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Abstract

Goal models have been proposed to be an effective method to support decision making

in early requirements engineering. Key to using them is the concept of contribution

links that represent how the satisfaction of one goal affects that of another. Multi-

ple proposals have been offered for representing contribution; however, the degree to

which users can intuitively understand the meaning behind contribution representations

and utilize them appropriately has not been thoroughly studied. This work reports the

results of an experimental study that compares the intuitiveness of two contribution

representation approaches by measuring the performance of untrained users and ex-

ploring the role of individual differences (cognitive styles and arithmetic attitude and

ability) in establishing the right intuition. Results show significant differences between

the two representations as well as effects of various levels of individual factors. The re-

sults inspire further research on contribution links and support the operationalizability

of intuitiveness as a criterion for evaluating conceptual modelling language designs.
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Chapter 1

Introduction

In the field of information systems analysis, conceptual models are graphical represen-

tations designed to facilitate understanding of the different aspects of the stakeholder

needs and the end-system design. Such aspects include data flows, functional decom-

position, entity structures and process flows. Goals models [7, 25, 74] are the type

of conceptual model used to capture and assess the user’s goals and intentions for a

system design. For more than two decades, these models have been studied as an in-

strument for capturing and communicating such intentional structures for a variety of

purposes within the field. One of the strengths of goal models is their ability to repre-

sent alternative ways by which stakeholder goals can be materialized into design solu-

tions [41, 42, 53]. Using goal models, business/systems analysts can reason about and

communicate the advantages and disadvantages of alternative solutions with respect to

their impact to higher level business objectives.
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1.1 Problem Statement

Goal models consist of a number of elements representing different kinds of goals

(such as, soft goals, hard goals and tasks), as well as several relationships between them

including decomposition, dependency and contribution. The latter kind of relationship,

the contribution is of particular interest in our work. In goal models, contribution links

indicate both the kind influence of one goal on another (i.e., positive or negative) and

the magnitude of this influence (i.e., low or high). Several proposals for modeling

contribution links have been presented in the literature, which can be distinguished

between qualitative (symbolic) and quantitative (numeric). While each method has its

own merits from an analytical standpoint, little is known with regards to how intuitive

each method is for the users of the models.

The qualitative approach is the traditional approach for representing contributions.

Symbolic labels (e.g.“+’, “–”) or words (“help”,“break”) express, in high-level terms,

the quality (positive or negative) and the size of contribution. The numeric approach, on

the other hand, use of numbers to indicate the contribution value, whereby, e.g., sign

and absolute value are used to represent quality and size of contribution. Variations

of both approaches have been proposed both with regards to representation and the

underlying semantics.

Theoretical analysis and demonstrations are usually employed to support the sound-

ness and usefulness of each approach. However, an additional indication of the quality

of the chosen representation and semantics could be the extent to which untrained users

of the model can intuitively understand the meaning of the representation and, more-

over, use it to make inferences about the model in a way that complies with the seman-

tics intended by the modelling language designers. Thus, the concept of intuitiveness

can be regarded as an element when investigating the quality factors of conceptual

2



models. How the elements of each contribution link are visualized, and how correctly

the meaning behind them is inferred by untrained users via their intuition, reflect the

level of intuitiveness of that approach. Hence, when faced with a design choice with

regards to the representation and meaning of a language construct, designers would opt

for the alternative that aligns with what the intended users would find intuitive, at least

all else being equal.

In this thesis, we explore the intuitiveness of two approaches for representing con-

tribution links in goal models through an experimental design. The experiment core

focus is two-fold. We first compare the two methods of contribution representations by

presenting decision problems for users to solve. Second, we explore the role of indi-

vidual differences in establishing the right intuition using either of the representation

approaches.

For the first aspect of the experiment, a series of decision problems, modelled in

either of the two ways (qualitative or quantitative) are presented to two groups of un-

trained users. The qualitative approach uses symbols (e.g ”+”, ”-”) are used to label

contributions links indicating the influence of each goal over the other, while the quan-

titative approach uses numbers as labels. Users are asked to use the contributions to

perform inferences and make decisions. We measure the extent to which their infer-

ences comply with the semantics of each representation.

As a second aspect to our experiment, we look into individual differences of the se-

lected users using different measures materialized in questionnaires, personality tests,

and aptitude tests. Our experiment mainly explores how cognitive style, attitude and

ability with mathematics and mental arithmetic as well as overall model use approach

taken affect the degree of success in performing compliant inferences about goal mod-

els.

3



1.2 Research Objectives

Summarizing the above discussion, the study’s primary objective is to to assess the

accuracy of untrained users’ perception of contribution link constructs in different goal

modeling languages, and provide an educated comparison based on the results of the

a controlled experiment. User’s perception is also investigated through looking into

the subjects’ individual differences, measured using various measure. Particularly, the

study has the following sub-objectives:

1. Review current goal modeling contribution link methods covered in the litera-

ture;

2. Review literature related to comprehensibility, intuitiveness and individual dif-

ferences within the concept of goal modeling;

3. Investigate and compare the concept of intuitiveness within contribution model-

ing methods of goal models;

4. Measure and compare the efficiency of the two contribution links methods.

5. Comprehend the way in which people of different cognitive styles perceive goal

modeling contribution links;

6. To address any correlation between users’ arithmetic ability and attitude and their

comprehension level of contribution links;

7. To compare the results of the above addressed questions and distinguish the

method that presents a better intuitiveness for end users.
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1.3 Research Questions

To achieve the objectives mentioned above, the following research questions (RQs) are

addressed:

• RQ1: Which of the two methods for modeling contribution links (qualitative vs.

quantitative) is better in terms of usability?

RQ1.1: Which of the two methods for modeling contribution links (quali-

tative vs. quantitative) is more intuitive?

RQ1.2: Which of the two methods for modeling contribution links (quali-

tative vs. quantitative) is more efficient?

• RQ2: How do individual factors affect the comprehension between the qualita-

tive and quantitative methods of contribution links modeling?

RQ2.1: Do cognitive styles affect the intuitiveness and efficiency of con-

tribution link methods?

RQ2.2: Does math anxiety affect the intuitiveness and efficiency of contri-

bution link methods?

RQ2.3: Does aptitude with mental arithmetic affect the intuitiveness and

efficiency of contribution link methods?

RQ2.4: Does the followed method and working approach affect the intu-

itiveness and efficiency of contribution link methods?

1.4 Thesis Contribution

We can summarize the main contributions of this thesis as follows:

5



• We offer a comparison between qualitative and quantitative contribution link

approaches with regards to usability, comprehensibility and intuitiveness.

• We explore the notion of intuitiveness as one of the constructs for describing the

effectiveness of conceptual models and show that its measurement is feasible and

produces sensible data.

• We attempt a first exploration of individual differences in cognitive styles; math-

ematical ability; and mathematics anxiety, as influencing factors in the compre-

hension of goal models and the meaning behind the two approaches of contribu-

tion links.

• We effectively utilize Pinker’s model of graph comprehension as a theoretical

grounding of our work; understanding the cognitive processes involved in the

process of conceptual model comprehension, and showing it can be used more

widely in similar studies.

The result of this study will be valuable to the practitioners of information systems

design and analysis as well as its end-users for the ultimate goal of keeping both parties

in agreement on the meaning of goal modeling diagrams.

1.5 Thesis Organization

The thesis is organized as follows: Chapter 2 provides theoretical background on topics

related to the field emphasizing the recent activities relevant to the subject. Chapter 3

reports the experimental design and the conducted procedures. Chapter 4 discusses the

results of the experiments and their analysis, providing some further discussion on the

implications of the study, future work and a summary. Finally, chapter 5 concludes the

6



work with final remarks and future work.

7



Chapter 2

Theoretical Background

This chapter provides a theoretical review of the main concepts of goal models and

contribution link semantics. It also looks into the work that has studied the concept

of intuitiveness, as well a the study of individual differences in conceptual modeling

giving a brief background on the measures we take into account in our study. Finally,

the chapter will look into research that have studied model comprehensibility.

2.1 Goal Models and Contribution Links

Goal models are conceptualizations of the intentional structure of a requirement analy-

sis problem. They are believed to be useful in various stages of the information systems

analysis and design life cycle, particularly requirements analysis, in that they allow rep-

resentation of goals of various stakeholders and how they related to each other. Goal

modelling frameworks proposed in the literature mostly share the same representational

elements, but vary in the reasoning methods behind them. One of the most popular

frameworks is the i* framework by Yu [74], which builds on ideas introduced earlier
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with the Non-Functional Requirement (NFR) framework [15]. The name i* stands for

“distributed intentionality” because the concept of i* is that it centres on the notion

of intentional actors and intentional dependency, meaning that it shows how each ac-

tor depends on another actor for the achievement of its goals. GRL or Goal-oriented

requirement language [2] is another framework that is based on the foundation of the

i* methodology and uses a similar graphical notation in its models. GRL deals with

three main concepts: Intentional elements, actors and links. The intentional elements

consist of goals, resources, tasks and soft-goals. How GRL differs from the other

frameworks [45] is that it provides constructs for expressing various types of concepts

that appear during the requirements and high-level architectural design process. Fol-

lowing the introduction of GRL, User Requirement Notation or URN a was introduced,

which combines the concepts of actors and intentions, from the GRL framework, with

those of system behavior patterns from the Use Case Map (UCM) framework [7].

The goal models we focus on in this study are inspired by the i* modeling lan-

guage, mentioned above, as it is one of the first and most widely known goal modeling

notations. We particularly focus on Strategic Rationale (SR) diagrams within i* mod-

els, that is diagrams that explain why specific stakeholders have the goals they have by

reference to higher level goals, and, reversely, how goals can be achieved through the

achievement of lower level goals. The i* framework offers the ability to also develop

Strategic Dependency diagrams (SDs) which show how actors depend on each other in

order to achieve goals; such diagrams are outside our scope here and we instead focus

on a version of SR diagrams. The SR diagrams we consider consist of elements of the

following types:

1. Oval-shaped elements representing the functional goals, or hard goals – i.e. in-

tentional objectives of clear satisfaction condition. Depicted in Figure 1, an ex-
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ample of such goals is (Choose Schedule), because it represents a functional task

to be performed which achievement can be checked.

2. Cloud-shaped elements representing the quality goals, or soft goals – i.e. objec-

tives of imprecise satisfaction condition, such as performance quality, flexibility,

or usability. In Figure 1, (Minimal Conflicts) is an example of this type of goals,

because measuring the achievement of such goal cannot be accurately measured,

and we can only estimate the degree to which (Choose Schedule) (Manually) or

(Automatically) contribute to achieving it.

Apart from these goal elements, goal models also include relationships to express

how knowledge of satisfaction of one goal, affects our belief about the satisfaction of

other goals. These links are means-ends, which connect tasks to goals indicating a

specific way to achieve the goal; task decomposition which indicate the sub-tasks, sub-

goals, resources and soft-goals that need to be performed or satisfied in order for a task

to succeed; and contribution relationships, which show how soft-goals contribute posi-

tively of negatively to achieving a quality, also show the AND/OR contributions. When

it comes to task decomposition, analysts recursively decompose hard-goals into sub-

goals to form an AND/OR decomposition which represent a fulfillment condition of a

main goal by the sub-goals. An AND-decomposition indicates that the all sub-goals

need to be satisfied in order for the destination goal to be satisfied as well. For example,

(Schedule Meeting) goal in Figure 1 can only be satisfied when both goals (Collect Time

Tables) AND (Choose Schedule) are satisfied. To the contrary, an OR-decomposition

means that the satisfaction of at least one sub-goal results in the satisfaction of the des-

tination goal. In Figure 1, (Choose Schedule) can be done either by ’Manually’ OR

’Automatically’.

As opposed to mean-ends links and task decomposition links, contribution links

10



Figure 1: Goal models with symbolic (left) and numeric (right) contribution links.

are used when partial or uncertain satisfaction influence needs to be modeled. This

is specifically useful for soft-goals whose satisfaction condition is, as we saw, not pre-

cisely defined. A contribution link from goal A to goal B means that goal A contributes

to the satisfaction of goal B, i.e. the achievement goal A helps the achievement of goal

B. The value assigned in the label of the connecting lines indicates the effect of whether

it helps or hurts satisfying the attached goal of the upper level. Multiple studies have

proposed different approaches on how these labels should be modeled and how to per-

ceive their meaning [25] [26].

The qualitative or symbolic approach, used in modeling languages such as i* [74]

and GRL [6], uses symbols such as “++”, “+”,”−“ or “−−’” as labeling values to

contribution links to indicate how the base goal affects the satisfaction of the destina-

tion goal. A goal model with qualitative contribution links is depicted on the left side

of Figure 1. To provide an example, the task of Collect Time Tables can be achieved By

System, which helps achieving Reduce Scheduling Effort goal, as inferred from the”+”

symbol on the contribution link. An alternative is By Person, but hurts achieving Re-

duce Scheduling Effort goal, as inferred from the ”−” symbol on the contribution link.

11



The precise meaning of qualitative labels, i.e. how they are supposed to be used to make

inferences about satisfaction influence, has been discussed in various works. In [25]

for example, specific rules that associate the satisfaction kind and level are set out and a

logical reasoning technique allows rigorous (thus, amenable to automation) reasoning

about propagation of satisfaction evidence. Elsewhere [6], a less expressive approach

is adopted that however requires human intervention for deciding complex contribution

combination scenarios. Both these efforts are explained below in Section 2.2.

The quantitative or numeric approach, on the other hand, use numbers, such as the

values between [0,1], as labels to indicate the degree to which the base goal contribute

in the satisfaction of the destination goal in comparison with its alternative [25]. Fol-

lowing the same example in the qualitative case, achieving the Collect Time Tables task

by By System has the label value of 0.8, as opposed to By Person which has the value of

0.2, which indicates that the former participates better in the satisfaction of the Reduce

Scheduling Effort goal than the latter. As with the qualitative case, various approaches

for understanding the semantics of quantitative contribution links have been proposed

in the literature. Giorgini et al [25] introduce a theory in which the modelers choose

how the numbers are interpreted into satisfaction propagation following a general label

propagation framework. In URN [6] as well as Liaskos et al. [40] a linear approach

is presented which has simpler semantics but is less expressive and implies structural

restrictions. These proposals will be discussed in more details in the following section.

12



2.2 Contribution Semantics

2.2.1 Overview

As we saw, the informal descriptions of contribution links above allow a model read-

er/user to perform very basic inferences by looking at the goal model. For example,

a user can compare two contributions with respect to which one is larger or he/she

can even choose between alternatives in the hard-goal decomposition with respect to a

soft-goal of interest. Looking at Figure1, if to ’Reduce Scheduling Effort’ is an impor-

tant soft-goal, then we know that (Choose Schedule) ’Automatically’ is preferable than

doing so ’Manually’ by simply looking at the contribution labels and without know-

ing precisely what they mean. However, more detailed semantics need to be given in

order to perform more complex inferences such as deciding on the satisfaction status

of a goal that receives multiple incoming contribution links, or, as we will see below,

deciding the optimal alternative by considering all contribution links in the structure.

2.2.2 Qualitative Model Semantics

Giorigini et al. have developed the most expressive semantics for the qualitative (sym-

bolic) links [25] [26]. According to their framework each goal in the diagram can be

associated with two variables: one that measures satisfaction and one that measures

denial. Each of these variables can take one of three values: Full evidence (denoted

with prefix F), Partial Evidence (P) and No Evidence (N) of, respectively satisfaction

(suffix S) or denial (D). For example, for a goal we may have partial evidence of sat-

isfaction (denoted PS) and no evidence of denial (denoted here ND) and for another

full evidence of satisfaction (FS) and partial evidence of denial PD; the inconsistency

is perfectly fine and one of the strengths of the framework. A set of rules, seen in Table

13



Figure 2: Qualitative Contribution Figure 3: Quantitative Contribution

2.1, combine the satisfaction and denial values of the origin goal with the contribution

symbolic label to decide the satisfaction and denial values of the destination. Looking

at the example in Figure 2, ’Apartment Affordability’ satisfaction value is calculated by

looking at the criteria goals if we know that satisfaction and denial values of ’Distance

from City’ are FS , PD then based on the rules of Table 2.1 ’Apartment Affordability’

must be PS,PD – assuming no other influence. However, considering the other criteria

’Apartment Size’ satisfaction value FS , FD, the maximum of both criteria value will

be FS , FD Which is ’Apartment Affordability’ satisfaction and denial value.

Table 2.1: Symbolic Contribution Semantics

Label Effect Label Effect Label Effect Label Effect

++

FS→ FS
PS→ PS
PD→ PD
FD→ FD

−−

FS→ FD
PS→ PD
PD→ PS
FD→ FS

+

FS→ PS
PS→ PS
PD→ PD
FD→ PD

−

FS→ PD
PS→ PD
PD→ PS
FD→ PS

Other proposals for the semantics of contribution labels have also been proposed

in the literature. Amyot et al. [6] use a single value system and as such use a more

complex function that explicitly labels conflict. Which is similar to the previous pro-

posal in a sense that the strength of the contribution effect is the minimum between the

strength of the label and the satisfaction of the origin, noting that negative labels invert

satisfaction into denial and denial into satisfaction. Aggregation however is different
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Table 2.2: Numeric Contribution Semantics

Bayesian s(g) = MAX
g′∈Og

{s(g′)×w(g′,g)}

Min-max s(g) = MAX
g′∈Og

{MIN(s(g′),w(g′,g))}

Serial-parallel s(g) = MAX
g′∈Og

{ s(g′)×w(g′,g)
s(g′)+w(g′,g)}

Linear s(g) = ∑g′∈Og{s(g
′)×w(g′,g)}

in Amyot et al. where strong and weak effects are counted and compared separately

to then combine in a hybrid addititive/maximization fashion marking co-presence of

strong positive and negative effects with “conflict” labels. We note that, in the con-

text of such conficts, Horkoff et al. [33] suitably proposes human intervention for their

resolution, instead of relying on rules.

2.2.3 Quantitative Model Semantics

In the quantitative (numeric) framework the rules are replaced by algebraic formulae.

Based on the work of Giorgini et al. [25] [26], three possible ways were proposed by

which this formula can be structured, seen in the top three rows of Table 2.2; in practice,

their framework is open to the adoption of many other ways. Given a set of goals

g′ ∈Og, each with satisfaction value s(g′)∈ [0.0,1.0] targeting goal g with contribution

links weighted as w(g′,g), the satisfaction value of goal g is expected to be s(g) as

defined in each of the formulae. In all the proposed formulae (“Bayesian”, “Min-

Max” and “Serial-Parallel”) aggregation is implemented through maximization. Note

that in this semantic framework, users are supposed to understand the numbers of the

contribution links as absolute contribution values potentially elicited and understood in

isolation from the other ones.

A different interpretation of numeric contributions, which is of particular interest
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here, is the approach followed by URN [6]; a version of which was experimentally

studied by Liaskos et al. [40]. According to that interpretation, a unique numeric satis-

faction value is assigned to each goal with values in the real interval [0.0,1.0] showing

no distinct satisfaction and denial values. Then, the number on the contribution link de-

notes the share of contribution of the satisfaction of the origin goal to the satisfaction of

the destination goal. This implies also a different formula for satisfaction propagation,

the last one on Table 2.2; the formula is labeled as “Linear” because it calculates the

satisfaction of the destination goal through linearly combining the satisfaction value

of each goal that influences it, using the numbers on the contribution links as weights

for the linear combinations. To provide an example, a goal model depicted in Figure 3

show that ’Distance from City’ has the satisfaction value of 0.8, while ’Apartment Size’

has the satisfaction value of 0.4. When calculating the satisfaction value of ’Apartment

Affordability’ following the Linear Formula will be 0.48.

Quantitative frameworks use algebraic expressions instead of rules and exhaustive

tables. Amyot et al. [6] multiply satisfaction values of goals Ai (a number in [-100,100])

with the label li (also a number in [-100,100]). The satisfaction of B is calculated by

adding up the results – as in sat(B) = ∑sat(Ai)× li. We can, thus, say that, given the

resulting satisfaction value for B, the labels of the incoming contributions represent the

share of each of the corresponding origin goal to the satisfaction of B. In Liaskos et

al. [40] and Maiden et al. [47] the “share” semantics becomes more explicit: labels are

the result of Analytic Hierarchy Process (AHP) process and must necessarily add up to

1.0. As opposed to the URN approach, however, each goal can receive multiple groups

of incoming contribution links, each group independently concerned with a specific

local decision. Thus, this AHP-based framework is not concerned with calculating a

global satisfaction value that results from a total evaluation of a goal model, but rather
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sets of satisfaction values corresponding to options in decision problems expressed as

OR-decompositions in the model. Another important difference of that framework is

that it does not define denial of goal, which greatly simplifies effect and aggregation

rules.

Despite the availability of both approaches, it is observed that the qualitative rep-

resentation is more widely used, for reasons that can be hypothesized to relate to their

perceived appropriateness with respect to the data that exist at hand about the contribu-

tion relationships which are often limited, e.g. in early requirements analysis contexts.

For example, considering a goal “Distance from City” and the goal “Apartment Size”,

we can convincingly argue that the former contributes “positively” or “very positively”

to the latter and represent it through a “+” or a “++” respectively. It is arguably less

convincing to say that the contribution is 0.2 or 0.8, as it raises the question of where

the numbers came from.

Nevertheless, Liaskos et al. [40] showed that adopting the linear interpretation of

contribution links comes with simplifications and restrictions. This interpretation of-

fers the benefit of systematic elicitation of the numbers through AHP and the pair-wise

comparison method it introduces. Following this approach, numbers such as 0.2 and

0.8 are actually not arbitrary but the results of a streamlined and widely-applied elicita-

tion process [47]. This way, the arbitrariness argument against quantitative goal mod-

els is addressed. What remains to be understood is how qualitative labels and numbers

compare as visual representations. In other words how the choice of representation

affects the degree by which users/readers of the models comprehend and utilize its

content.
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2.3 Theory of Graph Comprehension

Goal models are conceptual models, i.e. conceptualizations of a domain of interest.

While a conceptual model can be represented in different ways, the dominant approach

is through the use of the diagrammatic representations such as those we discussed ear-

lier (clouds, ovals, links, labels of various kinds). However, successful understanding

of a conceptual model necessarily depends on the choice of the appropriate diagram-

matic (or other) representation, which, in turn, is informed by our understanding of

how humans perceive such diagrams. In this section we focus on this question of graph

comprehension.

There are different methods to represent and deliver information. Verbal or senten-

tial approach is the basic method when communicating an information in confrontation

between two parties; however, visual graphs are also used and have been proven to be

an effective method to communicate information and facilitate its delivery because they

utilize cognitive and perceptual mind mechanisms effectively [38].

Several theoretical interpretations on the mental processes involved in the phenom-

ena of graph comprehension have been studied. The work we present in this thesis

is strongly based on Pinker’s Theory of Graph Comprehension [55]. This theory by

Steven Pinker explains the cognitive operations and processes involved in reading an

information graph, predicting through them, the traits that makes an individual better or

worse at reading a graph. In understating these processes, the theory in return predicts

the graph properties that take part in its ability to convert a given type of information

to the reader.

In its essence, graphs translate information into visual objects, and according to

Pinker’s theory, the dimensions of each objects correspond to a mathematical scale in

terms of its location and relationship with other objects. Assigned values to each object
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correspond to a value on that mathematical scale. To understand these visual elements

and their correlation, Pinker explains a number of mental processes the reader goes

through. In what follows, the concepts used in the theory to reflect the outcomes of

these mental processes.

• The Visual Array: The term reflects the result of the first mental reception of

the graphic display, which is the raw information the reader should reason with

using an encoding mechanism.

• The Visual Description: Through the reasoning process mentioned above, the

Visual Description is created, which encodes the marks depicted on the graph

based on their physical dimension using words and symbols.

• The Graph Schema: Through the recognition of the type of graph the reader is

faced with, the reader instantiates what is called a Graph Schema; which shows

how the physical dimension is mapped onto the appropriate mathematical scale.

• The Conceptual Question: This term represents the message the graph is meant

to deliver which the reader is trying to assemble. In case the extracted message

was not the intended conceptual question, inferential processes of mathematical

reasoning are performed to infer the correct information.

Based on the theory concepts mentioned above, all sorts of information graphs

should trigger the same cognitive processes in order to be comprehended. Using the

above-mentioned mental methods to reason with the encoded visual description and

graph schema, the reader then tries to achieve comprehension by predicting the con-

ceptual question of the graph. Pinker indicates that individual factors have an influence

on the accuracy level of the information retrieved by the reader.
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To provide an example using goal models, we can assume that the first information

received when exposed to a goal model like such as those in Figure 1, i.e the notice of

the mere existence of shapes, lines, and texts represent the Visual Array of the graph.

Once realizing the elements of the graph, the reader begins to create a Visual Descrip-

tion in which the mind makes connection of how each element is connected and related

to others in terms of pattern location, distance, and included data without yet noticing

the rules, and reasoning behind these elements. In the next step, the reader of the graph

will search in their long term memory for a suitable Graph Schema, a template, that

is, for interpreting the incoming visual information. The Graph Schema holds the in-

formation necessary to assign meaning of the visual elements and perform inferences

therewith. To be effective as such the Schema is customized to the specific instantiating

at hand. For example, when a reader sees a flow-chart, the Graph Schema of flowcharts

is evoked, in which the boxes and lines allow for specific reasoning. Subsequently the

schema is customized for the flow-chart at hand. Which Graph Schema is evoked is

highly driven by a pattern matching process between the visual information and similar

representations observed in the past.

Other Theories

Although our theoretical basis is Pinker’s, various other theories of graph comprehen-

sion, largely compatible with it have been proposed in the literature that are worth

mentioning.

In a different work by Kosslyen [37], A take on the matter of visual information

processing is summarized. In his paper on understanding graphs and charts, the visual

array explained by Pinker represents the perceptual image in Kosslyn’s work, which

is an output of what the reader visually make out out of a given graph. This image
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remains so as long as it remains within display. The material of that image is then stored

in the short-term memory as basic information accompanied by conscious experience

when recognizing certain words or symbols in the graph. This shot-term information

is connected with information received from the long-term memory which would aid

conferring meaning beyond the given graph.

Kosslyn also studies the efficiency of graphs using an analytic scheme that evaluate

graphs on four levels. The first level is the Basic Level in which the graphic constitutes

(background, framework, specifier, and labels) are defined. On the Syntax Level, each

of these constitutes is evaluated as visual elements based on their location, dimension,

and grouping. The Semantic Level then analyses the meaning behind each element and

what they represent and depict in the graph. Finally, the pragmatic level, which ana-

lyzes how each element is interpreted by readers beyond what they visually represent.

This analytic scheme is used to evaluate existing graphs in terms of their efficiency, but

also suggested to be used and applied in the design process of graphs.

Another theoretical approach pertinent to graph comprehension is due to D.Moody

[51] who has expressed the lack of focus on visual syntax in favour of semantics when

developing a visual notation, and the lack of guidelines in the literature with regards to

visual representations. To that end, he proposes the Physics of Notation framework in

which he provides nine principles purposed to evaluate and compare existing notations,

or use as a guideline for designing a cognitively effective visual notation optimized

for human communication and problem solving. He further uses these principles to

identity flaws in some existing software engineering notations, suggesting points to

improve them. In what follows a summary of of these principles:

• Semiotic Clarity; which is concerned with the correspondence between the se-

mantic constructs with the graphical symbols of the designed notation.
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• Perceptual discriminability; which relates to the distinguishability of different

graphic symbols.

• Semantic transparency in which graphic representations should be inferable. Se-

mantic Transparency is the notion that is the closest to our notion of intuitiveness

discussed below.

• Complexity Management which refers to the ability of visual notations to deliver

information without overloading the human mind.

• Cognitive Integration when multiple graphical diagrams are used to represent a

system.

• Visual Expressiveness; to evaluate the number of visual variables (shape, texture,

brightness, size and color) used, and their utilization.

• Dual Coding; which is concerned with whether or not the use of text alongside

graphics help with their interpretation.

• Graphic Economy; which related to the number of symbols used in the notation

and whether is cognitively manageable.

• Cognitive Fit; which follows a theory of the same name in which different graphic

representations of the same information are used for different tasks and audience.

Within the domain of our research, the principle of semantic transparency pointed

out the concept of intuitiveness of the visual representation. According to that princi-

ple, there should be an association between graphic representations such as symbols

and relationships and the concept they represent or indicate in order to ease the cogni-

tive load on the human mind.
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2.4 Intuitiveness

Given our above understanding of graph comprehension as a process of evoking and

instantiating a schema, i.e. a framework for understanding the various elements in the

visualization and how they are supposed to work, it follows that the process may be

successful or unsuccessful under different circumstances. In our work we are particu-

larly concerned with whether the right schema and rules of inference are evoked by the

visualization, when users are not provided any training for doing so. To develop such

a construct, we borrow the term intuitiveness used in daily life to refer to properties of

functions (e.g. of devices, human-machine interfaces) that makes them usable without

training.

Intuitiveness is understood as having the ability to know or understand things with-

out any proof or evidence. We use the (working) theoretical construct “intuitiveness”

of a model construct to describe the ability of untrained users of a conceptual model

to readily understand what the construct means and how it should be used to make

inferences in the model. The concept is analogous to the idea of an intuitive human-

machine interface: the more intuitive an interface is, the more readily first-time users

can use it without the need to resort to help, a manual etc. The term is akin to that of

learnability which in its general term refers to the ease in which something can learned.

Within system and software design, it is a quality of an interface that allows users to

learn how to use it easily and quickly [66], the ease of this learning process explained

in the match between the effort that users dedicate to learn a system one one hand, and

whether they become effective in that on the other. One can think of intuitiveness as

a facilitator of learnability in interactive visualizations, both being finer quality factors

to usability. Design principles such as consistency and compliance to standards [54]

are understood here to facilitate intuitiveness: users will likely find intuitive a user in-
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terface that uses conventions with which the user is already familiar. We note that in

the study we describe in this thesis, the training offered to the participants refers to the

context in which the object of intuition, i.e. the operational meaning of contribution la-

bels, is being investigated rather than the object itself. In other words, we neither train

participants to specific contribution semantics, assessing afterwards the outcome of the

training, nor do we observe the level of improvement as they perform tasks, as feed-

back is not provided and such ”improvement” is not expected. This makes us hesitant

to characterize our focal construct as learnability, despite it being a more established

construct in the field of Human Computer Interaction.

With this user-machine interface analogy in mind, we can reasonably claim that

conceptual models are also artifacts to be efficiently used by people, where “use” here

is “understanding and communication” [53]. Further, as design artifacts themselves,

modeling languages are results of design decisions at two levels: at the level of the

concepts they consider (e.g., hard-goals and soft-goals) and at the level of the visual-

ization of those concepts (e.g., ovals and clouds). It might be the case that there are

better and worse decisions for each of those levels.

Intuitiveness, as applied in this work, measures the entire package of a concept and

its visualization: the visualization evokes a meaning, which, in return, is used to make

inferences. When a user is exposed to a visualization and ends up performing an in-

ference that is not intended by the designers, a sub-optimal decision may be claimed

at any of the levels: either the users did not map the visualization to the right con-

cept (e.g. confused a “goal” for an “event”, both otherwise being clearly understood

concepts), or they did so correctly but did not understand the concept as the language

designers intended them to (e.g., they correctly mapped a symbol to an “upper-goal”

but did not know what to do with the latter). While training may arguably establish
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correct bridging between visualization and inference in the long term, intuitiveness is

exhibited when limited such training is necessary.

In the context of contribution links in goal models, the inference this work is in-

terested in is how users assign satisfaction to goals given satisfaction of other goals

based on their own intuition and interpretation of what contribution labels probably

mean. Reversely, their observed inferences are revealing of their perceived meaning of

the links, and, as such, the former can be used as empirical operationalizations of the

latter.

2.5 Individual Differences in Model Comprehensibility

When performing tasks such as reasoning with diagrams, humans employ, as we saw, a

combination of cognitive processes. It is natural to assume that not all individuals will

employ these processes in the same way, combinations, efficiency and accuracy, and,

moreover, these differences will likely affect the outcome of the task. The subject of in-

dividual differences in modern psychology refers to the psychological differences and

similarities between people, which may, in our case, explain different levels and qual-

ities of performance when reasoning with diagrams. The methods that are concerned

with identifying, measuring and classifying these differences are developed within the

context of psychometrics, i.e. psychological assessment [72]. Within the field of In-

formation Systems, individual differences have been investigated as influencing factors

in different areas; we offer some examples here. Harrison et al. [29] studied the influ-

ence of demographics (gender, age, education and experience), personality (computer

attitude, computer anxiety and math anxiety) and cognitive styles on skill in End-User

computer. In the same manner, Sein et al. [63] studied the effect of visual ability and
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learning mode on the mental model formation process in novice users of a computer

system. Humpherys et al. [35] presented a model to related personality dimensions,

motivation and anxiety to information processing.

Within the context of conceptual modeling, a number of individual characteristics

such as age, gender, education, domain expertise, systems experience, skills, and cogni-

tive style have been identified as important variables in the design and implementation

of information systems. In his study, Dhillon [19] has considered this approach to study

how individual differences in conceptual modelers can influence the task performance

of conceptual modeling. The results have shown a probable relation between the cog-

nitive styles factor of modelers and the conceptual models quality, while self-efficacy

seem to be a direct determinant of the model quality.

Since one of the concerns of this study is to look into model comprehensibility,

explained later in section 2.6, Individual factors have also been studied within that

context. For example, Reijers and Mendling [58] investigated the personal factors that

could affect the comprehensibility of process models using self-assessment surveys on

a group of students to assess their theatrical knowledge and expertise in process models,

which comes with agreement to the study of Shanks et al. [65]. Mendling’s work [49]

has shown that there is a connection between personal factors, i.e. the background

knowledge of conceptual models, and the ability to understand process models. In

comparing between two modeling languages, De Lucia [46] found that the subjects

experience and ability were of influence when the more experienced subjects performed

better than the novice ones.

For our research we are concerned with whether cognitive individual differences

affect the success and ease by which users can use goal models to make decisions in

either the qualitative or quantitative models. We will particularly focus on cognitive
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style skills and mathematical skills and aptitude.

2.5.1 Cognitive Styles

The cognitive method or style in its concept refers to the way in which different indi-

viduals think, perceive and remember information. Cognitive Styles influence the way

we receive, organize, and interpret the data of our surroundings, and how we then in-

tegrate these interpretations into mental models that guide our behaviour and influence

the cognitive tasks we perform [29]. The value of cognitive style has been increasing

in recent years. The concept and its measures has been utilized for selection purposes

such as careers guidance, task design, team composition, conflict management and

training, even on a personal level [30]. Individual differences in cognitive styles have

been regarded as important in relation to influencing perception, learning, decision

making, communicating and information processing [50]. Xue et al [73] studied their

impact on the decision making choices of firm managers, and has recognized them to

be a major factor.

In most literature, cognitive style is understood as a bipolar construct revolving

around the dimension of analytical style versus intuitive style. Intuitive style is charac-

terized by knowing without knowing the reasoning beyond the knowledge of the made

decision. Analytical style, on the other hand, is the knowledge resulting from break-

ing down the problem and collect information in a systematic explainable method [4].

Most work tend to categorize individual cognitive method of dealing with information

as leaning towards one of the cognitive styles as a personality trait [30]. However,

other work label cognitive styles differently. When Cools and Broeck [16] proposed

their Cognitive Styles Indicator (CoSI), they labeled three cognitive styles: knowing,

planning, and creating to identify how different individuals deal with information and
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their problem solving methods. Martin’s Cognitive Style Inventory [48] follows the

concept of cognitive style model which uses consisted of two continua: (1) high sys-

tematic to low systematic and (2) high intuitive to low intuitive, which result in five

different styles depends on the score location in the continua: systematic style, intu-

itive style, integrated style, undifferentiated style, and split style. This study, however,

uses Allinson and Hayes’ 38-item self-report Cognitive Style Index (CSI) [4], a mea-

sure specifically designed for survey purposes. The CSI measure individuals based on

their rationality versus intuitiveness tendency in handling decision making, which is a

main concern of this study.

When comparing between the cognitive methods, especially those dividing them

into analytical versus intuitive styles, Hammond [28] states that research has been in

favor of the intuitive approach being more effective when dealing with a decision mak-

ing situation. In his work, however, Hammond argues that these comparison has been

rather restricted mainly due to the use of analytical methods to measure intuition, and

he states that both intuition and analysis modes can be triggered within the same per-

son based on the assigned task property. He offers a method to indirectly compare

between the two modes using the concepts of cognitive continuum and task contin-

uum, which purpose is to determine whether the assigned task is intuition-inducing, or

analysis-inducing. The theory works when the properties of the task at hand is iden-

tified through the attributes it represents, i.e how it is presented, displayed, whether it

can measured, or should follow a certain method to be solved. This, in return, induce

one of the cognitive modes. He identified the cognitive properties of both intuition and

analysis, presented in Table 2.3, when handling a given task. A simple example is how

presented mathematical problems usually induce analysis, while graphical displayed

problems induce intuition. However, the task properties can be displayed on the depth
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Table 2.3: Properties of Intuition and Analysis

Intuition Analysis
Cognitive control Low High
Rate of data processing Rapid Slow
Conscious awareness Low High
Organizing Principle Weighted average Task specific
Errors Normally distributed Few, but large

Confidence High confidence in answer;
low confidence in method

Low confidence in answer;
high confidence in method

level, which refers to the covert relationship among the variables; or the surface level.

or the surface level, which refers to the over display of the task variables. In case of the

lack of congruence between the surface and depth level, the apparent or surface proper-

ties of a task may appear to induce a certain cognitive mode, while its depth properties

actually induce another. For example, the task of appreciating the aesthetic features of

mathematical formulas. His work concluded that when specifying task properties on

both depth and surface level help predicting the cognitive process used to solve that

task.

2.5.2 Mathematical Aptitude

Mathematical aptitude has always been a case of interest mainly in the educational set-

tings. In the literature, it was investigated as a dependent factor with multiple factors of

influence such as gender, cognitive abilities, and anxiety [20]. The use of mathemati-

cal ability to make decisions and solve problems falls under the concept of quantitative

reasoning. There is a strong belief that mathematical skills are crucial in almost in

area of practice due to the large number of studies showing strong correlation between

mathematical performance and workplace performance. This belief lead employment

to seek a certain level of mathematical aptitude in individuals for job and task assigning

purposes. A large number of aptitude tests developed by psychometric experts exist in
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various organizational resources and online such as SHL Tests, Talent Q and Cubiks

provided through JobTestPrep [3]. However, the availability of these tests is exclusive

to personal and employment purposes.

Other than the area of business and employment, math assessment tests are also

used in education to identify math difficulties in students. An example of such is

TOMA-3 (Test of Mathematical Abilities - Edition Three) [11], which contains four

sets of tests assessing mathematical knowledge, computation, math in everyday life,

and word problems.

In this work, we seek to study mathematical aptitude as a psychometric measure in

our experiment. In particular, we developed a mathematical aptitude test to focus on

arithmetic branch of mathematics that is concerned with the the ability to perform the

traditional operations of addition, subtraction, multiplication and division of decimal

numbers which other tests does not normally offer. The purpose of this measurement

is to find correlation between mathematical aptitude and the ability to infer optimal

choices when exposed to goal models of quantitative methods.

2.5.3 Mathematics Anxiety

We intend to study mathematical anxiety as an individual difference factor of impact

on the perception of contribution links in goal models. Given the nature of analytical

structure of conceptual models and goal modelings in general, and the quantitative

approach of contribution links in particular, we hypothesize that mathematical anxiety

would have an impact on the level of perception in the experiment subjects.

Math anxiety is a state of mind affects the motivation to learn mathematics or solve

math-related problems in both academic and ordinary life [21]. Ashcraft [8] defined

math anxiety as ”a feeling of tension, apprehension, or fear that interferes with math
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performance”. In his work, Ashcraft discussed the personal, educational and cognitive

consequence of math anxiety, and found that within the context of decision-making,

math anxious individuals tended to make more errors as the problem became more

complex when compared to low-anxiety participants. Harrison et al. [29] studied the

influence of math anxiety on end-user computing skills, and found that there is a nega-

tive relationship between the two.

Multiple measures were proposed in the literature to assess math anxiety. Richard-

son and Suinn [60] devised Math Anxiety Rating Scale (MARS), which consists of

98 items reflecting a variety of life situations that adolescents might experience that

would involve dealing with numbers. An shortened version of the same measure was

later developed by the same authors that contains only 30 items, which was validated

to be comparable to the original [69]. A revised 24-item test (MARS-A) by Plake and

Parker [68] has also been proposed. In our study, we adopt the 9-item Abbreviated

Math Anxiety Scale (AMAS) by Hopko et al. [32].

2.6 Related Empirical Work on Model Comprehensi-

bility

We close this chapter by looking at related empirical work that has been done in the

literature on constructing and assessing comprehensibility. The concept of comprehen-

sibility within the field of conceptual modeling has been a focus of several studies in

the past few years. As a criterion, it is important to conceptual models in order for

them to support the communication and provide understanding about the structure and

functionality of an information system during the engineering phases and beyond.

Much of the research in the field has been dedicated towards understanding the
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comprehensibility of (various aspects of) Unified Modeling Language (UML) and Entity-

Relationship (ER) diagrams – e.g., Shovel and Frumermann [67] conducted an exper-

iment to compare between the Extended Entity-Relationship (EER) model, and the

Object-Oriented (OO) Model to investigate which of the models is easier to compre-

hend. Although no major differences has been spotted in the results, it however reveals

some of weaknesses in the OO models, and some usability factors of EER. In the same

manner, De Lucia et al. [46] compared the two modelling languages of ER (Entity-

Relationship) and UML (Unified Modeling Language) through a controlled experiment

to investigate which of the two languages is more comprehensible. Factors investigated

as variables in the study were models designed in both UML and ER, comprehension

level, subjects’ experience, and subjects’ ability. The Results have found that UML

is easier to understand than ER diagrams. Performances of studied tasks using UML

show higher results than those using ER. The subjects experience and ability were also

of influence using UML given graduate students subjects performed better then under-

graduate students, but this does not apply to performances on ER diagrams for there

was no significant difference between the two subject groups there.

When dealing with notations in the same modeling language, Cruz-Lemus et al.

[18] reviewed a number of studies on UML statecharts, developing an experiment to

study the effectiveness and comprehensibility of these statecharts. Their results showed

minor conflicts, but overall stated the benefits of statecharts usage being situational.

In a different study, Purchase et al. [56] demonstrated the usage of an experimental

framework to compare between ER diagrammatic notations, and involving users to

investigates their preference in terms of comprehensibility. The results showed that

such methodology is usable to test the comprehensibility of diagram notations.

A number of studies have focused on process model comprehensibility where a
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number of design factors have been considered. When the structure of the conceptual

model is of concern, the modeling Language used for designing the model show no

major influence on comprehensibility as studied in [57] [46]; however, in a study to

compare the usability of Business Process Model and Notation (BPMN) and Unified

Modeling Language 2.0 Activity Diagram (UML AD), Birkmeier et al [9] conducted

an experiment in which they assign trained users to create models using the mentioned

modeling notations. The results have found that UML AD has exceeded BPMN on

the criteria of better data handling. In addition, their work have revealed that BMPN

has technical limitations concerning flexibility. Figl et al [24] introduced a number

of evaluation principles when model design is of interest. Their study was concerned

with the criteria symbols represented in process models, and how to evaluate their

effectiveness when it comes to model comprehension.

In a different study, Figl and Laue [23] studied the impact of BPM elements de-

sign factors, i.e their relations, interactivity and separation, on the comprehensibil-

ity of these elements. The result showed interactivity having the bigger impact, and

concluded that reducing the cognitive load in general when creating process models

improves their understandability; which in most cases depends on the nature of the

domain. This comes to an agreement with the study of Shallas et al [62], which shows

that complexity of the conceptual models have a negative correlation with how well a

model is perceived. The higher the complexity, the more challenging it was for users

to comprehend.

Modeling design structure-wise, Mendling and Strembeck [49] has found that struc-

tural and textual factors related to the process model purposes, characteristics and lay-

out strategies influence the understandability of process models. Another structural

factor is the size of the model and the load of information it contains, which was also
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investigated by Reijers et al. [58]. Their results emphasized the need for structural

guidelines for understandable process model, and also the need for the training to cre-

ate such models.

Although the comprehensibility of models or understandability is a popular con-

struct of study, it has been argued that there is little agreement on how this is to be mea-

sured. Indeed, in their survey, Houy et al. [34] find variability in how understandability

is operationalized in the literature. The concept of intuitiveness, as a specialization of

understandability, is less frequently being focused on explicitly as in the work by Jošt

et al. [36], for example, where the intuitive understandability of various methods for

modeling processes are empirically compared. The modeling languages involved in

the study were UML AD, BPMN, and Event-Driven Process Chain (EPC). Results has

shown that BPMN seems to surpass when processes are of minor complexity, while

EPC proved to be more beneficial for higher process complexity. However, the study

has also shown neither these languages significantly outperformed UML AD, which

makes it the most versatile choice for intuitive comprehensibility.

A number of metrics have been proposed by to ensure the comprehensibility and

overall quality of conceptual models. Vanderfeesten [71] introduced Cross-Connectivity

as a metric to measure the relationship between process model elements (nodes, con-

nectors, and arcs) to test its comprehensibility and accuracy. The base of the introduced

metric is considering the cognitive efforts of the model receiver in order to understand

it. Serrano at al. [64] conducted an experiment to validate a number of proposed met-

rics that aids in assuring the quality of models used to interpret data retrieved from

data warehouses. Those metrics assess some quality aspects of the conceptual models

including different scopes and levels of the model’s elements. His work has shown

correlation between some of the metrics and the comprehensibility aspect of the con-
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ceptual models.

Goal Model Comprehensibility

Work that relates to understanding the comprehensibility of goal models specifically

is more limited than that relating to conceptual models in general. Several work has

made attempts to improve goal model comprehensibility through involving users in

the design process. Horkoff et al. [33] presented a framework purposed for interactive

and iterative analysis. The process in their work include of interactively involving

users when specifying goals in early requirement engineering through asking break-

down questions, which they referred to as Forward Analysis. Their framework is based

on using the i* modeling framework, adopting the NFR satisfaction labels. Given

the similarities between i*, NFR [15], GRL [2], and Tropos [10], the authors deemed

their framework applicable to these modeling methods, but remain unsure about other

methods in the literature.

The way various concepts within goal models are visualized has also been the mat-

ter of investigation and empirical evaluation. Moody et al. [52] offer an assessment of

the i* visual syntax based on established rules (“Physics of Notations”- Section 2.3)

addressing flaws in the modeling methods regarding its different visual elements, and

suggesting probable improvements that can help increase understandability when per-

ceived by end-users. An empirical analysis was followed by Caire et al. [12] in which

experimental participants evaluate visualization choices of the language’s primitives.

The experiment was based on presenting the concept of Semantic Transparency which

promote the idea of symbols visually representing its meaning to reduce the cognitive

loads on the end-users side. Carvallo and Franch [13] have also studied, in the con-

text of a case study, how non-technical stakeholders performed in developing strate-
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gic dependency i* diagrams, promoting through their study, the possibility to involve

stakeholders in the process of context model construction.

Elsewhere, Hadar et al. [27] compare goal diagrams modelled using Tropos goal-

oriented framework with those modelled using scenario-based framework Use Case

diagrams on a variety of user tasks. The goal of the study was to compare which of

models are more comprehensible to analysts. Measures include text-model mapping,

model reading (extracting information from the model), and model modification (per-

forming targeted modifications to models). The results have shown that, in cost of time,

Tropos tend to exceed Use Cases in all three tasks.

Compared to the above efforts, the work presented in this thesis fits in a context of

an on-going program to understand the comprehensibility and intuitiveness of a spe-

cific construct within goal models: contribution links. In earlier work, for example,

Liaskos et al. [43] investigated the qualitative propagation rules of Table 2.1. Through

an experiment of a nature similar to the one described here, it was observed, among

other things, that positive labels and satisfaction values appear to be more readily un-

derstandable than negative labels and denial values.

Likewise, Alothman et al. [5] have also compared the various models for quanti-

tative satisfaction propagation including the one used here and three versions of the

one proposed by Giorgini et al. [26]. Their work simply presented to participants hi-

erarchies of soft-goals with known satisfaction values at the leaf level, and asked them

to choose the satisfaction of the root goal from a set of four values, each representing

one of the possibilities of Table 2.2. It was found that the serial-parallel method was

not preferred method while the most preferred depended on whether the contribution

weights added up to 1.0, in which case a linear interpretation was evoked.

In a fashion somewhat similar to that of Caire et al. [12], Liaskos et al. [39] explored
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visual ways for representing contribution levels instead of symbols and numbers and

found that even simple combination of pie-graphs and bar-graphs allow for better ac-

curacy. The difference this effort and the one presented in this thesis is that, while in

that paper the semantics are assumed and the visualization is in question, in the study

proposed here, both the visualization and its meaning are under comparison.
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Chapter 3

Methodology And Experimental

Design

3.1 Overview

The motivation of this experiment presented in this chapter is to search for evidence

that would offer some answers to the research questions presented in Chapter 1. Recall

that these research questions are as follows: firstly, [RQ1] we are interested in learning

which of the two methods of modeling contributions links is better in terms of usabil-

ity in general, and in particular which of the two methods is more intuitive [RQ1.1]

and more efficient [RQ1.2]. Then [RQ2] we want to investigate and compare the role

of individual differences in affecting the comprehension and intuitiveness of the two

modeling methods. Individual differences areas of interest being: [RQ2.1] cognitive

styles, [RQ2.2] mathematical anxiety, [RQ2.3] arithmetic ability, and finally [RQ2.4]

the method/approach followed by individual with solving the goal model exercises.
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The experiment we conducted to address the above questions has a confirmatory

and an exploratory aspect. It first aims to experimentally compare two approaches for

modeling contribution in goal models, qualitative and quantitative. With regards to

(RQ1), we specifically aim at identifying which of the two representation approaches

is more intuitive and efficient allowing for more accurate and quick decision making.

To this end, we posit the main following hypothesis:

Hypothesis 1 Goal Models using quantitative contribution link approach are more

intuitive than those using the qualitative approach.

We further want to explore whether and how individual differences and ways of

working, specifically ability and attitude towards math, cognitive style as well as fol-

lowed approach, affect intuitiveness dimensions (RQ2). Given the absence of earlier

experience in this particular aspect of the research, no explicit hypotheses are made

with regards to (RQ2). Instead, implications are made through observations and study

of the experiment results.

3.2 Experimental Design

3.2.1 Overview

In order to fulfill the objectives of the study, an experimental protocol was designed

for collecting data. Specifically, a number of goal models of various sizes displaying

decision problems in various domains have been developed. These models represent

decisions with two or three alternatives and are specially crafted so that one of the

alternatives is optimal with respect to the criteria structure modeled through a hierarchy

of contributions. There are two groups of models: those modelled though quantitative
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and those modelled through qualitative contributions.

Experimental participants are split in the two groups in a between-subjects fash-

ion: some are exposed only to qualitative models and some only to quantitative. Each

participant is presented a sequence of the experimental models and decide which of

the alternatives represented in each model is the optimal one. The correctness of their

aggregated (by group) responses marks the accuracy. Response time is also captured

to be used as a measure of usability of the representation.

Prior to performing the above exercise, users perform a pre-test whereby psycho-

metric characteristics are identified. The elicited psychometric and demographic char-

acteristics are then used for exploring how they interact with accuracy and efficiency

measures identified in the main test.

3.2.2 Constructs and Variables

The central construct of our experiment is intuitiveness as discussed in section 2.4.

To measure it, we expose experimental participants to a set of models and ask them

to perform inferences based on the information given in the model. The participants

have only basic awareness of the modeling language and the abstract meaning of the

constructs but no knowledge of precise semantics. Intuitiveness is measured primarily

via accuracy of the participant inferences, i.e., the number of inferences that match the

ones that the language semantics dictate. The more the matching (“correct”) inferences

the more the agreement between the user and the language designers, and, hence, the

more intuitive the visualization-semantics package can be considered.

In addition to accuracy, we also measure efficiency when applicable, which is the

number of accurate (matching) responses divided by the time it took to make the neces-

sary inferences. There is also the construct of confidence levels of the method followed
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by as the participants, as well as that of the inferences made and both are self reported

by the participants themselves.

3.2.3 Instruments and Materials

The instrument used to acquire our data is a sequence of on-line screens containing

directions, training materials, questions and tasks. It starts with a consent form that

explains the purpose of the research and the nature of the tasks the participants are

required to do. This form is followed by questions about demographic information

such as age, sex, education and background in addition to their familiarity with goal

models. In addition to this consent form, some training materials are included followed

by a number of adapted and customized measures were implemented in the survey, and

in what follows, details on each of these materials and measures:

Training

Participants are offered two video presentations introducing them to the concepts of

decision alternatives and criteria, as well as goal models and the high-level meaning of

either type (depending on instrument) of contribution links. Care is taken so that: (a)

the videos are as much as possible identical to each other (e.g. use of same examples

and points, about same length, same narrator, same visuals etc.), (b) the videos do not

prescribe any exact method for interpreting satisfaction propagation that would allude

to specific semantics.

Cognitive Styles Measure

Cognitive Style Index (CSI) by Allinson and Hayes (1996) [4] was adopted to serve the

purpose of this research. The CSI is a 38-item self-report questionnaire1. Each item
1The exact instrument cannot be reproduced here due to copyright restrictions.
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has ‘true’, ‘uncertain’ and ‘false’ response options, and scores of 2, 1 or 0 are assigned

to each response with the direction of scoring depending on the polarity of the item.

The nearer the total score to the maximum of 76, the more ‘analytical’ the respondent,

and the nearer to the minimum of zero, the more ‘intuitive’ the respondent.

Math Anxiety Measure

Abbreviated Math Anxiety Scale (AMAS) by Hopko et al. [32], which is concerned

with measuring the mathematics anxiety level of each individual. It is a 9-item self-

report questionnaire that uses a five-level Likert type scale as shown in Figure 4.

Subjects will rate the degree to which they agree or disagree with a statement from

“strongly agree” as the highest degree, “agree”, “undecided”, “disagree” or “strongly

disagree” as the lowest degree. The measure is presented in the survey as it appears in

Figure 4.

Mathematical Ability Measure

As opposed to the above measures that are standardized, the Mathematical Ability

Measures we employed are custom made for the needs of the experiment. It consists

of a series of exercises in mental arithmetic, the list of these exercises are presented

in Table 3.1 and 3.2 Subjects are expected to solve (28) mathematical problems with

escalating complexity level. It consists of four (4) direct multiplications scored in

[0 . . .10] though an exponentially decaying function of the absolute distance between

participant response and correct answer, four (4) comparisons of two-number products

with a 0.05 distance and two (2) comparisons of two linear combinations containing

two terms with a 0.25 distance. The overall score is normalized to the [0 . . .12] for

uniformity with the accuracy and other scores. The math exercises appear in the survey
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Figure 4: Abbreviated Math Anxiety Scale (AMAS) by Hopko et al. [32]

as visualized in Figure 5 and 6.

Goal Model Comprehension Test

A number of goal models of different visualization were devised by the research in-

vestigators. These models of decision making come from three different domains:

choosing a department, choosing an academic course, and choosing a mean of trans-

portation. These domains were selected to represent a realistic setting to which the

experiment subjects can related to. Two model structures were devised for each do-

main (a “small” and a “large”), and for each structure, two sets of labels of different

values were devised, which result in 12 models. The 12 models exist in two copies:

one with qualitative labels (seen in Figure 7, 8 and 9), and one with quantitative labels
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Table 3.1: Direct Calculation Math Exercises

Addition Multiplication Division
0.76 + 0.19 = 0.28 x 0.27 = 0.46 / 0.62 =
0.47 + 0.73 = 0.95 x 0.49 = 0.44 / 0.54 =
0.77 + 0.28 = 0.15 x 0.34 = 0.37 / 0.88 =
0.89 + 0.66 = 0.74 x 0.45 = 0.18 / 0.73 =

Table 3.2: Comparison Math Exercises

Addition Substraction Multiplication Division
0.92 + 0.16
0.25 + 0.89

0.66 - 0.46
0.81 - 0.66

0.51 x 0.41
0.32 x 0.82

0.54 / 0.73
0.69 / 0.88

0.36 + 0.72
0.59 + 0.54

0.48 - 0.11
0.61 - 0.29

0.48 x 0.29
0.12 x 0.79

0.25 / 0.98
0.11 / 0.55

0.55 + 0.36
0.72 + 0.24

0.75 - 0.35
0.42 - 0.06

0.03 x 0.71
0.37 x 0.19

0.52 / 0.72
0.59 / 0.87

0.85 + 0.51
0.37 + 0.95

0.81 - 0.12
0.93 - 0.28

0.19 x 0.83
0.32 x 0.36

0.54 / 0.73
0.69 / 0.88

(seen in Figure 10, 11 and 12), all else being equal. Hence, the total models produced

are 24. Each goal model presented in the experiment as a graphical image representing

the domain of the exercise. By the end of the exercises, participants are expected to

self-report the Approach they followed, between “using their intuition” and “following

a specific method”.

The labels of the contribution links of the models follow a specific random sampling

technique, which we describe below:

• Contributions of quantitative models are a random sample from possible results

of AHP comparison processes, such that the score distance between the first and

the second option does not exceed 0.4 (nearly half of the maximum distance),

according to the Liaskos et al interpretation [40].

• Contribution of qualitative models are again randomly sampled from the domain

of four contribution labels (“–”, “-”, “+”, “++”) in a way that the first and sec-

ond option do not exceed half of the maximum possible distance, according to

44



Figure 5: An ’Addition’ Direct Math Exercise

Figure 6: A ’Substraction’ Comparison Math Exercise

Giorgini et al. [25].

Quantitative Goal Model Example

For clarity on how the models are constructed and how they encode a decision problem,

we go over the calculations based on the goal model of Figure 13. For the quantitative

goal model exercise about the Apartment Choice depicted in Figure 13, we follow the

linear method proposed in 2.2 to find the satisfaction value of each choice individually,

and then compare the end value of each result to find the optimal answer. As observed

in Figure 13, we have two choices (Apartment 1, Apartment 2) to choose from, mean-

ing the calculations take two stages.
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Figure 7: Experiment Goal Models with Qualitative Labels (Apartment)

Figure 8: Experiment Goal Models with Qualitative Labels (Course)
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Figure 9: Experiment Goal Models with Qualitative Labels (Transportation)

Figure 10: Experiment Goal Models with Quantitative Labels (Apartment)
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Figure 11: Experiment Goal Models with Quantitative Labels (Course)

Figure 12: Experiment Goal Models with Quantitative Labels (Transportation)
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(a) Qualitative Goal Model Exercise (b) Quantitative Goal Model Exercise

Figure 13: Survey Goal Model Exercises

For stage one in which we consider Apartment 1, let the base satisfaction value of

Apartment 1 be 1.0, and the base satisfaction value of Apartment 2 be 0.0. We start

the calculations by multiplying the satisfaction value of each option by the value of its

contribution to the satisfaction of upper goals, starting with ‘Have Lots of Room’ of

Apartment 1 as shown below:

1.0×0.67 = 0.67

We repeat the multiplication for Apartment 2 as following:

0.0×0.33 = 0.0

Next, we sum the result of both multiplication which will give us the satisfaction value

of ‘Have Lots of Room’ of the first Apartment one:

0.67 + 0.0 = 0.67

Following the same calculation for the next goal ‘Old Building’ results in:

(1.0×0.5)+(0.0×0.5) = 0.5+0.0 = 0.50

We repeat the same process again for ‘Away From Downtown’:

(1.0×0.11)+(0.0×0.89) = 0.11

To calculate the satisfaction value of ‘Good Apartment Quality’, we first repeat the

multiplication process of each of the lower goals founded satisfaction value by its con-
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tribution to the quality of the apartment as following:

0.67×0.07 = 0.05

0.50×0.43 = 0.22

0.11×0.50 = 0.06

Just like previous step, we then sum the results to give the satisfaction value of ‘Good

Apartment Quality’:

0.05+0.22+0.06 = 0.33

Repeating the same steps for calculating ‘Shared Apartment’ satisfaction value:

(1.0×0.2)+(0.0×0.8) = 0.2

Finally, we calculate the satisfaction value of Optimal Apartment Choice of Apartment

1 by again multiplying the values of ‘Good Apartment Quality’ and ‘Shared Apart-

ment’ by their contribution and sum the results as follows:

(0.33×0.83)+(0.2×0.17) = 0.27+0.03 = 0.30

So, the satisfaction value of Apartment 1 as an Optimal Apartment Choice is 0.3

Stage two of this exercise, we consider Apartment 2 by assuming its base value

to be 1.0 and the base value of Apartment 1 to be 0.0, and by repeating the steps we

followed in Stage one, the calculations are as following:

{(0.0×0.67)+(1.0×0.33)}×0.07 = 0.02

{(0.0×0.5)+(1.0x0.5)}×0.43 = 0.21

{(0.0×0.11)+(1.0×0.89)}×0.50 = 0.45

{(0.02+0.21+0.45)×0.83}+{((0.0×0.2)+(1.0×0.8))×0.17}= 0.7

This gives us the overall satisfaction value of Apartment 2 as an Optimal Apartment

Choice to be 0.7, and by comparing the calculations, we conclude with the fact that

Apartment 2 is the better choice over Apartment 1 which has an overall satisfaction

value of 0.3. We further observe that the distance between the two scores is 0.7-0.3
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= 0.4, which satisfies the distance requirement between first and second option (see

below).

Qualitative Goal Model Example

For the qualitative goal model exercise, we take the Course Choice qualitative example

depicted in Figure 13. We follow the method proposed by Giorgini in [25] to find both

the satisfaction and denial values of each choice individually, and then compare the

end value of each choice to find the optimal answer. As we can see in the example

figure, we also have two choices (Course 1, Course 2) to choose from, which also

means the calculations take two stages. The difference for the qualitative method is that

instead of math calculations, we follow the rules of Table 2.1 in Chapter 2 to decide the

satisfaction and denial values of a goal based on the effect of the contribution label.

However, to facilitate description of the algorithms without delving into the com-

plexity of the Giorgini et al. formalisms, we first need to define an evidence maximiza-

tion function as follows: Let L be a set of candidate satisfaction and denial values for

a goal, that are the result of applying propagation rules to all goals that have incoming

contribution values to the goal. For example, L = {FD,PD,PS,N,FD}; each of these

elements are the result of combining each of the satisfaction and denial values of the

origin with the contribution label.

Then In f er(L) returns a pair of values <,> each representing the highest satis-

faction and highest denial evidence found in L, respectively. In the example above

In f er(L) = In f er({FD,PD,PS,N,FD}) =< PS,FD >, because the highest satisfac-

tion label is PS (the third element) and the highest denial label is FD (the first and last

elements).

For stage one in which we consider Course 1, let the base satisfaction value of
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Course 1 be Fully Satisfied (FS), and the base satisfaction value of Apartment 2 be

None (N). Following the rules in Table 2.1, we find the satisfaction value of ‘Advanced

Topic’ for Course 1 to be:

FS +−→ PS

And for Course 2 to be:

N −−−→ N

Next, we maximize both results of Course 1 and Course 2, which will give us the

satisfaction Value of ‘Advanced Topic’ to be:

In f er({PS,N}) =< PS,N >

Following the same process for the next goals of ‘Good Class Schedule’, Conceptual

Course’ and ‘Technical Course’ results in:

Good Class Schedule: In f er{(FD(−),N(−))}= In f er{(PS,N)}=< PS,N >

Conceptual Course: In f er{(FS(−),N(+)}= In f er{(PD,N)}=< N,PD >

Technical Course: In f er{(FS(++),N(−−)}= In f er{(FS,N)}=< FS,N >

To find the satisfaction value of ‘Applied Course’ we calculate the values of both Con-

ceptual Course and Technical Course, then maximize the result as the following:

Applied Course = In f er{(PD(−),FS(+)}= In f er{(PS,PS)}=< PS,N >

Finally, we calculate the satisfaction value of ‘Choose Best Course’ of course 1 by

again calculating the values of ‘Advanced Topic’ and ‘Good Class Schedule’ and ‘Ap-

plied Course’ with their contribution links and then maximizing the results:

PS −−−→ PD

PS +−→ PS

PS −−→ PD

In f er{(PD,N,PS,N,N,PD)}=< PS,PD >

So, the satisfaction value of Apartment 1 as an Optimal Apartment Choice is <PS,PD>
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For stage two, we consider Course 2 by assuming its base value to be Fully Satisfied

(FS) and the base value of Course 1 to be None (N), and by repeating the steps we

followed in Stage one, the calculations are as following:

Advanced Topic: In f er{(N(+),FS(−−)}= In f er{(N,FD)}=< N,FD >

Good Class Schedule: In f er{(N(−),FS(−)}= In f er{(N,PD)}=< N,PD >

Conceptual Course: In f er{(N(−),FS(+)}= In f er{(N,PS)}=< PS,N >

Technical Course: In f er{(N(++),FS(−−)}= In f er{(N,FD)}=< N,FD >

Applied Course: In f er(PS(−),FD(+)) = In f er{(PD,PD)}=< N,PD >

Choose Best Course: In f er{FD(−−),PD(+),PD(−)}= In f er{(FS,PD,PS)}

So, the satisfaction value of Course 2 as an Optimal Apartment Choice is < FS,PD >

We conclude that Course 2 is the best course choice with the satisfaction value of

< FS,PD > as opposed to Course 1 which has the satisfaction value off < PS,PD >.

Model Sampling

As we saw, we develop the goal models used for the experimental instrument by pick-

ing a goal structure and populating the contribution links with random contribution

labels such that the optimal alternative has a fixed distance from the second optimal

one, as measured by the satisfaction each induces to the root goal. We require this re-

striction so that there is sufficient difference between the best and second best to allow

for some intuitive detection, but the difference is not too much to be too obvious for all

participants.

Calculating the distance from best to second best alternative is straightforward in

the case of numeric models. The choice of each alternative will result in a number

representing the satisfaction value of the root soft-goal for that alternative. We simply

ensure that the largest value is about 0.4 higher than the second best. For the symbolic
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models the comparison is less straightforward due to the presence of both a satisfaction

and denial value. To be able to perform a comparison, we aggregate the two values

into one. To do so we firstly associate qualitative satisfaction labels {N, P, F} with

numeric values 0,1,2, respectively. Let then sat(g) and den(g) be the resulting numeric

satisfaction and denial values for goal g. The aggregated satisfaction value is then

sat(g)−den(g) which is an integer in [-2,2]. For example, the aggregated satisfaction

value of a goal g1 with {PS, FD} is sat(g1)−den(g1) = 1−2 = −1 and of a goal g2

with {FS, ND}, sat(g2)−den(g2) = 2−0 = 2. Given this aggregation procedure, we

demand that our sample models have a distance of 2 satisfaction levels. For example, a

label configuration in which the best alternative makes the root goal {FS, ND}, hence

aggregated value 2−0 = 2 and the second best makes the root goal {PS, PD}, hence

aggregated value 1− 1 = 0 passes the qualification qualifies. In the example of the

previous section (Figure 9) the first option was {FS,PD} and the second {PS,PD},

so the total distance is 1 - 0 = 1, which is too small a distance to pass the test. To

see why this distance matches the one chosen for the symbolic models to allow for

a fair comparison, observe first that the maximum distance between alternatives in

the symbolic case in terms of aggregated value is 4 ({FS, ND} versus {NS, FD} so

2− (−2)). The distance we demanded in symbolic models is 2, thus half of the space.

Observing now that the corresponding maximum distance in numeric models is 1.0,

it follows that half-space size distance would be 0.5. However we end up with 0.4,

slightly biasing against numeric models, as for some of our structures we fail to find

label configurations that yield 0.5 distance.

3.2.4 Procedure and Administration

The experiment procedure has two phases that are described in what follows:
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Phase One

Phase one starts with the pre-test in which each participant responds to the CSI 38-item

questionnaire. Next, they answer the AMAS 9-item questionnaire about their anxiety

level with mathematics. After a little break, they are exposed to the 28 arithmetic exer-

cises to solve, starting with addition exercises, followed by multiplication and division.

The last part of the pre-test is a number of quantitative comparison questions, in which

participants compare between two equations. During the mathematics exercises, they

are instructed not to take notes, get help or use any calculator devices. This phase ends

with a question about their sampling identity whether they were university students or

Mechanical Turks, and then they are provided with a participation code.

Phase Two

In the beginning of phase two, participants start with entering the participation code

they were provided in the pre-test, which purpose is to link the two answered tests

to the same participant. Participants then answer questions about their demographic

information and their background knowledge in goal models.

Subsequently, participants are sequentially presented with the goal models, as shown

in Figure 13, and are asked to enter which of the two or three alternatives they think

is optimal. In the end, they are asked if they used a specific method in making their

decision, and what that method is, or whether they used their intuition.

We note that midway in the data collection process, the instrument underwent the

following revisions: (a) the math ability test was changed and moved to the end and

(b) two additional questions asking for the participant’s confidence in their responses

and also the method they use method were added. Note also that although the intent

was that the first and second phases were meant to be administered at separate times,
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student participants were given the choice to participate in one session, which they all

did.

3.2.5 Participant Sampling

The sampling methods for the proposed experiment are both non-probability voluntary

and random sampling. Specifically, participation is sought from two sources:

(a) Third year undergraduate students of the School of Information Technology at

York University.

(b) Mechanical Turk (MT) participants with a US college degree.

We consider both populations suitable for two reasons: (a) the tasks appeal to sim-

ple cognitive functions and not domain specific, IT-related knowledge or experience,

and (b) we believe goal models should be a tool for decision exploration, employable

for any stakeholder involved in a project including non-technical ones (clients, users,

owners etc.). Administration in the student population took place in the lab and allows

for reliable response time measurement. Due to the absence of such conditions, for MT

participants reliable response times are not assumed. In addition, as earlier student re-

sults tended to skew towards more analytical CSI scores, MT participant sampling was

biased towards a more balanced CSI scores. This was achieved by separating the CSI

instrument as a pre-screening test and then proceeding with participation invitations

from the most intuitive respondents to the more analytical ones.
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Chapter 4

Results and Analysis

4.1 Data Descriptives

4.1.1 Demographics

A total of 102 participants are included in the analysis: 27 students (21 males and 6

females) and 75 MT participants (41 males and 34 females). Table 4.1, 4.2 and 4.3

show the participants distribution based on sex, education and background. A few of

the collected responses are excluded on the basis of not properly attending the training

videos, as established by the limited time spend in the appropriate screens. The dis-

tribution of subjects across the two conditions of numeric and symbolic goal models

contribution links is shown in Table 4.4.

Table 4.1: The Number of Participants by Sex

MTurk Student

Sex
Female 34 6

Male 41 21
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Table 4.2: The Number of Participants by Education

Highschool Masters Other PhD Post-Secondary

Sex
Female 6 3 0 3 28

Male 15 6 3 1 37

Table 4.3: The Number of Participants by Background

Art Business/Econ Education Health Humanities Other Social STEM

Sex
Female 3 7 2 1 4 0 7 16

Male 3 15 1 2 4 1 3 33

Table 4.4: The Number of Participants by Condition

Group

Numeric Symbolic

Sample

MTurk
Female 20 14

Male 18 23

Students
Female 4 2

Male 10 11

4.2 Individual Difference Metrics

4.2.1 Cognitive Style Index (CSI)

Based on the collected results, the overall CSI average was 47.91 which is above re-

ported averages in the literature (about 44.53 according to the CSI manual [4] and

Hmieleski & Corbett (2006) studying US college students [31]). Table 4.5 shows the

specific average per sample type. In addition, the number of cases per High versus Low
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Figure 14: Participants CSI Score Frequency

CSI level based on the CSI Index with regards to population average is shown in Table

4.6, while Table 4.7 shows the CSI level frequency based on the sample type and the

condition groups. A depiction of the CSI score frequency is presented in Figure 14.

Table 4.5: CSI Score Distribution

Sample

MTurk Student Total

csi score 48.43 46.48 47.91
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Table 4.6: CSI Level Distribution

CSI Level

High Low

61 41

In general the Mechanical Turk sample appeared to be more “Analytical” (higher

CSI index) than the Student sample. Despite the efforts for more participation of intu-

itive types, the averages are both higher than the normative average mentioned above.

Table 4.7: High And Low CSI Score Frequency

CSI Level

High Low

Sample

MTurk Group
Numeric 21 17

Symbolic 24 13

Students Group
Numeric 7 7

Symbolic 9 4

4.2.2 AMAS

Based on the collected responses, the overall AMAS average is 20.28 which is just a

bit below the reported averages in the literature (about 21.1 according to D.R. Hopko et

al. 2003 [32]). The score is lower among graduates than it is among current students.

Table 4.8 shows the specific samples and their average AMAS score (High Vs. Low).

AMAS level frequency is shown in Table 4.9, and depicted in Figure 15.
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Table 4.8: AMAS Score Distribution

Sample

MTurk Students Total

amas score 19.88 12.41 20.28

Figure 15: Participants AMAS Score Frequency

Table 4.9: AMAS Level Distribution

AMAS Level

High Low

44 58
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Figure 16: Accuracy Analysis

4.3 Statistical Analysis1

4.3.1 Accuracy Analysis

Accuracy is measured as the raw number (out of 12) of correct (wrt. semantics) choices

of optimal alternative. To assess accuracy we first attempt to fit a linear model [70]

including Representation, AMAS score, CSI score, and Approach as main effects, ig-

noring interactions for the moment. In other words we conduct analysis of variance

with factors Group (qualitative, quantitative) and Approach (methodically, intuitively),

while CSI scores and AMAS scores were included as covariates.
1The results of this experiment have been previously publish on [44], and more details on the statistical

analysis can be found here http://tinyurl.com/y3koz33a
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Figure 17: Accuracy Analysis Per Representation and Approach

Looking at the graphical result, represented in Figure 16, and the grand means

of the two groups, we can see that the Numeric Group performed significantly better

(75.7% correct) relative to the Symbolic Group (52%; F(1,97) = 72.18, p < 0.001,

d = 1.51). Furthermore, when observing the effect of the working Approach, the me-

thodical group performed better relative to intuitive group (F(1,97) = 5.56, p < 0.05,

d = 0.4). The next observation with regards to Math Anxiety, the results reported a

significant main effect of AMAS score (F(1,97) = 5.65, p < 0.05, d = 0.33). Thus,

those with below average AMAS level (less anxious) score 0.96 more correct questions

than those above average (higher anxiety level).

Considering a model with interactions we observe that the Working Approach vari-

able interacts both with Representation and potentially with CSI score as seen in Figure

17. Specifically, we observe an interaction of Group and Approach (F(1,91) = 6.66,

p < 0.05, d = 1.37). Performing a simple effects following [22] in which we fix the

level in one factor and test for effects using the other factor, it was revealed that the

main effect of group was significant in those participants who followed the method-

ical approach (numeric = 87.4%, symbolic = 51%; F(1,77) = 77.34, p < 0.001),

but not in those who used intuitive approach (numeric = 61.5%, symbolic = 53.3%;
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Figure 18: Accuracy Analysis Per Approach and CSI Level

F(1,21) = 1.45, p > 0.2).

An additional smaller effect, seen in Figure 18, is that those with more intuitive

cognitive style have more to gain (1.6 out of 12 more correct answers) when working

methodically instead of intuitively compared to the analytically inclined.

4.3.2 Efficiency Analysis

Efficiency, operationalized as the ratio of accuracy over total response time, is consid-

ered only for the 27 students of the corresponding samples, where response time can

be reliably measured. As above we fit a linear model that involves Group (qualitative,

quantitative) as a discrete factor, while the CSI scores and AMAS scores were included
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Figure 19: Efficiency Analysis Per CSI and AMAS Score

as covariates (Approach is not considered due to it being highly unbalanced).

We observe through the graphical result represented in Figure 19 a main effect of

the Representation factor. The results show that the Numeric group produced higher

number of correct responses per minute (0.54) relative to Symbolic group (p < 0.01);

(0.12; F(1,25) = 7.53, p< 0.05, η2
p = 0.259). Due to a small sample size (N = 27) and

the consequent possibility of non-normal distribution, we have additionally confirmed

this result by means of a non-parametric Yuen’s t -test, which also showed a significant

difference (t(9.41) = 3.77, p < 0.01, effect size= −0.93). Finally, the assumption that

either CSI or AMAS scores associates with efficiency is not supported by the data.

4.3.3 Confidence Analysis

Confidence measurement was introduced to the instrument for the last 45 MT par-

ticipants only, and the analysis is based on that sample. It is measured on a 7-point

“Likert”-style scale and treated as ratio as per common practice [61].

We again perform ANOVA test studying the main effects of representation, CSI

level, AMAS level and math ability as well as interactions between them. The obser-

vation of the result shows an interaction of Group and AMAS level (F(1,40) = 4.22,
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Figure 20: Confidence Analysis Per CSI Score

Figure 21: Confidence Analysis Per CSI Score and AMAS
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p < 0.05, d = −0.039). Performing a simple-effects follow up [22], the result shown

in Figure 21 depicts a main effect of Group on Response Confidence which was signif-

icant in the high AMAS level (qualitative = 4.43, quantitative = 3.56; F(1,15) = 7.08,

p < 0.05, η2
p = 0.336), but not in the low amas level (qualitative = 3.73, quantitative =

3.93; F(1,28) = 0.54, p > 0.4, η2
p = 0.02). This observation shows that respondents

with higher math anxiety level in the numeric group seem to have less confidence in

their answer. The same procedure was performed with the Method Confidence as a

dependent variable. However, this resulted in no significant main effect and/or interac-

tions.

Figure 22: Confidence Analysis Per Representation
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4.4 Summary and Explanatory Remarks

The results present substantial evidence that the numeric representation according to

the linear model in Table 2.2 leads to more compliant decision-making inferences by

untrained users and faster than the qualitative one of Table 2.2. We can attribute this

to the familiarity that users have with numbers and proportions, on which the numeric

model is based, and the lack thereof for symbolic labels. The effect emerges (strongly)

when the participants say they work methodically, meaning that some explicit mental

model is developed. Interestingly, however, representation does not influence choice of

approach, meaning that a mental model is evoked for both kinds of models. However,

in the symbolic case either the evoked model is in strong agreement with the authori-

tative one, or the latter is correctly guessed but poorly executed. At the same time, the

general lack of correlation between arithmetic ability and accuracy, assuming that our

instruments have any reliability, may indicate that participants in the numeric group

may not perform mental calculations as per the linear equation in Table 2.2 (which

would lead to errors) but base their success on an evoked heuristic that works as well.

Furthermore, counter to our expectation that AMAS Level would affect only the nu-

meric group it seems to affect both groups, implying the possibility that the requirement

for either kind of symbolic inference is akin to a mathematical task, in which, in turn,

highly math-anxious individuals turn to perform worse.

Indeed, focusing on 3-option models the responses of more than 82% out of those

who respond “Intuitively” is not distinguished from random (using p < 0.05 bino-

mial tests), compared to 55% out of those who responded “Methodically”. Thus, self-

reported intuitively might as well be construed as “randomly” or expressing inability

to make a guess.
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4.5 Validity Threats

We briefly address the most important of construct, internal, external and statistical

conclusion validity.

4.5.1 Construct Validity

Construct validity is defined as the degree to which a test measures what it claims, or

purports, to be measuring [17]. In other words, it is used to determine how well a test

measures what it is supposed to measure. With regards to the measuring variables of

the Intuitiveness construct in our work, our fundamental assumption that it can be mea-

sured by the alignment of spontaneous with authoritative inferences can be criticised

as being too “particular” (i.e., addressing a very restricted kind and use of the model)

and avoiding of examination of what goes on in participants’ minds when confronted

with an unknown notation. A possible response is pragmatic: the observed substantial

effect on representation accuracy and efficiency is immediately usable even when the-

oretical clarity is pending: numbers seem to “just” be more intuitive for the particular

task. However, careful follow-up qualitative investigation on the exact understanding

technique that participants adopt for their reasoning is part of our research agenda. A

further criticism can be extended to the ad-hoc development of non-standard math abil-

ity tests. The rationale behind this decision being took the absence of suitable standard

instruments that deals with decimal numbers. However, the results seem to show not

major effects regardless.

4.5.2 Internal Validity

Internal Validity is defined the extent to which a piece of evidence supports a claim

about cause and effect, within the context of a particular study [59], i.e whether there
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are other explanations that are rival to the ones we claim for the observed differences.

Two main threats to internal validity in our work revolve around the representation

factor. On one hand, the “difficulty” of the symbolic models (distance between first

and second optimal) is constructed based on an operation of comparing satisfaction

and denial values that may be argued to be arbitrary and off-specification (according

to [25]). However, in our view, insofar as the two representations can be used for the

same purpose (comparing alternatives) they cannot be considered incomparable. The

subsequent question of what ways, other than the ones adopted here, can be consider for

fairly constructing absolute preferability distance between satisfaction levels in a two-

valued setting appears to be difficult to address. Furthermore, difference in training

quality can be argued to work against one of the conditions. Such bias is difficult to

measure and control for. We are hoping that our carefully scripted, video-recorded

training videos (versus live lectures) offer a first line of defence against this threat.

4.5.3 External Validity

External validity is defined as how well the outcome of a study can be expected to

apply to other settings outside that the study context. Threats to external validity with

regards to generalizability in this particular study concentrate on the choice of partic-

ipants, models, as well as the tasks the participants performed. We first claim that

our participants being non-experts and (some of them) students does not harm gener-

alizability. On one hand, there seems to be an implicit desire in the goal modelling

community that non-technical stakeholders (users, owners, clients) should be able to

use such models. On the other hand, although we could not find research that describes

the typical characteristics of either business and systems analysts and their clients, we

cannot just assume that there are exclusively of a technical background. In cases where
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potential non-expert clients are involved by the analysts in the design process of an

information system, they can exposed to the conceptual model of its design for for

transparency purposes. Faced with these models, they may have to make decisions

with regards to alternatives of both goals and functions of the systems, which is similar

to what the exercises employed in our experiment. We, thus, find that our partici-

pants constitute a good sample of the population that may be a user of such a model.

Furthermore, the choice of models that we used for the instruments brings unavoid-

able structural, size and domain commitments. Therefore, until research with different

models is conducted, generalizations should be carefully done for models of similar

characteristics. Finally, a significant external validity question is whether the effects

identified in this study would be found in different tasks of similar nature that take

place in real world use of the models, assuming otherwise similar goal models and

participants. Generalization potential would then depend on how different the tasks are

from the ones studied here. For instance, one can hypothesize that in numeric models,

participants might be more accurate in describing how a specific goal alternative affects

high-level goals. On the other hand, if the goal models are the result of eliciting user’s

beliefs about the contribution structure, the result does not say anything with regards to

whether the user’s choice is consistent with their input in developing the model; this is

a completely different task. Thus, different proposed uses of goal models will require

separate examination.

As a final note of statistical conclusion – which is concerned with the extent to

which the conclusions drawn from a statistical test are accurate and reliable, while we

pre-hypothesized the effect of representation format, the rest of the factors and interac-

tions thereof where the result of some statistical model exploration in order to find well

suited models. This research process took place in the spirit of informing future re-
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search and confirmatory studies. Thus, despite reported statistical significance levels,

except for the effect of representation, the remaining effects continue to be tentative

and subject for further confirmation.
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Chapter 5

Conclusion And Future Work

5.1 Conclusion

In this thesis, we designed, executed and analyzed the results of an experimental study

which compared two ways of representing contribution links within goal models with

regards to their intuitiveness, our main comparison construct. We also explored the

effect of individual differences to the demonstration of intuitiveness. The main contri-

butions of this work are listed in the following:

• Firstly, we offer the first, to our knowledge, empirical study of the two ap-

proaches of goal model contribution links mentioned above through the measur-

ing of intuitiveness and efficiency. In the results, which addresses the concern of

the research question [RQ1], we find that the models with numeric contribution

links lead participants to more accurate responses when the latter are the result

of adopting a specific method by the participants. This we believe immediately

informs practice and motivates more research on the subject.

73



• Within our investigation of the role of individual differences as the second aspect

and contribution of this thesis, we fail to observe any notable effect of cognitive

style to accuracy, efficiency or even approach taken, which indicates that the

construct of cognitive style, as the concern of the research question [RQ2.1],

might not be useful for studying the phenomena at hand as a trait. However,

it appears to be promising as a characterization of cognitive strategy inspired

by the characteristics of the task at hand. For the second part of the research

question [RQ2.2], we find that mathematics anxiety has a mild negative corre-

lation with performance irrespective of representation methods. Furthermore,

our investigation of arithmetic ability effect on accuracy in either representation

[RQ2.3] seem to show no notable interaction. And finally, the question regard-

ing followed method [RQ2.4], following a certain method when solving the goal

model problem shows an effect on the accuracy of the participants responses as

mentioned earlier. This is a strong finding which we believe motivates further

explanatory work.

• Thirdly, we support the feasibility of considering ”intuitiveness” as one of the

possible comparison constructs for comparing modeling notations, defined as

the ability of novice users of the modeling notation to correctly understand how

they can use it. We operationalized the construct of intuitiveness by measuring

agreement between inferences that the language designers consider valid and

inferences participants make, as well as the time it takes for the latter to take

place. We also include the option of measuring perceived intuitiveness via self-

reporting the confidence of participants of their inferences in the experiment.

The presence of detectable effects seems to indicate that these constructs are

promising instruments for talking about and evaluating model quality.
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• Finally, our understanding of intuitiveness appears to be consistent with theories

of graph comprehension and conceptual model visualization, including Pinker’s

theory of graph comprehension [55] and Moody’s concept of semantic trans-

parency [51] . This contribution shed light on the possibility on adapting this

theory on conceptual modeling in general, and goal modeling contribution links

in particular.

5.2 Future Work

Many different proposals in the representation of contribution link notation exist in the

literature. While this work has investigated a specific pair of representation approaches,

it is still pertinent to attempt similar experimental work on other representation and

semantic approaches, for example a comparison of the URN [6] versus the Giorgini

et al. [26] rules of propagation or the comparison of different quantitative approaches

introduced in those two frameworks.

Future work can aim at the mechanics of the specific decision making task within

goal models; particularly the distinction between developing a mental model, i.e., a

theory of how the representation “works” versus executing the theory to perform useful

inferences, which may also be obstructed by representational, complexity and other

factors. For the task, instruments that enhance explanatory analysis need to be devised

beyond our black-box technique. For the purpose, we believe that protocol analysis

[21] may turn out to be of value. Applying the concepts of protocol analysis could

help track the thought processes of problem solving. This way, through experiment

designs in which monitoring subjects is within the research capability, protocol analysis

methods such as verbal reports, reaction times, error rates can help understand the
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elements in which users struggle with in trying to solve goal model problems.

Focusing on the results at hand on goal models, although they inform goal modeling

practice (e.g. modelers can prefer numeric from symbolic contribution links whenever

all else is equal), different domains, larger and different models are to be considered for

further investigation using a similar approach. In that context it is important to keep in

mind that the ultimate goal behind testing the intuitiveness of goal modeling contribu-

tion link is to find an effective method to communicate these models between analysts

and stakeholders. Through the experiment presented in this work, the decision-making

exercises reflect problems that can be relatable to the subjects of the experiments. These

exercises, however, does not necessarily reflect real cases which goal models are pur-

posed to reflect within the field of Information Systems. Future work may look into

expanding the method used in this work to real decision problems regarding those of

system design, or apply real case-studies of goal model approaches.

Through utilizing Pinker’s theory of graph comprehension, it is proven to be ap-

plicable to graphs represented as conceptual models as cognitive processes play a role

in the way they are perceived. A potential approach for future studies can look into

adapting the theory or equivalent ones to offer a descriptive basis elements and vari-

eties of conceptual models in addition to what has been covered in this work regarding

contribution links.

Furthermore, since the stakeholders play a role in this equation, further studies can

expand the methods of this research on experimental subjects of different domains in-

cluding business, medicine, science in order to investigate the versatility of the research

framework and the usability of the investigated goal model approaches.

Looking into different factors that may affect the intuitiveness of goal model contri-

bution link notations, this work mainly focused on individual differences — in particu-
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lar, cognitive styles, mathematical anxiety and arithmetic abilities, leaving other prob-

able influencing individual differences factors such as linguistic capabilities, working

memory, or physical disabilities, for example, subjects to study in future work concern-

ing this particular research topic. In addition to individual differences, further studies

on design factors regarding the comprehension of goal model contribution links such

as the size and complexity of the models is required to expand the applicability of these

approaches. The reason we look into these factors is to investigate the possibility to put

these factors into consideration when developing or improving more representational

methods.

Importantly, rather than just understanding a specialized task within a specific no-

tation, our long-term aim is to develop an analytical and empirical perspective and

took-set transferable to the study of more popular classes of notation, such as business

process or diagrams [1] or entity relationship diagrams [14].

All in all, the quality of conceptual modeling languages is an important criterion to

be used for guiding the design of such languages for the purpose of finding the optimal

language to mediate between analysts and stakeholders. As more empirical studies,

comparison and framework proposals are presented in the literature, better and more

useful modeling practices will become in all relevant domains.
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Appendix A

Survey Appendix

A.1 Consent Form

About this survey

Thank you for agreeing to participate in this study. It will take about 45 mins of your

time and involves your observing a number of diagramatic models and answering ques-

tions about them. The data you will provide will help us understand better how a spe-

cific modeling language (goal models) can become more effective. Please keep reading

for more information about the study.

Information about this study

Confirm you want to do this survey

Study Name: Comparing Representations and Semantics of Contribution Labels in

Goal Models

Purpose of the Research: In Information Systems analysis, graphical goal models
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constitute a popular way for acquiring and representing user requirements. Such mod-

els allow analysts to represent how goals of users are reduced into sets of alternative

system functions that fulfill top level goals. Contribution links show how functional al-

ternatives affect higher level goals of the stakeholders, allowing them thereby to make

decisions. However, many ways for representing and assigning meaning to contribu-

tions have been proposed. Which one is better? In this research we aim at understand-

ing which one is better in terms of naturalness, i.e. in terms of what untrained users

expect the result of contribution combination to be based on how it presents itself in the

diagram. We also aim at understanding if individual differences can act as predictors

of how users understand and use the models.

What You Will Be Asked to Do in the Research: In this research you will be

asked to perform the following tasks:

• Provide us some basic demographics: sex, age and educational background.

• Perform a pre-test that assesses your cognitive style.

• Watch one or more instructional videos on the task you will perform next.

• View a number of visual representations and answer comprehension or other

questions pertaining to the visualizations.

• Describe in your own words how your worked to answer the previous questions.

• (if applicable and you consent) Have a concluding discussion with the PI or

his Research Assistant to explain in your own words your opinion about the

visualizations and how you worked with them.

Your participation will last between 30 and 45 mins for this pre-test and another 30-45

mins for the main test.
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Risks and Discomforts: We do not foresee any risks or discomfort from your

participation in the research.

Benefits of the Research and Benefits to You: Include a statement regarding any

benefits of the research as well as benefits to the research participants.

Voluntary Participation and Withdrawal: Your participation in the study is com-

pletely voluntary and you may choose to stop participating at any time. Your decision

not to volunteer, to stop participating, or to refuse to answer particular questions will

not influence the nature of the ongoing relationship you may have with the researchers

and York University either now, or in the future. If you stop participating, you will

still be eligible to receive the promised pay/compensation for agreeing to be in the

project. In the event you withdraw from the study, all associated data collected will be

immediately destroyed wherever possible.

Confidentiality: All personally identifying information you supply during the re-

search – namely: name, address and audio recording – will be held in confidence and

your name will not appear in any report or publication of the research. Your data will

be collected though the use of this on-line instrument and, in the case of the follow-up

interview, an audio recording device. This personally identifying data will be safely

stored in a locked facility and a password protected digital medium (USB key or DVD)

and only research staff/research team members will have access to this information.

The personally identifying data will be destroyed by the end of 2020. Confidentiality

will be provided to the fullest extent possible by law.

Your non-personally identifying responses – including: demographics (sex, age,

educational background), responses to tests and exercises as well as (anonymized,

wherever necessary) transcriptions from the audio recordings – may be published on

the PI’s web-sites (personal, lab) and shared with the research community as data files.
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The PI will screen the data and use his own judgement to identify accidentally or

indirectly personally identifying features and will redact the parts in question or, if

necessary, the entire response prior to availing it to third parties. The anonymized

non-personally identifying data collected in this research project may also be used by

members of the research team in subsequent research investigations exploring similar

lines of inquiry.

The researcher(s) acknowledge that the host of the online survey may automatically

collect participant data without their knowledge (i.e., IP addresses.) Although this

information may be provided or made accessible to the researchers, it will not be used

or saved without participant’s consent on the researchers’ system. Further, because

this project employs e-based collection techniques, data may be subject to access by

third parties as a result of various security legislation now in place in many countries

and thus the confidentiality and privacy of data cannot be guaranteed during web-based

transmission.

Legal Rights and Signatures: I consent to participate in the study “Comparing

Representations and Semantics of Contribution Labels in Goal Models” conducted by

Sotirios Liaskos. I have understood the nature of this project and wish to participate. I

am not waiving any of my legal rights by consenting to participate.

� I understand the conditions of this study

Important data protection information When you start, this survey will store

your answers, your internet address, and browser information on the PsyToolkit server.

The responsibility for this survey rests entirely with the researcher(s) listed above.

Click here if you do not want to participate now.
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A.2 Pre-test

A.2.1 Mathematical Anxiety

Mathematical Anxiety is measured by the following items provided by Hopko et al.

(2003):

A.2.2 Mathematical Exercises

Mathematical Ability is measured by a custom-made exercises:

Can you now perform a set of arithmetic exercises? In the following screens you

will be presented with simple mathematical problems. Can you respond with the cor-

rect solution? Can you do this as quick as you possible?

88



ADDITION

0.76 + 0.19 = ...........................................................................................................

0.47 + 0.73 = ...........................................................................................................

0.77 + 0.28 = ...........................................................................................................

0.89 + 0.66 = ...........................................................................................................

Exercises will start getting more difficult involving MULITPLICATION and DI-

VISION. It is important that you provide an answer quickly (i.e., within 30 seconds).

Approximate when you can’t compute! Remember: no pen, paper, calculators or other

aids are allowed.

MULTIPLICATION

0.28 x 0.27 = ...........................................................................................................

0.95 x 0.49 = ...........................................................................................................

0.15 x 0.34 = ...........................................................................................................

0.74 x 0.45 = ...........................................................................................................

DIVISION

0.46 / 0.62 = ...........................................................................................................

0.44 / 0.54 = ...........................................................................................................

0.37 / 0.88 = ...........................................................................................................

0.18 / 0.73 = ...........................................................................................................

For the following exercises you are asked to choose the larger of two quantities.

It is important that you provide an answer quickly (i.e., within 30 seconds). Please

remember that aids are not allowed.
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WHICH ONE IS LARGER?

ADDITION

0.92 + 0.16 0.25 + 0.89

0.36 + 0.72 0.59 + 0.54

0.55 + 0.36 0.72 + 0.24

0.85 + 0.51 0.37 + 0.95

SUBSTRACTION

0.66 - 0.46 0.81 - 0.66

0.48 - 0.11 0.61 - 0.29

0.75 - 0.35 0.42 - 0.06

0.81 - 0.12 0.93 - 0.28

MULTIPLICATION

0.51 x 0.41 0.32 x 0.82

0.48 x 0.29 0.12 x 0.79

0.03 x 0.71 0.37 x 0.19

0.19 x 0.83 0.32 x 0.36

DIVISION

0.54 / 0.73 0.69 / 0.88

0.25 / 0.98 0.11 / 0.55

0.52 / 0.72 0.59 / 0.87

0.54 / 0.73 0.69 / 0.88
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A.3 Goal Model Survey

Knowledge of Goal Models

Experience of Goal Model was measured through the following question:

What is your experience with goal models?

I have never heard of them.

I might have heard of them but have never seen any.

I have viewed a goal model before.

I have created a goal model.

Instructional Videos

• Decision Making Video Link: https://youtu.be/7t6ElFksI4U

• Goal Models Video Link: https://youtu.be/qSdU8r wBAA

A.3.1 Goal Model Exercises

In each of the following screens you will be asked to solve a decision problem, pre-

sented to you as a goal model. Each model will have two or more alternatives. How-

ever, based the information in the goal model, one alternative is better than the others.

Can you find which one? Can you find it quickly?
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Apartment Choice

According to the above model, which apartment is the optimal choice?

• Apartment 1

• Apartment 2
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Usage of Method

Method is measured through the following question:

What is your experience with goal models?

No, I used my intuition.

Yes, I used a specific method.
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