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Abstract 

Epithelial ovarian cancer (EOC) is the deadliest female malignancy. The development of 

chemoresistance and relapse becomes a major challenge in treating ovarian cancer.  The Wnt/β-

catenin pathway, which plays a critical role in developmental and physiological processes, have 

been indicated to contribute to EOC development. Aberrant activation of this pathway was 

reported to promote cancer stem cell self-renewal, metastasis, and chemoresistance in all 

subtypes of EOC, suggesting the Wnt/β-catenin pathway is a strong candidate for the 

development of targeted therapies. In this study, we have identified and investigated the anti-

tumor effects of two novel β-catenin inhibitors, referred to as compound 2 (C2) and C10. Results 

from functional assays showed that C2 and C10 inhibited EOC cell proliferation, anchorage-

independent growth, and spheroid formation. In addition, C10 treatment inhibited the 

expression of stem cell markers of EOC cells, suggesting the small molecule inhibitors target 

ovarian cancer stem cells. Using TOPflash reporter assays, we found that C2 and C10 inhibited 

the transcriptional activity of β-catenin/TCF complex.  Finally, preliminary results suggest that C2 

and C10 bind directly to recombinant β-catenin. Taken together, this study identified two novel 

potent β-catenin inhibitors that have strong anti-tumor effects.  These compounds could be 

potentially developed into targeted therapies for ovarian cancer patients who harbor abnormal 

activation of Wnt/β-catenin signaling. 
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1. Ovarian cancer 

Ovarian cancer is ranked as the fifth leading cause of death due to cancer in females (1). 

The term “ovarian cancer” is generally used to describe any cancer relating to the ovary (2). Based 

on the origin where ovarian tumors arise, ovarian cancer is classified into three categories: 

epithelial, germ cells, and stromal ovarian cancer. Among them, epithelial ovarian cancer (EOC) 

is accounted for more than 85% of ovarian cancer cases, and responsible for most ovarian-related 

deaths (2).  The lack of specific disease-related symptoms and effective prognosis markers 

together with the lack of effective screening methods at the early stages contribute to the high 

morbidity and mortality of EOC. 

1.1. Classification of ovarian cancer 

1.1.1. Histological subtypes 

EOC is heterogeneous cancer which is further subcategorized into numerous subtypes 

based on the morphology and molecular pathology. This includes high-grade serous carcinomas 

(HGSC) which accounts for 70%-74% of EOC cases, endometrioid carcinomas (EC) (7-24%), clear 

cell carcinomas (CCC) (10%- 26%), low-grade serous carcinomas (LGSC) (3%-5%), and mucinous 

carcinomas (CC) (2%-6%)  (2). Accumulating evidence suggests that ovarian carcinomas might not 

strictly arise from inside the ovaries  (Fig. 1) (2). It could start from sites outside and spread to 

the ovaries. However, the origin of the subtypes of ovarian carcinomas is still under investigation.  

For many years, EOC tumors were believed to originated from ovarian surface epithelium (OSE) 

due to its dominant mass in the ovaries (2). However, the assumption is still controversial. Gene 

expression profiling revealed that HGSCs are closely related to fallopian tube epithelium (FTE) (3, 

4). In addition, serous tubal intraepithelial carcinomas (STICs) were suggested to be the precursor 
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lesion of HGSCs. STICs were detected in the fimbria region at the end of the fallopian tube which 

is close to the ovary (5) and was found in 50-70% of women with HGSC (6-8). HGSC is not the only 

EOC subtype which was suggested to originate from tissues outside of the ovary. The high 

correlation between endometriosis and ECs and CCCs was indicated in several studies (9-13). 

Molecular genetic studies have shown that endometriotic cysts could transition into ECs or CCCs 

(14-16). The origin of LGSCs and MCs remains unclear. They were found to be frequently 

associated with borderline tumors (2). 

Genetic instability is one of the characteristics of cancer which contribute to its pathology. 

Genetic alterations and molecular defects of different subtypes of EOC have been studied 

extensively (2). Some tumors were developed from germline mutations, but most tumors were 

initiated through several stages from acquired mutations. Many of the mutations are located in 

the gene loci which encode for tumor suppressors and oncogenes (Table 1) (2). These molecular 

abnormalities are strong risk factors for ovarian cancer and have contributed to the 

determination of treatment options. Mutations in the TP53, BRCA1, and BRCA2 tumor suppressor 

genes are frequently detected in HGSCs (2). In addition, several genes are mutated in ECs, such 

as CTNNB1, PIK3CA, KRAS, ARID1A, PTEN, and PPP2R1A (17). Mutations of CTNNB1  are 

commonly observed in EC cases but are rare in all other subtypes  EOC. In contrast, PIK3CA and 

ARID1A are frequently mutated in both EC and CCC (18,19). Besides, CCCs have a low frequency 

of mutations in PPP2R1A, PTEN, KRAS, and TP53 (20-22). KRAS and TP53 mutations were found 

in 50% of invasive MCs (23) while amplification of ERBB2 was found in 19% of MCs (24). For the 

most part, LGSCs and HGSCs have non-overlapping mutational profiling. KRAS and BRAF are 

characteristically mutated in LGSCs (25,26). 
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Figure 1: Potential origins of ovarian carcinomas. High-grade serous and low-grade serous 
carcinoma were suggested to originate from OSE or FTE while clear cell and endometrioid 
carcinoma were suggested to arise from endometriosis. The origin of mucinous carcinoma 
remains unclear. Figure obtained with permission from (2). 
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Table 1: Characterizations of ovarian carcinoma subtypes 

Carcinoma 

subtype 

High-grade 

serous 

Low-grade 

serous  

Endometrioid Clear cell Mucinous 

Precursor 

lesion 

STICs Serous 

borderline 

tumor 

Endometriosis 

Uterine EC 

Endometriosis Borderline 

tumor 

 

Gene activating 

mutations 

ND BRAF, KRAS CTNNB1, 

KRAS, PIK3CA, 

PPP2R1A 

KRAS, PIK3CA, 

PPP2R1A 

BRAF, KRAS, 

ERBB2 

Gene 

inactivating 

mutations 

BRCA1, 

BRCA2, 

TP53 

ND ARID1A, 

BRCA1, 

BRCA2, PTEN 

ARID1A, 

PTEN, TP53 

CDKN2A, 

RNF43, 

TP53 

*ND: not determined 

1.1.2. Stage and grade 

Ovarian cancer staging is essential for the characterizations and determination of 

treatment options (2). The stage of EOC is determined by the levels of dissemination of the 

tumors in the body, as described in table 2. Stage I of EOC is defined when a tumor is limited in 

the ovary (2). Stage II involves the extension of the tumors into the pelvic area such as the uterus 

and fallopian tube. Local metastasis to small bowel or omentum is a confined characteristic in 

stage III, while stage IV is characterized by distant metastasis (2). 

EOC is also classified by grades which are based on the degree of differentiation of 

malignant cells. Grade 1 of EOC is confined as well-differentiated while grade 3 and 4 are poorly 

differentiated or undifferentiated (27). Recently, the two-tiered system has been introduced for 

EOC grading as low or high-grade (28).  Low-grade usually means the ovarian cancer cells are 
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well-differentiated and less likely to spread, resembling normal ovarian cells while high-grade 

cancer cells are poorly differentiated and more likely to spread.   

Table 2: FIGO stage of ovarian cancer (2) 

Stage I Tumor confined to one or both ovaries or fallopian tubes 

IA. Tumor limited to one ovary (capsule intact) or fallopian tube 

IB. Tumor limited to both ovaries or fallopian tubes 

IC. Tumor limited to both ovaries or fallopian tubes with any of the following: 

IC1. Surgical spill intraoperatively 

IC2. Capsule ruptured before surgery or tumor on ovarian or fallopian tube 

surface 

IC3. Malignant cells present in the ascites or peritoneal washings 

Stage II Tumor involves one or both ovaries or fallopian tubes with pelvic extension 

(below pelvic brim) or peritoneal cancer 

IIA. Extension and/or implants on any one or more of the following: uterus, 

fallopian tube(s), ovaries 

IIB. Extension to other pelvic intraperitoneal (IP) tissues 

Stage III Tumor involves one or both ovaries or fallopian tubes, or primary peritoneal 

cancer, with cytologically and histologically confirmed spread to the 

peritoneum outside the pelvis and/or metastasis to the retroperitoneal lymph 

nodes 

IIIA. Metastasis to the retroperitoneal lymph nodes with or without microscopic 

peritoneal involvement beyond the pelvis 

IIIA1. Positive retroperitoneal lymph nodes only (cytologically or histologically 

proven) 

IIIA1(i). Metastasis ≤ 10 mm in greatest dimension (note that this is a tumor 

dimension and not a lymph node dimension) 

IIIA1(ii). Metastasis > 10 mm in greatest dimension 
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IIIA2. Microscopic extrapelvic (above the pelvic brim) peritoneal involvement 

with or without positive retroperitoneal lymph nodes 

IIIB. Macroscopic peritoneal metastases beyond the pelvic brim ≤ 2 cm in 

greatest dimension, with or without metastasis to the retroperitoneal lymph 

nodes 

IIIC. Macroscopic peritoneal metastases beyond the pelvic brim >2 cm in 

greatest dimension, with or without metastases to the retroperitoneal nodes 

Stage IV Distant metastasis excluding peritoneal metastases 

IVA. Pleural effusion with positive cytology 

IVB. Metastases to extra-abdominal organs 

 

1.2. Treatments 

The standard chemotherapy for EOC patients is a combination of a platinum product, such 

as cisplatin or carboplatin, with a taxane, such as paclitaxel or docetaxel (2). However, many 

patients develop resistance to these therapies and relapse (29,30). Insight into molecular 

profiling of histological subtypes has led to the development of targeted therapies as third 

cytotoxic agents beside platinum-taxane treatments. The new targeted therapies focus on 

targeting pathways which are responsible for survival and apoptosis, proliferation, migration and 

invasion, angiogenesis, immunomodulation, epigenetics, DNA repair, and stem cell maintenance. 

Recent research on target therapies has introduced several therapeutic agents that target 

specific cancer-driven factors to inhibit ovarian cancer development. For example, bevacizumab, 

an antibody against vascular endothelial growth factor (VEGF)-A, has been approved by the FDA 

to be used in combination with carboplatin and paclitaxel (31). Moreover, several Poly(ADP-
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Ribose) Polymerase (PARP) inhibitors, which target the defective DNA repair pathway in HGSC, 

have been approved for the treatment of recurrent, BRCA-associated EOC (32). 

2. Wnt/β-catenin signaling 

2.1. Overview of the Wnt/β-catenin signaling pathway 

Wnt-off: inactivation and degradation of β-catenin 

β-catenin is the key mediator of the canonical Wnt pathway, which plays vital roles in 

directing cell fates and tissue homeostasis in embryonic and adult tissues (33). In the absence of 

a Wnt ligand, β-catenin is degraded by a destruction complex.  The core components of the 

complex include Axin, adenomatous polyposis coli (APC), casein kinase 1 (CK1), glycogen synthase 

kinase β (GSK3β) proteins and the E3 ligase, bTrCP (Fig. 2A). Protein phosphatase 2A (PP2A) is 

also associated with the β-catenin destruction complex. Axin is a scaffolding protein that has 

interaction sites for multiple proteins including PP2A, APC, GSK3β, and CK1 (34). Therefore, the 

presence of Axin is essential for the assembly of the destruction complex. β-catenin is first 

phosphorylated by CK1 at the residue S45 and then by GSK3β at S33, S37, and T41 (35,36). GSK3β 

also phosphorylates Axin, stabilizing it, and enhancing its interaction with β-catenin (37,38). APC, 

another core member of the destruction complex, contains multiple regions for Axin and β-

catenin interaction, enhancing the rate of β-catenin phosphorylation (34). Finally, 

phosphorylated β-catenin is transferred to βTrCP, which forms a complex with Skp1 and Cullin to 

facilitate ubiquitylation and degradation of β-catenin (39). 
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Wnt-on: activation of β-catenin 

β-catenin signaling is activated in the presence of Wnt ligands. On the cell surface, the 

binding of a Wnt ligand induces the heterogeneous dimerization of Frizzled (Fzd) and LRP5/6 

receptors, leading to their conformation change (33). Disheveled (Dvl) is then recruited to the 

membrane through its interaction with the cytoplasmic domain of Fzd (40). Here, Dvl assists in 

recruiting the scaffold protein of the destruction complex Axin to the membrane. The association 

between the destruction complex and the membrane is further strengthened following 

phosphorylation of the cytoplasmic domain of LRP5/6 by kinases such as CDK14, and GSK3β (41). 

Consequently, the activities of the destruction complex in promoting β-catenin phosphorylation 

and degradation are inhibited. Unphosphorylated cytoplasmic β-catenin can, therefore, 

accumulate and translocate to the nucleus. Since β-catenin does not have DNA-binding domain, 

β-catenin activates transcription through the association with TCF/LEF members, histone 

modifiers such as CREB-binding proteins (CBP) and other transcription factors (41). Once inside 

the nucleus, β-catenin displaces the transcriptional repressor, Groucho, which, in the absence of 

Wnt stimulation, binds the T cell factor/lymphoid enhancer factor (TCF/LEF) (42). The active 

transcriptional complex β-catenin/TCF can then initiate the transcription of its target genes (42) 

(Fig. 2B).  
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Figure 2: The Wnt/β-catenin signaling pathway. A) Wnt signaling OFF. The absence of Wnt ligand 
binding to the Fzd receptor prevents the interaction between Fzd and LRP5/6. The destruction 
complex which resides in the cytoplasm binds to and promotes degradation of free cytoplasmic 
β-catenin. Specifically, CK1 and GSK-3β phosphorylate β-catenin, targeting it for βTrCP-
mediated ubiquitination and subsequent proteasome degradation. Within the nucleus, the 
transcriptional repressor, Groucho binds to TCF and inhibits its transcriptional activity. B) Wnt 
signaling ON. Binding of the Wnt ligand to Fzd and LRP5/6 promotes the recruitment of Dvl and 
the destruction complex to the membrane. As a result, the destruction complex’s ability to 
phosphorylate and degrade cytoplasmic β-catenin is inhibited. β-catenin is accumulated and 
translocated into the nucleus where it displaces Groucho and binds to TCF. Together with co-
activators, the transcription of downstream target genes is initiated. 
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2.2. Genetic alteration of the Wnt/β-catenin pathway in ovarian carcinoma 

2.2.1. β-Catenin 

The most common genetic alteration in the Wnt/β-catenin pathway involved in EOC is in 

the β-catenin gene, CTNNB1 (43). Mutations in this gene often result in increased nuclear 

localization of β-catenin and, subsequently, an increase in transcription of its target genes, 

including c-myc, and cyclin D1 (44). This is most commonly observed in the EC subtypes, as one 

study found that activating mutations in CTNNB1 accounted for up to 54% of the EC cases (43). 

The same study showed that, in ECs that carried a missense mutation in CTNNB1, the mutation 

was always found within the amino-terminal domain (43). Phosphorylation of this domain by 

GSK3β is required for degradation of β-catenin; therefore, mutations within this domain would 

render β-catenin resistant to degradation. Indeed, mutations within the GSK3β phosphorylation 

domain were positively correlated with the nuclear localization of β-catenin and the level of β-

catenin/TCF target genes (43).  

2.2.2. Destruction complex 

         Mutations in several components of the destruction complex, such as Axin, GSK3β and 

APC, have been reported in EOC. Since these proteins are important for the degradation of β-

catenin, genetic alterations that render them less effective or non-functional are likely candidates 

for driving hyperactive β-catenin signaling and, as a result, oncogenesis. 

         Although much less common than mutations in CTNNB1, mutations in the genes encoding 

Axin and APC proteins (AXIN1/2 and APC, respectively) have also been reported in EOC (43,44). 

Axin protein exists in two isoforms: Axin1 and Axin2. A nonsense mutation in AXIN1 has been 
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found in one case of EC, while a frameshift mutation in AXIN2 resulting in truncation has been 

found in another (43). This finding supports its role as a negative regulator of β-catenin signaling.  

         Genetic alterations in APC, while frequent in colon cancers, are rarely found in EOC 

(45,46). There is some contradictory evidence concerning the involvement of APC mutations in 

EOC. For instance, it was reported that the I1307K missense mutation in the APC gene conferred 

a modest increase in the risk of hereditary and sporadic breast/ovarian cancer development 

through its association with BRCA1/2 mutations. Later analysis, however, concluded that, 

although there exists a high prevalence of I1307K mutations amongst BRCA1/2 carriers, the 

I1307K allele confers no additional risk for cancer development (47). In addition, two missense 

mutations (K90N, S1400L) and one nonsense mutation (R1114) within the APC gene were 

identified in a MC tumor of ovarian cancer (48). While the exact contributions made by these 

mutations were not examined in this study, they were determined to be likely pathogenic. More 

research is needed to determine the mechanism underlying APC mutations and the frequency at 

which these mutations occur in EOC.     

2.3. Dysregulation of Wnt/β-catenin signaling in ovarian carcinoma 

 Although mutations in CTNNB1 and components of the β-catenin destruction complex are 

rare and restricted to only the EC and MC subtypes, higher β-catenin activity is often observed in 

EOC, especially in HGSC.  The mechanisms underlying the hyperactivation of the Wnt/β-catenin 

pathway in EOC are not entirely clear. However, many studies have reported the aberrant 

expression or activation of the components and regulators of this pathway.  It is therefore highly 

possible that alterations in these proteins contribute to the higher activity of the Wnt/β-catenin 

in EOC (Fig. 3).  
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2.3.1 Ligands and receptors 

Several Wnt ligands have been reported to be upregulated in EOC and associated with 

poor prognosis in EOC patients. For example, using immunohistochemistry, Wnt-5A expression 

was found to be strongly upregulated in EOC tumors when compared with benign epithelial 

neoplasia and normal ovarian samples and was negatively correlated with patient survival (49). 

This study also found higher Wnt-1 immunoreactivity in EOC tumors but no significant association 

between Wnt-1 expression and patient survival (49). Another study, which measured mRNA 

levels of all Wnt ligands in ovarian tumors revealed that Wnt-7A and Wnt-7B were highly 

expressed, while Wnt-3 and Wnt-4 were reduced, in malignant ovarian tissues compared with 

normal ovarian tissues (50). Subsequent analyses of Wnt-7A by in situ hybridization confirmed 

that the up-regulation occurred more frequently in serous carcinoma than in EC, MC, and CCC 

tumors (50). Overexpression of Wnt-7A has also been identified in EC when compared to normal 

endometrium and benign endometrial lesions and the immunoreactivity of Wnt7A in tumors was 

found to be negatively correlated with both overall and disease-free survival (51). In vitro 

functional analysis showed that downregulation of Wnt-7A reduced ovarian cell proliferation, 

adhesion, invasion and expression of β-catenin target genes, suggesting its crucial role in the 

activation of Wnt signaling and malignant transformation in ovarian cancer (51). The significance 

of Wnt-5A, Wnt-1 and Wnt-7B upregulation and Wnt-3 and Wnt-4 downregulation in EOC remain 

to be determined.  Similarly, the causes of aberrant Wnt expression in EOC are not clear at 

present and require further investigation. 
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Figure 3: Proposed mechanisms of Wnt/β-catenin dysregulation in ovarian cancer. The Wnt/β-
catenin pathway is regulated by many factors, whose aberrant expression leads to the 
hyperactivation of β-cat in the EOC. Note that green arrows indicate proteins whose expression 
is upregulated in EOC, while red arrows indicate downregulation. DKK1 and SFRP2, which inhibit 
the dimerization of Fzd and LRP5/6 and directly prevent Fzd activation, respectively, are 
downregulated in EOC tumors. In contrast, Wnt ligands activate the pathway by forming a 
receptor complex with Fzd and LRP5/6, while R-spondins bind LGRs and prevent the 
sequestration of the Fzd. Both Wnt ligands and LGRs are overexpressed EOC. CCNY and CDK14 
are also upregulated in EOC and have been suggested to collaborate to promote LRP5/6 
phosphorylation and its subsequent activation.  CCNG2, which is reported to be downregulated 
in EOC, decreases LPR6 levels. It may also interact with DACT1 to promote DVL degradation. At 
the destruction complex, TNKS destabilizes AXIN to increase β-catenin activity and TNKS1 is 
known to be up-regulated in EOC. RAB14 inhibits the activity of GSK-3β, and its upregulation 
contributes to higher β-catenin activity in EOC.  FLIP1L, whose expression is negatively correlated 
with EOC progression, enhances GSK-3β activation.  This inhibition of the destruction complex 
results in the accumulation of β-catenin within the cytosol and its translocation into the nucleus. 
In addition, TG2, which is overexpressed in EOC, binds to integrin and fibronectin. This results in 
the recruitment of c-Src and subsequent disruption of E-cadherin/β-catenin complex on the 
membrane and the accumulation of β-catenin within the cytoplasm.  Finally, within the nucleus, 
higher expression of several co-activators of β-catenin/TCF, such as PYGO, JRK, and FOXM1, and 
lower expression of SOX7, which was reported to inhibit the interaction between β-catenin and 
TCF, leads to higher transcriptional activity of this complex.   
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A recent study revealed that abnormal expression of R-spondin 1 also contributes to the 

dysregulation of the Wnt/β-catenin signaling pathway at the receptor level (52). R-spondin 1 

(encoded by RSPO1) belongs to the secreted R-spondin protein family, which bind to the LGR4, 

LGR5, or LGR6 receptors (53). This binding inhibits the sequestration of Fzd by the 

transmembrane E3 ligases, Rnf43 and Znrf3 (53), thereby enhancing β-catenin activity (54). A 

genome-wide association study identified SNPs at RSPO1 as an EOC susceptibility locus (55). 

RSPO1 was upregulated in all EOC cell lines and in a small number of tissue samples when 

compared to normal ovarian tissue samples (38). In HSGC subtype ovarian tumors, amplification 

of RSPO1, RSPO2, LGR5 and LGR6 expression has also been observed; however, this upregulation 

was observed at low frequency (56). Moreover, overexpression of RSPO1 has been observed to 

increase EOC cell proliferation, migration, and chemotherapy resistance (52). Furthermore, 

overexpression of RSPO1 enhanced, whereas deletion of RSPO1 attenuated β-catenin activity 

(52). Similarly, silencing of LGR6 inhibited β-catenin activity (57). These findings strongly support 

the role of RSPO1/LGR in enhancing Wnt/β-catenin signaling and suggest that their upregulation 

during EOC development contributes to the hyperactive β-catenin signaling. 

Wnt/β-catenin signaling is tightly controlled by several negative regulators, some of which 

inhibit activation of Wnt signaling by competing with Wnt ligands for their receptors. Abnormal 

levels of these regulatory proteins have been associated with the dysregulation of Wnt/β-catenin 

signaling activity and EOC. For example, Dickkopf (DKK) inhibits Wnt signaling by binding to 

LRP5/6 and disrupting the dimerization of Fzd and LRP5/6 (58). Interestingly, DKK1 was reported 

to be downregulated in EOC cells and negatively correlated with the stage of tumor development 

(59). The expression of DKK2 was significantly lower in EOC tumors than in normal ovary (60). 
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Secreted Frizzled-related proteins (SFRPs), similarly, interact with Wnt ligands and FZD receptors 

to abrogate their activations (58). SFRP4 expression has been observed to be significantly 

downregulated in EOC cell lines and to be negatively correlated with the aggressiveness of EOC 

tumors and patient survival (61,62). In OVCAR-3, a cell line with no detectable levels of SFRP4 

(61), treatment with SFRP4 remarkably inhibited β-catenin activity (63), indicating the important 

role of SFRP4 in suppressing β-catenin activity.  

Downregulation of DKK2 in EOC tumors is believed to be a result of epigenetic silencing.  

Compared to benign tumors and normal ovarian tissues, DKK2 in EOC tumors was more 

commonly methylated, and its methylation was increased in higher grades and stages of EOC 

(60). Similarly, decreases in DKK1 and SFRP2 levels in EOC has been suggested to be induced by 

DNA methylation (64). TET1, a member of ten-eleven translocation (TET) family, was reported to 

promote the activation of DKK1 and SFRP2 expression in EOC (64). TET1 plays an essential role in 

DNA demethylation by catalytically converting 5-methylcytosine to hydroxymethylcytosine, 5-

formylcytosine and 5-carboxylcytosine (65). Hypomethylation of the DKK1 and SFRP2 promoters 

was observed in EOC cells with ectopic TET1 expression (64). Therefore, it is proposed that TET1 

may bind to the CpG islands at the promoter regions of DKK1 and SFRP2, reducing the 

methylation levels and stimulating their expression by the transcriptional machinery. This is 

further supported by the increase in DKK1 and SFRP2 levels observed in EOC cells with induced 

expression of TET1 and by undetectable levels of TET1 expression in EOC cell lines including 

SKOV3, OVCAR-3, and OVSAHO (64).  

 Cyclin G2 (CCNG2) is an unconventional cyclin which has been shown to inhibit cell 

proliferation, migration and invasion in EOC cells (66,67). CCNG2 was downregulated in EOC 
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tissues compared to tumors with low malignant potential or normal ovarian tissues (67). The 

inhibitory effects of cyclin G2 on EOC cell proliferation and invasion are mediated, at least in part, 

by the inhibition of β-catenin.  Specifically, CCNG2 has been found to reduce LRP6, DVL2, and β-

catenin levels in EOC (67). While the mechanism by which CCNG2 inhibits LPR6 and Dvl2 in EOC 

is not known, a recent report in gastric cancer indicated that CCNG2 downregulated DVL2 

through the interaction with Dapper1 (DACT1) (68), a Wnt signaling antagonist that has been 

shown to promote DVL2 degradation (69). Gao et al. showed that there was a direct interaction 

of CCNG2 and DACT1 via co-immunoprecipitation analysis, and that overexpression of DACT1 

decreased DVL2 and β-catenin levels in gastric cancer cells (68). While unphosphorylated DACT1 

inhibited Wnt/β-catenin pathway, its phosphorylated form promoted Wnt/β-catenin signaling 

(70). Remarkably, overexpression of CCNG2 inhibited phosphorylation of DACT1 by CK1, 

suggesting CCNG2 exhibits the inhibitory effects on canonical Wnt signaling by suppressing 

DACT1 phosphorylation and promoting DVL2 degradation by unphosphorylated DACT1 (68). 

Recently, it was reported that DACT1 was downregulated in EOC samples derived from LGSC, EC, 

CC, and MC, when compared with ovarian tissues collected from patients with benign 

gynecological disorders (71). Thus, down-regulation of CCNG2 and DACT1 could contribute to the 

hyperactivation of the Wnt/β-catenin pathway. However, whether or not there is an interaction 

between CCNG2 and DACT1 in EOC requires further investigation. 

Another cell cycle regulator, cyclin Y (CCNY), also regulates β-catenin signaling. CCNY has 

been found to be upregulated in EOC tissues and its expression to be positively correlated with 

the clinicopathological stage (72). The study found that overexpression of CCNY increased cell 

proliferation, migration and invasion, which was mediated by the Wnt/β-catenin pathway. 
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Ectopic expression of CCNY increased nuclear β-catenin levels and its transcriptional activity, 

leading to the upregulation of downstream target genes (72). A previous study indicated that 

cyclin Y and CDK14 could interact at the membrane level to modulate LRP6 activation through 

phosphorylation (73). Notably, the expression of CDK14 was also upregulated in clinical EOC 

samples and its expression was found to enhance the accumulation of nuclear β-catenin (74). 

Therefore, the upregulation of both cyclin Y and CDK14 in EOC may enhance their association 

and in turn, promote canonical Wnt signaling.  

2.3.2. The β-catenin destruction complex 

Components of the destruction complex play an important role in maintaining 

cytoplasmic β-catenin proteins at basal levels in the absence of Wnt ligands. Decreases in the 

expression of certain components of the destruction complex are frequently observed in EOC 

(75). For example, several studies have reported significantly higher methylation rates in the 

promoter region of APC in EOC tumors when compared to benign ovarian tumors or normal 

ovarian tissue samples (76–78). However, the mechanisms underlying the hypermethylation 

which regulates APC suppression in EOC are not clear.  

  Tankyrases (TNKS), which belong to the poly (ADP-ribose) polymerase (PARP) family, are 

positive regulators of Wnt/β-catenin signaling (79,80). TNKS catalyzes ADP-ribosylation of AXIN 

and destabilizes the protein. Upregulation of TNKS1 expression was observed in EOC tissues and 

the immunoreactivity of TNKS1 was positively correlated with tumor size and stage (81). 

Furthermore, inhibition or knockdown of TNKS1 resulted in inhibition of EOC cell proliferation, 

migration, invasion, and colony formation in vitro and tumor growth in nude mice, as well as 
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aerobic glycolysis. Further studies confirmed that TNKS1 exerts these effects by promoting 

Wnt/β-catenin signaling (81).  

 Inhibition of GSK3β has also been observed in EOC (82,83). Initially, it was reported that 

GSK3β was overexpressed in EOC and was positively regulated the proliferation of ovarian cancer 

cells (75,84). However, further analyses revealed that GSK3β is frequently phosphorylated and 

thereby inactivated in EOC (12). It was further postulated that this GSK3β phosphorylation might 

be linked to the high frequency of activating mutations in PI3K in ovarian cancers (85). The 

PI3K/AKT pathway is known to inhibit GSK3β  activity through phosphorylation at S9 (86). This 

increase in PI3K results in higher levels of active AKT, which in turn inactivates GSK3β and thus 

downregulates β-catenin signaling. In addition, Filamin A interacting protein 1-like (FILIP1L), 

which was reported to be down-regulated in EOC and negatively correlated with EOC tumor 

stages, chemoresistance, and patient survival (83), has been found to induce β-catenin 

degradation (83,87). While the underlying mechanisms by which FILIP1L inhibits β-catenin has 

not been determined in EOC, knockdown of FILIP1L in colon cancer cell lines led to an increase in 

phosphorylated AKT and GSK-3β and a decrease in phosphorylated β-catenin levels, suggesting 

that FILIP1L may promote β-catenin degradation by inhibiting AKT and thereby increasing GSK3β 

activity (88). Finally, RAB14, a GTPase protein belonging to the RAS small G-protein superfamily 

(82,89), has also been reported to be upregulated in EOC tissues and cell lines (82). 

Overexpression of RAB14 increased GSK3β phosphorylation at residue S9 and enhanced β-

catenin activity (82), suggesting that higher expression of RAB14 in EOC tumors contributes the 

hyperactivation of β-catenin by inhibiting GSK3β activity. 
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2.3.3. Regulation of β-catenin subcellular localization 

β-catenin is a dynamic protein that can function as a component of adherens junctions or 

as a transcription factor depending on its subcellular localization. At the adherens junctions, β-

catenin interacts with the cytoplasmic tail of E-cadherins and links E-cadherins to actin filaments 

through its interaction with α-catenin to maintain the dynamics of the cytoskeleton (90,91). 

Dissociation of the adherens junctions results in the accumulation of β-catenin in the cytoplasm 

and its nuclear translocation to promote transcription of target genes (92). The dissociation 

between β-catenin and E-cadherin is mediated by tyrosine phosphorylation at the C-terminal of 

β-catenin, decreasing its binding affinity to E-cadherin and α-catenin (93). In contrast, serine 

phosphorylation of E-catenin at its cytoplasmic tail increases the binding between E-cadherin and 

β-catenin (90), stabilizing the adherens junctions complex. 

During EOC development, the membrane-associated β-catenin is dysregulated. Tissue 

transglutaminase 2 (TG2) has been shown to promote the dissociation of E-cadherin and β-

catenin in EOC cells. TG2 was found to be overexpressed in EOC tumors and positively correlated 

with β-catenin levels in ovarian cancer cell lines (94,95). TG2 formed a complex with fibronectin 

(FN) and β1-integrin, enhancing the binding of FN to its cognate receptor, leading to the 

activation of c-Src. It has been proposed that, at the plasma membrane, activated c-Src could 

phosphorylate β-catenin at Y654, inhibiting the interaction between E-cadherin and β-catenin 

(80). Similarly, activation of lysophosphatidic acid receptors (LPAR) by its ligand, lysophosphatidic 

acid (LPA) also contributes to the aggregation and subsequent activation of β1-integrin in ovarian 

cancer cells (96). Immunofluorescence results revealed that E-cadherin was colocalized with β1 

integrin clusters, suggesting the recruitment of E-catenin to the β1 clusters, which allows the 
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release of β-catenin from the junctional complex (96). This would lead to the accumulation of 

cytoplasmic β-catenin proteins and increase its nuclear activity. 

2.3.4. Regulation of β-catenin in the nucleus  

Several proteins are believed to modulate β-catenin activity within the nucleus. SOX7, a 

member of the Sox transcription factor family, was demonstrated to suppress Wnt signaling in 

ovarian cancer cells harboring either wildtype or mutant β-catenin (97). This was proposed to be 

accomplished through direct binding of SOX7 to β-catenin to disrupt its activity. Ectopic 

expression of SOX7 in TOV-112D cells significantly inhibited β-catenin transcriptional activity with 

downregulation of β-catenin/TCF target genes.  Immunofluorescence and co-

immunoprecipitation analysis indicated that SOX7 mainly localized in the nucleus where it 

interacted with β-catenin and TCF4 (97). Furthermore, SOX7 expression was found to be 

significantly reduced in EOC tumors and negatively correlated with tumor progression (98). An 

additional study that utilized bioinformatic analysis predicted that another member of the Sox 

family, SOX17, was involved in the development of ovarian cancer through its interaction with β-

catenin and regulation of the Wnt pathway (99). However, this has not yet been proven 

experimentally. 

Multiple proteins have been reported to form a complex with β-catenin and TCF/LEF and 

increase the stability of the transcriptional complex. Pygopus (PYGO), a co-activator, binds β-

catenin directly in the nucleus and assists in transcription of its target genes (32). PYGO2 has been 

detected in the all histological subtypes of EOC tumors, and its expression was higher in EOC 

tissues than in benign ovarian tumors (100). Suppression of PYGO2 inhibited cell proliferation, 

colony formation, and tumor growth, suggesting that it may play an important role in ovarian 
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cancer progression (100). However, whether or not PYGO2 exerts these tumor-promoting effects 

by promoting β-catenin/TCF activity requires confirmation.  In addition,  JRK, which interacts 

directly with β-catenin through its N-terminal, stabilizes the transcriptional complex consisting of 

β-catenin, LEF1, and PYGO2 (101,102). Mining the TCGA database revealed copy-number gains 

in JRK and higher JRK mRNA levels in some serous tumors (102).  Furthermore, knockdown or 

deletion of the N-terminal of JRK decreased the activity of β-catenin, downregulated β-catenin 

target genes, and inhibited cell proliferation (102). These findings suggest that JRK plays a role in 

EOC development by enhancing β-catenin activity. 

FOXM1, a member of forkhead transcription factors, plays important roles in EOC 

development in part by regulating β-catenin signaling. High FOXM1 levels were found to be 

correlated with EOC tumor grade and stage, and to predict poor prognosis and chemoresistance 

(103–106). Interestingly, high FOXM1 immunoreactivity was found to be significantly associated 

with high β-catenin staining (107). FOXM1 has been shown to induce β-catenin transcription EOC 

cells (106,107).  On the other hand, activation of Wnt/β-catenin signaling also increased mRNA 

and protein levels of FOXM1 (106). In addition, FOXM1 has also been reported to promote β-

catenin nuclear translocation and to form a complex with β-catenin and TCF4 to induce target 

gene expression in glioma cells (108). This suggests that FOXM1 may also function as a co-

activator of β-catenin to promote EOC development.  
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2.4. Role of Wnt/β-catenin in ovarian cancer development 

 It is well established that the Wnt/β-catenin pathway exerts tumor-promoting effects in 

EOC (85,109,110). This pathway has been shown to promote cell proliferation, survival, 

migration, and invasion, maintain cancer stem cells, induce resistance to therapeutic agents, and 

may also be involved in the tumor angiogenesis (111) and immune suppression (112). 

2.4.1. Stemness 

 It is now widely accepted that tumors are made up of a heterogeneous population of 

cancer cells, a small portion of which is characterized as cancer stem cells (CSCs) (113). Like 

normal stem cells, CSCs possess self-renewal and differentiation potential which contribute to 

the heterogeneity of cancer cell populations. CSCs have high tumorigenic potential and mediate 

the resistance to chemotherapy, driving tumor initiation, metastasis, and cancer recurrence 

(113). Multiple studies on intratumoral heterogeneity enable the identification of CSCs in EOC. 

Ovarian CSCs have been characterized by functional and phenotypic expression of surface 

markers such as CD24, CD44, CD117, ALDH, CD133, SOX2, NANOG, OCT4, and EPCAM 

(106,114,115). Ovarian tumor-isolated mesenchymal stem cells were identified to exhibit high 

levels of CD133 and ALDH expression (115). Additionally, the increase in stem cell marker 

expression in ovarian CSCs was detected together with the ability to form spheroids in vitro and 

tumors in vivo, contributing to the initiation and progression of EOC (106,114,116,117). These 

cells are resistant to chemotherapy and capable of giving rise to progenitor tumor cells, leading 

to tumor progression, metastasis, and recurrence (118-123).  

Accumulating evidence points toward the Wnt/β-catenin pathway in playing an important 

role in the acquisition of stem-like properties in ovarian cancer cells (106,114,124). Among stem 
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cell markers, ALDH1A1 has been found to be a direct transcriptional target of β-catenin (125). In 

addition, silencing of β-catenin strongly reduced the stem-like properties (125,126). These 

findings provide direct evidence that β-catenin is involved in promoting EOC stemness. Several 

studies have found that modulation of β-catenin activity altered the CSC-like properties. For 

example, suppression of SFRP1, AXIN2, and ICAT, three important negative regulators of the 

Wnt/β-catenin signaling pathway, by miR-1207 activated β-catenin signaling and induced the 

expression of CSC markers (114). Besides, Wnt positive regulators LGR5 and LGR6 have been 

recognized as markers for ovarian cancer stem cells (57,127,128). The high expression of LGR5 

and LGR6 was positively correlated with poor patient survival and was observed predominantly 

in high-grade tumors (57,127). Silencing of LGR6 significantly inhibited stemness, and the effects 

of LGR6 were demonstrated to be mediated by the β-catenin activity (57). Moreover, 

overexpression of FOXM1 promoted β-catenin activity and the formation of spheroids, while 

knockdown of FOXM1 had the opposite effects (106). Finally, several β-catenin inhibitors were 

documented to exert inhibitory effects on ovarian CSCs. Theaflavin-3, 3'-digallate (TF3), a black 

tea polyphenol, was found to inhibit EOC stemness by blocking Wnt/β-catenin signaling (129). 

Ginsenoside-Rb1, a natural saponin isolated from the rhizome of Panax 

quinquefolius and notoginseng, and its metabolite, compound K, suppressed CSC self-renewal 

and inhibited β-catenin activity (130). Together, these studies strongly support the critical role of 

the Wnt/β-catenin pathway in maintaining stemness in EOC. 
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2.4.2. Chemoresistance 

Chemoresistance is one of the major challenges in developing treatments for ovarian 

cancer. Recent studies encompassing ovarian CSCs and their involvement in OC tumorigenesis 

reveal the association of CSCs and chemoresistance (106,116,131,132). ALDH+, CD44+ ovarian 

CSCs exhibited higher levels of resistance to paclitaxel and carboplatin (132). Additionally, an 

increase in cisplatin and paclitaxel resistance was observed in IGROV1 sublines and was 

associated with elongated mesenchymal-like morphology and a decrease in cell-cell interactions 

(106). In association with the upregulation of stem cell markers, a prominent increase in nuclear 

β-catenin levels and its activities were reported in multiple studies, indicating the promoting role 

of the Wnt/β-catenin pathway in chemoresistance (106,116,131,132).  Since CSCs are linked to 

chemoresistance, many of the studies described above also reported the chemosensitizing 

effects of β-catenin silencing (133) or inhibition (52,81,106) on EOC cells.   

One of the mechanisms that are responsible for chemoresistance in CSCs is the 

deregulation of membrane transporters, which is mediated at least in part by Wnt/β-catenin 

signaling (106,114,134). The study by Chau et al. (2013) identified the involvement of c-kit (also 

known as CD177), a stem cell-associated factor (SCF) receptor, in promoting ovarian stem-like 

phenotypes and chemoresistance via the Wnt/β-catenin/ABCG2 axis (134). c-kit and its ligand 

SCF were upregulated in ovarian tumor-initiating cells. Knockdown of c-kit reduced the numbers 

of spheroids formed in vitro and rendered the cells more susceptible to chemotherapeutic 

reagents, including cisplatin and paclitaxel (134). In addition, increased c-kit transcriptional level 

led to an increase in Wnt/β-catenin signaling pathway and mRNA levels of ABCG2 transporter 

which promoted the efflux of chemotherapeutic drugs as the results (134). Besides, Wnt/β-
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catenin pathway was reported to indirectly modulate the expression of human copper 

transporter 1 (hCRT1) via FOXM1 (106). hCRT1 is a transmembrane transporter which allows the 

passage of copper and cisplatin through the membrane barrier into cells (106). In cisplatin-

resistant EOC cells, upregulation of FOXM1 inhibited the expression of human copper transporter 

1 (hCTR1) and SP1, a transcription factor that induces hCTR1 expression (106). It has been 

demonstrated that FOXM1 promotes β-catenin nuclear localization, while β-catenin activation 

promotes FOXM1 expression as a positive feedback loop (106,108). In response to Wnt3A, 

FOXM1 expression was upregulated in TOV-21G cells in a dose-dependent manner (106). Thus, 

induced expression of FOXM1 by Wnt/β-catenin signaling would impair cisplatin uptake in EOC 

cells.   

In addition to promoting resistance to conventional chemotherapies, a recent study 

provided evidence to support the activation of the Wnt/β-catenin signaling in inducing resistance 

to a PARP inhibitor, olaparib (135). Activators and target genes of the Wnt/β-catenin pathway 

were found to be induced, while inhibitors of this pathway were suppressed in olaparib-resistant 

HGSC cell lines. Overexpression of Wnt3A reduced the sensitivity of EOC cells to olaparib.  

Conversely, inhibition of Wnt/β-catenin signaling enhanced the anti-tumor effects of olaparib 

both in vitro and in vivo (135). These results and studies discussed above support the potential 

of Wnt/β-catenin inhibitors for the management of EOC patients with drug resistance.  

2.4.3. EMT and metastasis 

Epithelial to mesenchymal transition (EMT) is a cellular process in which epithelial cells 

lose cell-cell adhesion and acquire mesenchymal characteristics, including migration and invasion 

(136). The attainment of invasiveness allows cells to break through the basement membrane, 
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which eventually results in metastasis in ovarian cancer (85,136). Many studies examining 

invasive characteristics of ovarian cancer suggest that activation of EMT is a critical step in 

acquiring malignant phenotypes, especially in high-grade serous ovarian carcinoma (137,138). 

Recent evidence indicates that the activity and expression levels of E-cadherin and β-

catenin are critical in the initiation of  EMT in ovarian cancer cells (137). Loss of E-cadherin has 

been observed in ovarian cancer cell lines with increased invasion and migration phenotypes 

(139,140). E-cadherin assists in keeping a low cytosolic/nuclear β-catenin level by forming a 

complex with β-catenin at the adherens junctions; therefore, the decrease in E-cadherin would 

involve in the promotion of β-catenin signaling. The accumulation of nuclear β-catenin levels was 

detected together with an increase in cancer cell motility (139,141). Moreover, the Wnt/β-

catenin pathway modulates the expression of E-cadherin through upregulation of key 

transcription factors, whether directly or indirectly. These transcription factors are known as 

mesenchymal inducers, including Twist, Snail, and Slug (139,141-146). Twist, Snail, and Slug bind 

to specific E-boxes located proximal to the E-cadherin promoter and suppress its expression 

(147). In addition, Snail can form a transcriptional complex with β-catenin, providing a positive 

regulatory feedback to enhance its expression through the transcriptional activity of β-catenin 

(147,148).  

Additionally, Wnt/β-catenin signaling is involved in the remodeling of the extracellular 

tumor matrix in EOC, which is suggested to be mediated by the activities of matrix 

metallopeptidases (MMP). MMPs are proteolytic enzymes that act on diverse extracellular matrix 

(ECM) components such as fibronectin, gelatins, collagens, and laminins (149). MMP-2, MMP-7, 

and MMP-9 have all been shown to be upregulated in Wnt-activating cells and were reported as 
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direct transcriptional targets of β-catenin (50,140,150,151). Reporter analysis indicated that 

Wnt-1 stimulation activated the promoter activity of MMP-2 and MMP-9 proximal promoters in 

T cells (151). The Wnt-dependent expression of MMP-7 was promoted by the presence of a TCF-

binding site at the gene promoter in Wnt-7A-induced EOC cells (50). Dysregulation of these 

MMPs was frequently observed in EOC (152–154). The upregulation of MMP-9 was suggested to 

contribute to lymph node metastasis in ovarian cancer (155). In addition, MMP-2 has been 

reported to be activated in ovarian cancer invasion - the first step of metastasis (139) while 

matrilysin MMP-7 was reported to activate progelatinases MMP-2 and MMP-9 in vitro (156). 

Furthermore, increased β-catenin levels have been detected in tumor samples from orthotopic 

xenograft mice implanted with high metastatic EOC cells (157). Silencing of β-catenin displayed 

a significant reduction in the ability to form primary tumors and ascites in the mouse model, 

providing direct evidence for an essential role of β-catenin in EOC metastasis. 

2.4.4. Tumor angiogenesis 

Angiogenesis, wherein tumors promote blood vessel formation around to provide 

themselves with nutrients and oxygen, is one of the hallmarks of cancer (158). There are multiple 

steps involved in angiogenesis including vasculature disruption, cell migration, cell proliferation, 

and vessel formation (159). While studies in other cancers have provided strong evidence that 

the Wnt/β-catenin pathway is an important player in tumor angiogenesis (158, 160), very few 

studies have been done in EOC. A recent study by Tang et al. (2018) examined the role of soluble 

E-cadherin in EOC and revealed that it interacted with VE-cadherin to induce angiogenesis (161). 

Interestingly, soluble E-cadherin containing exosomes induced strong β-catenin accumulation in 

the nucleus. Importantly, silencing of β-catenin expression attenuated the effect of soluble E-
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cadherin containing exosomes on the formation of network-like structure (161). These findings 

suggest that β-catenin may induce tumor angiogenesis.  However, more studies, especially 

involving in vivo mouse models, is required to confirm the role of β-catenin in ovarian tumor 

angiogenesis.   

2.4.5. Immune suppression 

Ovarian cancer has been reported to evade the immune system by multiple mechanisms, 

including the recruitment of regulatory T cells (Treg) and the promotion of T cell apoptosis via 

PD-L1 (162,163). The presence of Treg in ovarian tumors increases immune tolerance and is 

correlated with poor patient prognosis (162). In addition, IL-10 and indoleamine 2, 3-dioxygenase 

(IDO) were reported to promote immune evasion by ovarian tumor-associated macrophages 

(164). Notably, expression of IDO is associated with poor prognosis in ovarian cancer (165,166). 

In the presence of ovarian tumor ascites CD14+ cells, which expressed IDO and IL-10, CD4+ T cells 

showed inhibition in responsiveness to antigen stimulation, suggesting IDO and IL-10 might be 

involved in the regulation of the immune response in OC (164). The same study suggests that IDO 

may induce Treg differentiation and apoptosis of T-cells, regulating the balance of Treg and 

effector T cells Th17. IDO promoter contains TCF/LEF binding domains, which was reported to be 

activated by Wnt/β-catenin signaling (167). However, there is no direct evidence indicating the 

Wnt/β-catenin pathway promotes immune evasion of EOC cells.  
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3. Small molecule inhibitors targeting the Wnt/β-catenin signaling pathway 

The involvement of Wnt signaling in stem cell biology and human diseases has attracted 

considerable amounts of interest in developing therapeutic strategies targeting the pathway. 

Mutations of the components and abnormal expression of regulators of the canonical Wnt 

signaling pathway are frequently detected in EOC, resulting in hyperactivity of β-catenin (85). 

Over the past decade, a number of small molecule inhibitors have been identified through high-

throughput screening and characterized with potential anti-tumor effects by targeting different 

components of the Wnt/β-catenin pathway as listed in Table 3. Among small molecule inhibitors 

have been developed, several Porcupine inhibitors which inhibit palmitoylation of Wnt ligands 

and their secretion have entered clinical trials. While the targets of most of the inhibitors are 

identified or confirmed, some of them remain to be investigated.  

Table 3: Small molecule inhibitors of the Wnt/β-catenin signaling pathway 

Small 
molecule 
inhibitors 

Mechanism of actions Developmental 
stage 

Condition Reference 

Porcupine inhibitors  
Wnt-C59 

(C59) 
Inhibits PORCN activity Preclinical Nasopharyngeal 

carcinoma 
168 

IWP-L6 Inhibits PORCN activity 
and suppresses 

phosphorylation of 
Dishevelled 2 

Preclinical Kidney tubule formation 169 

IWP-2 Inhibits PORCN activity Preclinical Cancers 170 
IWP-O1 Inhibits PORCN activity 

and suppresses 
phosphorylation of 

Dishevelled 2/3 

Preclinical NA 171 

LGK-974 Inhibits PORCN activity Phase 1 Pancreatic Cancer, BRAF 
Mutant Colorectal 

Cancer, Melanoma, 
Triple Negative Breast 

172,173 
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Cancer, Head and Neck 
Squamous Cell Cancer, 
Cervical Squamous Cell 

Cancer, Esophageal 
Squamous Cell Cancer, 

Lung Squamous Cell 
Cancer 

ETC-
1922159 
(ETC-159) 

Inhibits PORCN activity Phase 1A/B Solid Tumors 174 

CGX1321 Inhibits PORCN activity Phase 1 Solid Tumors, 
Gastrointestinal Cancer 

175 

RXC004 Inhibits PORCN activity Phase 1 Cancer, Solid Tumor 176 
Tankyrase inhibitors  

XAV-939 Regulates Axin levels 
by inhibiting the 

activity of tankyrase 1 
and 2  

Preclinical Hepatocellular 
carcinoma, colon cancer, 
neuroblastoma, breast 

cancer and ovarian 
cancer 

146, 177-
181 

WIKI4 Inhibits the activity of 
tankyrase 2 

Preclinical Embryonic stem cells 182,183 

MSC25048
77 

Inhibits the activity of 
tankyrase 1/2 

Preclinical Colon cancer 184 

RK-287107 Inhibits the activity of 
tankyrase 1/2 

Preclinical Colon cancer 185 

C44 Inhibits tankyrase 
activity by disrupting 

the interaction 
between TNKS and 

USP25 

Preclinical Prostate cancer 186 

β-catenin inhibitors  
iCRT14 Binds to β-catenin and 

inhibits β-catenin/TCF 
interaction 

Preclinical Leukemia, renal cell 
carcinoma, lymphoma, 

breast cancer 

187-190 

iCRT3 Binds to β-catenin and 
inhibits β-catenin/TCF 

interaction 

Preclinical Colon cancer, Sepsis 191,192 

LF3 Inhibits β-catenin and 
TCF interaction 

Preclinical Colon cancer 193 

PNU-74654 Binds to β-catenin and 
inhibits β-catenin/TCF 

interaction 

Preclinical Colon cancer, 
adrenocortical cancer 

194-196 
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PKF115-
584 

Disrupts the formation 
of β-catenin/TCF 

complex 

Preclinical Leukemia, 
endometriosis, colon 
cancer, melanoma, 

adrenocortical cancer, 
multiple myeloma 

197-203 

PKF118-
310 

Disrupts the formation 
of β-catenin/TCF 

complex 

Preclinical Hepatocellular 
carcinoma, breast 

cancer, osteosarcoma, 
prostate cancer 

 

204-207 

Others  
PRI-724 Binds to CBP and 

inhibits CBP/β-catenin 
interaction 

Phase 2 
 
 
 
 

Phase 1/2A 

Colorectal 
Adenocarcinoma, Stage 
IVA Colorectal Cancer, 
Stage IVB Colorectal 

Cancer 
Hepatitis C, Hepatitis B, 

Liver Cirrhoses 

209,209 

ICG-001 Binds to CBP and 
inhibits CBP/β-catenin 

interaction 

Preclinical Colon cancer and breast 
cancer 

210,211 

KY02111 Inhibits Wnt/β-catenin 
signaling. The 

mechanism is unclear 

Preclinical Human stem cell 
differentiation, and 

glaucoma 

212,213 

SM08502 Inhibits Wnt/β-catenin 
signaling. The 

mechanism is unclear 

Phase 1 Solid tumors 214 

KYA1797K Binds to Axin and 
enhances the binding 
of Axin to β-catenin 

Preclinical Colon cancer and lung 
cancer 

215,216 

FH535 Inhibits Wnt/β-catenin 
signaling and 

recruitment of β-
catenin to PPARδ and 

PPARγ 

Preclinical Liver cancer, 
hepatocellular cancer, 

colon cancer and 
osteosarcoma 

217-220 

NA: not available 
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4. Rationale, Hypothesis, and Objectives 

Accumulating evidence showed that aberrant Wnt signaling is associated with a number 

of diseases and tumor types.  Wnt signaling has been showed to regulate cell viability, apoptosis 

and migration, initiating cancer progression, and metastasis (43,137,138,221-223). Deregulation 

of Wnt/β-catenin signaling was found in many carcinomas, including EOC (224,225). One of the 

mechanisms of Wnt/β-catenin hyperactivation in ovarian cancer is the activating mutations of 

the β-catenin gene (CTNNB1), which has been identified in the endometrioid subtype of ovarian 

cancer (43,225). 

Besides, recent studies indicated Wnt/β-catenin signaling plays an essential role in the 

function of ovarian CSCs. The self-renewal potential of CSCs is maintained through the abnormal 

activation of Wnt signaling, inducing cancer stemness features (118,226). CSCs are 

subpopulations of cancer cells with high tumorigenic potential (226). They are capable of giving 

rise to transformed progenitor cells which form highly aggressive tumors in vivo (226). In 

addition, CSCs have been showed to be resistant to chemotherapies and radiation (226). 

Therefore, inhibition of CSC survival and self-renewal capacity would improve treatment 

outcomes. 

Canonical Wnt signaling is mediated through the translocation of β-catenin to the nucleus 

and subsequent expression of β-catenin/TCF target genes (224). The β-catenin/TCF complex is a 

critical mediator in transducing Wnt signaling to downstream effectors. Therefore, targeting the 

complex would efficiently eradicate Wnt signaling.  In-silico screening, a computational-based 

drug-repositioning approach, has been an innovative approach which significantly speeds up the 

drug discovery process (227). The method automatically integrates and identifies compounds 



34 
 

which are promising candidates for disease treatments. We performed the analysis in the library 

of 200,000 natural products. We further limited the number of β-catenin inhibitors by functional 

assays. Our lab has identified two novel promising small inhibitors, referred to as compound 2 

(C2) and compound 10 (C10). We hypothesize that C2 and C10 would bind to the TCF-binding 

pocket on β-catenin, inhibiting the formation of the transcriptional complex β-catenin/TCF. This 

would lead to the inhibition of downstream Wnt target gene expression and cancer progression 

as a consequence. 

Aim 1: To determine the anti-tumorigenic effects of C2 and C10 on ovarian cancer. 

Aim 2: To determine if C2 and C10 bind directly to β-catenin and disrupt its signaling. 
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ABSTRACT 

Ovarian cancer is the leading cause of death among gynecologic malignancies. Clinical 

management of ovarian cancer remains a major challenge due to the development of 

chemoresistance.  Recent studies reveal that the Wnt/β-catenin pathway plays critical roles in 

ovarian cancer progression, metastasis, and cancer stemness. When β-catenin is activated by a 

Wnt ligand, it translocates into the nucleus and interacts with TCF transcription factors, such as 

TCF4, to regulate target gene expression. We aim to develop a potent β-catenin inhibitor that 

disrupts the interaction between β-catenin and TCF4. A druggable pocket on the β-catenin was 

predicted using the crystal structure of β-catenin. Through in-silico screening and functional 

assays, we identified two compounds, C2 and C10, that have strong anti-tumor effects.  C2 and 

C10 inhibited the formation of colonies in soft agar colony formation assays and suppressed 

spheroid formation of ovarian cancer cell lines under stem cell culture conditions. Furthermore, 

C2 and C10 also reduced the expression of cancer stem cell markers.  Using TOPFlash reporter 

assays, we showed that C2 and C10 inhibited the transcriptional activity of β-catenin/TCF4 

complex. Furthermore, Western blot results indicated that there was a downregulation of β-

catenin/TCF4 target gene expression after C2 and C10 treatment. Utilizing biolayer 

interferometry binding assay, we confirmed that C2 and C10 bind to β-catenin protein. Taken 

together, these findings suggest that C2 and C10 inhibit the Wnt/β-catenin signaling to suppress 

ovarian cancer proliferation and stemness and they may potentially be further developed as a 

targeted therapy to treat cancer patients with hyperactive Wnt/β-catenin signaling. 
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INTRODUCTION 

Ovarian cancer is the most lethal gynecologic malignancy and is ranked as the fifth leading 

cause of cancer deaths in females (1). It is estimated that there were approximately 22,530 new 

cases with a mortality rate of approximately 13,980 deaths per year in the United States in 2019 

(1). Ovarian cancers are grouped into three categories due to the cell of origin: epithelial, stromal, 

and germ cell cancer (2). Epithelial ovarian cancer (EOC) is the most common subtype of ovarian 

cancer, accounting for approximately 90% of cases (3). EOC is difficult to treat due to the lack of 

specific symptoms and effective screening methods at early stages when the disease is still 

curable. In addition, treating ovarian cancer remains a challenge due to the development of 

chemoresistance, metastasis, and cancer relapse (3,4). Most of the patients were diagnosed with 

stage III or IV, and the survival rate was less than five years in these patients (5). Therefore, the 

development of new therapeutics is needed to improve patient outcome. 

Canonical Wnt signaling (or Wnt/β-catenin signaling) is essential for early embryonic 

development and post-embryonic physiological processes (6). Canonical Wnt signaling is 

activated by the binding of Wnt ligands to its surface receptors, resulting in the stabilization of 

cytosolic β-catenin (6). In the absence of Wnt ligands, β-catenin is targeted for ubiquitylation-

proteasomal degradation by a destruction complex which consists of adenomatous polyposis coli 

(APC), the scaffold Axin, casein kinase-1 (CK1) and glycogen synthase kinase 3 (GSK-3) (6). 

Accumulating evidence showed that abnormal activation of Wnt signaling has an implication in 

ovarian cancer tumorigenesis in various aspects (11-15). Wnt signaling has been reported to 

promote cell viability, proliferation, and migration through EMT, resulting in the more advanced 

stages of ovarian cancer and metastasis (14,16).  In addition, Wnt/β-catenin signaling is 
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associated with cancer stem cell maintenance, contributing to chemoresistance and cancer 

relapse in ovarian cancer patients (17-20). Finally, an activating mutation of CTNNB1 was 

detected in endometrioid subtypes of EOC (16, 21). Although less common than CTNNB1, 

inactivating mutations at AXIN and APC were also reported in patients with endometrioid EOC 

(21,22). 

The Wnt/β-catenin pathway has been recognized as one of potential therapeutic targets 

for cancer treatment. Over the past decade, researchers have introduced a number of small 

molecule inhibitors which target different components of canonical Wnt signaling to 

downregulate the signaling. While some molecules inhibit the Wnt receptor complex (23), there 

are small molecules that bind to Porcupine (IWPs) to suppress Wnt ligand secretion (24,25). In 

addition, other compounds have been developed to promote the stability of the destruction 

complex such as tankyrase inhibitors (26,27). Several small molecule inhibitors that disrupt the 

interaction between β-catenin and its co-activator, CBP (ICG-001, PRI-724) (28,29), β-catenin and 

TCF (iCRT3, LF3) (30,31), or β-catenin and BCL9 (32), have also been reported.  Among these 

inhibitors, PRI-724 had entered clinical trials for treating metastatic colorectal cancer and 

hepatitis B and hepatitis C (29,33). PRI-724 was withdrawn at randomized phase II trial for 

patients with metastatic colorectal cancer (NCT02413853) (33) while the small molecule is at the 

recruitment stage for phase I/IIa trial for hepatitis B or C (NCT03620474) (29). Therefore, the 

development of a potent small molecule inhibitor for this pathway is still underway. 

Recent studies in our lab strongly suggest that Wnt/β-catenin plays important roles in 

EOC development (34-36). We demonstrated that cyclin G2, an unconventional cyclin, inhibited 

key components of the Wnt signaling pathway, including Dvl and LRP6, to reduce β-catenin 

https://clinicaltrials.gov/show/NCT02413853
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activity (34). On the other hand, miR-590-3p promoted EOC development (35) in part, by 

targeting cyclin G2 and its transcription factor FOXO3 to enhance Wnt/β-catenin signaling (36). 

The results prompted us to search for inhibitors of this pathway.  Since it has been suggested that 

disruption of β-catenin/TCF interaction could result in higher specificity (37), we collaborated 

with Dr. Yi Sheng (Department and Biology, York University) and Dr. Yong Zhao (Beijing 

Computing Center), to predict a druggable target on β-catenin that would disrupt the interaction 

between β-catenin and TCF4.  We performed in-silico screening on 200,000 small molecules, and 

preliminary functional assays revealed that two of the molecules, referred to as compound (C) 2 

and C10, were most effective in suppressing colony formation. In this study, we further examined 

the anti-tumor effects of C2 and C10 on EOC cell proliferation, anchorage-independent growth, 

and spheroid formation. In addition, we investigated the molecular mechanisms underlying the 

actions of C2 and C10 in EOC cells. 
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METHODS AND MATERIALS 

Cell lines and cell cultures 

Four different epithelial ovarian cancer cell lines were used. HEY (38) and OVCAR-3 (3) 

cells are used as models of high-grade serous ovarian cancer (HGSC), while TOV-112D (3) and 

SKOV3.ip1 cells which is derived from SKOV3 (39), are models of endometrioid ovarian cancer. In 

addition, HCT-116, a colorectal cancer cell line harboring a hyperactive CTNNB1 mutation and 

commonly used in studies involving Wnt/β-catenin (40), was included in some of the 

experiments. TOV-112D, HCT-116 and OVCAR-3 cells were purchased from American Type 

Culture Collection (Manassas, VA, USA). SKOV3.ip1 and HEY cells were kindly provided by Dr. 

Mien-Chie Hung (University of Texas M.D. Anderson Cancer Center, Huston, Texas) and Dr. 

Theodore Brown (Mount Sinai Hospital, Toronto, Canada) respectively. The cells were maintained 

in media supplemented with 10% fetal bovine serum (FBS) as follow: TOV-112D cells were 

maintained in MCDB105/M199, SKOV3.ip1 and HCT-116 cells were maintained in McCoy’s 5A, 

and HEY and OVCAR-3 were cultured in DMEM media. 

Proliferation and Cytotoxicity assays 

IncuCyte proliferation assay was used to examine the effects of C2 and C10 on cell 

proliferation. TOV-112D, SKOV3.ip1, HEY, and OVCAR-3 cells were seeded onto 96-well plates 

with different seeding densities (TOV-112D: 2500 cells/well; SKOV3.ip1: 3000 cells/well; HEY: 

2000 cells/well; OVCAR3: 3000 cells/well). Cells were treated with either C2 or C10 with different 

concentrations ranging from 0-50µM, and the plates were placed in the IncuCyte for imaging 

every 3 hours. Proliferation curves were generated using Incucyte proliferation analysis with 

confluency as the parameter. For CCK-8 assay, cells were treated in a similar way as for 



41 
 

proliferation assay. After 24 hours with C2, C10 or PRI-724 treatment, cells were treated with 

10µl of tetrazolium salt solution which was provided from CCK-8 kit in each well (10µl of substrate 

per 100µl cell media). The tetrazolium salt was reduced by dehydrogenase enzymes from viable 

cells, giving a yellow-color formazan dye. The colorimetric assay was detected at the wavelength 

of 450nm, which indirectly reflects the number of viable cells. 

Cell fractionation and Immunoblotting 

To separate the cytoplasmic and nuclear extracts from cultured cells, the Thermo 

Scientific NE-PER Extraction kit was used. Cells were cultured in 10 cm dishes and trypsinized. 

500,000 cells were obtained from each cell line and proceeded for protein fractionation. 

Collected cells were then pelleted by centrifugation at 500 x g for 5 minutes at 4°C and washed 

with 1×PBS. Cellular fractions were prepared according to the manufacturer’s protocol. 

Cytoplasmic and nuclear fractions were mixed with SDS-sample buffer, and proteins were 

analyzed using Western blot.  

Western blot samples were prepared as being described previously (35). After 

treatments, cells were lyzed in Radioimmunoprecipitation assay (RIPA) buffer (20 mM Tris, pH 

8.0, 150 mM NaCl, 10 mm NaF, 0.1% SDS, 1% Nonidet P-40, and 1× protease inhibitor cocktail) 

(Pierce, IL, USA). Cell lysates were collected by centrifugation at 12,000×rpm for 15 minutes at 

4°C. Total protein was quantified by the Pierce BCA Protein Assay Kit, and equal amounts of 

protein were subjected to 10% SDS-polyacrylamide gel electrophoresis. The proteins were then 

transferred from the SDS-PAGE gel onto Immuno-Blot polyvinylidene difluoride (PVDF) 

membranes (BioRad). The membranes were then blocked with 5% milk for 1 hour at room 

temperature and incubated with primary antibodies (as listed in Table 1) overnight at 4°C. 
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Subsequently, the membranes were probed with secondary HRP-coupled antibodies. Proteins 

were visualized by HRP Substrate (Millipore or Bio-Rad) according to the manufacturer’s 

protocols. 

Table 1: Antibody for Western blot 
Antibody Company Species Dilution/Concentration 

β-catenin Cell signaling Rabbit 1:1000 

p-β-catenin 

(S33/37) 

Cell signaling Rabbit 

 

1:1000 

Lamin B Santa Cruz Goat 1:500 

Axin 2 Cell signaling Rabbit 1:1000 

c-myc Santa Cruz Mouse 1:250 

Cyclin D1 Santa Cruz Mouse 1:250 

GAPDH Santa Cruz Mouse 1:5000 

 

Spheroid formation 

To examine the effect of C2 and C10 on self-renewal ability of ovarian stem cells, viable 

cells were counted and seeded onto ultra-low attachment 96-well plates in stem cell culture 

medium which contains DMEM/F12, B27, 20ng/ml EGF, 20ng/ml bFGF and 4µl/mL heparin. At a 

cell density of 500 cells/100µl/well, EOC cells were treated with various concentrations of C2 and 

C10 ranging from 0-50µM. The images of spheroids in each well were obtained from the Incucyte. 

After 7 days, spheroids with the diameter ≥ 50µm were counted. 

Soft agar colony formation assay 

To investigate C2 and C10 effects on tumor formation in vitro, soft agar colony formation 

assay was performed. The assay characterizes the ability of cancer cells to growth and form 
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tumors in an anchorage-independent way (41). 1% agar and 2X culture media with 20% FBS were 

pre-incubated in 40°C using a water bath and then mixed at equal volumes to form the 0.5% base 

agar. In a 6-well plate, 1.5 mL of base agar was added to each well and set aside for at least 15 

minutes to solidify. Next, 0.6% agarose was heated to 40°C, and adherent cells were trypsinized 

for counting. After mixing with 2X culture media with 20% FBS to make 0.3% agarose, the cell 

suspension was added to the mixture which was then added on top of the base layer. The cell 

density was seeded on each well was 5000 cells/well. The plates were incubated at 37°C in a 

humidified incubator until colonies formed were visible (approximately 28 days). Colonies were 

stained with 0.005% crystal violet for an hour and then counted using ImageJ. Colonies which had 

diameter ≥70µM were counted. Before performing the soft agar formation assay, the cells were 

pre-treated with C2, C10, or iCRT3 for 48 hours. 

RNA extraction, Reverse transcription and Real time-PCR 

Total RNA was extracted using Ribozol reagent (Invitrogen, Life Technologies) and the 

obtained RNAs were converted into complementary DNA (cDNA) using M-MuLV Reverse 

transcriptase (New England Biolabs) following the manufacturer’s protocol. RT-PCR was carried 

out in 20μL volume contained 1X reaction buffer, M-MuLV Reverse transcriptase, RNase 

inhibitor, oligoT, and dNTP. The expression of genes of interest was quantified using Qiagen 

Rotorgene Q. qPCR was carried out in 20μl volumes containing 1X EvaGreen qPCR master mix 

(Invitrogen), 300nM of forward and reverse primers. The sequences of primers are listed in Table 

2. Amplification was performed with an annealing temperature of 60° C with 40 cycles. The 

expression levels of β-actin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were used 
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as internal controls. The relative levels of mRNA were quantified using the comparative Ct (ΔΔCt) 

method. 

Table 2: PCR primers 

AXIN2 F: 5’ – CTCCTTATCGTGTGGGCAT – 3’  

R: 5’ – CTTCATCCTCTCGGATCTGA – 3’ 

MYC F: 5’ – AAACACAAACTTGAACAGCTAC – 3’ 

R: 5’ – ATTTGAGGCAGTTTACATTATGG – 3’ 

CCND1 F: 5’ – ACAAACAGATCATCCGCAAACAC – 3’ 

R: 5’ – TGTTGGGGCTCCTCAGGTTC – 3’ 

ALDH1A1 F: 5’ – TGCGCTACTGTGCAGGTTGGG – 3’ 

R: 5’ – CCACAGCTCAGTGCAGGCCC – 3’  

CD24 F: 5’ – CTCCAAGCACCCAGCATCCTGTAGA – 3’ 

R: 5’ – TAGAAGACGTTTCTTGGCCTGAGTCT – 3’  

CD44 F: 5’ – TCCAACACCTCCCAGTATGACA – 3’ 

R: 5’ – GGCAGGTCTGTGACTGATGTACA – 3’ 

CD133 F: 5' – GAGTCGGAAACTGGCAGATAGCA – 3’ 

R: 5' – ACGCCTTGTCCTTGGTAGTGTTG – 3’       

EPCAM F: 5′ – CGCAGCTCAGGAAGAATGTG – 3’ 

R: 5′ – TGAAGTACACTGGCATTGACG – 3’ 

SOX2 F: 5’ – GCTAGTCTCCAAGCGACGAA – 3’ 

R: 5’ – GCAAGAAGCCTCTCCTTGAA – 3’ 

OCT4 F: 5’ – CCAGGTTGGAGTGGGGCTAGT – 3’ 

R: 5’ – GGAGGCCCCATCGGAGTTGCTC – 3’ 

NOTCH3 F: 5’ – TCTTGCTGCTGGTCATTCTC – 3’ 

R: 5’ – TGCCTCATCCTCTTCAGTTG – 3’ 

Β-actin F: 5’ – AAACTGGAACGGTGAAGGTG – 3’ 

R: 5’ – AGAGAAGTGGGGTGGCTTTT – 3’ 

GAPDH F: 5’ – AAGGTCATCCCTGAGCTGAAC – 3’ 

R: 5’ – ACGCCTGCTTCACCACCTTCT – 3’ 
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ALDEFLOUR Assay 

The ALDEFLUOR kit (StemCell Technologies) was used to determine the population of 

ovarian cancer stem cells with high ALDH activity. After treatment, cells were labeled with 

ALDEFLOUR reagent according to the manufacturer’s instructions. Briefly, cells were trypsinized 

and resuspended into the culture medium. 5 µL of the activated ALDEFLUOR™ Reagent per 

milliliter of the sample was added into “test” tubes. 1mL of cell suspension was added to the 

"test" tube and 0.5mL of the mixture was immediately transferred to the DEAB “control” tube 

containing 5 µL of ALDEFLUOR™ DEAB Reagent (“control” tubes). “Test” and “Control” samples 

were incubated at 37°C for 45 minutes. Cells were then centrifuged for 5 mins at 250×g and 

resuspended in ALDEFLUOR™ Assay Buffer. The samples were analyzed using cell sorter Sony 

SH800z.  

TOPflash assay 

TOPFlash reporter assay was used to detect the transcriptional activity of β-catenin/TCF 

complex. HCT-116, HEY, SKOV3.ip1, and OVCAR-3 were cotransfected with 1μg M50 Super 8X 

TOPFlash reporter construct containing 7 TCF/LEF consensus binding sites which are upstream of 

firefly luciferase cDNA and 25ng Renilla internal control plasmid. After 4-6 hours of transfection, 

cells were recovered by adding the culture media containing C10 in various concentrations 

ranging from 1-20µM. For SKOV3.ip1, HEY, and OVCAR-3 cells, the media were supplemented 

with Wnt3A (Wnt3A conditioned media) to induce Wnt/β-catenin signaling activation. The cells 

were lysed after 24 hours of treatments, and the signals were obtained using Luc-Pair Dual 

Luciferase Kit (Gene Copoeia). 
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Purification of recombinant β-catenin protein 

To examine the binding of C2 and C10 to β-catenin protein directly using bio-layer 

interferometry (BLI) binding assays, recombinant 6xHis-tag β-catenin proteins were purified. 

pET28a+ plasmid containing full-length of human CTNNB1 cDNA was transformed into E. 

coli strain BL21(DE3). The transformed bacterial cells were selected and cultured in lysogeny 

broth (LB) medium containing 50mg/ml kanamycin at 37°C shaker. When OD600 reached 0.6-0.8, 

the bacterial cells were induced with 0.5mM of isopropyl-beta-D-thiogalactopyranoside (IPTG) at 

16°C for approximately 18-20 hours. Cells were then harvested by centrifugation and proceeded 

to the purification process. The bacterial pellet was suspended in the lysis buffer (20mM Tris, pH 

8.0, 500mM NaCl, 10% glycerol, 0.1% Triton X-100, 1mM β-mercaptoethanol (BME), 10mM 

imidazole and protease inhibitors including 0.5mM PMSF, 1mM benzamidine) and sonicated to 

lyse the cells. After centrifugation, the supernatant was obtained and applied to NiNTA column 

which had been pre-equilibrated with the lysis buffer. His-tag β-catenin protein was eluted from 

the column after adding elution buffer (lysis buffer with 400mM Imidazole). The samples were 

then dialyzed in Tris buffer (20mM Tris, pH 8.0, 100mM NaCl) and stored. Eluents collected from 

the affinity column were analyzed and validated using SDS-PAGE and Western blot. 

In vitro kinetic binding assay using FortieBio Octet instrument 

The kinetics and affinities of the molecular interactions between C2 and C10 with β-

catenin protein were detected and quantified using OctetRED384 system. The interaction was 

conducted at 25°C in HEPES-buffer saline (HBS) buffer supplemented with 0.001g/ml BSA, which 

acted as blocking buffer. The Anti-Penta-His Biosensors were prewet in the HBS buffer prior 

usage. Samples were added to fluorescence 96-well plates with the volume as 200µl per well. 
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The sensor tips were wet in the blocking buffer for baseline establishment. The biosensor tips 

were then moved to the wells containing 1mg/ml of purified full-length his-tag β-catenin proteins 

to load the proteins onto the sensor tips. This was followed by a washing step to remove excess 

amounts of β-catenin proteins which bound onto the sensor tips. A new baseline was then 

established in the HBS buffer. C2 and C10 were prepared as a serial dilution as 20, 50, and 100µM. 

After the protein was loaded on the sensor tips and new baseline was established, the sensor 

tips were dipped into wells containing a single concentration of C2 or C10 to detect whether 

there was any binding between the protein and the small molecule inhibitors. Washing steps 

were carried out to observe the dissociation from the binding and the sensor tips proceeded to 

other concentrations of C2 and C10. New baselines were established between dissociation and 

association steps.  Negative control of 0.1% DMSO was included in the experiment. Data were 

processed using reference subtraction (negative control) in the ForteBio Octet Data Analysis 

software. 

Statistical analysis 

All in vitro experiments were performed with as least triplicates in each group. The results 

were expressed as mean ±SEM.  Statistical analysis and graphs were done using GraphPad Prism 

8.0 with statistical significance were defined as p<0.05. IC50 values were determined using 

nonlinear regression analysis with dose-response inhibition model. In addition, one-way ANOVA 

and Student’s t-test were used for comparisons among multiple groups and comparisons 

between two groups respectively. 
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RESULTS 

 β-catenin levels among EOC cell lines 

 Recent mutational analysis showed that TOV-112D and HCT-116 cells harbor CTNNB1 

mutation at GSK3β phosphorylation site (S37) (21,40). In addition, Wnt-7A ligand was identified 

to be highly expressed in SKOV3.ip1 (42). The data suggested the Wnt/β-catenin signaling 

pathway might be hyperactivated in these cell lines. While most of the endometrioid subtype has 

been shown to possess mutations on CTNNB1, mutations on this gene have not been found on 

the serous subtype. Recent studies revealed secreted frizzled receptor protein-4 (SFRP4), a Wnt 

inhibitor, was not detected in OVCAR-3 cell lines (43, 44). SFRP4 contains a frizzled-like cysteine-

rich domain, which allows it to bind directly to Wnt ligands or Frizzled receptors, inhibiting the 

binding of Wnt ligands to Frizzled receptors (44). The downregulation of SFRP4 was reported 

together with the increase in nuclear β-catenin in OVCAR-3 cells. In addition, induced expression 

of recombinant SFRP4 decreased the expression of β-catenin, indirectly suggesting Wnt signaling 

might upregulate in OVCAR-3 cell line (44). These cell lines, alone with HEY, which represents the 

HGSC subtype (38) and has not been reported to have alteration in the Wnt/β-catenin pathway, 

were used in this study.  To elucidate the relative activity of Wnt/β-catenin signaling in EOC cell 

lines, I examined the levels of total β-catenin and phospho-β-catenin using western blot analysis. 

  Total β-catenin was detected in all 5 cell lines tested and the level was highest in TOV-

112D, followed by HCT-116, SKOV3.ip1 and OVCAR-3, while HEY had the lowest levels (Fig. 1A). 

To confirm that TOV-112D has the highest β-catenin activity, total and phospho-β-catenin were 

measured in both nuclear and cytoplasmic fractions of the four EOC cells and the β-catenin 

activity was quantified as the ratio of total and phospho-β-catenin, and then normalized to 
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internal controls. TOV-112D had the highest nuclear β-catenin activity among all four cell lines, 

followed by OVCAR3 and SKOV3.ip1, while HEY cells had the lowest nuclear β-catenin activity 

(Fig. 1B). Similarly, in cytoplasmic fractions, TOV-112D had the highest levels of β-catenin 

proteins, followed by OVCAR-3, SKOV3.ip1, and HEY. The results suggest that the activity of 

Wnt/β-catenin signaling would be highest in TOV-112D in EOC cell lines, following by OVCAR-3, 

SKOV3.ip1, and HEY respectively. Since the small molecule inhibitors were predicted to inhibit β-

catenin activity, we hypothesized that C2 and C10 would exhibit the inhibitory effects on cell lines 

depending on their β-catenin levels or activities.  

C2 and C10 inhibit EOC proliferation 

To determine the effects of C2 and C10 on cell proliferation in vitro, cells were treated 

with different concentrations of C2 or C10, and cell confluency was monitored for 3 days using 

the IncuCyte. C2 and C10 exhibited a dose-dependent inhibitory effect on cell proliferation in all 

EOC cell lines tested (Fig. 2). There was a decrease in cell proliferation with increasing 

concentrations of C2 and C10. In addition, the inhibitory effect of C2 and C10 on cell proliferation 

were varied among cell lines. While TOV-112D cells proliferated significantly slower (~ 50%) at 

10µM of either C2 or C10 treatment (Fig. 2A), the proliferation rate of SKOV3.ip1 and OVCAR-3 

was reduced more dramatically with either C2 or C10 treatment at the concentration of 20µM or 

higher (Fig. 2B,C). Among the four cell lines, HEY cells were less responsive to the small molecule 

inhibitors, especially with C10 than other cell lines ( Fig. 2D).  C2 and C10 had a similar potency in 

inhibiting cell proliferation at the concentration of 20µM or lower. However, at higher 

concentrations, C2 was more effective than C10 (Fig. 2).  
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We also measured the cytotoxic effect of C2 and C10 and compared them with the β-

catenin/CBP inhibitor PRI-724 in a noncancerous trophoblast cell line, HTR-8/SVneo (30) using 

the CCK-8 assay. Both C2 (Fig. 3A) and C10 (Fig. 3B) had much lower cytotoxic effects on HTR-

8/SVneo cells than PRI-724. At the dose of 25μM, approximately 30% of cells survived in PRI-724 

treatment, while more than 80% of cells were still viable after C2 and C10 treatments. At the 

concentration of 100µM, C2 and PRI-724 significantly induced cell death on HTR-8/SVneo cells 

while there was no significant change in HTR-8/SVneo cell viability in C10 treatment from 60µM-

100µM. 

C2 and C10 inhibit colony formation  

Anchorage-independent growth is one of the characteristics of cancer cells, which allows 

the cancer cells to grow independently of solid surface (41). Unlike normal cells, cancer cells are 

resistant to an apoptotic process called anoikis and do not require the adhesion of extracellular 

matrix to proliferate (45).  It has been shown previously from our lab that C2 could strongly inhibit 

anchorage-independent growth of two cell lines HCT-116 and SKOV3.ip1 at the concentration of 

10µM. In this study, we examined the effects of C10 on colony formation of HCT-116 cell line. 

The results showed that C10 inhibited the colony-forming ability of HCT-116 cells in a dose-

dependent manner (Fig. 4). A significant decrease in the numbers of colonies formed in soft agar 

was observed in HCT-116 cells treated with C10 compared to the control (Fig. 4A). At 10µM, C10 

almost abolished the colony-forming ability of HCT-116 completely. iCRT-3 is a β-catenin inhibitor 

that has been reported to disrupt the interaction between β-catenin and TCF4 (30). We compared 

the effects of C10 with iCRT-3 on colony formation in the experiment and C10 showed stronger 

effects than iCRT-3 (Fig. 4).  
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C2 and C10 inhibit ovarian cancer stemness 

Stemness is characterized by the expression of stem marker genes and its ability to form 

spheroids when cells are cultured in stem cell medium (46). To examine the effect of C2 and C10 

on self-renewal of ovarian CSCs, EOC cells were seeded onto ultra-low attachment 96-well plates 

in stem cell culture medium at the density of 500 cells/100µl/well with C2 and C10 concentrations 

of 0-50µM. Both C2 (Fig. 5) and C10 (Fig. 6) inhibited spheroid formation in a dose-dependent 

manner.  As shown in Table 3, TOV-112D cell line had the lowest IC50 for C2 and C10 as 8.54µM 

and 6.85µM respectively, indicating both inhibitors were most effective in this cell line (Table 3). 

SKOV3.ip1 and OVCAR-3 had relative the same IC50 at approximately 10µM, while HEY cells were 

more resistant to C2 and C10 treatments (Table 3). IC50 of C2 among EOC was slightly higher than 

IC50 of C10 (Table 3), suggesting C10 might be more potent to CSCs compared to C2.  

 

 

  

Table 3: Half maximal inhibitory concentration (IC50) of C2 and C10 on EOC spheroid formation 

Numbers of spheroids were counted after 7 days of treatments with C2 and C10 

* Spheroid with diameter ≥50μM was counted 
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Activation of the Wnt/β-catenin signaling promotes the expression of various stem cell 

markers including Aldehyde dehydrogenase (ALDH), cluster of differentiation (CD) proteins, 

SOX2, NANOG and OCT4 (47,48).  To determine which genes can be used as stem cell markers, 

we first examined the expression of several genes in both stem-cell enriched spheroids and in 

whole population. qRT-PCR results showed that ALDH1A1 and EpCAM expression were 

upregulated in all EOC stem cell-enriched samples (Fig. 7). In addition, SKOV3.ip1 and OVCAR-3 

spheroids expressed higher levels of CD24, CD44, CD133 and OCT4 compared to whole cell 

population. The increase in CD24, CD133 and SOX2 expression was also observed in TOV-112D 

spheroids while CD44 and OCT4 expression was elevated in HEY spheroids.  

To further confirm the effect of C2 and C10 on CSC self-renewal, we used RT-qPCR to 

measure the mRNA levels of stem cell markers which were selected based on the results 

presented in Fig. 7. C10 significantly decreased the mRNA levels of ALDH1A1, CD24, and SOX2 in 

TOV-112D and EpCAM, CD44, and OCT4 in HEY (Fig. 8A) stem cell-enriched samples. Since 

ALDH1A1 levels were upregulated in spheroid populations of all cell lines, ALDH1A1 activity was 

examined using flow cytometry after C10 treatment. The results from flow cytometer revealed 

that there was a decrease in ALDHbr (ALDH bright) population of SKOV3.ip1 which was treated 

with C10 compared to the control (Fig. 8B).  

C2 and C10 inhibit β-catenin/TCF transcriptional activity 

To elucidate whether C10 downregulates Wnt/β-catenin signaling, TOPFlash reporter 

assay was first used to measure β-catenin/TCF transcriptional activity. HCT-116, HEY, SKOV3.ip1, 

and OVCAR-3 cells were cotransfected with the TOPFlash reporter construct containing 7 TCF/LEF 

consensus binding sites upstream of firefly luciferase cDNA and a Renilla plasmid as an internal 
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control for transfection efficiency. Work done by others in the lab had shown that C2 inhibited 

TOPflash signals in transfected EOC cell lines. Similarly, there was a decrease in normalized 

luciferase signal in HCT-116, HEY and SKOV3.ip1 and OVCAR-3 cells after being treated with 

increasing concentrations of C10 (Fig. 9). 

To further confirm that C2 and C10 inhibit the activity of β-catenin/TCF complex, cells 

were treated with different concentrations of C2 or C10 and Western blot analyses were 

performed at 6h or 24h after treatment to determine the protein levels of several β-catenin/TCF 

target genes.  In TOV-112D cells, protein levels of β-catenin target genes were downregulated in 

a dose-dependent and time-dependent manner (Fig. 10). There was a decrease in protein levels 

of Axin2, c-Myc, and cyclin D1 at 50µM at 6 hours after C2 treatments (Fig. 10A). The 

downregulation of target genes sustained at 24 hours after treatments with a more inhibitory 

effect on Axin2 protein levels. For C10, the downregulation of β-catenin target genes was 

observed at 25µM and higher concentrations at both time points (Fig. 10B). At 24 hours, Axin2 

and c-myc protein levels were reduced in a dose-dependent manner while there was no change 

in cyclin D1 protein levels with C10 treatment.    
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C2 and C10 bind to β-catenin 

 The recombinant full-length β-catenin proteins were purified from E.coli BL21 (DE3) and 

further analyzed using Western blot prior binding assay (Fig. 11A,B). The purified recombinant β-

catenin protein obtained from elution fractions had the molecular weight of approximately 

90kDa as predicted (Fig. 11A). The identity of the protein collected from the elution fractions was 

further determined using Western blotting with Anti-6X His tag antibody. The results showed the 

detection of his-tagged β-catenin protein at the relative same molecular weight, confirming the 

identity of the protein (Fig. 11B). The binding of C2 and C10 to β-catenin protein was investigated 

by bio-layer interferometry (BLI) approach using the Forte Octet system. BLI is a label-free 

technique which detects biomolecular interactions by measuring the difference of the 

interference patterns of white light between the reference and samples. BLI results showed that 

there were spectral shifts in the presence of C2 and C10 ( Fig.11 C, D, Fig. S1 A,B) while the 

spectral shift was not observed in the control sample containing buffer or DMSO (D1) (Fig.S1 C,D), 

indicating C2 and C10 bind to the recombinant β-catenin protein. In addition, the wavelength 

shift increased with increasing concentrations of the inhibitor C10. Furthermore, the binding 

profiles of C2/β-catenin and C10/β-catenin provided information about the kinetics of the 

interactions. The binding kinetic sensorgrams showed that the interactions exhibited fast 

association and dissociation rate ( Fig. 11C,D, Fig. S1 A,B). 
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DISCUSSION 

 Wnt signaling plays critical roles in the carcinogenesis of EOC. Genetic mutations in the β-

catenin pathway have been found frequently on the endometrioid subtypes of EOC, which leads 

to the hyperactivation of the signaling pathway (16,36). In addition, the dysregulation of 

interacting partners which assist in fine-tuning the signaling is detected in different subtypes of 

EOC, further increasing β-catenin stability and formation of the transcription complex (42,47-49). 

Although a number of small molecules have been developed and introduced to target Wnt 

components and β-catenin, none of them has been approved as targeted therapies for EOC or 

other types of cancer with hyperactive Wnt signaling.  

In this study, we identified two novel β-catenin inhibitors, C2 and C10, that have strong 

anti-tumor effects. C2 and C10 exhibited more significant inhibitory effects on TOV-112 cell 

growth and spheroid formation compared to other cell lines. Between OVCAR-3 and SKOV3.ip1 

cells, C2 and C10 were slightly more effective in suppressing cell proliferation and spheroid 

formation in OVCAR-3 cells than in SKOV3.ip1 cells. Among examined EOC cells, C2 and C10 were 

least effective on HEY cells. Consistent with the results of these functional studies, we found that 

TOV-112D had the highest levels of total β-catenin and nuclear β-catenin, followed by OVCAR-3 

and SKOV3.ip1 cells, while HEY cells expressed the lowest total β-catenin levels. The results 

suggest the effectiveness of C2 and C10 are positively correlated with β-catenin activity. 

It is commonly believed that β-catenin is phosphorylated and degraded in the cytoplasm 

(10).  In this study, we detected phospho-β-catenin in the nuclear fraction of EOC cell lines.  This 

is unlikely due to the cytoplasmic contamination as cytoplasmic marker GAPDH was not detected 

in the nuclear fraction.  Previous studies also reported the presence of phospho-β-catenin in the 
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nucleus in other cells, such as colorectal cells (50,51).  Interestingly, inhibition of proteasomal 

activity led to nuclear translocation of phospho-β catenin (51). It has been reported that 

phosphorylated β-catenin could form a complex with LEF-1 but failed to bind to DNA (51), 

suggesting phosphorylated β-catenin remains functionally inactive in the nuclear.  

Ovarian CSCs are implicated in chemoresistance, metastasis, and cancer relapse and 

therefore represent a major challenge in the treatment of EOC (16,17,49,52-54). The Wnt/β-

catenin signaling has been reported to play a crucial role in CSC self-renewal (16,49,54). We 

examined the effects of C2 and C10 on CSCs by performing spheroid formation assays and by 

measuring stem cell marker expression in several EOC cell lines. We showed that both C2 and 

C10 significantly inhibited the ability of EOCs to form spheroids, when plated in low density under 

stem cell conditions.  These results suggest that C2 and C10 suppress the self-renewal ability of 

ovarian CSCs.  Consistent with this notion, we also found that mRNA levels of several CSC markers 

were significantly inhibited by C10. We observed that C10 reduced the mRNA levels of CD24, 

ALDH1A1, and SOX2 in TOV-112D spheroids and EpCAM, CD44, and OCT4 in HEY spheroids.   

Preliminary studies also revealed a decrease in ALDHbr population in C10-treated SKOV3.ip1 cells. 

ALDH1A1 was identified as a direct target of β-catenin in ovarian cancer spheroids (55), while 

CD24 (56), CD44 (57), CD133 (58) and EpCAM (59) were reported as direct target genes of β-

catenin/TCF signaling in other cancer types. In addition, TCF3 has been reported to bind to the 

promoter regions of OCT4, SOX2 and NANOG in mouse embryonic stem cells (60), and it was 

suggested that the interaction between β-catenin and TCF3 altered repressive chromatin state 

to activate transcription of the target genes (61). Therefore, it is possible that these stem cell 

markers are direct transcriptional targets of β-catenin/TCFs in EOC cells and the inhibitory effects 
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of C2 and C10 on these markers are due to the inhibition of β-catenin/TCF interaction. The stem 

cell markers have been reported to involve in ovarian cancer tumorigenesis such as stemness, 

chemoresistance, and metastasis (62). In addition, Oct4 and Sox2 are pluripotency core 

transcription factors which enhance expression of a subset of genes to promote cell 

programming to a pluripotent state (60). Thus, the inhibition of spheroid formation and 

downregulation of stem cell markers after C2 and C10 treatment indicated C2 and C10 target and 

inhibit the tumorigenic potential of CSCs. 

Previous studies have reported different CSC markers in different EOC cell lines (63-65). 

Similarly, we found the upregulation of ALDH1A1, CD44 and CD133 mRNA levels in SKOV3 and 

OVCAR-3 spheroids compared to the conventional cultured cells (63-65). In contrast to the 

previous finding which showed that CD44 expression was upregulated in TOV-112D CSCs (63), we 

did not observe a significant increase in CD44 mRNA levels in TOV-112D spheroids. The difference 

might be stemming from different approaches. While stem cell markers were examined by flow 

cytometer at protein levels (63,65), we only measured mRNA levels of these marker genes.  More 

studies are required to determine if CD44 is a CSC marker in TOV-112D cells. 

Several lines of evidence support the role of C2 and C10 as β-catenin inhibitors.  Luciferase 

reporter assays revealed that C2 and C10 inhibited β-catenin/TCF transcriptional activity. In 

addition, they downregulated the β-catenin/TCF target genes, including Axin2, c-myc, and cyclin 

D1. Among β-catenin direct target genes, Axin2 expression is a more immediate indicator of β-

catenin activity. Axin2 plays a role in forming the β-catenin destruction complex, and it is rapidly 

induced by β-catenin/TCF transcriptional complex to exert negative feedback on Wnt/ β-catenin 

signaling (66). In addition, c-Myc and cyclin D1 have been reported to involve in cancer 
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progression (67). Furthermore, preliminary studies suggest that C2 and C10 can directly bind to 

recombinant β-catenin in vitro.  Finally, work done by others in our lab indicates that both C2 and 

C10 decreased the interaction between β-catenin and TCF4, in co-immunoprecipitation assays.  

However, more studies are required to determine that C2 and C10 exert antitumor effects 

specifically by inhibiting β-catenin/TCF4 interaction.  

 We found that C2 and C10 had potent antitumor effects on suppressing cell proliferation, 

anchorage-independent growth and spheroid formation of several cell lines representing two 

different subtypes of ovarian cancer, endometrioid carcinoma, and high-grade serous carcinoma. 

Comparing to the recent developed inhibitors, C2 and C10 exhibit lower cell toxicity compared 

to PRI-724 and more effective than iCRT3 in suppressing anchorage-independent growth of 

cancer cells. Additional examinations are underway to further define the anti-tumor effects of C2 

and C10 on cell migration and invasion in vitro and in vivo and their specificity in inhibiting 

abnormal activation of Wnt/β-catenin signaling. Since Wnt/β-catenin is implicated in many types 

of cancer, development of C2 and C10 into a targeted therapy will benefit cancer patients with 

hyperactive Wnt/β-catenin signaling. 
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CHAPTER 3 

SUMMARY AND FUTURE DIRECTIONS 
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Ovarian cancer is the leading cause of death among gynecologic malignancies (1). Clinical 

management of ovarian cancer remains a major challenge due to the development of 

chemoresistance.  Recent studies reveal cancer stem cells, a subpopulation of cancer cells, are 

linked to chemoresistance, cancer metastasis, and cancer relapse (2,3). In addition, Wnt signaling 

is highly active in these cancer stem cells and is involved in maintaining cancer stemness, cancer 

progression, and relapse (4). Wnt signaling is mediated by the translocation of β-catenin to the 

nucleus and its interaction with TCF transcription factors to regulate target gene expression (2). 

We aim to develop a potent β-catenin inhibitor that disrupts its interaction with TCF4. Using in-

silico screening and functional assays, we found two novel β-catenin inhibitors, referred to as C2 

and C10, exhibited promising anti-tumor effects on EOC cell lines in vitro.  

In this dissertation, I investigated the antitumor effects of C2 and C10 on four EOC cell 

lines which represented two subtypes of EOC: endometrioid and serous ovarian carcinoma. I 

found that C2 and C10 inhibited cell proliferation and the anchorage-independent growth of 

these cells. I also performed spheroid formation assays and measured CSC markers and observed 

that C2 and C10 reduced the numbers of spheroids formed and the mRNA levels of CSC markers.  

These findings suggest that C2 and C10 inhibit CSC self-renewal.  However, it has been suggested 

that only low numbers of CSCs are isolated in spheroid formation assays (5).  Therefore, future 

studies will use a cell sorter to select CSCs and directly test the effects of C2 and C10 in these 

cells. Stem cell markers such as ALDH1A1, CD133, and CD44 are well-studied markers which have 

been shown to be involved in ovarian cancer stemness and carcinogenesis (6,7). We will isolate 

CSCs that express these markers and treat them with C2 and C10 to confirm that C2 and C10 

target CSCs and suppress their self-renewal and tumorigenicity. 
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  Wnt signaling is also involved in cell migration and invasion through EMT, and metastasis 

in ovarian cancer (2). Work done by others in the lab has shown that C2 significantly inhibited 

tumor burden in vivo. We will perform the same experiment to examine the anti-metastatic 

effect of C10. In addition, we will further determine the anti-tumor effects of C2 and C10 on cell 

migration, and invasion in vitro. Wound-healing assays will be performed to determine the 

effects of C2 and C10 on migration. In addition, the effect of C2 and C10 on the invasive potential 

of ovarian cancer cells to neighboring tissues will be measured by Transwell Invasion Assay. 

Treatments with C2 and C10 are expected to disrupt Wnt signaling and inhibit migration and 

invasion of ovarian cancer. 

The involvement of Wnt signaling in angiogenesis and immune suppression has been 

suggested recently (8,9). Since these are important aspects of cancer development, it would be 

interesting to determine if C2 and C10 reduce tumor angiogenesis and immune suppression. 

Endothelium cells will be co-cultured with EOC cells treated with control or C2/C10 (10).  The 

assessment of C2 and C10 ability to promote immune response can be obtained by determining 

the ratio of CD8+ T cell: Treg in tumors collected from in vivo mouse model which are treated 

with control or C2/C10. The increase in helper T cells enhances cancer immune surveillance and 

is associated with better outcome (11). 

In this study, I provided evidence that C2 and C10 inhibit β-catenin/TCF signaling.  I 

showed that C2 and C10 inhibited the transcriptional activity of β-catenin/TCF, as evidenced by 

the decreased in TOPFlash reporter activity and protein levels of β-catenin/TCF target genes.  In 

addition, the effect of C2 and C10 appears to be positively correlated with β-catenin levels.  

Preliminary kinetic binding studies suggest that C2 and C10 bind to β-catenin directly. This assay 
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can be repeated with the addition of TCF4 peptide. TCF4 peptide will be purified and added with 

C2 and C10 in the same wells for competitive binding assays. The biosensor will be loaded with 

full-length β-catenin, and the association with either the small inhibitor or TCF will be observed 

on the sensorgrams. We will be able to determine the concentrations at which C2 and C10 

completely inhibit the interactions between β-catenin and TCF. Furthermore, we will investigate 

whether the anti-tumor effects of C2 and C10 are specific to hyperactive Wnt/β-catenin 

phenotypes. We will generate β-catenin knockout cell lines and perform functional assays. Due 

to the loss of β-catenin, we expect that C2 and C10 exhibit no effects in these cell lines. 

Lastly, we will modify the structures of C2 and C10 to improve their efficacy and potency. 

C2 and C10 are readily dissolved in DMSO but are insoluble in most solvents at high 

concentrations. This incurs a problem when C2 and C10 are administered into mouse model since 

C2 and C10 are dissolved in a high percentage of DMSO which could be toxic to cells. In addition, 

the solubility of C2 and C10 is a challenge when dissolving the inhibitors in the same buffer as for 

the recombinant β-catenin proteins for biophysics binding assays. Therefore, modifying the 

structures of C2 and C10 would improve its solubility, which will help determine the toxicity and 

efficacy of C2 and C10 more accurately. 
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CONCLUSION 

 Extensive research provides a better understanding of the molecular mechanisms of 

ovarian carcinogenesis and therapeutic targets for ovarian cancer treatment. The Wnt/β-catenin 

signaling pathway has been shown to has a great implication in ovarian cancer carcinogenesis. In 

this study, we present two novel β-catenin inhibitors which exhibit potent inhibitory effects on 

ovarian cancer cell proliferation, anchorage-independent growth, and stem cell renewal. Further 

examinations on their anti-tumor effects and molecular mechanisms would help elucidate their 

potentials in therapeutic development which will benefit ovarian cancer patients with abnormal 

Wnt/β-catenin signaling. 
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