96(15.52)
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3.4 Real Data Applications

3.4.1 Solar Radiation Data

The solar radiation data is obtained from the solar radiation monitoring network

in southwestern British Columbia, Canada [Hay, 1984]. It is the daily solar radiation

totals for the years 1980 to 1983 at 12 locations. The field is known to be nonsta-

tionary because of the location and elevation of Station 1 on Grouse mountain. The

non-stationarity of the data was well studied in [Sampson and Guttorp, 1992] and

Bornn et al. [2012]. Figure 3.7 is the plot of the empirical semivariograms versus the

original locations. The points associated with Station 1 are marked as “x” in the plot.

Bornn et al. [2012] uncovered the latent dimensions and through their approach, the

semivariogram is closer to stationary. In Figure 3.8, the fitted exponential semivari-

ogram is shown by the solid red line. As studied in Bornn et al. [2012], with λ = 0.2,

they added two more latent dimensions. The result is shown in Figure 3.8 below.

Station 1 is pushed further away with the latent dimensions and the field is closer to

stationary.

49



Figure 3.7: Semivariogram of the original locations

Figure 3.8: Semivariogram with learned dimensions by OLS
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Now we use two proposed methods on the solar radiation data. Using the modified

MRMSECV in (3.6) as a criterion, we choose λ = 0.014 for WLS and λ = 0.011 for

GLS. These tuning parameter values for WLS and GLS methods expand the original

space to the one with two more dimensions. The results are shown in Figure 3.9.

Figure 3.9: Semivariogram with learned dimensions by WLS and GLS

The field obtains stationarity by the proposed methods better than OLS. Station

1 is pushed even further with the latent dimensions, the distances of other locations

are changed accordingly. We compare the fitting by SSE between the empirical

semivariograms and the fitted parametric semivariograms for three methods. The

SSE of OLS, WLS, and GLS are respectively 12.09, 11.45, and 10.21.
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3.4.2 PM2.5 Data

Now we present the application on the logarithm of the daily average PM2.5 data

set collected in 37 stations covering the Province Ontario in a region with longitude

from −74◦ to −90◦ and latitude from 41◦ to 49◦ in Canada from 2003 to 2016. The

data is obtained from the Ontario air quality archive (www.airqualityontario.com).

Locations of the stations are shown in Figure 3.10.

Figure 3.10: Monitoring stations of the PM2.5 data

The dimensions, longitude, latitude, and elevation are recorded for the stations.

From the empirical plot of the semivariogram, Figure 3.11, we observe that the
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nonstationary is mainly caused by the stations marked by “x”. The stations marked

as “x” in the graph are Barrie, Brampton, Belleville, Brantford, and Burlington.

Interestingly, these are all the stations starting with the letter “B” monitored by the

Ontario air quality archive.

Figure 3.11: Semivariogram of the original locations

First, we choose λ for the OLS method. The leave-one-out cross-validation finds

λ = 0.0009 with the smallest MRMSECV and the OLS method expands two more

latent dimensions. The semivariograms versus the distance with the learned two

latent dimensions are shown in Figure 3.12. Next, we apply the WLS method on
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the PM2.5 data. We choose λ = 0.0005 and two latent dimensions are expanded to

the original space. The result is shown in Figure 3.12. All of the points are moved

closer to the fitted line by using the WLS methods. The SSE between the empirical

semivariograms and the fitted parametric semivariograms for OLS is 2.62 and WLS

is 1.56.

Figure 3.12: Semivariogram with two learned dimensions by OLS and WLS

54



4 Hierarchical Bayesian Spatio-temporal Modeling

via Dimension Expansion

Ozone concentrations are the daily maximum 8-hours moving averages of hourly

ozone concentration data recorded in micrograms per cubic meter, µg/m3, which

are key indicators of air quality. Monitoring the changes both spatially and tempo-

rally is very important for the assessment of air quality change, which has a great

impact on our environment, society, and economy. However, modeling the ozone con-

centrations is not an easy task since the ozone concentrations vary over space and

time with complicated spatial structures, temporal structures, and spatio-temporal

interactions. Furthermore, the presence of missing data which is common at the

gauged stations brings even more difficulties. Jin et al. [2012] studied the ozone

concentrations within −79◦ to −81.5◦ longitude and 39.5◦ to 41.5◦ latitude around

the Pittsburgh region (−79.23◦, 43.39◦). All of the gauged stations have missing

data in this region. They dealt with the missing problems in two steps. First, some
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of the missing measurements were filled by using linear models so that the miss-

ing data had the staircase pattern. Second, they applied the hierarchical Bayesian

spatio-temporal modeling on this staircase of missing data to estimate the parame-

ters of the spatio-temporal model. They estimated the spatial correlation function

for the gauged stations based on the estimations from the previous step. Next, They

estimated the covariance matrix for all of the stations, then derived the predictive

distribution for the ungauged sites.

In terms of the covariance matrix for all of the stations, they selected the gener-

alized linear model with quasi-Poisson family as an appropriated spatial correlation

function by examing the pattern of the plot of spatial correlations based on the

hierarchical model. The generalized linear model with quasi-Poisson family is not

appropriate if there exists negative correlations. This is a strong restriction because

negative correlations are common for the ozone concentration data. Moreover, choos-

ing models by exploring the observed plots is not appropriate method and may cause

overfitting to the observed data. The model may be only suitable just for a particular

kind of data.

In this section, we propose a method to estimate the covariance matrix through

dimension expansion for modeling the semivariograms in nonstationary fields based

on the estimations from the hierarchical Bayesian spatio-temporal modeling. For
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demonstration, we apply the proposed method to the same data in Jin et al. [2012].

The proposed method is more general than the one used in Jin et al. [2012]. Using the

covariance matrix estimated by the proposed method on the entropy criterion in the

environmental network design problem, our study provides interesting findings and

the locations of the selected ungauged stations are more reasonable. We also evaluate

the method and compare it with Jin et al. [2012] by leave-one-out cross-validation.

The results show that the proposed method provides slightly better prediction.

The chapter is arranged as follows. First, we describe the ozone concentrations

in the Pittsburgh region and apply the techniques for filling missing data following

Jin et al. [2012]. Then, we introduce the method to estimate the covariance matrix

through dimension expansion method for modeling the semivariograms in nonsta-

tionary fields. Next, we derive spatial predictive distributions on the ungauged sites

using the covariance matrix estimated by the proposed method. We also present the

result of extending an environmental network. Last, we provide the model evalua-

tion through leave-one-out cross-validation. The review of the hierarchical Bayesian

spatio-temporal modeling technique [Le and Zidek, 2006] is given in Jin et al. [2012].
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4.1 Ozone Concentration Data

The ozone concentrations are recorded within −79◦ to −81.5◦ longitude and 39.5◦

to 41.5◦ latitude around the Pittsburgh region for four consecutive summer months,

June, July, August, and September, over the period from 1995 to 2007. There are

25 gauged stations in the region as shown in Figure 4.1. The original data set Y0

has 25 stations and 1586 (13 years × 122 days) measurements at each station. The

number of missing data in Y0 is shown by N1.Miss in Table 4.1. We follow the steps

in Jin et al. (2012) to fill some of the missing data for each station within the period

of monitoring blocks using the same regression model as follows

y122(i−1)+j = a sin

(
2(122(i− 1) + j)π

122

)
+ b cos

(
2(122(i− 1) + j)π

122

)
+ ci + ε122(i−1)+j

= a sin

(
jπ

61

)
+ b cos

(
jπ

61

)
+ ci + ε122(i−1)+j, (4.1)

for i = 1, · · · , 13, and j = 1, · · · , 122, where a and b are regression coefficients, ci

are the categorical factors, and {εt} is a sequence of independently and identically

distributed Gaussian random variables with mean 0 and variance σ2. The model (4.1)

assigns different means to the years with a yearly cycle of 122 days. We reexpress

the 13 factors in the model via Helmert contrasts, which compare the first level of

the factor with all later levels, the second level with all later levels, and so forth.
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The Helmert matrix, Z13×13, is defined as follows

Z =



1 −1 −1 · · · −1 −1

1 1 −1 · · · −1 −1

1 0 2 · · · −1 −1

...
...

... . . . ...
...

1 0 0 · · · 11 −1

1 0 0 · · · 0 12



.

Let X, the matrix of covariates, be

X =

(
S Z ⊗ 1122

)
1586×15

, (4.2)

where 1n = (1, 1, · · · , 1, 1)T1×n and

S =

sin(π/61) · · · sin(iπ/61) · · · sin(1586π/61)

cos(π/61) · · · cos(iπ/61) · · · cos(1586π/61)


T

2×1586

,

and let y = (y1, y2, · · · , y1586)T , β = (a, b, d1, · · · , d13)T and ε = (ε1, ε2, · · · , ε1586)T

denote the response variables, regression coefficient vector and error variables, re-

spectively. The model (4.1) is written as y = Xβ + ε.
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Figure 4.1: Monitoring stations in the Pittsburgh region

We fill in the missing data within the blocks by the least-squares predictions plus

errors. Then we obtain a new data set Y1. The number of missing data in Y1 is

shown in Table 4.1 by N2.Miss. Next, we follow the steps for filling the missing

data by using the hierarchical Bayesian spatio-temporal modeling technique for the

staircase pattern of missing data. We obtain a new data set Y2 from Y1 by filling

in the 488 missing data at Station 5 and 25 during the end of the period of study.

N3.Miss in Table 4.1 shows the number of missing data in the data set Y2. Y2 has a
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staircase data structure because all of the missing data are located at the beginning

of the period of study. Now we can use the hierarchical Bayesian model [Jin et al.,

2012] to model Y1 with the staircase structure and estimate the hyperparameters

Hg = {VB, B0, (Υ01, H1,Λ1, δ1), · · · , (Υ0,k−1, Hk−1,Λk−1, δk−1), (Λ7, δ7)} by the

EM algorithm. We put d = 4, l = 15, n = 1586, k = 7, m1 = 854, m2 = 610,

m3 = 488, m4 = 366, m5 = 318, m6 = 244, m7 = 0, g1 = 1, g2 = 1, g3 = 0, g4 = 3,

g5 = 1, g6 = 1and g7 = 16.

Table 4.1: Location of the stations and the number of missing data

ID Class Lon Lat N1.Miss N2.Miss N3.Miss ID Class Lon Lat N1.Miss N2.Miss N3.Miss

1 2 -40.24 80.66 855 854 854 14 2 -40.38 80.18 22 0 0

2 2 -41.09 80.65 610 610 610 15 1 -40.56 80.50 13 0 0

3 3 -39.64 79.92 618 610 610 16 1 -40.68 80.35 11 0 0

4 3 -40.30 79.50 488 488 488 17 2 -40.74 80.31 4 0 0

5 3 -40.36 80.61 858 854 366 18 2 -41.21 80.48 5 0 0

6 3 -40.44 80.01 370 366 366 19 1 -40.44 80.42 16 0 0

7 2 -40.41 79.94 370 366 366 20 3 -40.14 79.90 3 0 0

8 3 -40.81 79.56 328 318 318 21 2 -40.17 80.26 1 0 0

9 1 -39.81 80.28 278 244 244 22 4 -40.99 80.34 0 0 0

10 2 -40.93 81.12 12 0 0 23 3 -40.42 79.69 5 0 0

11 1 -41.45 80.59 1 0 0 24 2 -40.42 80.58 5 0 0

12 3 -40.46 79.96 2 0 0 25 2 -40.12 80.69 488 488 0

13 2 -40.61 79.73 8 0 0

The numbers 1, 2, 3, and 4 under Class denote agricultural, residential, commercial and industrial, respectively.
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4.2 Covariance Matrix Estimation

The 100 grid boxes of a spatial resolution of latitude 0.2◦× longitude 0.2◦ cover

the Pittsburgh region. The grid points and their classes are displayed in Figure 4.4.

The next task is to derive the predictive distribution for these grid points. The key

step is to estimate the covariance matrix. Now, we introduce the method to estimate

the covariance matrix through dimension expansion method for modeling the semi-

variograms in nonstationary fields based on the estimations from the hierarchical

Bayesian spatio-temporal modeling. Let {Y(x) : x ∈ S} , S ∈ Rd, be an environ-

mental random process, where x is a d-dimensional spatial index that varies contin-

uously throughout the region S. At n spatial locations denoted by {xi : i = 1, ..., n},

we observe realizations of the random process Y(x), ie., {Y(xi) : i = 1, ..., n}. We

are interested in learning the spatial dependency of the process through the observed

data. Semivariogram function that describes the degree of spatial dependence of an

intrinsic stationary random process is a cornerstone in spatial statistics. An intrinsic

stationary random process satisfies the following two conditions [Cressie, 1993]:

1. E (Y(x)) = µ, for x ∈ S,

2. var (Y(xi)−Y(xj)) = 2γ(xi − xj),
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where semivariogram is defined as γ(xi−xj) = 1
2
var (Y(xi)−Y(xj)) for two different

locations, xi and xj, in the monitored region. The estimated covariance matrix of

the gauged stations Σ̂[g,g] is obtained from the estimate of Hg. We estimated the

semivariograms for the gauged stations gi and gj, correspondingly, by

γ̂(gi − gj) =
1

2
v̂ar(Y(gi)) +

1

2
v̂ar(Y(gj))− ˆcov (Y(gi),Y(gj)) . (4.3)

Figure 4.2: Semivariogram plot

In Figure 4.2, we notice that the estimated semivariograms related to Station 3

(marked by “x”) are much higher than the other stations. We examine the location of

Station 3 and notice that it is on the edge of the monitored region. Moreover, there

is an airport close to this station. According to Xue et al. [1994], there was a great

impact of high altitude aircraft on the ozone layer in the stratosphere. This becomes
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an influential factor in modeling the ozone concentrations. Next, we introduce how

this factor is considered in the modeling technique.

For a nonstationary field, Bornn et al. [2012] proposed a novel approach to finding

latent dimensions over which the nonstationary fields exhibit stationarity through

dimension expansion. They justified that for a nonstationary Gaussian processY(x),

where x ∈ Rd, there exist extra dimensions z ∈ Rp, p > 0, such that the expanded

process Y ([x, z]) was stationary under appropriate moment constraints. Note that

[x, z] is the concatenation of the dimensions x and z. The stationary semivariogram

with latent dimensions can be expressed by

2γ ([xi, zi]− [xj, zj]) = E (Y ([xi, zi])−Y ([xj, zj]))
2 ,

where [xi, zi] is the expanded spatial index for the ith location. In Chapter 3, we

improved the dimension expansion method by considering the covariance structure

of the γ̂i,j, for j 6= i. In the data application, we adopt the lasso-penalized weighted

least-squares criterion (WLS) in Chapter 3 to estimate the parameters and learn the

latent dimensions as follows(
φ̂,Z

)
WLS

=argmin
φ,Z

∑
j<i

1

γ2
φ (di,j ([X,Z]))

{γ̂i,j − γφ (di,j ([X,Z]))} 2 + λ

p∑
k=1

‖Z.k‖1 .

(4.4)

The semivariogram plot with estimated expanded dimensions (Figure 4.3) of the

gauged stations shows that the field is close to be stationary. Two extra dimensions
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Figure 4.3: Semivariogram with learned dimensions

are added to the original coordinate with λ = 0.01. Station 3 is pushed much further

with the latent dimensions. After the expanded dimensions for the gauged stations

are obtained, we use the thin-plate spline method [Wabba and Wendelberger, 1980]

to estimate the hidden dimensions for the ungauged sites. The semivariograms for

the ungauged stations are estimated by the exponential model using the estimated

parameters φ̂. Next, we estimate the semivariograms γsi,sj between stations si and

sj using the exponential model based on the distances over the space composed by

the original and the latent dimensions. Last, we estimate the covariance between

any two sites by

Σ̂i,j = ˆcov(Y (si), Y (sj)) =
1

2
σ̂Y (si) +

1

2
σ̂Y (sj) − γ̂si,sj ,
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where σ̂Y (si) and σ̂Y (sj) are estimates of σY (si) and σY (sj) obtained by the thin-plate

spline approach. Then we estimate the hyperparameters associated with the grid

points Λ0, τ00, H0 and δ0 via

δ̂0 =
δ̂1 + · · ·+ δ̂k

k
, Ĥ0 = Λ̂[1,··· ,k], τ̂00 = (Σ̂[g,g])−1Σ̂[g,u],

Λ̂0 =
δ̂0 − u− 1

1 + tr(Σ̂[g,g]Ĥ0)
(Σ̂[u,u] − τ̂T00Σ̂[g,g]τ̂00),

where

Λ̂[j,··· ,k] =

Λ̂j + τ̂T0jΛ̂
[j+1,··· ,k]τ̂0j τ̂T0jΛ̂

[j+1,··· ,k]

Λ̂[j+1,··· ,k]τ̂0j Λ̂[j+1,··· ,k]

 , j = 1, · · · , k − 1,

and Λ̂[k] = Λ̂k. After all of the hyperparameters in the predictive distribution are

estimated, we can predict the daily ozone concentration at all the ungauged sites

within the period of study by generating samples from the predictive distribution.

Spatial predictive distribution at the ungauged sites is defined as follows

(Y [u]|Y [g], H) ∼ tn×u(µ
u|g,

Φ[u|g] ⊗Ψ[u|g]

δ∗0
, δ∗0) (4.5)

where δ∗0 = δ0 − u + 1 , Ψ[u|g] = Λ0 µ
[u|g] = ZB

[u]
0 + (Y [g] − ZB[g]

0 )τ00 and Φ[u|g] =

In +XF−1X ′ + (Y [g] −XB[g]
0 )H0(Y [g] −XB[g]

0 )T .
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4.3 Environmental Network Extension

Assume that Y has the density function f . The total reduction in uncertainty of Y

can be presented by the entropy of its distribution; i.e., H(Y ) = −E[log f(Y )/h(Y )],

where h(·) is a not necessarily integrable reference density [Jaynes, 1963]. According

to the predictive distribution (4.5), the total entropy H(Y [u]|Y [g]) can be defined as

H(Y [u]|Y [g]) =
1

2
log |Ψ[u|g]|+ cu(u, q), (4.6)

where cu(u, q) is a constant depending on the degree of freedom and the dimension

of the ungauged sites.

The key step in expanding an environmental network is to find appropriate un-

gauged sites to add to the existing network that maximizes the corresponding entropy.

The optimality criterion is defined as

max
add

(
1

2
log |Ψ[u|g]|)add. (4.7)

The add sites, a vector of dimension u1, are selected to maximize the entropy in

(4.6). In Jin et al. [2012], the grid points {91, 92, 93} are selected with the highest

entropy 11.3774. Using the covariance matrix estimated by the proposed method,

the grid points {41, 71, 100} are selected with entropy 12.1207. This selection is

more reasonable as they scatter in the region and are not crowded in the corner like

{91, 92, 93}. The selected sites among 100 grid points by two methods are shown in
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Figure 4.4 below.

Figure 4.4: The selected sites among 100 grid points (black circled points by Jin et

al. (2012), red circled points by our method)
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4.4 Model Evaluation

In this section, we use the leave-one-out cross-validation to evaluate the proposed

method. And we compare the proposed method with Jin et al. [2012]. We select

the observations from one of the original 25 stations as the validation data, and

observations in the remaining 24 stations are treated as the training data. We use

the data from day 855 to 1586 from each station to evaluate the prediction because

none of the stations has missing data during this period. By choosing this period, we

avoid using the Bayesian hierarchical modeling technique for estimating the missing

data in the training data set, which is time-consuming and not our intention for

evaluating the proposed method on estimating the covariance matrix. Station 22 is

excluded because it is the only industrial station in the study. For each of the 24

stations, we generate 100 samples from the predictive distribution with parameters

estimated using observations from 24 stations. We compute the average of relative

absolute bias (ARAB) as
100∑
j=1

|(yj,i,t − yi,t) /yi,t |, where yj,i,t is the sample generated

from the predictive distributions and yi,t is the observation from Station i on time t.

The results are given in Table 4.2.
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Table 4.2: Mean and standard deviation of the average of relative absolute bias

ID Our Method Jin et al. (2012) ID Our Method Jin et al. (2012)

1 0.0789(0.0627) 0.8134(0.0682) 13 0.1145(0.1096 ) 0.2003(0.1769)

2 0.1206(0.1356) 0.1221(0.1121) 14 0.1361(0.1732) 0.2211( 0.2283)

3 0.8517(0.8517) 0.1572( 0.1572) 15 0.1911(0.2052) -

4 0.1756(0.1693) - 16 0.1189(0.1179) 0.1285( 0.1161)

5 0.1575(0.1731) 0.1986(0.1855) 17 0.1496(0.1594 ) 0.1669(0.1727)

6 0.1336(0.1513) 0.1477(0.1667 ) 18 0.1253(0.1154 ) 0.1256(0.1372)

7 0.1265(0.1563 ) 0.1456(0.1732) 19 0.1369(0.1272) 0.1026( 0.0994)

8 0.0968(0.0804) 0.1135(0.1023) 20 0.1603(0.1598) 0.1310(0.1134)

9 0.1497(0.1104) 0.1619(0.1208) 21 0.1351(0.1154) 0.1274(0.1123)

10 0.1589(0.1796) - 23 0.1617(0.1858) -

11 0.6913(0.6455) - 24 0.1286(0.1051) -

12 0.1406(0.1409) 0.1265( 0.1416) 25 0.1583(0.1701) 0.1722( 0.1675)

In Table 4.2, “-” means that there is no prediction for the station because there

are negative correlations and the method in Jin et al. [2012] fails to estimate the

predictive distribution. The results in Table 4.2 also show that the proposed method

provides slightly more accurate predictions for most of the stations. More important

70



is that, when there are negative correlations estimated by the hierarchical Bayesian

spatio-temporal modeling technique, Jin et al. [2012] fails to estimate the covariance

matrix, while the proposed method still provides accurate predictions except for

Station 3. This is expected because Station 3 is an influential station as we exam

the semivariograms over the expanded space. When we use observations at Station

3 as validation data, it has a great impact on estimating the covariance matrix.
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5 Detection of Change Points in Spatio-temporal

Data in the Presence of Outliers and Heavy-tailed

Observations

Recently, Wu et al. [2017] proposed a general spatio-temporal autoregressive

(GSTAR) model which takes into account the effect of station surroundings, sea-

sonality, temporal correlation among observations at the same spatial location and

spatial correlation among observations from different spatial locations. The model is

multi-functional since it can also be used to detect new influences that largely affected

the measurements in the treatment area compared to the control area. However, their

method is dependent on the normality assumption.

As the spatio-temporal data is usually observed over a large area and in many

years, undetectable outliers can easily occur unexpectedly in any day for any small

area because of measurement error or other reasons. The parameter estimation

method given in Wu et al. [2017] may not be stable or robust. There is a great need
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to develop a parameter estimation method for the GSTAR model that is resistant

to outliers and stable concerning heavy-tail distributed errors. In the development

of such robust methods, M-estimation can play important and complementary roles.

Thus we modify the EM-type algorithm which is given in Wu et al. [2017] by re-

placing the least-squares (LS) estimation by M-estimation, which is more robust in

estimating parameters in the presence of outliers and/or heavy-tailed observations

[Huber, 1973]. We name the modified EM-type algorithm as the MEM-type algo-

rithm. We also modify their change-point detection procedure accordingly, which is

more accurate in detecting change points in the presence of outliers and/or heavy-

tailed observations.

The outline of this chapter is the following. In Section 5.1, a general spatio-

temporal autoregressive model is reviewed and the MEM-type algorithm is presented.

Then we describe the procedure for detecting change points in the treatment area

via the GSTAR models. In Sections 5.2 and 5.2.2, two real data applications and

related simulations are given to compare the MEM-type algorithm with the original

one and to compare both change-point detection procedures.
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5.1 The GSTARModel-based Procedure of Change-point De-

tection

In this section, we first review a specially designed EM-type algorithm to estimate

the model parameters. We then give a change-point detection procedure based on

the GSTAR model.

The GSTAR model in Wu et al. [2017] was given in Chapter 1. The model

takes into account the effect of station surroundings, seasonality, temporal correla-

tion among observations at the same spatial location, and spatial correlation among

observations from different spatial locations while allowing the coefficients to vary

over time. The GSTAR model is defined as follows

yi,T (k−1)+t = x′T (k−1)+tβT (k−1)+t + ỹ′i,T (k−1)+tγ + c i + ρ
L∑
l=1

wil(yl,T (k−1)+t (5.1)

− x′T (k−1)+tβT (k−1)+t − ỹ′l,T (k−1)+tγ − cl) + εi,T (k−1)+t.

The notation in the model is explained as follows

• yi,T (k−1)+t is the spatio-temporal variable of interest observed at spatial location

i on tth day in the kth year.

• t ∈ S with S being a set of consecutive days in a year with size T . For example,

S could be a number of consecutive months in a year or a whole year.
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• ci’s are the effects of location types taking values in {τ1, . . . , τκ} according to

different kinds of surrounding areas around the locations.

• W = (wil)L×L is a neighbourhood matrix to describe the spatial correlation

among observations collected from different spatial locations, which satisfies

the conditions that wil ≥ 0, wii = 0 and
∑L

l=1wil = 1. The entry wil of the

neighbourhood matrix W represents the degree of correlation between obser-

vations collected at the spatial locations i and l, which may be chosen to be

dependent on the distance between the spatial locations i and l. ρ is the spatial

autoregressive parameter.

• xT (k−1)+t = (xT (k−1)+t,1, xT (k−1)+t,2, xT (k−1)+t,3)′ are explanatory variables.

xT (k−1)+t,1 = 1 for all t ∈ S, (xT (k−1)+t,2, xT (k−1)+t,3)′ = (sin(tjπ/sj), cos(tjπ/sj))
′

for t ∈ Sj are designed to model the seasonal cyclicities. Here Sj, j = 1, . . . , J ,

are J seasons in S with S = ∪Sj, and sj is the number of days in the jth season

for j = 1, . . . , J , and tj is the number of days of t in Sj if t falls into the jth

season.

• βT (k−1)+t = (β0,k,j, β1,k,j, β2)′ are regression coefficients when t falls into the

jth season. Note that both {β0,k,j} and {β1,k,j} vary with seasons and years.

• ỹi,T (k−1)+t = (yi,T (k−1)+t−1, yi,T (k−1)+t−2, . . . , yi,T (k−1)+t−ι)
′ and γ = (γ1, γ2, . . . , γι)

′.
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An autoregression term is included in the model to take into account the pos-

sible autocorrelation among observations at each location. Here ι denotes the

number of autoregression terms in the model which is pre-determined in this

dissertation, but may be chosen by an order selection.

The parameter set to be estimated in model (5.1) is H = {β0,k,j, β1,k,j, j =

1, . . . , J, k = 1, 2, . . . , K; β2, γ, τ1, . . . , τκ, ρ, σ
2}.

5.1.1 The Estimation

M-estimation is a maximum likelihood type estimation [Huber, 1973]. In the

development of robust methods, M-estimation can play an important and comple-

mentary role. The well-known dispersion function for the M-estimation is the Huber’s

function defined as the following:

H(x) =


x2, if |x| ≤ k,

2k |x| − k2, if |x| > k,

where k is a tuning constant, and usually chosen as 1.345. The EM-type algorithm

given in Wu et al. [2017] used the least-squares technique. The performance of the LS

estimation relies heavily on the normality assumption on the errors. Because of the

complexity of spatio-temporal data, the normality assumption is easily violated in
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the presence of undetectable outliers and/or heavy-tailed observations. We propose

to modify it by replacing the LS technique used in the algorithm by M-estimation for

estimating the GSTAR model parameters, which is more stable regardless if there

are outliers and/or heavy-tailed observations in the data set.

First, we give the initial values to {β0,k,j, β1,k,j, j = 1, . . . , J, k = 1, 2, . . . , K;

β2, γ, τ1, . . . , τκ, ρ}. We then carry out the following steps:

1. We calculate the mean of the available observations for each type of stations

and denote them by a1, a2, . . . , aκ. We then calculate the overall mean of the

available observations and denote it by a. The initial estimates of τq’s are thus

put as τ (0)
q = aq − a, q = 1, . . . , κ. Let c̄ =

∑L
i=1 ci/L. The initial estimate of c̄

can be obtained by c̄(0) =
∑L

i=1 c
(0)
i /L, where c(0)

i takes values in {τ (0)
1 , . . . , τ

(0)
κ }

according to different kinds of surrounding areas around the location.

2. By averaging all equations in (5.1), we obtain that

ȳT (k−1)+t = x′T (k−1)+tβT (k−1)+t + ¯̃y′T (k−1)+tγ + c̄+ εT (k−1)+t,

= β0,k,j + β1,k,jxT (k−1)+t,2 + β2xT (k−1)+t,3 + γ1ȳT (k−1)+t−1 (5.2)

+ . . .+ γoȳT (k−1)+t−o + c̄+ εT (k−1)+t,

where ȳT (k−1)+t is the average of the observations on the (T (k − 1) + t)th day

of all spatial locations after removing all missing observations, ¯̃yT (k−1)+t =
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(ȳT (k−1)+t−1, . . . , ȳT (k−1)+t−o)
′ and εT (k−1)+t = 1

L
`′L(IL − ρW )−1 εT (k−1)+t, in

which `L = (1, 1, . . . , 1)′L×1.

3. Since sin(π − θ) = sin(θ), sin(π + θ) = sin(2π − θ), cos(π − θ) = − cos(θ),

and cos(π + θ) = − cos(θ), we can remove both the constant term and the

term related to β1,k,j by the difference between two properly chosen pair of the

equations given in (5.2). By doing so, we obtain

y
(1)
T1(k−1)+t = β2y

(2)
T1(k−1)+t + γỹ

(3)
T1(k−1)+t + ε̃T1(k−1)+t, t ∈ S(1). (5.3)

(A specific example of how to calculate y(1)
T1(k−1)+t, y

(2)
T1(k−1)+t, ỹ

(3)
T1(k−1)+t, ε̃T1(k−1)+t,

and S(1) are given in the Wu et al. [2017].)

Denote y(1) = (y
(1)
1 , y

(1)
2 , . . . , y

(1)
T1K

)′, y(2) = (y
(2)
1 , y

(2)
2 , . . . , y

(2)
T1K

)′, and

ỹ(3) = (ỹ
(3)
1 , ỹ

(3)
2 , . . . , ỹ

(3)
T1K

)′. The M-estimates of β2 and γ are given by

argmin
β2,γ

H(y(1) − β2y
(2) − γỹ(3)),

which are used as the initial estimate β(0)
2 , γ(0) of β2 and γ respectively.

4. We substitute β2 and γ by β(0)
2 and γ(0) in model (5.2). For each year k and

season j, we denote y(1)
j = (ȳT (k−1)+t−β(0)

2 xT (k−1)+t,3−γ(0) ¯̃yT (k−1)+t− c̄(0), t ∈

Sj)′, and y(2)
j = (xT (k−1)+t,2, t ∈ Sj)′. We derive the M-estimates of β0,k,j, β1,k,j

for season j of the kth year by

arg min
β0,k,j ,β1,k,j

H(y
(1)
j − β

j
0,k`sj − β

j
1,ky

(2)
j )
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for j = 1, . . . , J respectively, where `sj = (1, 1, . . . , 1)′sj×1. Therefore, we use

these least-square estimates of β0,k,j and β1,k,j as the initial estimates β(0)
0,k,j and

β
(0)
1,k,j.

5. Set the initial value of ρ(0) as 0.5.

Second, we provide the MEM-type Algorithm. Let H(m−1) = {β(m−1)
0,k,j , β

(m−1)
1,k,j , j =

1, . . . , J, k = 1, 2, . . . , K, β
(m−1)
2 , γ(m−1), τ

(m−1)
1 , . . . , τ

(m−1)
κ , ρ(m−1), σ2(m−1)}

be the set of estimates we obtained after the (m − 1)th iteration. The MEM-type

algorithm has the following three steps:

1. E-step: Estimate the observation yi,T (k−1)+t at themth iteration by the following

conditional expectation

y
(m)
i,T (k−1)+t

= E
(
yi,T (k−1)+t|y(m−1)

l,T (k−1)+t, l = 1, 2, . . . , L,H(m−1)
)

= x′T (k−1)+tβ
(m−1)
T (k−1)+t + ỹ′i,T (k−1)+tγ

(m−1) + c
(m−1)
i + ρ(m−1) ×∑

l:wil 6=0

(
y

(m−1)
l,T (k−1)+t − x

′
T (k−1)+tβ

(m−1)
T (k−1)+t − ỹ

′
l,T (k−1)+tγ

(m−1) − c(m−1)
l

)
,

if it is missing.

2. M-step: Obtain the estimates c(m), σ2(m), ρ(m), β
(m)
2 , γ(m), β

(m)
0,k,j, β

(m)
1,k,j, j =

1, . . . , J, k = 1, . . . , K at the mth iteration sequentially as follows
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(a) First derive the estimates
{
τ

(m)
1 , . . . , τ

(m)
κ

}
in the same way as we ob-

tained the estimates
{
τ

(0)
1 , . . . , τ

(0)
κ

}
. Then c(m) = (c

(m)
1 , c

(m)
2 , . . . , c

(m)
L ),

where c(m)
i ’s take values from {τ (m)

1 , . . . , τ
(m)
κ } based on the types of the

stations.

(b) Similarly, we can remove both the constant term and the term related to

β1,k,j by the difference between one properly chosen pair of the equations

given in (5.1). Then we estimate σ2 as σ2(m) by sample variances.

(c) Find the M-estimates of ρ, β2 and γ after substituting σ2 by σ2(m) to get

ρ(m), β(m)
2 and γ(m) respectively.

(d) Substitute the estimates
{
c(m), ρ(m), β

(m)
2 ,γ(m)

}
into model (5.1) to ob-

tain the M-estimates of β0,k,j, β1,k,j as β
(m)
0,k,j, β

(m)
1,k,j.

3. Keep repeating the steps 1-2 until |γ(m) − γ(m−1)| < v, |β(m)
2 − β

(m−1)
2 | < v,

|β(m)
0,k,j − β

(m−1)
0,k,j | < v and |β(m)

1,k,j − β
(m−1)
1,k,j | < v for all k and j, where v is a

predetermined small value. Then we denote β̂0,k,j = β
(m)
0,k,j, β̂1,k,j = β

(m)
1,k,j, for

j = 1, . . . , J, k = 1, 2, . . . , K; β̂2 = β
(m)
2 , γ̂ = γ(m); τ̂i = τ

(m)
i , for

i = 1, . . . , κ; ρ̂ = ρ̂(m), and σ̂2 = σ̂2(m).

The set of estimates we obtained is Ĥ = {β̂0,k,j, β̂1,k,j, j = 1, . . . , J, k =

1, 2, . . . , K, β̂2, γ̂, τ̂1, . . . , τ̂κ, ρ̂, σ̂
2}.
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5.1.2 The Change-point Detection Procedure

We now introduce the procedure for detecting new influences that affected the

measurements in the treatment area substantially by comparing with that in the

control area, which is similar to the one given in Wu et al. [2017]. We model the

data collected respectively from the treatment and control areas of the region by

two different GSTAR models using the algorithm proposed in the previous section.

The main idea is that if new influences in the treatment area are not negligible,

there should be detectable changes in the time-dependent regression coefficients in

the GSTAR model for that area compared to those in the GSTAR model for the

control area. A change-point detection method can be applied to the differences

in regression coefficient estimates from these two areas. The M-estimation-based

change-point detection procedure is described below.

1. We group the stations in the treatment area of the region into group 1 and

model the spatio-temporal data collected at these stations by

yi,T (k−1)+t = βI
0,k,j + βI

1,k,jxT (k−1)+t,2 + βI
2xT (k−1)+t,3 + ỹ′i,T (k−1)+tγ

I

+ c i + ρI
L∑
l=1

wil(yl,T (k−1)+t − βI
0,k,j − βI

1,k,jxT (k−1)+t,2

− βI
2xT (k−1)+t,3 − ỹ′l,T (k−1)+tγ

I − cl) + εi,T (k−1)+t. (5.4)

Then we group the stations in the control area into group 2 and model the
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data from these stations by

yi,T (k−1)+t = βII
0,k,j + βII

1,k,jxT (k−1)+t,2 + βII
2 xT (k−1)+t,3 + ỹ′i,T (k−1)+tγ

II

+ c i + ρII
L∑
l=1

wil(yl,T (k−1)+t − βII
0,k,j − βII

1,k,jxT (k−1)+t,2

− βII
2 xT (k−1)+t,3 − ỹ′l,T (k−1)+tγ

II − cl) + εi,T (k−1)+t. (5.5)

Note that these two models have different parameters except the effect of the

station locations, ci’s.

2. First, we estimate the parameters as their initial values. Following the steps

presented in section 3.2.1, we derive the station type effect
{
τ

(0)
1 , . . . , τ

(0)
κ

}
using observations collected on stations from both groups so that the same

type of stations in different groups have the same station type effect. Then,

we obtain {βI(0)
0,k,j, β

I(0)
1,k,j, j = 1, 2, 3, 4, k = 1, 2, . . . , K, β

I(0)
2 ,γI(0)}

and {βII(0)
0,k,j , β

II(0)
1,k,j , j = 1, 2, 3, 4, k = 1, 2, . . . , K, β

II(0)
2 ,γII(0)} for two

groups of stations separately. We also set the initial values of ρI and ρIIas

ρI(0) = ρII(0) = 0.5.

3. We apply the MEM-type algorithm proposed in section 5.1.1. In the E-step,

the missing observations are filled up. In the M-step, we estimate the station

type effects using data from all the stations, then estimate the other parameters

sequentially for two groups of stations separately. These two steps are repeated
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until convergence. We obtain the estimates β̂I
0,k,j, β̂

I
1,k,j for model (5.4) and

β̂II
0,k,j, β̂

II
1,k,j for model (5.5).

4. We take the difference between these two sets of parameter estimates to ob-

tain two sets of estimates {d0,k,j = β̂I
0,k,j − β̂II

0,k,j, j = 1, 2, 3, 4, k =

1, 2, . . . , K} as the difference in the intercepts of two models and {d1,k,j =

β̂I
1,k,j − β̂II

1,k,j, j = 1, 2, 3, 4, k = 1, 2, . . . , K} as the difference in the

slopes of two models. Then we apply the R package changepoint (Killick and

Eckley 2014) to detect the possible mean shifts in {d0,k,j} and {d1,k,j}.

For convenience, we name the change-point detection procedure given in Wu et al.

[2017] as the LS-based change-point detection procedure.

It is worth mentioning that in the above procedure d0,k,j and d1,k,j describe the

effect after eliminating the effects of station types, the temporal correlation, the

spatial correlation, and the randomness. Therefore, after applying the proposed

procedure, the estimates {β̂I
0,k,j, β̂

I
1,k,j} and {β̂II

0,k,j, β̂
II
1,k,j} derived respectively from

two groups of data should behave similarly if there are no new influences in the

treatment area. Then there are no changes in the means of both {d0,k,j} and {d1,k,j}.
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5.2 Data Applications

5.2.1 Ozone Concentration Data

In this section, we respectively compare the MEM-type algorithm with the EM-

type algorithm in Wu et al. [2017], and the M-estimation-based change-point de-

tection procedure with the LS-based change-point detection procedure through an

application and simulations on the ground-level ozone concentration data.

The data of Wu et al. [2017] includes measurements of the ground-level ozone

concentration readings measured in parts per billion (ppb) from 37 monitoring sta-

tions in a region with longitude from −80◦ to −78.5◦ and latitude from 43◦ to 45◦ in

southern Ontario over the period from 1988 to 2010. Locations of the stations are

shown in Figure 5.1. Following Porter et al. [2001], the data used in the examples is

the logarithm of the daily maximum 8-hour moving averages of ozone concentration.

There are 36 stations. Among these 36 stations, we choose 27 stations which have

been monitored for more than 5 years. On average, each station has 39.4% data

missing. We let ι = 1 by the pre-analysis of the data. The total number of the

parameters is 194. First, we obtain the estimates of the parameters in the GSTAR

model using the EM-type algorithm in Wu et al. [2017]. We name these estimates

ĤLS. Then the proposed MEM-type algorithm is used to obtain the parameters in
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GSTAR model on the same data set. We name these estimates ĤM . We use the

Euclidean distance to measure the differences as the following:

∥∥∥ĤLS − ĤM

∥∥∥ =

√
(ĤLS − ĤM)′(ĤLS − ĤM).

The distance is 0.1015, which is small enough to show that these two methods produce

almost the same parameter estimates on the same data set.

Figure 5.1: The locations of 27 stations which have data for more than 5

years are shown in circle. Data source: Regional Aquatics Monitoring Program

http://www.ramp-alberta.org
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Next, we show that the MEM-type algorithm works well in the presence of outliers.

To make the outliers reasonable, we first choose an area whose latitude is less than

43.55◦N . There are 8 stations within this area. Then we randomly pick up a day, for

9 days after this day, we expanded the log-transformed ozone concentrations by 1.5

times. In real life, this could happen for the reasons including the machine broken,

unexpected activities in this area, etc. The experiment is repeated for 500 times,

we recorded the Euclidean distance for both algorithms, in Table 5.1, the mean and

the standard deviation (sd) of the Euclidean distance are reported. The simulation

shows that outliers have less impact on the performance of parameter estimation if

the proposed MEM-type algorithm is used.

Table 5.1: Mean and standard deviation of the Euclidean distances

MEM-type algorithm EM-type algorithm

mean sd mean sd

0.2704 0.1325 0.4392 0.0541

Wu et al. [2017] simulated the change points under Scenario 1 in the following

way. First, they separated the stations into two groups by the latitude 43.65◦. Then,

for each station in group 1, they added a random number generated from the normal

distribution with mean µ = σ̃ and variance σ2 = 1
2
σ̃ to each observation collected
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from 1998 to 2010 to create the first change-point in 1998. They also added a random

number generated from the normal distribution with mean µ = σ̃ and variance

σ2 = 1
2
σ̃ to the previously modified observations from 2008 to 2010 to create the

second change-point in 2008. The results of detecting the change points by using

the LS-based change-point detection procedure are shown in Figure 5.2. The right

panel displays the results by using the M-estimation-based change-point detection

procedure. Two sets of estimates, {d0,k,j} and {d1,k,j} are obtained. The plot displays

the change points in {d0,k,j} (upper panel) and {d1,k,j} (lower panel) using both

procedures. Figure 5.2 shows that both procedures capture the change points equally

well.
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Figure 5.2: Change points in both means of {d0,k,j} and {d1,k,j} detected by using the R package

changepoint on the ground-level ozone concentration data. The left and right panels respectively

display the results by using both LS-based and M-estimation-based change-point detection proce-

dures.

We now modify the random number generation by changing the variance σ2 = 1
2
σ̃

to σ2 = 1.6σ̃. This modification produces a large variation in the observations after

the change points. This is a reasonable scenario because if some activities are hap-

pening in a region, the observations would be more fluctuated than other times due to

these activities. The M-estimation-based change-point detection procedure detects

the change points at 1998 and 2008 successfully using the R package changepoint,
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however, the LS-based method produces false change points. The results are shown

in Figure 5.3, which demonstrates that the M-estimation-based change-point detec-

tion procedure is more stable than the LS-based change-point detection procedure in

change-point detection in the presence of outliers and/or heavy-tailed observations.
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Figure 5.3: Change points in both means of {d0,k,j} and {d1,k,j} detected by using the R package

changepoint for heavy-tailed observations on the ground-level ozone concentration data. The left

and right panels respectively display the results by using both LS-based and M-estimation-based

change-point detection procedures.
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5.2.2 PM2.5 Data

The data is the log of the daily average PM 2.5 data set collected in 37 stations

covering the Province Ontario in a region with longitude from −74◦ to −90◦ and

latitude from 41◦ to 49◦ in Canada from 2003 to 2016 in Chapter 3. On average,

each station only has 7.5% of data missing due to the similar reasons for the missing

data in the ground-level ozone concentration data in the last section. We let ι = 1

by the pre-analysis of the data. The total number of the parameters is 122. The

Euclidean distance of the parameter estimators obtained by the EM-type algorithm

and the MEM-type algorithm in the dissertation is 0.1023, which is small enough. We

show that the MEM-type algorithm is robust in the presence of outliers. Similarly,

we first choose an area whose latitude is less than 43.50◦. There are 17 stations

within this area. Then we randomly pick up a day, for 10 days after this day, we

expanded the log-transformed ozone concentrations by 2 times. The experiment is

repeated for 500 times, we recorded the Euclidean distance for both algorithms, in

Table 5.2, the mean and the standard deviation (sd) of the Euclidean distance are

reported. The simulation shows that outliers have less impact on the performance

of parameter estimation if the proposed MEM-type algorithm is used.
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Table 5.2: Mean and standard deviation of the Euclidean distances

MEM-type algorithm EM-type algorithm

mean sd mean sd

0.0322 0.0345 0.3128 0.0111

Then, we show the robustness of change-point detection of the proposed MEM-

type algorithm on the application of the PM 2.5 data set. We separate the stations

into two groups by the latitude43.50◦. Then, for each station in group 1, we add

a random number generated from the normal distribution with mean µ = σ̃ and

variance σ2 = 3
4
σ̃ to each observation collected from 2008 to 2016 to create the first

change-point in 2008. We also add a random number generated from the normal

distribution with mean µ = σ̃ and variance σ2 = 3
4
σ̃ to the previously modified

observations from 2013 to 2016 to create the second change-point in 2013. The

results of detecting the change points by using the LS-based change-point detection

procedure are shown in Figure 5.4. The right panel displays the results by using

the M-estimation-based change-point detection procedure. Two sets of estimates,

{d0,k,j} and {d1,k,j} are obtained. The plot displays the change points in {d0,k,j}

(upper panel) and {d1,k,j} (lower panel) using both procedures. Figure 5.4 shows

that both procedures capture the change points equally well.
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Figure 5.4: Change points in both means of {d0,k,j} and {d1,k,j} detected by using the R package

changepoint on the PM 2.5 data. The left and right panels respectively display the results by using

both LS-based and M-estimation-based change-point detection procedures.

We now modify the random number generation by changing the variance σ2 = 1
2
σ̃

to σ2 = 1.1σ̃. This modification produces a large variation in the observations after

the change points. This is a reasonable scenario because if some activities are hap-

pening in a region, the observations would be more fluctuated than other times due to

these activities. The M-estimation-based change-point detection procedure detects
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the change points at 2008 and 2013 successfully using the R package changepoint,

however, the LS-based method produces false change points. The results are shown

in Figure 5.5, which demonstrates that the M-estimation-based change-point detec-

tion procedure is more stable than the LS-based change-point detection procedure in

change-point detection in the presence of outliers and/or heavy-tailed observations.
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Figure 5.5: Change points in both means of {d0,k,j} and {d1,k,j} detected by using the R package

changepoint for heavy-tailed observations on the PM 2.5 data. The left and right panels respec-

tively display the results by using both LS-based and M-estimation-based change-point detection

procedures.
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6 Conclusions and Future Work

In this chapter, we summarize the contributions in this dissertation and discuss

some future work.

Firstly, we have theoretically improved the method proposed by Ma and Zhu

[2012] by a relaxation of the condition on the pdf of the covariates. In the implemen-

tation, the semiparametric approach needs a nonparametric estimation of the corre-

sponding conditional expectations. Ma and Zhu [2012] used the Nadaraya-Watson

estimator. It is well known that for the Nadaraya-Watson estimator, the limitation

occurs when its denominator is equal to zero. We have trimmed the denominator

of the Nadaraya-Watson estimator to make the estimation theoretically appropriate.

In the implementation, replacing the Nadaraya-Watson estimator with other more

accurate nonparametric regression estimators may improve the performance of the

semiparametric approach for future research.

Secondly, we have improved the modeling technique of Bornn et al. [2012] for non-

stationary processes by considering the covariance structure of the semivariograms.
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We have proposed two methods of estimation. Demonstrated by the simulations,

both of the proposed methods provide more accurate estimations than the original

method. However, all of the methods aforementioned are restricted to Gaussian

processes. In the future, we plan to extend the proposed methods to non-Gaussian

processes in nonstationary fields.

Thirdly, we have modeled ozone concentrations in a region in the presence of

missing data. We have derived predictive distribution using the hierarchical Bayesian

spatio-temporal modeling technique [Le and Zidek, 2006] at the ungauged sites based

on the covariance matrix estimated by dimension expansion method for modeling

the semivariograms in nonstationary fields. Further, we have applied an entropy

criterion [Jin et al., 2012] to decide whether new stations need to be added. This

entropy criterion helps us solve the environmental network design problem. For

demonstration, we have applied the method on ozone concentrations at 25 stations in

the Pittsburgh region studied. The proposed method is more general and applicable

as there is no assumption on the correlation structure among the data. For future

work, the extension of the dimension expansion methods to spatio-temporal data

can also be used to improve the hierarchical Bayesian spatio-temporal modeling

technique.

Finally, we have improved the EM-type algorithm for the parameter estimation
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of the GSTAR model by replacing the least-squares technique in the algorithm by

M-estimation so that the modified algorithm provides robust estimations and is more

accurate in detecting change points when data contains outliers and/or heavy-tailed

observations. In the real data example, it has been shown that MEM-type algorithm

produces similar results for the GSTAR model as the original algorithm. In simula-

tions, we test the robustness of the proposed methods in two different ways. First,

we add some random outliers to the real data, our parameter estimates are more

stable than the LS method. We test the accuracy of change-point detection. Both

methods produce the same results. Second, we test the performance of the proposed

method in the case when the observations are heavy-tail distributed. We increase the

variance of the observations after the first change point occurs, the result shows that

the LS method produces false change points, but the proposed method still success-

fully detects the change points with no false ones. Further investigation to find the

unknown influences that cause change points in real life is valuable and interesting.

We will consider it in future research.
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