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Abstract

In the nowadays reality of prudent risk management, the problem of determining aggregate

risk capital in financial entities has been intensively studied for quite long. As a result,

canonical methods have been developed and even embedded in regulatory accords. While

applauded by some and questioned by others, these methods provide a much desired standard

benchmark for everyone. The situation is very different when the aggregate risk capital needs

to be allocated to the business units of a financial entity. That is, there are overwhelmingly

many ways to conduct the allocation exercise, and there is arguably no standard method to

do so on the horizon.

Two overarching approaches to allocate the aggregate risk capital stand out. These are

the top-down approach that entails that the allocation exercise is imposed by the corporate

centre, and the bottom-up approach that implies that the allocation of the aggregate risk

to business units is informed by these units. Briefly, the top-down allocations start with the

aggregate risk capital that is then replenished among business units according to the views of

the centre, thus limiting the inputs from the business units. The bottom-up approach does

start with the business units, but it is, as a rule, too granular, and so may lead to missing

the wood for the trees.

The first chapter of this dissertation is concerned with the bottom-up approach to allo-

cating the aggregate risk capital. Namely, we put forward a general theoretical framework for

the multiplicative background risk model that allows for arbitrarily distributed idiosyncratic

and systemic risk factors. We reveal links between the just-mentioned general structure and

the one with the exponentially distributed idiosyncratic risk factors (a key player in the

modern actuarial modelling), study relevant theoretical properties of the new structure, and

discuss important special cases. Also, we construct realistic numerical examples borrowed
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from the context of the determination and allocation of economic capital. The examples sug-

gest that a little departure from exponentiality can have substantial impacts on the outcome

of risk analysis.

In the second chapter of this dissertation, we question the way in which the risk allocation

practice is conducted in the state of the art and present an alternative that comes from the

context of the distributions defined on the multidimensional simplex. More specifically, we

put forward a new family of mixed-scaled Dirichlet distributions that contain the classical

Dirichlet distribution as a special case, exhibit a multitude of desirable closure properties,

and emerge naturally within the multivariate risk analysis context. As a by-product, our

invention revisits the proportional allocation rule that is often used in applications. Inter-

estingly, we are able to unify the top-down and the bottom-up approaches to allocating the

aggregate risk capital into one encompassing method.

During the study underlying the present dissertation, we rediscovered certain problems of

the standard deviation as the ubiquitous measure of variability. In particular, the standard

deviation is frequently infinite for insurance risks in the Property and Casualty lines of busi-

ness, and so it cannot be used to quantify variability therein. Also, the standard deviation

is a questionable measure of variability when non-normal distributions are considered, and

normality is rarely a reasonable assumption in insurance practice. Therefore, in the third

chapter of this dissertation, we turn to an alternative measure of variability. The Gini Mean

Difference, which we study in the third chapter, is finite whenever the mean is so, and it is

suitable for measuring variability for non-normal risks. Nevertheless, Gini Mean Difference

is by far less common in actuarial science than the standard deviation. One of the main

reasons for this lies in the critics associated with the computability of the ‘Gini’. We reveal

convenient ways to compute the Gini Mean Difference measure of variability explicitly and

often effortlessly. The thrust of our approach is a link, which we discover, between the Gini

and the notion of statistical sample size-bias. Not only the just-mentioned link opens up

advantageous computational routes for Gini, but also yields an alternative interpretation for

it.
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Chapter 1

Introduction

1.1 General overview and introduction

The notion of dependence is vital to the solvency of a stand-alone (re)insurer as well as to the

stability of the entire financial sector and even to the overall health of the economy. Speaking

shortly, neglecting dependences within and among risks portfolios can and often does lead

to solvency issues and bankruptcy of institutions. Nevertheless, traditional actuarial models

rest on the assumption of independence. Unrealistic as it is, this assumption often allows for

convenient simplifications and thus guarantees a desirable level of analytic tractability. In

recent years, the increasing complexity of (re)insurance products as well as high competition

amongst (re)insurers, have encouraged a growing interest of actuaries in modelling dependent

risks, which are to this end considered random variables (RVs) Xi, i = 1, . . . , n(∈ N), say.

The main object of interest is then the corresponding n-variate probability distribution F1,...,n,

possessing an intuitively interpretable dependence structure (copula) C1,...,n and univariate

margins Fi, i = 1, . . . , n that are appropriate for applications in insurance.

Whether one chooses to pursue a ‘natural’ way to formulate F1,...,n by specifying the

dependence of RVs X1, . . . , Xn or the two - steps ‘copula’ way C(F1, . . . , Fn), complications

arise immediately. In the former case, the dependence is imposed by real-life phenomena, but

the marginal distributions are not a free choice and can be rather cumbersome. In the latter

case, the margins are arbitrary, but the dependence is often difficult to interpret. The choice

is not trivial, but identifying a ‘proper’ multivariate probability model with dependence is a
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fundamental pillar of the modern quantitative risk management.

Another fundamental pillar of the nowadays quantitative risk management addresses the

ways of the risk assessment per se. Namely, given that a desirable multivariate probability

model has been chosen, the next step is to quantify the riskiness inherent in it. To this end,

let X denote the collection of all actuarial risks, be it the standalone X1, . . . , Xn mentioned

above, or, more generally, risk portfolios (X1, . . . , Xn)′. Then the functionals H : X → [0, ∞]

and A : X ×X → [0, ∞] subject to the condition that A[X, X] = H[X] for every X ∈ X are

called ‘risk measure’ and ‘risk capital allocation’, respectively, and the former is employed

to measure the riskiness of standalone risks or their aggregates, whereas the latter is used to

quantify the riskiness that distinct risks imply when they are a part of a risk portfolio [e.g.,

34, 85, and references therein].

The volumes of scientific contributions on both F1,...,n and H, A are vast and growing

quickly. In practice, however, of utmost importance is the task of computing (preferably in an

explicit way) the value of the functionals H and A in the context of the desirable cumulative

distribution functions (CDFs) F1,...,n. We refer to [35] for elliptical distributions, to [23] for

Phase-type distributions, to [49] for Tweedie distributions, to [115] for Skew-normal and

Pareto distributions, to name just a few. Also, we refer to [56] for a general approach.

In this dissertation, we will touch on the two pillars of the successful quantitative risk

management mentioned above. In other words, (1) we will propose and study dependence

structures that are appropriate for actuarial modelling beyond the assumption of indepen-

dence, and (2) we will evaluate some regulatory risk measures / risk capital allocations in

the context of the models proposed in (1). As by products, our study will reveal a way

to reconcile two cornerstone and distinct approaches to allocating risk capital, that is the

so-called ‘top-down’ and ‘bottom-up’ routes [e.g., 61], as well as to handle the computational

burden that has been impeding the popularization of the Gini Mean Difference measure of

variability in actuarial science.
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1.2 Literature review

In the following three subsections, we briefly review relevant existing literature on the multi-

variate reduction technique to formulating multivariate CDFs, the compendium of regulatory

risk measures / capital allocations, and some relevant computational results.

1.2.1 Multivariate models

Multivariate probability distributions play a critically important role in the insurance prac-

tice - from the day to day business operations such as pricing, risk reporting, asset and

liability management, to the more sophisticated level of enterprise risk management includ-

ing the calculation of economic and regulatory capital requirements and risk allocations.

While there are a wealth of well-established probabilistic models available for describing the

stochastic nature of stand-alone risks, say X1, . . . , Xn, it is notoriously much more challeng-

ing to model the intangible dependence structure among these risks.

Let the coordinates of the non-negativem(∈ N)-variate random variable Y = (Y1 . . . , Ym)′

∼ G1,...,m represent possibly dependent risk factors (RFs), and denote by X = (X1, . . . , Xn)′ a

risk portfolio (RP), whose risk components (RCs)Xi are exposed to (sub)sets Si ⊆ {1, . . . ,m},

i = 1, . . . , n of the RFs Yj, j = 1, . . . ,m. In addition, let Y and X be collections of the

RFs and the RPs, respectively. Then, given a functional map T : Y → X , the object of

main interest is the stochastic representations X = T (Y), as well as the involved cumula-

tive and/or decumulative distribution functions (CDFs) and/or (DDFs), respectively. The

set-up echoes real-life, where RPs face multiple RFs, such as, e.g., market, credit, systemic,

demographic, operational and residual, to name a few. Popular choices of the map T have

been (1) additive [e.g., 49], (2) multiplicative [104], and (3) minima [9].

Of particular interest to this dissertation are the multiplicative maps that correspond to

the so-called multiplicative background risk (MBR) models [10, 44]. Namely, let R be a non-

negative RV, m = n, and assume that the RVs Y1, . . . , Yn are independent mutually and on

the RV R, then, under the MBR framework, we have the following stochastic representation

(X1, . . . , Xn) = (RY1, . . . , RYn). (1.1)
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RVs Y1, . . . , Yn are as a rule viewed as some idiosyncratic RFs, and hence the dependence

structure of the MBR models is stipulated by the systemic RF, R, and its interplay with the

sequence of the idiosyncratic RFs. MBR models, when the idiosyncratic RVs are distributed

exponentially, have been applied often times in actuarial science by, e.g., [4] in the context

of ruin theory, [10] for portfolio construction, [101] for modeling auto insurance claims, and

[106] for default risk. The broad range of applications of the MBR models in actuarial science

(and beyound) have spurred intensive research attempting to understand intricate theoretical

structure underlying the model. Namely, the dependence properties of the MBR models are

studied in [108] and the aggregation properties are studied by [102]. Some computational

aspects of the MBR models are studied by [27].

The aforementioned assumption of exponentiality on the idiosyncratic RFs means suc-

cinctly that Yi ∼ Exp(σi), where σi > 0 is the scale parameter, i = 1, . . . , n [e.g., 4, 10, 102,

106, etc.]. The resulting MBR models are termed the exponential mixtures in the literature,

notationally, X ∼ EM(σ), where σ = (σ1, . . . , σn)′ is a vector of scale parameters. This

connects the MBR models with the Laplace transform of the systemic RV R and grants a

considerable amount of mathematical tractability to the application of the model [e.g., 67].

However, mathematical convenience often comes at the expense of generality, and the MBR

models are not an exception in this regard. Specifically, the exponentiality assumption men-

tioned above readily implies that the probability distributions of the RCs X1, . . . , Xn agree

up to the scale transformation, and, as a result, the copula function that governs the RCs

of the RP (X1, . . . , Xn)′ is exchangeable. This peculiarity of the MBR models does not

necessarily comply with the real life insurance data.

1.2.2 Risk measures and allocation rules

Hereafter, we interpret X,X1, . . . , Xn as insurance risks, and let X denote a collection of

such risks. Risk measure H is a functional that maps risk RVs in X , or their cumulative

distribution functions, to the extended non-negative real line; succinctly H : X → [0, ∞].

Two arguably most popular risk measures in insurance nowadays are the Value-at-Risk (VaR)

and the Conditional Tail Expectation (CTE).

For a prudence level p ∈ [0, 1) and a non-negative risk rv X ∈ X with the cdf F ,
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succinctly X ∼ F , the VaR risk measure is defined as

VaRp[X] = inf{x ≥ 0 : F (x) ≥ p}. (1.2)

As in practice the values of interest of p are close to one, the VaR risk measure is considered

a tail-based risk measure. For the sake of the notational simplicity in what follows we

sometimes write xp instead of V aRp[X]. VaR is location and scale invariant, monotone, and

additive for comonotonic risks but not coherent, as it may in general violate the sub-additivity

axiom [7]. As a result, VaR may discourage diversification, thus providing counterintuitive

risk assessments.

An alternative to the VaR risk measure, the CTE risk measure, is defined for the prudence

level p ∈ [0, 1), P[X > xp] > 0 and the risk rv X with finite mean [7], as

CTEp[X] = E[X| X > xp]. (1.3)

CTE is clearly an example of a tail-based risk measure; it is coherent for risk rv’s with

continuous CDFs, and additive for comonotonic risks [1, 79].

Speaking briefly, VaR is merely the generalized p-th quantile of the CDF F , and as such

it cannot shed light on the severity of the tail-risk. This, along with the already-mentioned

possible violation of sub-additivity, have caused pressure to replace the VaR with the CTE

risk measure in regulatory accords. In turn, CTE that can be seen as the average tail-risk,

cannot capture the variability of the tail-risk beyond the quantile xp, and yet variability has

been pivotal in risk management at least since 1952 [e.g., 81].

More generally, risk measures that hinge on the higher-order-conditional-moments, given

these moments are finite and well-defined, are of the form

CTEk
p[X] = E[Xk| X > xp], (1.4)

where k ≥ 0 and p ∈ [0, 1) were considered in Kim [71]. In particular, to include variability

in risk measurement [48] proposed the tail-standard-deviation (TSD) risk measure, which,

for the risk rv X with finite variance, prudence level p ∈ [0, 1) and non-negative loading
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parameter λ ≥ 0, is given by

TSDλ
p [X] = CTEp[X] + λ SDp[X], (1.5)

where

SDp[X] =
√

E
[
(X − CTEp[X])2| X > xp

]
. (1.6)

Risk measures (1.2)-(1.4) may look ad-hoc at the first glance, but they can be treated

in a holistic manner by the machinery of the weighted risk measures [55]. Specifically, for

w : (−∞, ∞)→ (0, ∞), the weighted risk measure indexed by w is defined as

Hw[X] =
E[Xw(X)]

E[w(X)]
, (1.7)

subject to the fact that the expectations above are well-defined and finite. Then the choices

of the Direc delta, as well as w(x) = 1{x > xp} and w(x) = x1{x > xp} weight functions

result in the VaR, CTE and TSD risk measures, respectively.

It often happens in mathematical sciences that generalizing an object highlights its char-

acteristics and helps to understand it better. The formulation of VaR, CTE and TSD risk

measures as (1.7) does exactly that, and also immediately shows that all these risk measures

can be extended into allocation rules as following

Aw[Xi] =
E[Xiw(S)]

E[w(S)]
, (1.8)

where S = X1 + · · ·+Xn, and the expectations are assumed to be well-defined and finite.

Recall the VaR, CTE and TSD weighted risk measures presented in (1.2), (1.3) and (1.5),

respectively. These are extended into capital allocation rules, given that all the involved

expectations are well-defined and finite, using, for sp = V aRp[S], p ∈ [0, 1),

V aRp [Xi, S] = E [Xi| S = sp] , p ∈ [0, 1), (1.9)

CTEp[Xi, S] = E[Xi| S > sp] (1.10)
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and

TCovp[Xi, S] = Cov[Xi, S| S > sp], (1.11)

where i = 1, . . . , n. Clearly
n∑
i=1

VaRp[Xi, S] = VaRp[S] (1.12)

and
n∑
i=1

CTEp[Xi, S] = CTEp[S] (1.13)

as well as
n∑
i=1

TCovp[Xi, S] = TSD2
p[S], (1.14)

and so the desired additivity of the allocation functional is achieved in the all cases.

Another important weighted risk measure is Gini Shortfall (GS), which was introduced

by [53] to fix the non-monotonicity of TSD, as well as other disadvantages of this tail-based

risk measure of variability that hinges on the standard deviation. Specifically, for risk RVs

with finite mean, p ∈ [0, 1), loading parameter λ ≥ 0, the GS risk measure is defined as

GSλp [X] = CTEp[X] + λTGinip[X], (1.15)

where, for X∗ and X∗∗ denoting two independent copies of X,

TGinip[X] = E[X∗ −X∗∗| X∗ > xp, X
∗∗ > xp]. (1.16)

Remarkably, the GS risk measure has turned out additive for comonotonic risks, and even

coherent for λ ∈ [0, 1/2) [53].

1.2.3 Computational results

Given MBR models (1.1) and a weighted risk measure / risk capital allocation, the desired

end-result is often the value of the latter in the context of the former. Two streams of

research are worthy to notice. On the one hand, [28], and recently [64], employed the

machinery of divided difference to evaluate the CTE and TSD risk measures, as well as the
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economic capital allocations based on them in the context of exponential mixtures. In the

just-mentioned papers the final results are written in terms of divided differences of higher

orders with repeated arguments. Hence, one needs to evoke recursive algorithms [e.g., 31] as

well as accurate algorithms for computing derivatives of higher order to get precise outcomes.

On the other hand, [114], and more recently [10], developed recursive formulas for various

weighted risk measures under the MBR models framework. These recursive methods are as a

rule computationally demanding and may encounter difficulties when tackling risk portfolios

of high dimensions.
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Chapter 2

Multiplicative background risk models

with non-exchangeable dependencies

2.1 Introduction

In this paper, insurance risks are represented by non-negative random variables (rv’s),

X1, . . . , Xn, and X denotes the collection of such risk rv’s. We routinely assume that all

rv’s are defined on the same probability space, and that this space is atomless in the sense

that it is possible to define sequences of independent rv’s with arbitrary distributions on it.

In practice, the risk rv’s X1, . . . , Xn, which can also be viewed as risk components of a

risk portfolio X = (X1, . . . , Xn), are generally dependent. The dependence can be, e.g., due

to a common (systemic) risk factor or due to a set of such risk factors. We remind in passing

that according to the Financial Stability Board and the International Monetary Fund, the

systemic risk can be caused by impairment of all or parts of the financial system [46]. In

the following, we assume that all risk components are exposed to one random systemic

risk factor, R. In addition, we assume that each risk component Xi is characterized by

its own idiosyncratic (also, specific) risk factor, denoted by the rv Yi, i = 1, . . . , n. It is

common to assume [e.g., 10] that the idiosyncratic risk factors and the systemic risk factor

are independent, and we indeed do so here.

The exponential multiplicative background risk models are a specialization of the set-

up described above. Namely, let E1, . . . , En be a sequence of exponentially distributed and

9



mutually independent rv’s with arbitrary scale parameters, respectively, σ1, . . . , σn ∈ R+,

and let R be an arbitrarily distributed non-negative rv independent on the just-mentioned

exponential rv’s. Then the distribution of the n-dimensional rv (E1, . . . , En) that admits the

following stochastic representation

(E1, . . . , En) = (RE1, . . . , REn) (2.1)

is said to establish the class of exponential multiplicative background risk (MBR) models,

or, simply exponential mixtures in the jargon of distribution theory.

Admittedly, the MBR models with the idiosyncratic risk factors distributed exponentially

are very tractable technically. Namely, the decumulative distribution function (ddf) of the

rv E = (E1, . . . , En) is readily obtained as

F E(x1, . . . , xn) =

∫ ∞
0

exp
{
r−1(x1σ

−1
1 + · · ·+ xnσ

−1
n )
}

dFR(r) for (x1, . . . , xn) ∈ [0, ∞)n,

(2.2)

which, for F̂R−1 denoting the Laplace transform of the rv R−1, implies

F E(x1, . . . , xn) = F̂R−1

(
x1σ

−1
1 + · · ·+ xnσ

−1
n

)
for (x1, . . . , xn) ∈ [0, ∞)n.

Moreover, the joint probability density function (pdf) of the rv (E1, . . . , En) can be obtained

from the alternating sign derivative of the Laplace transform, that is we have

fE(x1, . . . , xn) =
n∏
j=1

1

σj
(−1)n

∂n

∂y1, . . . , ∂yn
F̂E(y1, . . . , yn)

∣∣
yj=

xj
σj

for (x1, . . . , xn) ∈ Rn
+.

Hence the really colossal volume of results acquired for the Laplace transform, can be em-

ployed with a little effort to study the MBR models with exponentially distributed idiosyn-

cratic risk factors [e.g., 4, 10, 101, 102, 106, 107].

Alongside the mathematical tractability, the exponentiality assumption is rather restric-

tive and may undermine the real world applicability of the exponential MBR models signif-

icantly. For instance, as the distributions of the idiosyncratic risk factors therein can differ

only up to a scale transformation, the Pearson coefficients of correlation are identical for any
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pair of risk components in the risk portfolios that admit the exponential MBR stochastic

representation. This symmetry in the dependence has very little in common with reality; we

refer to, e.g., the correlation matrices suggested in the EIOPA Quantitative Impact Study re-

port [38]. Therefore in this paper we accept the challenge to find satisfactory generalizations

of the exponential MBR models, which on one hand allow for more realistic dependencies,

and on the other hand inherit, at least to some extent, the much desired tractability.

The rest of the paper is organized as follows. We set up the discussion with the most

general formulation of the multiplicative background risk models in Section 2.2, where we

mention very briefly the class of phase-type (PH) distributions as a natural extension of the

exponential distributions. Having a recap of assorted basic properties of the PH distributions

in Section 2.3, then in Section 2.4, we introduce and study the class of the multiplicative

background risk models with the idiosyncratic risk factors distributed PH, succinctly PH-

MBR models. Applications to actuarial risk analysis are considered throughout the paper,

and illustrated numerically in Section 2.5. Specifically, in order to emphasize the tractability

of the PH-MBR models and to study the implications of adopting these structures versus

the classical exponential MBR models, we derive explicit expressions for some practically

popular tail-based risk measures and the risk capital allocation rules based on them. Section

?? concludes the paper.

2.2 Multiplicative background risk models with gen-

eral idiosyncratic and systemic risk factors

2.2.1 Definition and distributional properties

An immediate consequence of (2.1) is that in the context of the exponential MBR structures,

the idiosyncratic risk factors are, up to rescaling, equal in distribution. This feature con-

tributes greatly to the mathematical transparency of this particular class of factor models,

yet it has little in common with reality [e.g., 9, 47, for examples of additive and minimum-

based MBR structures, neither of which shares the aforementioned limitation].

In view of the above, our aspirations in this section are to introduce a generalization
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of the exponential MBR structures that inherits the remarkable tractability of stochastic

representation (2.1), and yet allows for more heterogeneity of the involved idiosyncratic risk

factors. Definition 1 achieves this goal.

Definition 1. Let Y = (Y1, . . . , Yn) be a vector of mutually independent rv’s representing n

idiosyncratic risk factors, and let R be a rv denoting a systemic risk factor independent on all

idiosyncratic risk factors. The rv X = (X1, . . . , Xn) that admits the stochastic representation

(X1, . . . , Xn) = (RY1, . . . , RYn), or succingtly X = RY, (2.3)

is referred to as the general multiplicative background risk structure.

The versatility of the general MBR structures has a multitude of much welcomed impli-

cations. We document one of such implications in the next proposition. The proof of the

proposition is by construction and thus omitted. At the outset, recall that, for a rv X ∈ X

with finite variance, the quantity SD(X)/E[X], where SD(X) represents the standard devi-

ation, is called the coefficient of variation.

Proposition 1. Let (Xl, Xm) = (RYl, RYm), 1 ≤ l 6= m ≤ n be a pair of rv’s coming from

MBR structure (2.3), then the coefficient of Pearson correlation between the two is

Corr[Xl, Xm] =
1

(1 + c2
l + c2

l /c
2)

1/2
(1 + c2

m + c2
m/c

2)1/2
(2.4)

given that the correlation coefficient is well-defined and finite. Here cl, cm and c are the

coefficients of variation of the rv’s Yl, Ym and R, respectively.

Proposition 1 implies that the Pearson correlation is an increasing function of the coeffi-

cient of variation of the systemic risk factor R, and a decreasing function of the coefficients

of variation of the idiosyncratic risk factors Yl and Ym. One implication of this observation

is that the dependency of the general MBR structure, when measured with the Pearson co-

efficient of correlation, is stipulated by the interplays between the variability of the systemic

and idiosyncratic risk factors.

Another implication revealed by Proposition 1 is that in the context of the general MBR

structures, the Pearson coefficient of correlation can attain any value in the interval [0, 1].
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This is not so for the case of the exponential MBR structures as the next corollary clarifies,

thereby providing a formal basis for the empirical critique on (2.1) [e.g., 29, and references

therein]. Proposition 1 and Corollary 1 justify abandoning the class of exponential MBR

structures in favour of the general ones.

Corollary 1. Let the rv’s Yl and Ym, 1 ≤ l 6= m ≤ n be independent and distributed expo-

nentially with arbitrary scale parameters, then we have

Corr[Xl, Xm] ≤ 1

2 + c−2
< 0.5,

where c denotes the coefficient of variation of the rv R [e.g., the distinct exponential MBR

models in, respectively, 104, 107].

We have thus far motivated the study of general MBR models (2.3) through the advantage

of obtaining a more flexible dependence structure. Another way to conceptualize the gen-

eral MBR structures is by considering them the safety-loaded exponential MBR structures.

Namely, start with the (n + 1) factor model formally defined by stochastic representation

(2.1). It often happens that, in order to address model risk or due to other risk management

purposes, actuaries, and/or risk managers, are interested to load the probability distribu-

tions of the idiosyncratic/systemic risk factors, or both. One way to accomplish the desired

loading is via distorting the ddf’s of the risk factors of interest [116, and references therein].

Another route for pursuing the same task is by evoking the notion of weighted distributions

[50, and references therein]. We adopt the latter loading method in the following discussion.

First, let us elucidate the weighting approach in the simplest single risk case. Given

a rv X ∈ X and a non-decreasing function w : R+ → R+, denote by X [w] the weighted

counterpart of the original rv X. It is known [e.g., 94] that

P[X [w] > x] =
E [w(X)1{X > x}]

E [w(X)]
≥ E [1{X > x}] = P[X > x] for all x ∈ [0, ∞),

assuming that the expectation E[w(X)] is well-defined, finite and non-zero. This means that

the weighted counterpart of the rv X dominates the original rv stochastically (1st order),

succinctly X [w] ≥st X. Hence the desired loading is achieved. In the multivariate case, we

13



need a few more definitions.

Definition 2. Let X = (X1, . . . , Xn) ∈ Rn
+ be a positive rv, then, for a Borel-measurable

weight function w : Rn
+ → R+ such that 0 < E[w(X)] <∞, the distribution of the weighted

counterpart of the rv X, say X[w], is defined as

P[X[w] ∈ dx] =
w(x)

E[w(X)]
P[X ∈ dx] (2.5)

for all x = (x1, . . . , xn) ∈ Rn
+. The rv’s X[w] and X are independent.

Definition 3. A rv X = (X1, . . . , Xn) is said to be associated if the bound

Cov(r(X), s(X)) ≥ 0, (2.6)

and therefore

E [r(X)s(X))] ≥ E [r(X)]E [s(X)]

hold for all non-decreasing functions r, s : Rn
+ → R+ such that the involved expectations are

well-defined and finite.

We refer to [41] for a detailed discussion of the notion of association, as well as to [51, 55]

for applications to insurance pricing. Definition 3 hints at the importance of the class of non-

decreasing weight functions. Of all such functions, of particular interest to our present paper

is the size-biased (SB) weight functions that give birth to the SB weighted distributions [93].

Definition 4. Consider the set-up of Definition 2, and let h = (h1, . . . , hn) be a vector

of non-negative constants such that 0 < E
[∏n

j=1X
hj
j

]
< ∞. Then the distribution of the

size-biased counterpart of the rv X, say X[h] =
(
X

[h1]
1 , . . . , X

[hn]
n

)
, is defined as

P[X[h] ∈ dx] = P[X
[h1]
1 ∈ dx1, . . . , X

[hn]
n ∈ dxn] =

xh11 · · ·xhnn
E[Xh1

1 · · ·Xhn
n ]

P[X ∈ dx] (2.7)

for all x = (x1, . . . , xn) ∈ Rn
+. The rv’s X[h] and X are independent.

In order to facilitate our following discussion, we generalize the notion of stochastic

dominance to higher dimensions.
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Definition 5. For n-dimensional rv’s U = (U1, . . . , Un) and V = (V1, . . . , Vn), we say that

U ≥uo V, that is U stochastically dominates V in the upper orthant order, if

P[U ≥ u] ≥ P[V ≥ u]

for all u ∈ [0, ∞)n.

Proposition 2. Let the rv X = (X1, . . . , Xn) admit the general MBR structure stochastic

representation, then X[h] ≥uo X.

Proof. Since Y1, . . . , Yn are mutually independent and hence associated, and because X = RY,

we obtain that X1, . . . , Xn are associated. Therefore

P
[
X[h] > x

]
=

E
[
Xh1

1 · · ·Xhn
n 1{X > x}

]
E
[
Xh1

1 · · ·Xhn
n

] ≥ E [1{X > x}] = P [X > x]

for all x ∈ [0, ∞)n. This completes the proof. ut

We find the following general result frequently useful in the sequel.

Proposition 3. Let the rv X = (X1, . . . , Xn) admit stochastic representation (2.3), then,

for every Borel-measurable function g : Rn
+ → R+ such that the expectations below are well-

defined and finite, we have

E
[
g
(
X[h]

)]
=

∫ ∞
0

E
[
g
(
rY[h]

)]
dFR[h+](r), (2.8)

where h+ = h1 + · · ·+ hn.

Proof. Start by noticing that under the conditions of the proposition, we have

E
[
g
(
X[h]

)]
=

1

E
[
Xh1

1 · · ·Xhn
n

]E [Xh1
1 · · ·Xhn

n g(X)
]
.

Then, for h+ = h1 + · · ·+ hn, we have

E
[
Xh1

1 · · ·Xhn
n g(X)

]
= E

[
Rh+

] ∫ ∞
0

E
[
Y h1

1 · · ·Y hn
n g(rY)

]
dFR[h+](r)
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= E
[
Rh+

]
E
[
Y h1

1 · · ·Y hn
n

] ∫ ∞
0

E
[
g
(
rY[h]

)]
dFR[h+](r),

as well as

E
[
Xh1

1 · · ·Xhn
n

]
= E

[
Rh+

]
E
[
Y h1

1 · · ·Y hn
n

]
.

This completes the proof of the proposition. ut

The next corollary along with Proposition 2 shows that, as we have mentioned hitherto,

general MBR structures (2.3) can be considered safety-loaded exponential MBR structures

(2.1).

Corollary 2. Let the rv X = (X1, . . . , Xn) admit the general MBR structure stochastic

representation (2.3), then X[h] =
(
X

[h1]
1 , . . . , X

[h1]
n

)
also admits the general MBR structure

stochastic representation with the vector of idiosyncratic risk factors Y[h] =
(
Y

[h1]
1 , . . . , Y

[h1]
n

)
and the systemic risk factor R[h+], h+ = h1 + · · ·+ hn.

Proof. The asserted result follows immediately from Proposition 3 by choosing the identity

function for g. ut

At this point, it is a natural question as to whether the rv’s X1 and X2 admitting the

following stochastic representations

X1 =
(
RY

[h1]
1 , . . . , RY [hn]

n

)
and X2 =

(
R[h+]Y1, . . . , R

[h+]Yn
)

dominate the original rv X = (RY1, . . . , RYn) in the upper orthant order. The answer is in

affirmative. Indeed we have X1 ≥uo X since

FX1(x) =

∫ ∞
0

FY[h]

(
r−1x

)
dFR(r) ≥

∫ ∞
0

FY

(
r−1x

)
dFR(r) = FX(x) for all x ∈ [0, ∞),

and also X2 ≥uo X because R[h+] ≥st R.

The following corollary is another immediate consequence of Proposition 3 by setting

h1 = · · · = hn = 0 and with the convention that the zero-SB rv is equal in distribution to

16



the original rv.

Corollary 3. For the rv X = (X1, . . . , Xn) that admits (2.3), we have

• the ddf of the rv Xj, j = 1, . . . , n is

FXj(x) =

∫ ∞
0

F Yj(r
−1x)dFR(r), x ∈ [0, ∞); (2.9)

• the joint ddf of the rv (X1, . . . , Xn) is

FX(x1, . . . , xn) =

∫ ∞
0

FY(r−1x1, . . . , r
−1xn)dFR(r), (x1, . . . , xn) ∈ [0, ∞)n; (2.10)

• the joint product moment of higher order is, for positive integers k1, . . . , kn and k+ = k1+· · ·+kn,

E

[
n∏
j=1

X
kj
j

]
=

∫ ∞
0

rk+E

[
n∏
j=1

Y
kj
j

]
dFR(r) = E[Rk+ ]

n∏
j=1

E[Y
kj
j ]. (2.11)

A somewhat more interesting consequence of Proposition 3 is stated next.

Corollary 4. Consider the rv X = (X1, . . . , Xn) that admits stochastic representation (2.3),

and let SX = X1 + · · · + Xn and S
[h]
X = X

[h1]
1 + · · · + X

[hn]
n . Also, in a similar fashion, let

S
[h]
Y = Y

[h1]
1 + · · ·+ Y

[hn]
n , then

P[S
[h]
X > s] =

∫ ∞
0

P
[
S

[h]
Y > r−1s

]
dFR[h+](r) (2.12)

=

∫ ∞
0

1

E
[∏n

j=1 Y
hj
j

]E[ n∏
j=1

Y
hj
j 1

{
SY > r−1s

}]
dFR[h+](r) (2.13)

for all s ∈ [0, ∞). Then we have S
[h]
X ≥st SX for any vector of non-negative constants

h = (h1, . . . , hn). Furthermore, for another vector of non-negative constants h1 = (h1, . . . , hn−1, h
′
n),

that is h and h1 agree up to the (n− 1)-th coordinate, we have S
[h]
X ≥st S

[h1]
X if hn ≥ h′n.

Proof. Equation (2.12) is a direct consequence of Proposition 3. Also as Y
[hj ]
j ≥st Yj for all

j = 1, . . . , n and since Y1, . . . , Yn are mutually independent, we have

P
[
S

[h]
Y > s

]
≥ P[SY > s] for all s ∈ [0, ∞),
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and this implies that S
[h]
X ≥st SX. Further note that, for S

[h]
X,−n = X

[h1]
1 + · · · + X

[hn−1]
n−1 and

hn ≥ h′n, we have

P
[
S

[h]
X > s

]
= P

[
S

[h]
X,−n +X [hn]

n > s
]

=

∫ s

0

P
[
X [hn]
n > s− x

]
dF

S
[h]
X,−n

(x)

≥
∫ s

0

P
[
X [h′n]
n > s− x

]
dF

S
[h]
X,−n

(x) = P
[
S

[h]
X,−n +X [h′n]

n > s
]

= P
[
S

[h′]
X > s

]
for all s ∈ [0, ∞). Finally, to prove Equation (2.13), we explore the Laplace transform of

the rv S
[h]
Y = Y

[h1]
1 + · · ·+ Y

[hn]
n and obtain

E
[
exp

{
−t
(
S

[h]
Y

)}]
=

n∏
j=1

E
[
exp

{
−t
(
Y

[hj ]
j

)}]
=

n∏
j=1

1

E
[
Y
hj
j

]E [Y hj
j exp {−tYj}

]

=
1

E
[∏n

j=1 Y
hj
j

]E[ n∏
j=1

Y
hj
j exp {−tSY}

]
for Re(t) > 0.

This completes the proof of the corollary. ut

2.2.2 Applications to risk management

The discussion hitherto has a strong flavour of distribution theory, and yet it is remarkably

connected to real world applications in risk management. Two examples that are motivated

by recent developments in the actuarial literature are presented below.

Example 1. [Proposition 1 in 47] Consider a rv with mutually independent coordinates

Y = (Y1, . . . , Yn) ∈ Rn
+. In an attempt to derive expressions for the CTE risk measure and

the allocation rule based on it, the following two formulas were reported, for Yk
∗, k = 1, . . . , n

and S∗Y = (Y1 + · · · + Yn)∗ denoting the SB of order one variants of the rv’s Yk and SY,

respectively, and assuming that the involved conditional expectations are well-defined and

finite,

P[SY − Yk + Y ∗k > s] =
E[Yk| SY > s]

E[Yk]
P[SY > s] for s ∈ [0, ∞)
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and

P[S∗Y > s] =
E[SY| SY > s]

E[SY]
P[SY > s] for s ∈ [0, ∞).

As a result it was noted that the following equality must hold, yet the intuition as to why it

does eluded the authors back in 2005

P[S∗Y > s] =
n∑
k=1

E[Yk]

E[SY]
P[SY − Yk + Y ∗k > s] for s ∈ [0, ∞). (2.14)

Given the change of measure noted in Corollary 4, the distributional proof of Equation (2.14)

is transparent

E
[
e−tS

∗
Y
]

=
E
[
SYe

−tSY
]

E[SY]
=

n∑
k=1

E[Yk]

E[SY]

E
[
Yke

−tSY
]

E[Yk]
=

n∑
k=1

E[Yk]

E[SY]
E
[
e−t(SY−Yk+Y ∗k )

]
, Re(t) > 0.

This fills in the missing part in [47], and in particular implies that Lemma 1 and Theorem

3 therein are redundant.

Example 2. [Theorem 7 in 64] In the context of the exponential MBR structure

(E1, . . . , En) = R(E1, . . . , En), (2.15)

where Ej ∼ Exp(σj) it was proved that it is the order of the scale parameters that

determines the order of the risk capital allocation rules based on the CTE risk measure.

Specifically, with the help of the theory of divided differences and multiply monotonic func-

tions, it was shown that, for SE = E1 + · · ·+ En,

σi ≥ σj ⇒ E[Ei| SE > s] ≥ E[Ej|SE > s], 1 ≤ i, j ≤ n, s ∈ R+. (2.16)

Remarkably, (2.16) easily follows from Proposition 3 and the well-known fact that σi ≥ σj ⇔ Ei ≥st Ej.

Specifically, for SE = E1 + · · ·+En and since E∗i
d
= Ei +E ′i where E ′i ∼ Exp(σi) and E ′i and

Ei are independent, we have σi ≥ σj implying

E[Ei| SE > s] = E[Ei]
∫ ∞

0

P
[
SE − Ei + E∗i > r−1s

]
dFR∗(r) = E[Ei]

∫ ∞
0

P
[
SE + Ei > r−1s

]
dFR∗(r)
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≥ E[Ej]
∫ ∞

0

P
[
SE + Ej > r−1s

]
dFR∗(r) = E[Ej]

∫ ∞
0

P
[
SE − Ej + E∗j > r−1s

]
dFR∗(r)

= E[Ej| SE > s]

for all s ∈ R+. Furthermore, the reverse implication is also true. That is if E[Ei| SE > s] ≥ E[Ej| SE > s]

for all s ∈ R+, then σi ≥ σj, 1 ≤ i, j ≤ n. To see that the latter assertion is true, assume

that the conditional expectations are ordered, that is

E[Ei| SE > s] ≥ E[Ej| S > s]⇒
∫ ∞

0

(
E[Ei]P

[
SE + Ei > r−1s

]
− E[Ej]P

[
SE + Ej > r−1s

])
dFR∗(r) ≥ 0,

and then note that this bound holds only if the integrand is non-negative, which is so only if

σi ≥ σj. To summarize, we have shown that in the context of exponential mixtures, Theorem

7 of [64] can be strengthened to state that σi ≥ σj ⇔ E[Ei| SE > s] ≥ E[Ej| SE > s] for all

s ∈ R+.

We conclude this section by deriving an expression for certain conditional higher order

mixed moments of the rv (Xk, X1 + · · · + Xn) where X = (X1, . . . , Xn) admits stochastic

representation (2.3) and k = 1, . . . , n. The result is summarized in the next proposition, and

it is of pivotal importance latter on in this paper.

Proposition 4. Let the rv X admit the generalized MBR structure stochastic representation

(2.3), and let SX = X1 + · · ·+Xn, SX,−k = X1 + · · ·+Xk−1 +Xk+1 + · · ·+Xn, and similarly

SY,−k = Y1+· · ·+Yk−1+Yk+1+· · ·+Yn then, for a, b ∈ N, and assuming that the expectations

below are well-defined and finite, we have

E
[
Xa
kS

b
X1{SX > s}

]
=

b∑
j=0

(
b

j

)
E
[
SjX,−k

]
E
[
Xa+b−j
k

] ∫ ∞
0

P
[
(SY,−k)

[j] + Y
[a+b−j]
k > r−1s

]
dFR[a+b](r)

(2.17)

for k = 1, . . . , n and s ∈ R+.

Proof. By construction, we have the following string of equations

E
[
Xa
kS

b
X1{SX > s}

]
= E

(∑
l 6=k

Xl +Xk

)b

Xa
k1{SX > s}


20



=
b∑

j=0

(
b

j

)
E

(∑
l 6=k

Xl

)j

Xa+b−j
k 1{SX > s}


=

b∑
j=0

(
b

j

)∫ ∞
0

ra+bE

(∑
l 6=k

Yl

)j

Y a+b−j
k 1{SY > s/r}

 dFR(r)

= E
[
Ra+b

] b∑
j=0

(
b

j

)∫ ∞
0

E

(∑
l 6=k

Yl

)j

Y a+b−j
k 1{SY > s/r}

 dFR[a+b](r).

The assertion is proved by the change of measure type of reasoning used earlier in Corollary

4. ut

In order to obtain further practical insights about the gain in flexibility versus the loss

in tractability in the context of the transition from the exponential MBR models to the

general MBR models, additional distributional assumptions are required. To this end, in

the following we assume that the idiosyncratic risk factors are distributed phase-type. (We

recall in passing that exponential MBR structures (2.1) hinge on the assumption that the

idiosyncratic risk factors have exponential distributions with arbitrary scale parameters.)

The choice of the PH distributions is natural at least because (i) they provide a convenient

generalization of the class of exponential distributions, and (ii) they are dense in the class of

probability distributions on the non-negative half of the real line, and hence can theoretically

approximate any distribution therein arbitrarily well [e.g., 14].

2.3 Phase-type distributions

In this section, we offer a brief overview of some basic properties of the phase-type distribu-

tions. Herein and in the following, matrices and vectors are denoted by bold-face upper-case

and lower-case letters, respectively. Let T be a square matrix with real entries, then the

matrix exponential is defined as the following power series

eT =
∞∑
i=0

T i

i!
,
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where T0 = I is the identity matrix of the same dimension as the matrix T.

Definition 6 (Asmussen, 2003). The rv Y ∈ R+ is said to be distributed phase-type, if its

ddf is given by

F Y (y) = αeyT1 for y ∈ [0, ∞), (2.18)

where the parameters α,T ,1 are respectively, a row vector, a non-singular negatively-defined

square matrix, and a column vector of ones of appropriate dimension. The pair of parameters

(α,T ) is called the representation of the phase-type distribution, and the row dimensions of

α (also, T ) is referred to as the order of the phase-type distribution. Succinctly, we write

Y ∼ PH(α,T ).

A direct result of the definition above is that the pdf of the rv Y is given by

fY (y) = αeyT t for y ∈ R+, (2.19)

where t = −T1. We refer to [5, 98, 99] for some recent applications of the phase-type

distributions in actuarial science.

The exponential distribution is clearly a member of the class of PH distributions.

Example 3 (PH representation of the exponential distribution). For σ > 0, set α = (1)

and T = (−σ−1), then Y ∼ PH(α,T ) has pdf

fY (y) = σ−1e−σ
−1y for y ∈ R+,

which agrees with the exponential distribution with scale parameter σ ∈ R+.

Other well-known PH distributions are hypo-exponential and mixed Erlang [e.g. 14, and

references therein for more examples].

Example 4 (Convolutions of n independent exponentially distributed rv’s). Consider Ei ∼ Exp(σi),

for σi > 0, i = 1, . . . , n and assume that the rv’s E1, . . . , En are mutually independent; also,
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set SE = E1 + · · ·+ En. Then SE ∼ PH(α,T ) with the parameters

α = (1, 0, . . . , 0︸ ︷︷ ︸
n−1

) and T =



−σ−1
1 σ−1

1

. . . . . .

−σ−1
n−1 σ−1

n−1

−σ−1
n


︸ ︷︷ ︸

n

.

The distribution of the rv Y
d
= SE is often referred to as the hypo-exponential distribution.

Example 5 (Mixed Erlang distributions). It follows immediately from Example 4 that if all

scale parameters are equal, then the parametrization

αj = (1, 0, . . . , 0︸ ︷︷ ︸
nj−1

) and Tj =



−σ−1
j σ−1

j

. . . . . .

−σ−1
j σ−1

j

−σ−1
j


︸ ︷︷ ︸

nj

,

for σj > 0, j = 1, . . . ,m, nj, m ∈ N introduces an Erlang-distributed rv, notationally Erl,

with the pdf

fErl(y;nj, σj) =
ynj−1σ

−nj
j

(nj − 1)!
e−σ

−1
j y for y ∈ R+.
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In addition set pj ∈ [0, 1] such that
∑m

j=1 pj = 1, and let

α = (p1α1, . . . , pmαm) and T = ⊕mj=1Tj

(the direct sum of matrices is defined in the Appendix), then Y ∼ PH(α,T ) is distributed

an m-components mixed Erlang distribution if it has pdf

fY (y) =
m∑
j=1

pjfErl(y;nj, σj) =
m∑
j=1

pj
ynj−1σ

−nj
j

(nj − 1)!
e−σ

−1
j y for y ∈ R+.

One remarkable property of the class of the PH distributions is that they are dense

in the class of all distributions with non-negative support, hence theoretically, they can

approximate any such distribution arbitrarily well. Other important characteristics of the

PH distributions are enumerated below [e.g., 14, for more details].

• Let Y ∼ PH(α,T ), then the h(∈ N)-th moment of the rv Y is

E
[
Y h
]

= h!α
(
−T−1

)h
1. (2.20)

Also, the coefficient of variation of the rv Y , denoted by cY , is given by

cY =

√
2α(T )−21

(α⊗̂α)(T ⊗̂T )−11
− 1, (2.21)

where the Kronecker product of matrices is defined in the Appendix.

• Let Y ∼ PH(α,T ) with order d ∈ N (i.e., the row dimension of the matrix T is d),

then the h(∈ N)-th order size-biased variant of the rv Y , denoted by Y [h], is distributed
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PH with the following representation

α[h] =
(
α(T−1)h/α(T−1)h1, 0, . . . , 0︸ ︷︷ ︸

hd

)
and T [h] =



T −T

T −T

. . . . . .

T


︸ ︷︷ ︸

(h+1)d

.(2.22)

This means that the class of PH distributions is closed under size-biasing.

• Let Yi ∼ PH(αi,Ti), i = 1, . . . , n be mutually independent rv’s, and let SY = Y1+· · ·+Yn,

then it can be shown that the rv SY is distributed phase-type with parametrization

(αS,TS), such that, for τi =
∏n

j=i+1 α
0
j with α0

j = 1−αj1,

αS = (αn, τn−1αn−1, τn−2αn−2, . . . , τ1α1) (2.23)
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and

TS =



Tn tnαn−1
τn−2

τn−1
tnαn−2 · · · · · · τ1

τn−1
tnα1

Tn−1 tn−1αn−2
τn−3

τn−2
tn−1αn−3 . . . τ1

τn−2
tn−1α1

. . . . . .
...

. . . . . .
...

T2 t2α1

T1



. (2.24)

Hence the class of PH distributions is closed under convolutions.

• Let Yi ∼ PH(αi,Ti), i = 1, . . . , n, and let WY = mini=1,...,nYi, then the rv WY is

distributed phase-type with parametrization (αW ,TW ), where

αW = ⊗̂ni=1αi as well as TW = ⊕̂ni=1Ti (2.25)

(the Kronecker sum and product of matrices are defined in the Appendix). This implies

that the class of PH distributions is closed under the minimum operation.

2.4 Multiplicative background risk models with the id-

iosyncratic risk factors distributed phase-type

In this section, we put forward a special subclass of the general MBR structures, in which the

idiosyncratic risk factors are distributed phase-type. We study a wide range of distributional

properties and risk management applications of what we call the phase-type MBR models,
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and we demonstrate that they inherit the tractability of the exponential MBR models while

also allowing for considerably more diversity in dependence modelling.

2.4.1 Definition and distributional properties

Definition 7. Recall the multiplicative background risk model stochastic representation,

that is

X = (X1, . . . , Xn) = (RY1, . . . RYn) , (2.26)

where the rv’s Y1, . . . , Yn are independent mutually and also on the rv R. If in addition, the

rv’s Yi are distributed phase-type with the respective representations (αi,Ti), i = 1, . . . , n,

then we say that the rv X admits the phase-type multiplicative background risk model

stochastic representation, succinctly, PH-MBR.

We have already emphasized that the Laplace transform plays an important role when

exploring the properties of the MBR models with exponentially-distributed idiosyncratic risk

factors. In the case of the PH-MBR models, we need to introduce a slightly more general

notion of Laplace transforms with matrix-valued arguments. To this end, recall that, for a

rv X and the corresponding cdf F , the Laplace transform F̂ is defined as

F̂ (s) = E
[
e−sX

]
=

∫ ∞
0

e−sxdF (x), Re(s) ≥ 0.

Also, recall that the alternating sign h(∈ Z)-th order (anti-)derivative of the Laplace trans-

form can be computed via [97]

F̂ (h)(s) = E
[
Xhe−sX

]
=


(−1)h ∂h

∂sh
F̂ (s), for h = 1, 2, . . .

∫∞
s

(t−s)−h−1

(−h−1)!
F̂ (t)dt, for h = −1,−2, . . .

. (2.27)

We note that the existence of the anti–derivatives of the Laplace transform F̂ (s) depends on
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the left tail behaviour of the rv X, as is seen from the following

F̂ (h)(s) =

∫ ∞
s

1

(−h− 1)!

−h−1∑
j=0

(
−h− 1

j

)
tj(−s)−h−1−jF̂ (t)dt

=
1

(−h− 1)!

−h−1∑
j=0

(
−h− 1

j

)
(−s)−h−1−j

∫ ∞
s

tjF̂ (t)dt,

where Re(s) ≥ 0 and h = −1,−2, . . .

Further let A be a negatively-defined square matrix having m ∈ N eigenvalues λ1, . . . , λm

and Re(λi) < 0 for i = 1, . . . ,m, then the aforementioned Laplace transform with matrix-

valued arguments is introduced as following

F̂ (−sA) = E
[
esAX

]
, Re(s) ≥ 0

and, more generally in a fashion similar to (2.27) and for h ∈ Z,

F̂ (h)(−sA) = E
[
Xhe−tX

] ∣∣
t=−sA, Re(s) ≥ 0.

Notably, most of the results in the remaining sections of the paper are formulated in

terms of the transform F̂ (h), and so the way to compute it is of great importance. To this

end, note that according to the Appendix, the matrix A can be written via its Jordan form

as A = VA J V
−1
A . Moreover, for j = 1, . . . ,m, let kj = dim(Eλj) be the dimension of the

eigenspace associated with the eigenvalue λj, and set

F̂ (h)(s;λj) = F̂ (h)(s;λj; dim(Eλj))
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=



F̂ (h)(−sλj) sF̂ (h+1)(−sλj) · · · · · · s(kj−1) F̂
(h+kj−1)(−sλj)

(kj−1)!

F̂ (h)(−sλj) sF̂ (h+1)(−sλj) · · · ...

. . . . . .
...

F̂ (h)(−sλj) sF̂ (h+1)(−sλj)

F̂ (h)(−sλj)


︸ ︷︷ ︸

kj=dim(Eλj )

.(2.28)

Then according to Equation (2.48) in the Appendix (the same section also has the defi-

nition of the direct sum of matrices), we have, for h ∈ Z,

F̂ (h)(−sA) = VA

(
⊕mj=1F̂

(h)(s;λj)
)
V −1
A , Re(s) ≥ 0. (2.29)

Remark 1. As the matrix A is assumed to be negatively-defined, all the associated eigen-

values have negative real parts and Re(−xλj) > 0. Along with the analyticity property of

the Laplace transform, this implies that the entries in (2.28) are well defined for h ≥ 0.

Special attention must be paid for h < 0.

Proposition 5. Assume that the rv X = (X1, . . . , Xn) admits the PH-MBR stochastic

representation as per Definition 7, and let the idiosyncratic risk factors have representations

(αi,Ti), i = 1, . . . , n. Then we have the following expressions for, respectively, the marginal

ddf ’s and pdf’s of the coordinates of the rv X

FXi(x) = αi F̂R−1(−xTi) 1 (2.30)

and

fXi(x) = αi F̂
(1)

R−1(−xTi) ti (2.31)
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for x ∈ R+, i = 1, . . . , n and ti = −Ti1.

Furthermore, for x = (x1, . . . , xn) ∈ Rn
+ set Ux = ⊕̂ni=1xiTi, then the joint ddf and pdf

of the rv X are given by, respectively,

FX(x) = α̂ F̂R−1(−Ux) 1

and

fX(x) = α̂ F̂
(n)

R−1(−Ux) t̂,

where α̂ = ⊗̂ni=1αi and t̂ = ⊗̂ni=1ti (we refer to the Appendix for the definitions of the

Kronecker sum and product of matrices).

Proof. For x ∈ [0, ∞) and evoking Proposition 3 with Equation (2.18), we have

FXi(x) =

∫ ∞
0

P[Yi > rx]dFR−1(r) = αi

(∫ ∞
0

erxTidFR−1(r)

)
1,

as required. In a very similar fashion, but this time for x = (x1, . . . , xn)′ ∈ [0, ∞)n,

FX(x1, . . . , xn) =

∫ ∞
0

n∏
i=1

P[Yi > rxi]dFR−1(r) =

∫ ∞
0

⊗̂ni=1 αie
r(xiTi)1 dFR−1(r)

= ⊗̂ni=1 αi

(∫ ∞
0

exp{r⊕̂ni=1(xiTi)} dFR−1(r)

)
1.

The corresponding pdf’s are readily obtained by routine differentiation. This completes the

proof of the proposition. ut

The following result about the marginal/joint moments follows immediately from Propo-

sition 3 and Equation (2.20), thus the proof is omitted.

Proposition 6. Assume that the rv X = (X1, . . . , Xn) admits the PH-MBR stochastic rep-

resentation as per Definition 7 with the rv’s Yi having representations (αi,Ti), i = 1, . . . , n.

Also assume that the h(∈ N)-th moment of the rv R is finite, i.e., E[Rh] < ∞. Then the

30



h-th marginal moment of Xi, i = 1, . . . , n is given by

E
[
Xh
i

]
= E

[
Rh
]
h!αi(−T−1

i )h1.

In addition, for 1 ≤ i 6= j ≤ n, hi, hj ∈ N, assume that E
[
Rhi+hj

]
< ∞. Then the

(hi, hj)-th order joint moment of the random pair (Xi, Xj) is given by

E
[
Xhi
i X

hj
j

]
= (−1)hi+hj E

[
Rhi+hj

]
hi!hj! α̂

[
T−hii ⊗̂T−hjj

]
1, (2.32)

and in particular

Cov(Xi, Xj) = Var(R) α̂(T̂ )−11, (2.33)

where α̂ = αi⊗̂αj and T̂ = Ti⊗̂Tj.

The following corollary is an immediate consequence of Proposition 6 (also, Proposition

1).

Corollary 5. Consider the rv X = (X1, . . . , Xn) that admits the PH-MBR stochastic rep-

resentation, then the Pearson coefficient of correlation between the rv’s Xi and Xj, where

1 ≤ i 6= j ≤ n, is given by

Corr(Xi, Xj) =
∏

k∈{l,m}

[(
1 +

(
2αk(Tk)

−21

(αk⊗̂αk)(Tk⊗̂Tk)−11
− 1

)
(1 + c−2)

)]−1/2

, (2.34)

where c is the variation coefficient of the rv R.

Expression (2.34) obtained above is somewhat cumbersome. Remarkably, the upper

bound for the Pearson coefficient of correlation is contrarily very simple. The bound is

stated in the following proposition, with an important lemma reported beforehand. The

lemma is quite well-known, and it asserts that the Erlang distribution is the least variable

member of the class of PH distributions, when the variability is measured by means of the

variance.
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Lemma 1 (David and Larry, 1987). Let Y ∼ PH(α,T ) with order d ∈ N (i.e., the row

dimension of the matrix T is d), then the following bound holds for the coefficient of variation

of Y , succinctly cY ,

cY ≥ d−1/2.

The bound becomes an equality when Y ∼ Erl(d, σ), that is the rv Y is distributed Erlang

with the shape parameter d ∈ N and scale parameter σ ∈ R+.

For 1 ≤ i 6= j ≤ n, assume that the rv’s Yi and Yj are distributed phase-type with the

orders di ∈ N and dj ∈ N, respectively (see, Definition 6). Set

d(i,j) = max(di, dj). (2.35)

then we have that the PH-MBR models are able to cover the entire range of positive depen-

dence when it is measured by the Pearson coefficient of correlation. This is conveyed in the

next proposition.

Proposition 7. For 1 ≤ i 6= j ≤ n, let the rv (Xi, Xj) admit the PH-MBR stochastic

representation as per Definition 7, and assume that E[R] < ∞. Then, for the Pearson

coefficient of linear correlation, the following bound holds

Corr[Xi, Xj] ≤
1

d−1
(i,j)(1 + c−2) + 1

, (2.36)

where d(i,j) is defined in (2.35) and c denotes the coefficient of variation of the rv R. More-

over, the equality in (2.36) is attained when the rv’s Yi and Yj are both identically distributed

as an Erlang with the shape parameter d ∈ N.

It is evident from (2.36) that the Pearson coefficient of linear correlation has the limiting

value of one, when the parameter d goes to infinity. This means that within the context of

the PH-MBR models, the maximal attainable value of the Pearson coefficient of correlation

can be arbitrarily close to one, as opposed to the case of the Exponential MBR models, in

which the upper-bound for the Pearson coefficient of correlation is one-half (see, Corollary

1).
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Let SX = X1 + · · · + Xn, WX = mini=1,...,nXi, and MX = maxi=1,...,nXi. We conclude

this section by deriving the distributions of the just-mentioned rv’s.

Proposition 8. Let the rv X = (X1, . . . , Xn) admit the PH-MBR stochastic representa-

tion with the rv’s Yi having representations (αi,Ti), i = 1, . . . , n. Then the corresponding

aggregate rv SX and the minimum rv WX have the ddf’s and pdf’s given, respectively, by

F �(x) = α� F̂R−1(−xT�) 1 for x ∈ [0, ∞),

and

f�(x) = α� F̂
(1)

R−1(−xT�) t� for x ∈ R+,

where ‘�’ stands for either one of ‘SX’ or ‘WX’, α� and T� are defined correspondingly in

(2.23) - (2.25), and t� = −T�1.

Finally, the next assertion establishes the distribution of the maximum rv MX . Its proof

hinges on the inclusion-exclusion principle and Proposition 8. Similar derivations can be

found in, e.g., [106, 114].

Proposition 9. Let the rv X = (X1, . . . , Xn) admit the PH-MBR stochastic representation

with the rv’s Yi having representations (αi,Ti), i = 1, . . . , n. Then the ddf of the maximum

rv MX can be computed via

FM(x) =
∑

I⊆{1,...,n}

(−1)|I|−1FWI(x) for x ∈ [0, ∞), (2.37)

where WI = mini∈I⊆{1,...,n}Xi.

It is intuitive and well-documented that the PH distributions are closed under the max-

imum operation [e.g., 14]. Hence one could argue that it is possible to find the PH repre-

sentation of the rv MX , and therefore, the parameters of its ddf FM . This is indeed so, but

the results are not easy to present, and because of little connection to our paper, we have

chosen to go as far as Proposition 9.
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2.4.2 Applications to risk management

We now derive explicit expressions for some risk measures of practical importance within

the context of the PH-MBR models. At the outset, It should be noted that factor models

play an important, if not central, role in a variety of applications. Herein we refer to [42]

- for asset pricing, [105] - for portfolio optimization, [57] - for credit risk. Also, the noble

arbitrage pricing theory [100] and capital asset pricing model [e.g., 78], as well as the recent

weighted insurance pricing model [51, 55] all hinge on factor models.

Recall that, for a non-negative rv Xi, i = 1, . . . , n with finite mean, the Value-at-Risk

(VaR) risk measure is defined as

VaRp(Xi) = inf{x ≥ 0 : FXi(x) ≥ p}, p ∈ [0, 1),

and the conditional tail expectation risk measure of order k ∈ N is defined as

CTEk
p(Xi) = E

[
Xk
i | Xi > V aRp[Xi]

]
, p ∈ [0, 1)

[e.g., 71].

Proposition 10. Consider the PH-MBR portfolio X = (X1, . . . , Xn) = (RY1, . . . , RYn),

that is let Yi ∼ PH(αi,Ti), i = 1, . . . , n. Also, assume that E[Xk
i ] < ∞, i = 1, . . . , n.

Then the k(∈ N)-th order conditional moment of the i-th risk component is formulated, for

p ∈ [0, 1), as

CTEk
p(Xi) =

(−1)kk!

1− p

(
αi⊗̂α[k]

i

)(
T−ki ⊗̂F̂

(−k)

R−1

(
−V aRp(Xi)T

[k]
i

) )
1, (2.38)

where F̂
(−k)

R−1 can be computed via (2.29), the parameters α
[k]
i and T

[k]
i are defined in (2.22),

and the definition of the Kronecker product of matrices is provided in the Appendix.

Proof. For i = 1, . . . , n, k ∈ N and p ∈ [0, 1), we have

CTEk
p(Xi)

(1)
=

E
[
Xk
i

]
1− p

P
(
X

[k]
i > V aRp(Xi)

)
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(2)
=

E[Y k
i ]E[Rk]

1− p
P
(
R[k]Y

[k]
i > V aRp(Xi)

)
=

E[Y k
i ]E[Rk]

1− p

∫ ∞
0

P
(
Y

[k]
i > r−1V aRp(Xi)

)
dF

[k]
R (r)

=
E[Y k

i ]

1− p

∫ ∞
0

P
(
Y

[k]
i > rV aRp(Xi)

)
r−kdFR−1(r)

(3)
=

E[Y k
i ]

1− p
α

[k]
i

(∫ ∞
0

er(V aRp(Xi)T
[k]
i )r−kdFR−1(r)

)
1

=
E[Y k

i ]

1− p
α

[k]
i F̂

(−k)

R−1

(
−V aRp(Xi)T

[k]
i

)
1,

where ‘
(1)
=’, ‘

(2)
=’ and ‘

(3)
=’ hold because of, respectively, Proposition 4, Corollary 2 and the fact

that the class of PH distributions is closed under size-biasing of arbitrary order with the

corresponding SB representation given in (2.22). Note that F̂
(−k)

R−1

(
−V aRp(Xi)T

[k]
i

)
can be

readily computed via Equation (2.29). This completes the proof of the proposition. ut

As a rule, insurers are concerned with the economic capital due to the aggregate risk,

SX =
∑n

i=1Xi, rather than due to its stand-alone constituents. Since, conditionally on the

rv R, the rv SX is distributed PH with the representation (αS, TS), where the parameters

αS and TS are given in, correspondingly, (2.23) and (2.24), we have the following corollary

immediately.

Corollary 6. Within the set-up of Proposition 10, the k-th order CTE of the aggregate risk

rv is given by

CTEk
p (SX) =

(−1)kk!

1− p

(
αS⊗̂α[k]

S

)(
T−kS ⊗̂F̂

(−k)

R−1

(
−V aRp (SX)T

[k]
S

) )
1, (2.39)

where the parameters αS, TS and α
[k]
S , T

[k]
S are defined in, respectively, (2.23), (2.24) and

(2.22), and F̂
(−k)

R−1 (·) can be readily computed with the help of Equation (2.29).

Remark 2. It is easy to see that the expression for the CTE risk measure of the minimum

risk rv, WX = mini=1,...,nXi, has the same form as (2.39). Indeed, when of interest, we obtain

the value of CTEk
p (WX) directly from Corollary 6 by merely replacing the ‘SX’ subscript
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with the ‘WX’ subscript in the right-hand-side of (2.39). In this case, the desired parameters

αW , TW and α
[k]
W , T

[k]
W are defined in, respectively, (2.25) and (2.22).

We further study the contribution of the risk component Xi, i = 1, . . . , n to the overall

riskiness of the risk portfolio represented by the aggregate risk rv SX, that is we consider

the risk capital allocation exercise next. Speaking briefly, the allocation problem is much

more involved than the fairly well-studied problem of determining the aggregate risk capital.

As a consequence, numerous papers have been devoted to solving this problem under very

specific model and/or reference risk measure assumptions. For instance, in the case of the

CTE, we refer to [47] for gamma distributions, [23] for phase-type distributions, [35] for

elliptical distributions, [49] for Tweedie distributions, [114, 115] for skew-normal and Pareto

distributions. We should also mention that the axiomatic approach to the notion of risk

capital allocation is pursued in, e.g., [54, 69]. In addition, classes of optimal risk capital

allocation rules are proposed in [36].

In the rest of this section, we develop explicit expressions for some tail-based risk cap-

ital allocation rules for the PH-MBR models. Given that in our context the systemic risk

factor can have an arbitrary distribution with positive support and the idiosyncratic risk

factors are distributed PH, and so can approximate fairly well any distribution with positive

support, our results are quite general. We need some additional notations in order to pro-

ceed. First, let SX =
∑n

j=1Xj, SY =
∑n

j=1 Yj as before, and let SX,−i =
∑n

j=1, j 6=iXj and

SY,−i =
∑n

j=1, j 6=i Yj. Second, we define, for h1, h2 ∈ N0,

Ci,j =
h1!(h1 + h2 − j)!

(h1 − j)!
(
αSY,−i ⊗̂ αi

)
×
(
T−jSY,−i

⊗̂ T−(h1+h2−j)
i

)
1, i = 1, . . . , n, j = 0, . . . , h1,

where αSY,−i and TSY,−i are given by (2.23) and (2.24). Lastly, we set

α
[j,h1+h2−j]
SY,−i,Yi

=
(
α

[h1+h2−j]
i , (1−α[h1+h2−j]

i 1) α
[j]
SY ,−i

)
(2.40)

36



and

T
[j,h1+h2−j]
SY,−i,Yi

=


T

[h1+h2−j]
i −T [h1+h2−j]

i 1×α[j]
SY,−i

0 T
[j]
SY,−i

 . (2.41)

We are now ready to state the next assertion.

Proposition 11. Consider the PH-MBR portfolio X = (RY1, . . . , RYn), that is let the risk

factors Yi have PH representations (αi,Ti), i = 1, . . . , n. For h1, h2 ∈ N0 and p ∈ [0, 1), the

higher order tail conditional joint moment of Xi and SX is given by

E
[
Sh1XX

h2
i | SX > V aRp(SX)

]
=

(−1)h1+h2

1− p

h1∑
j=0

Ci,j

[
α

[j,h1+h2−j]
SY,−i,Yi

F̂
−(h1+h2)

R−1

(
−V aRp(SX)T

[j,h1+h2−j]
SY,−i,Yi

)
1
]
.

(2.42)

Proof. According to Proposition 4, we only need to compute

I(s) =

∫ ∞
0

P
[
(SY,−k)

[j] + Y
[h1+h2−j]
k > r−1s

]
dFR[h1+h2](r).

Note that by formulas (2.22)-(2.24), we know (SY,−k)
[j]+Y

[h1+h2−j]
k ∼ PH(α

[j,h1+h2−j]
SY,−i,Yi

,T
[j,h1+h2−j]
SY,−i,Yi

),

where α
[j,h1+h2−j]
SY,−i,Yi

and T
[j,h1+h2−j]
SY,−i,Yi

are defined as per (2.40) and (2.41). Thus

I(s) = E
[
Rh1+h2

]−1
α

[j,h1+h2−j]
SY,−i,Yi

(∫ ∞
0

r−(h1+h2) exp
{
rsT

[j,h1+h2−j]
SY,−i,Yi

}
dFR−1(r)

)
1

= E
[
Rh1+h2

]−1
α

[j,h1+h2−j]
SY,−i,Yi

(
F̂
−(h1+h2)

R−1

(
−sT [j,h1+h2−j]

SY,−i,Yi

))
1.

The proof is now completed. ut

Involved at first sight, expression (2.42) is explicit and recovers a notable number of

special allocation rules tackled separately in the literature. For instance, put h1 = 1, and

the formula simplifies significantly to yield the k(∈ N)-th order CTE-based allocation rule,

of which the ubiquitous CTE-based allocation rule is a particular case.
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Corollary 7. Consider the set-up in Proposition 11, then we have

CTEk
p(Xi, SX) =

(−1)kk!

1− p

(
αi⊗̂α[0,k]

SY,−i,Yi

)(
T−ki ⊗̂ F̂

(−k)

R−1

(
−V aRp(SX)T

[0,k]
SY,−i,Yi

))
1, i = 1, . . . , n,(2.43)

where α
[0,k]
SY,−i,Yi

and T
[0,k]
SY,−i,Yi

are defined as per (2.40) and (2.41).

Another special allocation rule that can be easily calculated with the help of (2.42), is

the tail covariance allocation proposed and studied in [48]. This is clearly so because, for

p ∈ [0, 1),

TCovp(Xi, SX) = E(XiSX |SX > V aRp[SX])− CTEp(SX)CTEp(Xi, SX),

and each term in the left-hand-side can be computed evoking Proposition 11. The tail

covariance allocation is additive as is easily seen from

n∑
i=1

TCovp(Xi, SX) = Varp(SX), p ∈ [0, 1).

2.5 Numerical illustration

In this section, we elucidate the implications of the theoretical findings presented heretofore.

To this end we consider three explanatory risk portfolios, all of which are particular cases

of the PH-MBR structures, proposed and studied in Section 2.4. Namely, we open the

discussion with an example of a risk portfolio that admits the stochastic representation of

the exponential MBR models [e.g., 28, 114, for the choice of parameters]. The arguably

simplest and best studied special case of the class of PH-MBR models [e.g., 4, 27, and

references therein, in addition to the two other just-mentioned references], the exponential

MBR structures serve as an important benchmark and confirm that our method is able to

recover the existing results promptly and accurately. Then the second and third illustrative

risk portfolios provide insights about the implications of the change in the distributional

assumptions on, respectively, the systemic and idiosyncratic risk factors. On one hand, it

is confirmed that varying the distribution of the systemic risk factor within the context of

the exponential MBR structures has no effect on the order of the allocated risk capitals.
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That is, the higher the value of the scale parameter of the idiosyncratic risk factor is, the

more risk capital the corresponding risk component requires irrespective of the choice of

the distribution of the systemic risk factor. On the other hand, it is demonstrated that a

slight departure from the exponentiality of the idiosyncratic risk factors brings much more

uncertainty to the allocation exercise, and, as a result, the orders of the allocated risk capitals

become less predictable.

2.5.1 Portfolio 1

Consider a risk portfolio that has ten risk components and admits the stochastic repre-

sentation E = (E1, . . . , E10) = (RE1, . . . , RE10), where the idiosyncratic risk factors Ei are

distributed exponentially with the scale parameters σi, i = 1, . . . , 10, and the systemic risk

factor R is such that the rv R−1 is distributed gamma with the shape parameter α ∈ R+

and unit scale parameter. We note in passing that this set-up is obviously a special case of

the PH-MBR model (Definition 7), where the PH representations of the idiosyncratic risk

factors are (αi, Ti) with αi ≡ (1) and Ti = (−σ−1
i ). The resulting risk components are

distributed Pareto of the second kind [e.g., 8].

The CTE-based risk capital allocations in the context of the aforementioned exponential

MBR structure were studied in [28] and [114] by utilizing the theory of divided differences

and certain recursive techniques, respectively. Table 2.1 presents a comparative analysis

of the results of [28] and [114] versus explicit expressions (2.39) and (2.43), developed in

Corollaries 6 and 7, correspondingly. The subtle differences are due to the deviations in

the values of the Value-at-Risk risk measure when computed in MS Excel [28, 114] versus

MATLAB’s ‘vpasolve’ function (this paper).

To realize the potential of Corollaries 6 and 7 to further extent, we modify the shape

parameter of the rv R−1 to α = 3 and leave the unit scale parameter unchanged; this warrants

that the TCov risk capital allocation rule is well-defined and finite. Table 2.2 displays the

values of the CTE0.95 and TCov0.95 risk measures, along with the allocation rules based on

them. The proportional contributions are reported in brackets.
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i 1 2 3 4 5 6 7 8 9 10

σi 0.32 0.94 0.16 0.47 0.73 0.25 0.61 1.02 0.22 0.81

PH approach 5.7134 17.5443 2.8202 8.4883 13.4330 4.4389 11.1301 19.1368 3.8969 14.9872

Benchmark 5.7234 17.5752 2.8252 8.5031 13.4565 4.4467 11.1497 19.1705 3.9037 15.0135

Table 2.1: CTE0.95[Xi, SX ], i = 1, . . . , 10 for the exponential MBR under the assumption
R−1 ∼ Ga(1.5, 1).

i 1 2 3 4 5 6 7 8 9 10

σi 0.32 0.94 0.16 0.47 0.73 0.25 0.61 1.02 0.22 0.81

E[Xi] 0.1600 0.4700 0.0800 0.2350 0.3650 0.1250 0.3050 0.5100 0.1100 0.4050

(5.79%) (17.00%) (2.89%) (8.50%) (13.20%) (4.52%) (11.03%) (18.44%) (3.98%) ( 14.65%)

CTE0.95[Xi] 0.9829 2.8873 0.4915 1.4437 2.2423 0.7679 1.8737 3.1331 0.6758 2.4880

(5.79%) (17.00%) (2.89%) (8.50%) (13.20%) (4.52%) (11.03%) (18.44%) (3.98%) ( 14.65%)

SD0.95[Xi] 0.7522 2.2097 0.3761 1.1049 1.7161 0.5877 1.4340 2.3978 0.5172 1.9041

(5.79%) (17.00%) (2.89%) (8.50%) (13.20%) (4.52%) (11.03%) (18.44%) (3.98%) ( 14.65%)

CTE0.95[Xi, SX ] 0.6293 2.1295 0.3025 0.9581 1.5796 0.4833 1.2846 2.3502 0.4222 1.7841

(5.28%) (17.86%) (2.54%) (8.04%) (13.25%) (4.05%) (10.77%) (19.71%) (3.54%) ( 14.96%)

TCov0.95[Xi, SX ] 3.3101 11.8523 1.5717 5.1026 8.6133 2.5282 6.9270 13.1869 2.2033 9.8031

(5.08%) (18.21%) (2.41%) (7.84%) (13.23%) (3.88%) (10.64%) (20.26%) (3.38%) ( 15.06%)

Table 2.2: Some risk measures and the allocation rules based on them for an exponential
MBR model with R−1 ∼ Ga(3, 1).

.

Let pri = E[Xi]/E [SX] denote the proportional expected contributions of the risk com-

ponents Xi, i = 1, . . . , n. In our example, n = 10. Then we immediately observe, for

SDp(Xi) =
√

Varp(Xi),

pri =
E[Xi]∑n
j=1 E[Xj]

=
CTE0.95(Xi)∑n
j=1 CTE0.95(Xj)

=
SD0.95(Xi)∑n
j=1 SD0.95(Xj)

=
σi∑n
j=1 σj

, i = 1, . . . , 10,

which is certainly true for an arbitrary prudence level p ∈ [0, 1). The equality is not

surprising at all since both the CTEp and SDp risk measures are positively homogeneous
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and the allocation rules assumed are the simple proportional allocations. It is, however,

somewhat less anticipated that the magnitudes of the contributions

CTEp(Xi, SX)

CTEp(SX)
and

TCovp(Xi, SX)

Varp(SX)

are also very close to pri, i = 1, . . . , 10.

Our consequent elaborations concern the non-trivial allocation rules, that is the ones

based on the CTE and TCov risk measures. In a hope to close up on the underlying forces

that drive the shapes of the allocation values, we refine the set-up by considering a sub-

portfolio of risk components, and vary the distributions of the systemic risk factor first, and

the idiosyncratic risk factors thereafter.

2.5.2 Portfolio 2

In the previous illustrative portfolio (exponential MBR model), we assumed R−1 ∼ Ga(α, 1)

for α > 0, therefore, the risk components had Pareto distributions and consequently tails

that decay polynomially. Obviously this must not be the desired characteristic, and our

framework is well-suited to deal with distinct tail-heaviness.

For instance, if a portfolio of risk components with lighter tails is to be modelled, then

one choice for the distribution of the rv R−1 is beta, succinctly R−1 ∼ Beta(β), for β ∈ (0, 1),

having the pdf

fR−1(z) =
1

Γ(1− β)Γ(β)
z−1(z − 1)−β, z > 1. (2.44)

In this case, the risk components are distributed gamma [104] and hence have tails that

decay exponentially [e.g., 39, for a rigorous discussion].

One more convenient choice for the distribution of the rv R−1 is the positive stable,

succinctly R−1 ∼ PS(τ, γ) for τ ∈ (0, 1) and γ > 0, having the pdf

fR−1(z) = − 1

πz

∞∑
k=1

(−1)kΓ(kτ + 1)

k!
(γ/z)τk sin(τkπ), z ∈ R+. (2.45)
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The resulting risk components are distributed Weibull [102], and so take the spot between

the gamma and Pareto distributions in terms of the tail behaviour [e.g., 39, for a rigorous

discussion].

Let (E1, . . . , E4) = (RY1, . . . , RY4), where Yi ∼ PH(1,−σ−1
i ), that is the idiosyncratic risk

factors Yi, are distributed exponentially with the scale parameters σi for i = 1, . . . , 4, with

σ1 = 0.73, σ2 = 0.81, σ3 = 0.94, and σ4 = 1.02. This sub-portfolio of Portfolio 1 contains

the risk components that have the highest means. Also, let

R−1
1 ∼ Ga(3, 1), R−1

2 ∼ PS(0.5, 4), and R−1
3 ∼ Beta(0.5). (2.46)

This choice of parameters warrants that all the involved risk measures and allocation rules

are well-defined and finite, as well as

E[R1] =
1

α− 1
=

1

2
, E[R2] =

Γ(1 + 1/τ)

γ
=

1

2
, and E[R3] = β =

1

2
,

and hence irrespective of the choice of the distribution of the systemic risk factor, we have

E[Xi] = σi/2 for i = 1, . . . , 4. Unlike similar results that hinge on divided differences or

recursions [28, 114], Corollaries 6 and 7 are able to readily compute the magnitudes of

the allocation rules based on either one of the CTE or TCov risk measures, among others,

irrespective of the choice of the distribution of the systemic risk factor. Our finding are

summarized in Table 2.3, where pri, i = 1, . . . , 4 denote, as before, the proportional expected

contributions.

We observe that, similarly to the case of Portfolio 1, there is no significant difference

between the proportional risk contributions due to the CTE and TCov allocation rules and

the trivial proportional expected contributions. In this respect, varying the distributions of

the systemic risk factor has not introduced major changes. That said, the aforementioned

differences are the more profound, the lighter the tail of the distribution of the systemic risk

factor is. Indeed, according to Proposition 1, heavier tails of the systemic risk factor imply

higher positive Pearson correlations between risk components. This, along with the fact that

for comonotonic risk components, the risk contributions due to the risk capital allocation
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R−1
1 ∼ Ga(3, 1) R−1

2 ∼ PS(1/2, 4) R−1
3 ∼ Beta(1/2)

i σi pri CTE0.95[Xi, SX ] TCov0.95[Xi, SX ] CTE0.95[Xi, SX ] TCov0.95[Xi, SX ] CTE0.95[Xi, SX ] TCov0.95[Xi, SX ]

1 0.73 20.86% 1.6083 6.1071 2.2849 4.5321 1.1522 0.1808

(19.85%) (19.38%) (19.95%) (18.00%) (18.58%) (12.73%)

2 0.81 23.14% 1.8300 7.0281 2.5944 5.4111 1.3555 0.2548

(22.59%) (22.31%) (22.65%) (21.49%) (21.86%) (17.94%)

3 0.94 26.86% 2.2091 8.6482 3.1191 7.0465 1.7222 0.4230

(27.27%) (27.45%) (27.23%) (27.99%) (27.78%) (29.78%)

4 1.02 29.14% 2.4540 9.7243 3.4549 8.1872 1.9700 0.5617

(30.29%) (30.86%) (30.17%) (32.52%) (31.77%) (39.55%)

Table 2.3: Risk capital allocations based on the CTE0.95 and TCov0.95 risk measures for an
exponential MBR portfolio with varying distributions of the systemic risk factor.

rules based on the CTE/TCov risk measures agree with the proportional expected contribu-

tions, provides an insight as to the possible reason. Note that for the choice of parameters

in this example, an application of Equation (2.4) yields pair-wise Pearson correlations of

ρ1 = 0.3333, ρ2 = 0.4000, and ρ3 = 0.2500 imposed by the systemic risk factors R1, R2, and

R3 respectively.

In addition, and not surprisingly, the orders of magnitudes of the allocated risk capitals

have carried over from Portfolio 1 to Portfolio 2. Namely, the risk measures and capital allo-

cations of interest are all monotonic with respect to the proportional expected contributions,

pri, i = 1, . . . , 4.. That is, lower values of −T ′i s, or equivalently σ′is, i = 1, . . . , n, result in

smaller weights of the corresponding risk components in the risk portfolio, and also lower

corresponding risk capital allocation values. In the jargon of insurance business, this means

that a smaller business unit must represent a smaller portion of the portfolio-wise risk, which

may or may not comply with the real world practice well.

Another counterintuitive feature of the exponential MBR structures is that the Pearson

correlation coefficients are identical for any pair of risk components within a portfolio of

risks. As already mentioned, the more general PH-MBR structures introduced in this paper

do not bear this disadvantage. We discuss an illustrative PH-MBR risk portfolio next.

43



2.5.3 Portfolio 3

Let us slightly depart from the exponential MBR constructions adopted in Portfolios 1 and

2. Instead, consider Yi ∼ PH(αi,Ti), i = 1, . . . , 4, with the representations

αi = (1, 0, . . . , 0︸ ︷︷ ︸
mi−1

) and Ti =



−mi/σi mi/σi

−mi/σi mi/σi

. . . . . .

−mi/σi


︸ ︷︷ ︸

mi

,

for σi ∈ R+ and mi ∈ N. In other words, we generalize the distribution of the idiosyncratic

risk factors from exponential (in Portfolios 1 and 2) to Erlang, i.e., Yi ∼ Erl(mi,mi/σi),

i = 1, . . . , 4. It is noteworthy that since E[Yi] = σi for i = 1, . . . , 4, the proportional

expected contributions within Portfolio 3 conform to these in Portfolio 2. However, unlike in

Portfolio 2, the dependence structure in Portfolio 3 changes substantially, and the pair-wise

Pearson coefficients of correlation are no longer identical.

For the purpose of illustration, set mi = i, i = 1, . . . , 4. In this case, we have

Var(Y1) > Var(Y2) > Var(Y3) > Var(Y4).

By evoking Equation (2.34), the three distinct correlation matrices, as stipulated by systemic
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risk factors R1, R2, and R3 in (2.46), are given by

P1 =



1 0.41 0.45 0.47

1 0.55 0.58

1 0.63

1



, P2 =



1 0.48 0.52 0.54

1 0.62 0.65

1 0.70

1



, P3 =



1 0.32 0.35 0.38

1 0.45 0.48

1 0.53

1



.

R−1
1 ∼ Ga(3, 1) R−1

2 ∼ PS(1/2, 4) R−1
3 ∼ Beta(1/2)

i σi pri CTE0.95[Xi, SX ] TCov0.95[Xi, SX ] CTE0.95[Xi, SX ] TCov0.95[Xi, SX ] CTE0.95[Xi, SX ] TCov0.95[Xi, SX ]

1 0.73 20.86% 1.7441 6.2415 2.4500 4.9237 1.4845 0.3575

(23.30%) (24.47%) (23.14%) (29.41%) (28.68%) (60.43%)

2 0.81 23.14% 1.7322 5.8851 2.4553 3.8230 1.1889 0.1037

(23.15%) (23.07%) (23.19%) (22.83%) (22.97%) (17.53%)

3 0.94 26.86% 1.9438 6.5169 2.7574 3.9770 1.2428 0.0736

(25.97%) (25.55%) (26.04%) (23.75%) (24.01%) (12.44%)

4 1.02 29.14% 2.0636 6.8627 2.9272 4.0195 1.2604 0.0568

(27.57%) (26.91%) (27.64%) (24.01%) (24.35%) (9.60%)

Table 2.4: Risk capital allocations based on the CTE0.95 and TCov0.95 risk measures for a
PH-MBR portfolio with varying distributions of the systemic risk factor.

The values of the risk capital allocation rules in the context of Portfolio 3 are summa-

rized in Table 2.4. Unlike earlier, the values herein are not monotonic with respect to the

proportional expected contributions. For instance, although pr1 < pr2, we have

CTE0.95(X1, SX) > CTE0.95(X2, SX)

for the risk portfolios with the risk components distributed Pareto and gamma. Furthermore,

in the context of the risk portfolio with the risk components distributed gamma, we have
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pr1 < pr2 < pr3 < pr4, and yet

TCov0.95(X1, SX) > TCov0.95(X2, SX) > TCov0.95(X3, SX) > TCov0.95(X4, SX)

.

All in all, we have to conclude that the PH-MBR stochastic representation induces much

more intricate dependence structures than the exponential MBR models do. As a result,

there is seemingly no more simple rule of thumb as to how the risk capital allocation values

shape up when the PH-MBR portfolios are considered.

Appendix: A recap of matrix algebra

For two matrices A ∈ Rn1×m1 and B ∈ Rn2×m2 , n1, n2,m1,m2 ∈ N, the direct sum of A and

B is given by

A⊕B =


A 0

0 B

 .

The addition of A and B can be also defined by means of the Kronecker product and sum.

In order to distinguish these two types of matrix additions, we add a ‘hat’ to the Kronecker

operators. For any matrices A ∈ Rn1×m1 and B ∈ Rn2×m2 , the Kronecker product is defined

as

A⊗̂B =



a1,1B · · · a1,m1B

...
. . .

...

an1,1B · · · an1,m1B


,

where ai,j denotes the (i, j)-th element of A, i = 1, . . . , n1, j = 1, . . . ,m1. Furthermore,

assume that A and B are square matrices, i.e., A ∈ Rn1×n1 and B ∈ Rn2×n2 , then the
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Kronecker sum is given by

A⊕̂B = (A⊗̂1n2) + (1n1⊗̂B).

Note that all the aforementioned notions of addition and multiplication can be extended to

higher dimensions via a repeated application.

Let A be a square matrix, and let λ ∈ C be its eigenvalue with the correspond-

ing eigenspace Eλ. The Jordan block of λ is a square, upper triangular matrix of size

k = dim(Eλ), such that the diagonal entries are all λ, the super-diagonal entries are all 1,

and zeros elsewhere, namely

J(λ) = J(λ; dim(Eλ)) =



λ 1

. . . . . .

λ 1

λ


︸ ︷︷ ︸

k=dim(Eλ)

.

Furthermore, for k ∈ N, let A ∈ Rk×k be a square matrix, with m ∈ N eigenvalues

λ1, . . . , λm ∈ C, which are not necessarily distinct. Let

J = J(λ1)⊕ · · · ⊕ J(λm).

Then J is similar to A. Namely, there exists a nonsingular matrix VA called the generalized

eigenvectors matrix, such that A = VA J V
−1
A . The matrix J is called the Jordan form

matrix, which is unique up to the permutation of the Jordan blocks on the diagonal. Now
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consider a complex analytic function g. For j = 1, . . . ,m, let kj = dim(Eλj) and

G(λj) = G(λj; dim(Eλj)) =



g(λ) g(1)(λ) · · · · · · g(kj−1)(λ)
(kj−1)!

g(λ) g(1)(λ) · · · ...

. . . . . .
...

g(λ) g(1)(λ)

g(λ)


︸ ︷︷ ︸

kj=dim(Eλj )

. (2.47)

Then g(A) can be computed explicitly as

g(A) = VA
(
⊕mj=1G(λj)

)
V −1
A . (2.48)
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Chapter 3

A reconciliation of the top-down and

bottom-up approaches to risk capital

allocations: Proportional allocations

revisited

3.1 Introduction

Let the random variable (rv) X ≥ 0 and the set X 3 X denote an insurance risk and

the collection of such risks, respectively. Also, for n ∈ N, let the risk Xi, i = 1, . . . , n

be associated with the i-th business unit (BU) of a financial entity, and let S =
∑n

i=1 Xi

stand for the aggregate risk in this entity. Then risk measure, H, is a map that assigns

a (monetary) value in [0, ∞) ∪ {+∞} to any risk in the set X . We refer to [7, 50, 116]

and references therein for axiomatic treatments of risk measures, and to [20, 62, 86] and

references therein for some recent developments in risk aggregation.

After the aggregate risk capital, H(S), has been determined, the question arises as to a

meaningful way in which it can be allocated to BUs X1, . . . , Xn. This problem is significantly

more involved than the one of computing H(S), but an acceptable solution is of great

importance as it would shed light on, e.g., profitability testing, cost sharing, pricing, among
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other aspects of practical interest. Speaking formally, allocation rule, A, assigns a (monetary)

value in [0, ∞) ∪ {+∞} to the pairs in the Cartesian product of the set X with itself, such

that A(X, X) = H(X) for all X ∈ X [e.g., 16, 33, 54, for theory and applications].

The definition of the allocation rule A clearly implies that there are numerous ways to

allocate the aggregate risk due to the rv S having cumulative distribution function (cdf)

FS(s), s ≥ 0 and inverse cdf F−1
S (p) = inf{s ≥ 0 : FS(s) ≥ p}, p ∈ [0, 1). Some are very

simple, such as the hair-cut allocation, Ap,

Ap(Xi, S) = H(S)
F−1
Xi

(p)∑n
i=1 F

−1
Xi

(p)
, i = 1, . . . , n, (3.1)

where F−1
Xi

(p), p ∈ [0, 1) are inverse cdf’s of the rv’s Xi, i = 1, . . . , n. Others are more

sophisticated, e.g., the allocations that hinge on, respectively, the distorted and weighted

probabilities

Ag(Xi, S) = E [Xig
′(FS(S))] , i = 1, . . . , n, (3.2)

where g : [0, 1]→ [0, 1) is a continuously differentiable distortion function [111], and

Aw(Xi, S) =
E[Xiw(S)]

E[w(S)]
, i = 1, . . . , n, (3.3)

where w : [0, ∞)→ [0, ∞) is a non-decreasing weight function [36, 54]; we assume that all

the quantities above are well-defined and finite. Yet others are even more intricate, such as

the recently proposed allocation method based on finding the unique center of a non-empty

convex weakly compact subset of a Banach space [60].

Despite the really overwhelming variety of ways to allocate the aggregate risk, and capital,

there are two overarching categorise that stand out. These are the top-down and the bottom-

up routes, which imply, respectively, that the allocation exercise is imposed by the corporate

centre and informed by the BUs [e.g., 61, for a discussion on the top-down versus bottom-up

approaches in the integrated risk management]. More specifically, hair-cur allocation (3.1)

is an example of the top-down approach to allocate the aggregate risk due to the rv S. It

is fairly simple to compute and transparent to convey to the upper management, and, as a

result, it is very popular in applications. That said, the hair-cut allocation disregards the
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inter-dependencies among the BUs X1, . . . , Xn. As such, it fails to reflect upon the fact

that these BUs are constituents of a larger structure, treating them as stand-alone objects

instead.

On the other hand, weighted allocation (3.3) is an example of the bottom-up approach to

allocate the aggregate risk due to the rv S. It is considerably more granular in that it starts

with the joint multivariate cdf of the BUs X1, . . . , Xn, and so accounts for both the inter-

dependencies of these BUs and the joint behaviour of the pair (Xi, S) ∈ X ×X , i = 1, . . . , n.

The allocation rule Aw is consistent, satisfies no undercut and consistent no undercut prop-

erties [54], and it is optimal in the sense of [36]. That said, unless very special distributional

structures are considered [56], the weighted allocations are rather difficult to compute even for

special choices of the weight function, w, let alone in general. To illustrate the computational

complexity, we refer to [35] for elliptically distributed BUs; [23] for phase-type distributed

BUs; [49] for Tweedie distributed BUs; [114, 115] for skew-normal and Pareto distributed

BUs; [26] and [27] for BUs with the dependence structures described by the Farlie-Gumbel-

Morgenstern copula and the Archimedean copula, respectively. All these works compute the

weighted allocation Aw for the weight function w(s) = 1{s > F−1
S (p)}, p ∈ [0, 1), where

1{·} denotes the indicator function, and even in this very particular case the aforementioned

list of references is not complete.

In summary, the top-down approach (e.g., (3.1)) is intuitive yet often oversimplified, and

the bottom-up approach (e.g., (3.3)) is meticulous yet ‘hits against too many parameters’.

In practice, the two approaches are conducted separately and are sought to complement each

other. The question that arises then is whether it is possible to unify the top-down and the

bottom-up ways to allocate the aggregate risk so that the end-result is intuitive, detailed

and would not add computational complexity beyond the one associated with computing the

aggregate risk capital H(S). Putting forward such an encompassing approach to allocate

risk capital is what we pursue in the present paper.
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3.2 Outline of the paper and some preliminaries

Assume that the risk measure H is positively homogeneous, that is, for all λ > 0 and

X ∈ X , we have H(λX) = λH(X). Then all of the allocation rules mentioned hitherto

can be written as the proportional allocation Aprop(Xi, S) = H (Sri) , i = 1, . . . , n, where

ri ∈ [0, 1] is the ratio of: Hp(Xi) = F−1
Xi

(p) and
∑n

i=1 Hp(Xi) - in the context of the

hair-cut allocation; Ag(Xi, S) = E [Xg′(FS(S))] and
∑n

i=1Ag(Xi, S) - in the context of the

distorted allocation; Aw(Xi, S) = E [Xw(S)] /E [w(S)] and
∑n

i=1Aw(Xi, S) in the context of

the weighted allocation. Once again we assume that all of the quantities mentioned above

are well-defined and finite.

The thrust of the method that we propose in the present paper is that we substitute

the deterministic ri with a ratio rv Ri ≥ 0, i = 1, . . . , n, for which
∑n

i=1Ri = 1 almost

surely. Then the joint cdf of the rv’s R1, . . . , Rn models the joint contributions of the BUs

in the financial entity of interest, and so symbolizes the bottom-up approach in the risk

capital allocation exercise. If the rv Xi, i = 1, . . . , n denotes the risk due to the i-th BU and

S =
∑n

i=1Xi denotes the aggregate risk, then Ri = Xi/S. Further let the rv Z ≥ 0 denote

the overall aggregate risk that is envisioned by the upper management; the distribution of the

rv Z depends on, e.g., the corporate strategic goals, business mix, risk factors matrix, among

other factors, and so the rv’s Z and S are not necessarily equal in distribution. Given the

above, the contribution of the i-th BU is modelled by the product rv ZRi, i = 1, . . . , n, where∑n
i=1 ZRi = Z by construction. Consequently, the allocation rule of interest is A(ZRi, Z)

rather than H(Sri), i = 1, . . . , n as in (3.1)-(3.3).

The idea that we have just sketched can be reformulated with the help of the lan-

guage of compositions (e.g., Aitchison, 1982, for details; also see Belles-Sampera et al., 2016;

Boonen et al., 2019 for recent applications of compositional methods in risk management).

That is, let Sn denote the n-dimensional simplex, and let C = (C1, . . . , Cn) ∈ Sn and

X = (X1, . . . , Xn) ∈ X n denote its elements and basis, respectively. Then we call C : X n → Sn

a compositional map, if
∑n

i=1Ci = 1 holds almost surely. Within this context and under

the special choice of the compositional map, C, such that Ci(X) = Xi/
∑n

i=1Xi, we have

that H (S × Ci(A(X1, S), . . . , A(Xn, S))) recovers allocation rules (3.1)-(3.3) for appropriate
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choices of the allocation rule A, whereas the approach proposed in the present paper sug-

gests the allocation rule A(Z × Ci(X), Z) instead. That is the deterministic composition of

allocations, Ci(A(X1, S), . . . , A(Xn, S)) is substituted herein with the random composition

Ci(X1, . . . , Xn), i = 1, . . . , n.

Quite remarkably, when the random pair (ZRi, Z), and not (Xi, S), is taken as the input

for, e.g., the distorted or weighted allocation rule, the computational complexity of the risk

capital allocation exercise reduces considerably. For instance, for the latter allocation rule,

we readily have

A (ZRi, Z) =
E [ZCi(X)w(Z)]

E [w(Z)]
=

E [Ci(X)E [Zw(Z)| X]]

E [w(Z)]
, i = 1, . . . , n

for any choice of the weight function w. If the rv’s Xi, i = 1, . . . , n are independent on the

rv Z, which may become an acceptable assumption in view of what the genesis of these rv’s

is, and considering the already-mentioned compositional map Ci(X) = Xi/S, then

Aw(ZRi, Z) = E[Ri]×Hw(Z), i = 1, . . . , n,

and so in this case the computational complexities involved in the aggregate and allocated

risk determination are the same. Obviously, depending on what the goals of the allocation

exercise are, compositions having elements, Ci, other than Ri = Xi/S may be of interest in

applications. One example, for sp denoting the inverse cdf F−1
S (p), is the composition such

that Ci = Ri1{S > sp}/P(S > sp), p ∈ [0, 1) and P(S > sp) 6= 0, which emphasizes the

extreme scenarios in the sample space of the aggregate risk rv S. In this case, and assuming

again the independence of the rv’s X1, . . . , Xn on Z, we obtain

Aw(ZRi, Z) = E[Ri| S > sp]×Hw(Z), i = 1, . . . , n,

which is not difficult to compute as is shown in Section 3.5.

The rest of the paper capitalizes on the just-outlined ideas. Specifically in Section 3.3, we

discuss a multivariate probabilistic structure that is a natural choice to serve as the distri-

bution of the basis rv X = (X1, . . . , Xn) ∈ X n. Then in Section 3.4, we construct a flexible
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yet tractable variant of the well-known Dirichlet distribution on the n-dimensional simplex,

and we study some properties of the vector of random proportions R = (R1, . . . , Rn) ∈ Sn,

which is obtained with the help of a compositional map C : X n → Sn. Finally in Section

3.5, we sketch an expectation maximization (EM) algorithm to estimate the parameters of

the just-mentioned Dirichlet distribution and illustrate its applications in the context of the

risk capital allocation exercise.

3.2.1 Preliminaries

We work with an atomless probability space (Ω,A,P), which in our context means that there

exists at least one rv with a continuous distribution in this space. Let Lr denote the set

of all rv’s on (Ω,A,P) with finite r ∈ [0, ∞)-th moment, and let L∞ denote the set of all

essentially bounded rv’s. Unless stated otherwise, we assume that rv’s are in L1. Throughout

the paper, for every X ∈ L0, we denote by FX the cdf of the rv X. For X n denoting the

n-fold Cartesian product of X with itself, we call the rv X = (X1, . . . , Xn) ∈ X n, basis.

Besides the convex cone X , which is a subset of L0, in this paper we deal with the open

n-dimensional simplex space

Vn = {(r1, . . . , rn) : ri ≥ 0, i = 1, . . . , n, and r1 + · · ·+ rn < 1}

and the already-mentioned boundary

Sn = {(r1, . . . , rn) : ri ≥ 0, i = 1, . . . , n, and r1 + · · ·+ rn = 1} .

Our main constructions are then random compositions R = (R1, . . . , Rn) that are special

maps C : X n → Sn, such that Ci(X1, . . . , Xn) = Xi/
∑n

i=1 Xi, i = 1, . . . , n. Finally, N0

and R0,+ denote respectively the zero-augmented sets of natural, N∪ {0}, and positive real,

R+∪{0}, numbers; the sets Nn
0 and Rn

0,+ denote the corresponding multivariate counterparts.
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3.3 Constructing random compositions via a class of

mixed-gamma distributions

We recall at the outset that as Ri = Xi/S, i = 1, . . . , n, the compendium of the distributions

on the simplex, and in particular the most popular member therein, the Dirichlet distribu-

tions, seem natural to evoke [e.g., 92, and references therein]. To start off, recall that the

rv Γi is said to be distributed gamma with the shape and scale parameters γi ∈ R+ and

βi ∈ R+, respectively, if it has the following probability density function (pdf)

fΓi(x) =
1

Γ(γ)
e−x/βixγi−1β−γii for all x ∈ R+, i = 1, . . . , n. (3.4)

Succinctly, we write Γi ∼ Ga(γi, βi), i = 1, . . . , n. Then assume that the rv’s Γ1, . . . ,Γn are

mutually independent, denote by Γ+ =
∑n

i=1 Γi their sum, and set βi ≡ β ∈ R+. The joint

distribution of the rv R = (R1, . . . , Rn), Ri = Γi/Γ+, i = 1, . . . , n is Dirichlet. That is the

joint pdf of the rv R is

fR(r1, . . . , rn) =
1

B(γ1, . . . , γn)

n∏
i=1

rγi−1
i , (r1, . . . , rn) ∈ Sn, (3.5)

where B(γ1, . . . , γn) is the multivariate Beta function

B(γ1, . . . , γn) =
Γ(γ1)× · · · × Γ(γn)

Γ(γ1 + · · ·+ γn)
. (3.6)

The Dirichlet distribution is convenient to work with, but unfortunately it barely suits our

needs for many reasons. E.g., the assumption that the risks due to all the BUs of a financial

entity are distributed gamma is very questionable, and so is doubtful the conclusion that the

rv’s Ri = Xi/S, i = 1, . . . , n and S are independent [e.g., 92, for a discussion]. Therefore, in

the rest of this section we seek a suitable class of distributions to model the risks due to the

BUsX1, . . . , Xn and so to serve as a basis for the desired compositional map. In particular, we

are interested in those classes of distributions that: (1) are flexible to the extent that they can

model well any cdf with non-negative support; (2) allow for a dependence among X1, . . . , Xn;

(3) contain the gamma distribution as a special case; (4) inhere the tractability of the gamma
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distributions; (5) relax the assumption of independence of the rv’s Ri, i = 1, . . . , n and S, as

well as some other rather restrictive notions of independence on the simplex that characterize

the class of Dirichlet distributions [e.g. 2].

3.3.1 A multivariate mixed-gamma distribution

The class of univariate mixed-Erlang distributions [e.g. 110, 118] is an immediate candidate to

model the distribution of the risk Xi ∈ X , i = 1, . . . , n. Indeed, mixed-Erlang distributions

are dense in the space of the cdf’s with non-negative support, fairly tractable, and ensue

straightforward multivariate extensions [e.g., 74, 75]. That said, when chosen as a basis

for a compositional map, mixed-Erlang distributions cannot incorporate pdf (3.5), hence

adjustments have to be made. This is achieved in the following definition.

Definition 8. Let κ ∈ N0 denote a discrete rv with the probability mass function (PMF)

pκ(k), k ∈ N0. Also, let γκ = γ + κ and γk = γ + k. Then we say that the rv Γ(κ) is

distributed mixed-gamma (MG), succinctly Γ(κ) ∼MG(γ, β, pκ), if its pdf is given by

fΓ(κ)(x) =
∞∑
k=0

pκ(k)
1

Γ(γk)
e−x/βxγk−1β−γk for all x ∈ R+. (3.7)

Note 1. Recall that the size-biased of order k ∈ N0 variant rv of a non-negative rv, X ∈ Lk,

is defined via

P
(
X(k) ∈ dx

)
=

xk

E [Xk]
P (X ∈ dx) , x ∈ R+,

[e.g., 93, for a thorough discussion of the notion of size-biasing]. In view of this, the class

of mixed-gamma distributions can be considered a size-biased mixture, and so the notation

Γ(κ), where κ is the random order of the size-bias operation, is natural.

Definition 8 leads to a variety of attractive properties for the MG class of distributions.

We start with the Laplace transform of pdf (3.7). To this end, let P (z) = E [zκ] , |z| ≤ 1 de-

note the probability generating function (PGF) of the rv κ and recall that, for Γ ∼ Ga(γ, β),

the Laplace transform is

f̂Γ(t) =

(
1 +

t

β

)−γ
, t ∈ R0,+.
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Then we have the following assertion.

Theorem 1. The Laplace transform that corresponds to the rv Γ(κ) ∼MG(γ, β, pκ) is given

by

f̂Γ(κ)(t) = f̂Γ(t)P

(
1

1 + βt

)
, t ∈ R0,+.

Therefore, we have Γ(κ) d
= Γ + Sκ, where Sκ =

∑κ
k=1Ek, S0 = 0, and Ek, k ∈ N, denotes a

sequence of independent and identical rv’s distributed exponentially with the scale parameter

β ∈ R+; here “
d
= ” means equality in distribution.

Proof. By definition of the Laplace transform and interchanging the order of the summation

and integration, we readily have

f̂Γ(κ)(t) =
∞∑
k=0

pκ(k)(1 + βt)−(γ+k) = (1 + βt)−γ
∞∑
k=0

pκ(k)(1 + βt)−k, t ∈ R0,+.

Also, we have

E [exp(−t(Γ + Sκ))] = f̂Γ(t)E
[(

1

1 + βt

)κ]
= f̂Γ(t)P

(
1

1 + βt

)
, t ∈ R0,+,

which establishes the equality in distribution. This completes the proof of the theorem. ut

The class of MG distributions is closed under rescaling. This is clearly so as is seen from

f̂λΓ(κ)(t) = E
[
exp

(
−tλΓ(κ)

)]
= (1 + tλβ)−γ

(
1

1 + tλβ

)
, t ∈ R0,+.

We next use the Laplace transform of the rv Γ(κ) to show that the class of MG distri-

butions is a good modelling tool. The proof of the succeeding assertion is borrowed heavily

from [74].

Theorem 2. The class of MG distributions is dense in the class of all continuous distribu-

tions with positive support.

Proof. Fix an arbitrary positive continuous distribution with pdf f , cdf F and Laplace
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transform f̂ . Consider the sequence of Laplace transforms
{
f̂n

}
n∈N0

, such that

f̂n(t) =

(
1 +

t

n

)−γ ∫ ∞
0

(
1 +

t

n

)−xn
f(x)dx, (3.8)

for β = 1/n. Then, on the one hand side, f̂n(t) is the Laplace transform of an MG pdf, that

is, for pκ(k) = F ((k + 1)β)− F (kβ), k ∈ N0, Equation (3.8) is equivalent to

∞∑
k=0

(∫ (k+1)β

kβ

f(x)dx

)
(1 + βt)−(γ+k) = (1 + βt)−γ

∞∑
k=0

pκ(k) (1 + βt)−k = f̂Γ(κ)(t), t ∈ R0,+.

On the other hand side, by the Dominated Convergence Theorem, we obtain

lim
n→∞

f̂n(t) =

∫ ∞
0

f(x)e−xtdx = f̂(t)

for all t ∈ R0,+. The assertion is thus proved by evoking Lévy’s continuity theorem. ut

As the risks X1, . . . , Xn in the basis X must not be mutually independent, it is critically

important for us to consider a multivariate extension of the MG distributions in Definition

8. The extension that we put forward next is inspired by the multivariate mixed-Erlang

distributions studied in [75, 113, 119]. Namely, the multivariate mixed-gamma distributions

presented in Definition 9 below, generalize the just-mentioned mixed-Erlang distributions

by allowing for arbitrary non-negative shape parameters as well as for heterogeneous scale

parameters of the margins.

Let κ = (κ1, . . . , κn) be a vector of discrete rv’s, κi ∈ N0, i = 1, . . . , n, and denote

by pκ(k) = P (κ1 = k1, . . . , κn = kn), where k = (k1, . . . , kn) ∈ Nn
0 the corresponding joint

PMF.

Definition 9. The rv Γ(κ) = (Γ
(κ1)
1 , . . . ,Γ

(κn)
n ) is said to be distributed n-variate mixed-

gamma (MGn) if the corresponding joint pdf is given by

fΓ(κ)(x1, . . . , xn) =
∑
k∈Nn0

pκ(k)
n∏
i=1

1

Γ(γki)
e−xi/βix

γki−1

i β
−γki
i , (x1, . . . , xn) ∈ Rn

+, (3.9)
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where γki = γi+ki and βi, γi ∈ R+, i = 1, . . . , n. Succinctly, we write Γ(κ) ∼MGn(γ,β, pκ),

where the coordinates of the vectors of parameters γ and β are, respectively, γi + ki and

βi, i = 1, . . . , n.

A thorough study of the class of the multivariate MG distributions is beyond the imme-

diate interest in the present paper. Herein we only present a few basic properties that are of

central importance to our subsequent study of the compositional maps that arise from the

basis vectors distributed MGn.

Theorem 3. Consider the rv Γ(κ) ∼MGn(γ,β, pκ), then the following assertions hold:

(i) The joint Laplace transform that corresponds to the rv Γ(κ) is

f̂Γ(κ)(t1, . . . , tn) =
n∏
i=1

(1 + βiti)
−γi Pκ

(
1

1 + β1t1
, . . . ,

1

1 + βntn

)
,

where (t1, . . . , tn) ∈ Rn
0,+ and Pκ denotes the joint PGF of the rv κ = (κ1, . . . , κn).

(ii) The marginal coordinate of Γ(κ), Γ
(κi)
i ∼ MG(γi, βi, pκi), i = 1, . . . , n, admits the

stochastic representation Γ
(κi)
i = Γi +

∑κi
j=1Ei,j where Γi ∼ Ga(γi, βi) and {Ei,j}j∈N ,

denotes a sequence of independent and identical rv’s distributed exponentially with the

scale parameter βi ∈ R+.

(iii) If κ1, . . . , κn are independent, i.e., pκ(k) =
∏n

i=1 pκi(ki), then the rv’s Γ
(κ1)
1 , . . . ,Γ

(κn)
n

are independent.

(iv) Choose 1 ≤ i 6= j ≤ n and consider the pair (Γ
(κi)
i ,Γ

(κj)
j ) ∼ MG2(γ,β, pκ), where

γ = (γi, γj), β = (βi, βj) and κ = (κi, κj). Then, assuming that κi, κj ∈ L2, the

Pearson correlation coefficient is given by

Corr(Γ
(κi)
i ,Γ

(κj)
j ) = Corr(κi, κj)

√
Var(κi)Var(κj)√

(Var(κi) + E[κi] + γi) (Var(κj) + E[κj] + γj)
.

(3.10)

Proof. We prove (i), as the remaining assertions either follow from it or hold by construction.
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We have for (t1, . . . , tn) ∈ Rn
0,+,

f̂Γ(κ)(t1, . . . , tn) =
∞∑

k∈Nn0

pκ(k)
n∏
i=1

(1 + βiti)
−(γi+ki) =

n∏
i=1

(1 + βiti)
−γiE

[
n∏
i=1

(1 + βiti)
−κi

]
.

This establishes the joint Laplace transform and so proves (i). ut

Note 2. Correlation formula (3.10) suggests that the multivariate MG distributions proposed

herein can cover the full range of bivariate dependence, when it is measured by the Pearson

coefficient of correlation. Namely, the sign of the Pearson coefficient of correlation of the

pair (Γ
(κi)
i ,Γ

(κj)
j ) can be both positive and negative, stipulated by the sign of the correlation

Corr(κi, κj), 1 ≤ i 6= j ≤ n. Since the random pair (κi, κj) is allowed to have any depen-

dence structure, including comonotonicity and counter-comonotonicity, Corr(Γ
(κi)
i ,Γ

(κj)
j ) can

attain any value in the interval [−1, 1]. In addition, by choosing random pairs (κi, κj) with

sufficiently large variances, Corr(Γ
(κi)
i ,Γ

(κj)
j ) can be made arbitrarily close to Corr(κi, κj).

Akin to the univariate mixed-gamma distributions, the class of MGn distributions can

model any multivariate distribution with positive support arbitrarily well. The proof of this

assertion is a straightforward generalization of the proof of Theorem 2 and is thus omitted.

Theorem 4. The multivariate MG distributions form a dense class of continuous multivari-

ate distributions with non-negative supports.

It is well-known that finite convolutions of the rv’s distributed gamma with arbitrary

shape and scale parameters are mixed-gamma. The next theorem is reported for complete-

ness of exposition [e.g., 89, for details]. It has been frequently adopted in the actuarial

literature in order to deal with general finite convolutions within the class of gamma distri-

butions [e.g., 47, 65, 107, and referenes therein].

Theorem 5. For i = 1, . . . , n, let Γi ∼ Ga(γi, βi) denote independent rv’s distributed

gamma, and let Γ+ = Γ1 + · · ·+ Γn denote their sum. Then Γ+ ∼ MG(γ∗, β∗, pκ∗∗), where

γ∗ = γ1 + · · ·+ γn, β∗ =
∧n
i=1 βi and κ∗∗ is an integer-valued non-negative rv with the PMF
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given, for k ∈ N0, by pκ∗∗(k) = cδk, where

c =
n∏
i=1

(
β∗

βi

)γi
and δk = k−1

k∑
l=1

n∑
i=1

γi

(
1− β∗

βi

)l
δk−l, for k ∈ N and δ0 = 1. (3.11)

We now generalize Theorem 5 by allowing for (i) summands in the MG class of distri-

butions, and (ii) dependence implied by the class of MGn distributions. At the outset, we

remind briefly that the rv N ∈ N0 is said to be distributed negative binomial, succinctly

N ∼ NB(γ, p), where γ > 0 and p ∈ (0, 1) are parameters, if its PMF is given by

P[N = n] =
Γ(γ + n)

Γ(γ)n!
pγ(1− p)n for all n ∈ N0.

The corresponding PGF is

PN(z) =

(
p

1− (1− p)z

)γ
, |z| < 1/(1− p).

Theorem 6. Consider the rv Γ(κ) = (Γ
(κ1)
1 , . . . ,Γ

(κn)
n ) ∼MGn(γ,β, pκ) and let Γ

(κ∗)
+ =

∑n
i=1 Γ

(κi)
i

denote the sum of its coordinates. Then Γ
(κ∗)
+ is distributed MG with the parameters γ∗ = γ1+· · ·+γn,

β∗ =
∧n
i=1 βi, and pκ∗ such that

pκ∗(m) =
m∑
j=0

∑
k1+...+kn=j

pκ(k)
∑

y1+...+yn=m−j
(y1,...,yn)∈Nn0

n∏
i=1

Γ(γki + yi)

Γ(γki)yi!

(
β∗

βi

)γki (
1− β∗

βi

)yi(3.12)

for all m ∈ N0.

Proof. Let Ni ∼ NB(γi, β
∗/βi), i = 1, . . . , n, then the associated PGF can be expressed as

PNi

(
1

1 + β∗t

)
=

(
1 + βit

1 + β∗t

)−γi
, t ∈ R0,+.

Furthermore, let Pκ(·) denote the joint PGF of rv κ. For t ∈ R0,+, we have, starting
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with Point (i) of Theorem 3,

E

[
exp

(
−t

n∑
i=1

Γ
(κi)
i

)]
=

n∏
i=1

(1 + βit)
−γi Pκ

(
1

1 + β1t1
, . . . ,

1

1 + βntn

)

= (1 + β∗t)−γ
∗ E

[
(1 + β∗t)−

∑n
i=1 κi

n∏
i=1

(
1 + βit

1 + β∗t

)−(γi+κi)
]

= (1 + β∗t)−γ
∗ E

[
(1 + β∗t)−

∑n
i=1 κi

n∏
i=1

PNi(κi)

(
1

1 + β∗t

)]
,

where Ni(κi) ∼ NB(γi + κi, β
∗/βi), i = 1, . . . , n, that is the rv Ni(κi) follows the negative

binomial distribution with a random shape parameter. The expectation in the last line is

the PGF of the rv κ∗
d
=
∑n

i=1(κi +Ni(κi)) evaluated at (1 + β∗t)−1, and so the distribution

of the rv Γ
(κ∗)
+ is a mixed-gamma due to Theorem 1. Also, the PMF of the rv κ∗ follows as

pκ∗(m) =
m∑
j=0

∑
k1+...+kn=j

[
pκ(k) P

(
n∑
i=1

Ni(ki) = m− j

)]
for all m ∈ N0.

This completes the proof of the theorem. ut

A by-product of Theorem 6 is that it demystifies the recursive formula presented in [89]

in the context of finite gamma convolutions (also, Theorem 5 above). This is stated in the

following corollary, which is proved by choosing pκ(0, . . . , 0) = 1 in Theorem 6.

Corollary 8. Within the set-up in Theorem 5, we have κ∗∗
d
=
∑n

i=1Ni, where Ni ∼ NB(γi, β
∗/βi)

are mutually independent rv’s having negative binomial distributions. The PMF of the rv

κ∗∗ admits the following (non-recursive) form

pκ∗∗(k) =
∑

y1+...+yn=k
(y1,...,yn)∈Nn0

n∏
i=1

Γ(γi + yi)

Γ(γi)yi!
(β∗/βi)

γi(1− β∗/βi)yi , k ∈ N0. (3.13)

In the next section, we show how the class of mixed-gamma distributions can be used as

a basis for constructing random compositions R = (R1, . . . , Rn) ∈ Sn.
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3.4 From mixed-gamma to a general distribution on

the simplex

Dirichlet pdf (3.5) is remarkably tractable. E.g., for γ∗ = γ1+· · ·+γn, γ = (γ1, . . . , γn) ∈ Rn
+

and given that R = (R1, . . . , Rn) ∼ Dir(γ), it is easy to find

E[Ri] =
γi
γ∗

and Var(Ri) =
γi(γ

∗ − γi)
γ∗2(γ∗ + 1)

, i = 1, . . . , n,

as well as

Cov(Ri, Rj) = − γiγj
γ∗2(γ∗ + 1)

, 1 ≤ i 6= j ≤ n.

Hence the random pair (Ri, Rj) with the joint Dirichlet distribution must be negatively

correlated, which adds an additional layer of practical inconveniences when it comes to the

applications of the Dirichlet distributions in the context of risk allocations, as well as in

other contexts.

In addition, with a little effort, some more intricate properties of the class of Dirichlet dis-

tributions can be derived. E.g., it is possible to show that the class of Dirichlet distributions is

closed under marginalization of any order, and that the level curves, for γi > 1, i = 1, . . . , n,

are always convex sets. Further [e.g., 3, for details], rather unfortunately, the class of Dirich-

let distributions can be seen as an independence extreme in the world of compositional data,

which is the price that the Dirichlet distributions have to pay for the tractability they inherit

from the class of gamma distributions.

Numerous efforts have been made to generalize the Dirichlet distribution with pdf (3.5)

[e.g., 92, among others]. The task is however not an easy call. Namely, a slight generalization

of the set-up leads to considerable complications. For instance, for Γi ∼ Ga(γi, βi), i = 1, . . . , n,

let {Γi}ni=1 be a sequence of mutually independent rv’s (note that the scale parameters are ar-

bitrary now) and let Γ+ denote the sum of these rv’s, then the rvR = (R1, . . . , Rn), Ri = Γi/Γ+

is distributed scaled Dirichlet [e.g., 92], which is by far less tractable than the one with pdf

(3.5). In particular, even an analytic expression for the covariance is not known for the

scaled Dirichlet distribution.

In this section, we use the class of multivariate MG distributions as the basis to formulate
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a variant of a generalized Dirichlet distribution. Recall that we write Γ(κ) ∼MGn(γ,β, pκ)

when Γ(κ) is distributed multivariate MG with the vectors of parameters

γ = (γ1, . . . , γn) ∈ Rn
+, β = (β1, . . . , βn) ∈ Rn

+

and the associated joint PMF pκ. Also, we denote by Γ
(κ∗)
+ =

∑n
i=1 Γ

(κi)
i the sum of the rv’s

distributed multivariate MG.

Following the language of [3], we call the rv Γ(κ) = (Γ
(κ1)
1 , . . . ,Γ

(κn)
n ) ∈ X n

+, basis. Then

we are interested in mapping collections of rv’s in X n to the n-dimensional simplex Sn (see,

Section 3.2.1 for a definition). In this paper, because of the nature of the capital allocation

exercise and for simplicity, our working choice is the map C : X n
+ → Sn, such that

Ci(Γ
(κ1)
1 , . . . ,Γ(κn)

n ) = Γ
(κi)
i /Γ

(κ∗)
+ = Ri, (3.14)

yet other compositional maps are possible to have, and we indeed consider another compo-

sitional map in the applications part of the paper. Compositions (3.14) are the main object

of our study in this section.

Recall that B(γ), where γ = (γ1, . . . , γn) ∈ Rn
+, denotes the multivariate Beta function.

The following assertion establishes the joint pdf of random compositions (3.14).

Theorem 7. Let Γ(κ) ∼MGn(γ,β, pκ), that is the distribution of the basis vector is multi-

variate mixed-gamma, and let R = (R1, . . . , Rn) be a vector of random compositions (3.14).

Then the joint pdf of the rv R is given by

fR(r1, . . . , rn) =
∑
k∈N0

pκ(k)

B (γk)

n∏
i=1

1

βi

(
ri
βi

)γki−1
(

n∑
i=1

ri
βi

)−∑n
i=1 γki

(3.15)

for all (r1, . . . , rn) ∈ Sn, where γki = γi + ki, i = 1, . . . , n and γk = (γk1 , . . . , γkn).

Proof. We begin with the joint pdf of the basis rv Γ(κ) = (Γκ11 , . . . ,Γ
κn
n ) (Definition 9)

fΓ(κ)(x1, . . . , xn) =
∑
k∈Nn0

pκ(k)
n∏
i=1

e−xi/βix
γki−1

i

β
γki
i Γ(γki)

, (x1, . . . , xn) ∈ (0, ∞)n
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For Γ
(κ∗)
+ =

∑n
i=1 Γ

(κi)
i , consider the change of variablesRi = Γ

(κi)
i /Γ

(κ∗)
+ and so Γ

(κi)
i = Ri Γ

(κ∗)
+ ,

i = 1, . . . , n. Since the corresponding Jacobian is (Γ
(κ∗)
+ )n−1, we have, for (r1, . . . , rn) ∈ Sn

and s ∈ R+,

f
R,Γ

(κ∗)
+

(r1, . . . , rn, s) = fΓ(κ)(r1s, · · · , rns)sn−1 =
∑
k∈Nn0

pκ(k)
n∏
i=1

r
γki−1

i

β
γki
i Γ(γki)

s
∑n
i=1 γki−1e−s

∑n
i=1 ri/βi .(3.16)

The integration

fR(r1, . . . , rn) =

∫ ∞
0

f
R,Γ

(κ∗)
+

(r1, . . . , rn, s)ds

completes the proof of the theorem. ut

Obviously, when, for all i = 1, . . . , n, the rv κi is degenerate in the sense that there exist

k ∈ Nn
0 , such that pκ(k) = 1, then pdf (3.15) reduces to the pdf of the scaled Dirichlet

distribution, heuristically studied in, e.g., [87] and [88]. If an additional assumption that

the scale parameters are chosen such that β1 = · · · = βn is made, then pdf (3.15) coin-

cides with pdf (3.5). Motivated by this observation, we call the new generalized Dirichlet

put forward herein, mixed-scaled Dirichlet. Succinctly, we write R ∼ Dir(γ,β, pκ), where

γ = (γ1, . . . , γn), β = (β1, . . . , βn) are vectors of positive parameters, and pκ is the joint

PMF of the rv κ = (κ1, . . . , κn).

Note 3. It is seemingly worthwhile noticing that since the rv R = (R1, . . . , Rn), admitting

stochastic representation (3.14), must be such that R1 + · · ·+Rn = 1 almost surely, we can

put rn = 1−
∑n−1

i=1 ri in joint pdf (3.15). Then, for the last component of the just-mentioned

equation, we have

(
n∑
i=1

ri
βi

)−∑n
i=1 γki

= β
∑n
i=1 γki

n

[
1 +

n−1∑
i=1

(βn/βi − 1) ri

]−∑n
i=1 γki

,

where (r1, . . . , rn) ∈ Sn. It is consequently easy to notice that in the case of the equal scale
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parameters, β1 = · · · = βn, we have

1 +
n−1∑
i=1

(βn/βi − 1)ri = 1 for all (r1, . . . , rn) ∈ Sn,

and joint pdf (3.15) reduces to that of a mixed Dirichlet distribution.

We now proceed to study the marginalization properties of the class of mixed-scaled

Dirichlet distributions. As it is rather challenging to integrate joint pdf (3.15) directly, we

make use of the associated stochastic representation instead [e.g., 92, for a similar approach

within the study of the classical Dirichlet distributions].

Clearly, as R = (R1, . . . , Rn) ∈ Sn, we have that its lower dimensional margins are in Vn

(see, Section 3.2.1 for details). More formally, for I ⊆ {1, . . . , n}, letRI = {Ri : i ∈ I} ∈ V|I|,

where |I| denotes the cardinality of the set I. When checking the marginalization property

for Sn 3 R ∼ Dir(γ,β, pκ), we aim to explore whether the distribution of the random pair

(RI , R
∗
Ic) ∈ S|I|+1, where Ic denotes the complement of I ⊆ {1, . . . , n} and

R∗Ic =

∑
i∈Ic Γ

(κi)
i∑

i∈I Γ
(κi)
i +

∑
i∈Ic Γ

(κi)
i

.

is also mixed-scaled Dirichlet.

Define γ∗Ic =
∑

i∈Ic γi and β∗Ic =
∧
i∈Ic βi, we are now ready to prove that the class of

mixed-scaled Dirichlet distributions is closed under the marginalization of any order.

Theorem 8. The rv R ∼ Dir(γ,β, pκ) with pdf (3.15) is closed under marginalizations of

arbitrary order. Specifically, we have S|I|+1 3 (RI , R
∗
Ic) ∼ Dir((γI , γ

∗
Ic), (βI , β

∗
Ic), p(κI ,κ

∗
Ic )),

where �I = {�i : i ∈ I}, “�” can be any one of γ,β,κ, and the joint PMF

p(κI ,κ
∗
Ic )(kI ,m) =

m∑
j=0

∑
∑
v∈Ic kv=j

pκ(k)
∑

∑
v∈Ic yv=m−j
yv∈N0

∏
i∈Ic

Γ(γki + yi)

Γ(γki)yi!

(
β∗Ic

βi

)γki (
1− β∗Ic

βi

)yi (3.17)

for (kI ,m) ∈ N|I|+1
0 .
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Proof. We repartition the rv R as follows

Ri =
Γ

(κi)
i∑

i∈I Γ
(κi)
i +

∑
i∈Ic Γ

(κi)
i

, i ∈ I and R∗Ic =

∑
i∈Ic Γ

(κi)
i∑

i∈I Γ
(κi)
i +

∑
i∈Ic Γ

(κi)
i

.

Theorem 6 implies ∑
i∈Ic

Γ
(κi)
i ∼MG(γ∗Ic , β

∗
Ic , pκ∗Ic ),

and

κ∗Ic =
∑
i∈Ic

(κi +Ni(κi)), (3.18)

where the rv’s Ni(κi) ∼ NB(γκi , β
∗
Ic/βi), i ∈ Ic are conditionally independent given the rv

κ.

Therefore we conclude that

S|I|+1 3 (RI , R
∗
Ic) ∼ Dir((γI , γ

∗
Ic), (βI , β

∗
Ic), p(κI ,κ

∗
Ic )),

where the joint PMF of rv (κI , κ
∗
Ic) can be computed via expression (3.12) in Theorem 6.

This completes the proof of the theorem. ut

An immediate consequence of the just-proved closure under marginalization of any or-

der is that in the context of the mixed-scaled Dirichlet class of distributions, that is for

R = (R1, . . . , Rn) ∼ Dir(γ,β, pκ), the joint k-dimensional pdf’s, k < n, can be derived with

the help of Theorems 7 and 8. For an illustration, we next report the univariate and bivariate

pdf’s. Marginal pdf’s of higher dimensions can be computed analogously. For notational

convenience, we let N = {1, . . . , n} and N(I) = N \ I for I ⊆ N .

Set I = {i}, then the univariate pdf of the rv Ri, i = 1, . . . , n is

fRi(r) =
∑

ki,k∗∈N0

p(κi,κ∗N(i)
)(ki, k

∗)
(
β∗N(i)

/βi

)γki
B(γki , γk∗)

rγki−1(1−r)γk∗−1

[
1 +

(
β∗N(i)

βi
− 1

)
r

]−(γki+γk∗ )

,
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where r ∈ [0, 1], γki = γi + ki, γk∗ = γ∗N(i)
+ k∗ and the joint PMF p(κi,κ∗N(i)

) follows from

Equation (3.17).

To find the bivariate pdf of the random pair (Ri, Rj), i 6= j ∈ {1, . . . , n}, we set

I = {i, j}, and obtain

fRi,Rj(ri, rj) =
∑

ki,kj ,k∗∈N0

p(κi,κj ,κ∗N(i,j)
)(ki, kj, k

∗)

B(γki , γkj , γk∗)

(
β∗N(i,j)

βi

)γki
(
β∗N(i,j)

βj

)γkj

r
γki−1

i r
γkj−1

j (1− ri − rj)γk∗−1

[
1 +

(
β∗N(i,j)

βi
− 1

)
ri +

(
β∗N(i,j)

βj
− 1

)
rj

]−(γki+γkj+γk∗ )

,

where (ri, rj) ∈ V2, γki = γi + ki, γkj = γj + kj, γk∗ = γ∗N(i,j)
+ k∗ and the joint PMF

p(κi,κj ,κ∗N(i)
) can be again formulated with the help of Equation (3.17).

Note 4. rv X ∈ L∞ is said to be distributed generalized three-parameter beta if the asso-

ciated pdf is given by [77]

fX(x) =
λa

B(a, b)

xa−1(1− x)b−1

(1 + (λ− 1)x)a+b
, x ∈ [0, 1], (3.19)

where a, b, λ > 0 are parameters. Succinctly, we write X ∼ GB(a, b, λ). Some distributional

properties of the class of GB distributions are discussed in [63]. It is not difficult to see that

the univariate marginal distributions of the mixed-scaled Dirichlet distributions are GB with

random shape parameters. Namely, we have Ri ∼ GB(γi + κi, γ
∗
N(i)

+ κ∗N(i)
, β∗N(i)

/βi) where

κ∗N(i)
is distributed as per (3.18).

Next we proceed to study the moment formulas for the mixed-scaled Dirichlet class of

distributions. In this respect, the hypergeometric function plays an important role, and it is

defined as [58]

q+1Fq(a1, . . . , aq+1; b1, . . . , bq; z) =
∞∑
k=0

(a1)k, . . . , (aq+1)k
(b1)k, . . . , (bq)k

zk

k!
, |z| < 1, (3.20)

where (x)n = Γ(x + n)/Γ(x) denotes the Pochhammer symbol. We also need the Appell’s
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F1 function, which is given by

F1(a; b1, b2; c;x, y) =
∞∑
m=0

∞∑
n=0

(a)m+n(b1)m(b2)n
(c)m+n

xm

m!

yn

n!
, |x|, |y| < 1.

It is noteworthy that the arguments domains of the aforementioned special functions can

be extended by analytic continuation. Also, there is a rich body of literature devoted to

the study of both q+1Fq and F1, and the corresponding computational methods have been

implemented in a variety of software packages.

Theorem 9. Let R = (R1, . . . , Rn) ∼ Dir(γ,β, pκ) be a rv distributed mixed-scaled Dirich-

let. Then the r(∈ R+)-th order moment of the rv Ri, i = 1, . . . , n is given by

E[Rr
i ] =

∑
ki,k∗∈N0

p(κi,κ∗N(i)
)(ki, k

∗)

(
β∗N(i)

βi

)γki
Γ(γki + γk∗)Γ(γki + r)

Γ(γki + γk∗ + r)Γ(γki)

2F1

(
γki + r, γki + γk∗ ; γki + γk∗ + r; 1−

β∗N(i)

βi

)
,

where γki = γi + ki, γk∗ = γ∗N(i)
+ k∗ and the joint PMF p(κi,κ∗N(i)

) is defined according to

Equation (3.17).

Furthermore, for ri, rj ∈ R+, the joint higher order moments of Ri and Rj, i 6= j ∈ {1, . . . , n},

are given by

E[Rri
i R

rj
j ] =

∑
ki,kj ,k∗∈N0

p(κi,κj ,κ∗N(i,j)
)(ki, kj, k

∗)

(
β∗N(i,j)

βi

)γki
(
β∗N(i,j)

βj

)γkj

Γ(γki + ri)

Γ(γki)

Γ(γkj + rj)

Γ(γkj)

Γ(γki + γkj + γk∗)

Γ(γki + γkj + γk∗ + ri + rj)
h(ki, kj, k

∗),

where

h(ki, kj, k
∗) = F1

(
γki + γkj + γk∗ ; γki + ri, γkj + rj; γki + γkj + γk∗ + ri + rj; 1−

β∗N(i,j)

βi
, 1−

β∗N(i,j)

βj

)
,

and γki = γi+ki, γkj = γj +kj, γk∗ = γ∗N(i,j)
+k∗, with p(κi,κj ,κ∗N(i)

) being per Equation (3.17).

Proof. The r-th order moment formula follows from Note 4 and [63], whereas the joint mo-
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ment formula is obtained directly by the integral representation of the Appell’s F1 function

[see, Equation (9.184) in 58]. This completes the proof of the theorem. ut

Note 5. The covariance between any pair of rv’s Ri and Rj within the mixed-scaled Dirichlet

class can be readily computed via the moment formulas in Theorem 9. Interestingly, unlike

for the classical Dirichlet distribution with pdf (3.5), the Pearson coefficient of correlation

in the context of the mixed-scaled Dirichlet class of distributions is not necessarily negative.

For instance, consider a simple example in which the rv’s κ1, κ2 and κ3 are all zero almost

surely, and γi ≡ 1, i = 1, . . . , 3, β1 = β2 = 1/20, β3 = 1. Then an application of the moment

formulas in Theorem 9 yields Corr(R1,R2) = 0.24.

There is no known closed-form expression for computing the moments of the scaled

Dirichlet distribution, that is of the mixed-scaled Dirichlet Dir(γ,β, pκ) when the rv κi,

i = 1, . . . , n is assumed to be degenerate [e.g., 87, 92, for details]. In this respect, Theo-

rem 9 provides analytical and conveniently computable expressions for the desired moment

formulas. Specifically, set κi ≡ 0 in Theorem 9, then, for r ∈ R+ and i = 1, . . . , n,

E[Rr
i ] =

(
β∗N(i)

βi

)γi
Γ(γi + r)

Γ(γi)

∑
k∈N0

pκ∗N(i)
(k)

Γ(γ∗ + k)

Γ(γ∗ + k + r)
2F1

(
γi + r, γ∗ + k; γ∗ + k + r; 1−

β∗N(i)

βi

)
,

where γ∗ =
∑n

i=1 γi, β
∗
N(i)

=
∧
j∈N(i)

βi, and κ∗N(i)

d
=
∑

j∈N(i)
Nj with the rv’s Nj being

mutually independent and Nj ∼ NB(γj, β
∗
N(i)

/βj). The PMF of κ∗N(i)
can be computed

directly via (3.13) or recursively via (3.11).

Similarly, for ri, rj ∈ R+, i 6= j ∈ {1, . . . , n},

E[Rri
i R

rj
j ] =

(
β∗N(i,j)

βi

)γi (β∗N(i,j)

βj

)γj
Γ(γi + ri)

Γ(γi)

Γ(γj + rj)

Γ(γj)

∑
k∈N0

pκ∗N(i,j)
(k)

Γ(γ∗ + k)

Γ(γ∗ + k + ri + rj)
h̃(ri, rj, k),

where

h̃(ri, rj, k) = F1

(
γ∗ + k; γi + ri, γj + rj; γ

∗ + k + ri + rj; 1−
β∗N(i,j)

βi
, 1−

β∗N(i,j)

βj

)
,
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β∗N(i,j)
=
∧
j∈N(i,j)

βi, and κ∗N(i,j)

d
=
∑

j∈N(i,j)
Nj with the rv’s Nj being mutually indepen-

dent and Nj ∼ NB(γj, β
∗
N(i,j)

/βj).

The moment formulas above involve infinite series. For computational purposes, one may

use the first m + 1 terms of the series, where m ∈ N is such that the desired accuracy is

attained. Bounds, Rm(f) =
∑∞

k=0 fk −
∑m

k=0 fk, for the resulting truncation error can be

obtained as

Rm(E[Rr
i ]) < 1−

m∑
k=0

pκ∗N(i)
(k) and Rm(E[Rri

i R
rj
j ]) < 1−

m∑
k=0

pκ∗N(i,j)
(k).

We conclude the discussion in this section with a few more properties of the class of

mixed-scaled Dirichlet distributions. For this, we need two additional definitions.

Definition 10. For I = {i1, . . . , ij} ⊂ N , j < n, the vector

SI =

 Γ
(κi1 )

i1∑
i∈I Γ

(κi)
i

, . . . ,
Γ

(κij )

ij∑
i∈I Γ

(κi)
i


is called a sub-composition. The vector (Γi1 , . . . ,Γij) is called the basis of the sub-composition.

Definition 11. Let {Ik}mk=1 where Ik = {ik,1, . . . , ik,jk} ⊂ N , j,m < n, denote a disjoint

coverage of the set {1, . . . , n}, that is ∪kIk = {1, . . . , n} and Ik ∩ Ih = ∅ for k 6= h.

Each set Ik gives rise to the sub-composition Sk = SIk with the corresponding basis(
Γ

(κik,1 )

ik,1
, . . . ,Γ

(κik,jk
)

ik,jk

)
. Then the vector

RI =

(∑
i∈I1 Γ

(κi)
i∑n

i=1 Γ
(κi)
i

, . . . ,

∑
i∈Im Γ

(κi)
i∑n

i=1 Γ
(κi)
i

)
, I = {I1, . . . , Im},

is called an amalgamation.

Roughly speaking, sub-compositions and amalgamations in the context of the probability

distributions on Sn are akin to marginalizations of arbitrary order and convolutions in the

context of the probability distributions on Rn
0,+. We next prove that the class of mixed-scaled

Dirichlet distributions is closed with respect to both notions.
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Proposition 12. The rv R = (R1, . . . , Rn) with joint pdf (3.15) is closed under sub-

compositions and amalgamations. Specifically, we have, for R ∼ Dir(γ,β, pκ),

(i) S|I| 3 SI ∼ Dir(γI ,βI , pκI), where �I = {�i : i ∈ I} and “�” can be any one of γ, κ

and β;

(ii) Sm 3 RI ∼ Dir(γ∗I ,β
∗
I , pκ∗I ), where �I = {�Ij : j = 1, . . . ,m}, “�” can be any one

of γ∗, β∗ and κ∗, such that

γ∗Ij =
∑
i∈Ij

γi and β∗Ij =
∧
i∈Ij

βi for j = 1, . . . ,m.

Also, the rv κ∗I = (κ∗I1 , . . . , κ
∗
Im) has the coordinates

κ∗Ij
d
=
∑
i∈Ij

(κi +Ni(κi)),

where the rv’s Ni are conditionally independent given the rv κ = (κ1, . . . , κm) and such

that Ni(κi) ∼ NB(γi, β
∗
Ii/βi), i ∈ Ij. For k∗ = (k∗1, . . . , k

∗
m) ∈ Nm

0 , the joint PMF of

the rv κ∗I can be computed via

pκ∗I (k∗) =
∑

jv∈{0,...,k∗v}
1≤v≤m

∑
∑
i∈Iv ki=jv
1≤v≤m

pκ(k)
m∏
v=1

qv(k
∗
v − jv),

where qv(z) = P(
∑

i∈Iv Nv,i(ki) = z) with the rv’s Nv,i being mutually independent and

such that Nv,i(ki) ∼ NB(γi + ki, β
∗
Iv/βi), z ∈ N0, v = 1, . . . ,m, i ∈ Iv; the function qv

can be computed with the help of Equation (3.13).

Proof. Assertion (i) follows immediately from, e.g., stochastic representation (3.14). To

confirm Assertion (ii), recall that we have already shown that sums of mixed-gamma distri-

butions are also mixed-gamma. That is, due to Theorem 6, we have

∑
i∈Ij

Γ
(κi)
i ∼MG(γ∗Ij , β

∗
Ij , pκ∗Ij

), j = 1, . . . ,m,

where κ∗Ij
d
=
∑

i∈Ij(κi +Ni(κi)) with the rv’s Ni being mutually independent and such that
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Ni(κi) ∼ NB(γi + κi, β
∗
Iv/βi) that are conditionally independent given the rv κ. The joint

PMF of κ∗I = (κ∗I1 , . . . , κ
∗
Im) can be computed by conditioning as follows

pκ∗I (k∗) = E
[
E
[
1{κ∗I = k∗}

∣∣κ]] = E

 m∏
j=1

P

∑
i∈Ij

Nj,i(κi) = k∗j −
∑
i∈Ij

κi

 ,
where the rv’s Nj,i are mutually independent and such that Nj,i(ki) ∼ NB(γi + ki, β

∗
Ij/βi)

for i ∈ (1, . . . , n), j ∈ (1, . . . ,m), ki ∈ N0. This yields the closure under amalgamations

property. The proof is completed. ut

3.5 Applications

To summarize the discussion hitherto, we have assumed that n(∈ N) BUs of a financial en-

tity are formally described by a rv X = (X1, . . . , Xn) that has a mixed-gamma distribution,

MGn(γ,β, pκ). With the help of compositional map (3.14) (other maps of practical interest

can also be used), we have obtained the random proportions R = (R1, . . . , Rn) distributed

mixed-scaled Dirichlet, Dir(γ,β, pκ), where γ = (γ1, . . . , γn) and β = (β1, . . . , βn) are vec-

tors of positive parameters, and κ = (κ1, . . . , κn) is a rv. The just-mentioned parameters

of the distribution of the rv R = (R1, . . . , Rn) reflect the BUs’ inputs, and therefore have

represented the bottom-up approach to allocating risk capital. The top-down approach has

been modelled by the rv Z.

We have mentioned that, if the rv Z is assumed independent on the rv’s R1, . . . , Rn,

as well as if compositional map (3.14) is considered, the weighted allocation admits the

following remarkably simple form

Aw(Xi, Z) = E[Ri]×Hw(Z), i = 1, . . . , n, (3.21)

for an arbitrary legitimate weight function w. The simple form of Equation (3.21) carries

over to other compositional maps when the assumption of independence of the rv’s Z and

R1, . . . , Rn is kept in place. For instance, for p ∈ [0, 1), sp = VaRp(S) and S =
∑n

i=1 Xi,
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assume that C : X n → Sn is such that

Ci,p(X1, . . . , Xn) =
1

1− p
Xi

S
1{S > sp}. (3.22)

Obviously, the map Cp is of importance when those random proportions R1, . . . , Rn that

occur under the extreme scenarios that the aggregate risk rv exceeds the Value-at-Risk,

VaRp(S), are of interest. In this more general case, indeed Cp coincides with compositional

map (3.14) for p ↓ 0, we have, for P(S > sp) = 1− p 6= 0,

Aw,p(Xi, Z) = E[Ri| S > sp]×Hw(Z), i = 1, . . . , n, (3.23)

which can be computed using (3.16), that is given that the joint pdf of the rv’s Ri and S is

fRi,S(r, s) =
∑

ki,k∗∈N0

p(κi,κ∗N(i)
)(ki, k

∗)
rγki−1(1− r)γk∗−1

β
γki
i (β∗N(i)

)γkiΓ(γki)Γ(γk∗)
sγki+γk∗−1e

−s[r/βi+(1−r)/β∗N(i)
]
,

where β∗N(i)
= ∧i∈N(i)

βi , γk∗ = γ∗N(i)
+ k∗ , κ∗N(i)

d
=
∑

j∈N(i)
Nj, where Nj ∼ NB(γj, β

∗
N(i)

/βj),

PMF p(κi,κ∗N(i)
) follows from (3.17), and r ∈ [0, 1], s ∈ R+. This line of reasoning yields a

counterpart of the CTE-based risk capital allocation defined for distributions on the simplex.

In a similar fashion, other members of the class of weighted risk capital allocations can be

computed for the random proportions R = (R1, . . . , Rn).

The rest of this section is divided into two subsections. Namely, first, we outline a method

to estimate the parameters of the mixed-scaled Dirichlet distributions put forward in this

paper, and second, we present a few applications to the risk capital allocation problem.

3.5.1 Estimation of parameters

Consider observations x = (x11, . . . , xnd), which represent risks arising from n(∈ N) BUs of a

financial entity. Our goal is to estimate the parameters γ = (γ1, . . . , γn) and β = (β1, . . . , βn)

as well as the PMF of the rv κ = (κ1, . . . , κn) that characterize the mixed-gamma distribu-

tions MGn(γ,β, pκ), and so the mixed-scaled Dirichlet distributions Dir(γ,β, pκ). To this

end, assume that the rv κ has a bounded support, M ⊂ Nn
0 , say. Then the multivariate
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mixed-gamma distributions establish a class of finite mixtures and, e.g., pdf (3.9) can be

written as

fΓ(κ)(x1, . . . , xn) =
∑
k∈M

pκ(k)
n∏
i=1

1

Γ(γki)
e−xi/βix

γki−1

i β
−γki
i , (x1, . . . , xn) ∈ Rn

+.

The Expectation-Maximization (EM) algorithm is a common choice for estimating the

parameters of finite mixtures. It was proposed in [32] [also, 120] for statistical estimation

in the contexts with incomplete data. We refer to, e.g., [70] and [11] for the applications of

the EM algorithm to certain multivariate Exponential and Pareto distributions. For obvious

reasons, we ground the estimation procedure herein in the one developed in [75] [also, 113]

for the class of mixed-Erlang distributions. However, there are some differences. Namely,

besides the natural restriction on the space of shape parameters, the estimation procedures

presented in ibid assume common scale parameters β1 = · · · = βn and so have to be adjusted

to fit the context of the mixed-gamma distributions proposed in this paper. We sketch the

algorithm next.

Recall that we need to estimate the parameters γ = (γ1, . . . , γn), β = (β1, . . . , βn) and

pκ(k), k ∈ M ⊂ Nn
0 . In order to initialize the parameters, including the choice of the set

M ⊂ Nn
0 , we adopt the procedure in [75]. Then we conduct the “expectation” (E) stage.

That is, for s ∈ N0, let Ψ(s) = (p
(s)
κ (k),β(s),γ(s)) denote the vector of parameters that results

from the s-th iteration of the algorithm. The conditional expectation of the complete-data

likelihood can be computed via

Q(Ψ| Ψ(s)) =
d∑
j=1

∑
k∈M

log(p(s)
κ (k))q(k|xj,Ψ(s))

+
d∑
j=1

∑
k∈M

[
n∑
i=1

(
(γi + ki − 1) log(xij)−

xij
βi
− (γi + ki) log(βi)− log(Γ(γi + ki))

)
q(k|xj,Ψ(s))

]
,

(3.24)
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where, for xj = (x1j, . . . , xnj), j = 1, . . . , d,

q(k|xj,Ψ(s)) = p(s)
κ (k)

n∏
i=1

e−xij/β
(s)
i x

γ
(s)
i +ki−1
ij β

−γ(s)i −ki
i

Γ(γ
(s)
i + ki)

/ ∑
k∈M

p(s)
κ (k)

n∏
i=1

e−xij/β
(s)
i x

γ
(s)
i +ki−1
ij β

−γ(s)i −ki
i

Γ(γ
(s)
i + ki)

is the posterior probability function. The aforementioned conditional expectation, Q(Ψ|Ψ(s)),

serves as the input for the “maximization” (M) stage of the estimation procedure. Namely,

in order to find the vector of updated parameters that maximizes (3.24) subject to the con-

straint
∑
k∈M p

(s)
κ (k) = 1, we compute the partial derivatives of Q(Ψ| Ψ(s)) with respect to

p
(s)
κ (k), β and γ. Equating these partial derivatives to zero leads to the following equations,

and thereafter to the parameter vector Ψ(s+1) = (p
(s+1)
κ (k),β(s+1),γ(s+1)), associated with

the (s+ 1) ∈ N iteration of the EM algorithm.

• For p
(s+1)
κ (k), we have

p(s+1)
κ (k) =

1

d

d∑
j=1

q(k|xj,Ψ(s)), k ∈M.

• For β(s+1), we solve

β
(s+1)
i =

∑d
j=1 xij

d
∑
k∈M p

(s+1)
κ (k)(γ

(s+1)
i + ki)

, i = 1, . . . , n.

• For γ(s+1), we arrive at

d∑
j=1

log(xij)−d

[
log

(
d∑
j=1

xij
d

)
− log

(∑
k∈M

α
(s+1)
k (γ

(s+1)
i + ki)

)
+
∑
k∈M

p(s+1)
κ (k) ψ(γ

(s+1)
i + ki)

]
= 0,

where i = 1, . . . , n and ψ(·) denotes the digamma function. The latter system of non-

linear equations can be solved numerically with the help of, e.g., the R package “BB”

[112].

The E and M stages iterate unless the improvement in the partial log-likelihood between two

consecutive stages falls below a pre-specified threshold.
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3.5.2 A numerical example

In this subsection, we offer a numerical example to illustrate the method to allocate risk cap-

ital proposed in this paper. We briefly recall that the gist of our method is the suggestion to

substitute the commonly employed ‘composition of allocations’ Ci(A(X1, S), . . . , A(Xn, S))

with an allocation of the composition Ci(X1, . . . , Xn). where i = 1, . . . , n.

In order to construct the desired illustration, we consider an insurance portfolio which

comprises three BUs. The rv’s representing the risks due to the BUs are distributed Pareto,

Log-normal, and gamma, and, more specifically, we set X1 ∼ Pa(3, 200), X2 ∼ Log-

N(4.1, 1), and X3 ∼ Ga(2, 50). The distributions are chosen such that the means are all

equal, that is E[Xi] = 100, i = 1, 2, 3. Also, these distributions are common choices in

actuarial practice [e.g., 15, for examples]. Furthermore, we assume that the dependencies

among the rv’s X1, X2, and X3 are governed by the Gaussian copula with the correlation

matrix

Σ =



1.00 0.50 0.25

0.50 1.00 −0.50

0.25 −0.50 1.00


,

with the entries being motivated by the matrix used in the Quantitative Impact Study

published by the Basel Committee.

Then we simulate 1000 samples from the aforementioned set-up, and we fit the proposed

multivariate mixed-gamma distribution to the simulated samples, pretending that the true

distributions are unknown. Using the estimation method described in Section 3.5.1, we esti-

mate the parameters of the multivariate mixed-gamma distribution, which are summarized

in Table 3.1. In addition, Figure 3.1 depicts the pair-wise log transformed density contours

and the marginal histograms for the fitted multivariate mixed-gamma distribution, which

visually confirm that this class of distributions fits the simulated data well.

Finally, based on the obtained parameters for the multivariate mixed-gamma distribution,
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i βi γki1 γki2 γki3 γki4 γki5 γki6 γki7 γki8 γki9

1 27.53 0.98 2.98 13.98 1.98 9.98 0.98 3.98 12.98 30.98

2 13.76 4.13 13.13 72.13 28.13 28.13 2.13 6.13 12.13 30.13

3 14.96 3.19 3.19 3.19 1.19 3.19 8.19 7.19 6.19 6.19

pκ 0.2156 0.1396 0.0040 0.0260 0.0238 0.2241 0.2074 0.0377 0.0085

γki10 γki11 γki12

2.98 11.98 35.98

2.13 5.13 6.13

15.19 15.19 14.19

0.0778 0.0277 0.0078

Table 3.1: The parameters of the multivariate mixed-gamma distribution fitted against the
simulated data.

we obtain the mixed-scaled Dirichlet distribution that describes the joint behaviour of the

random proportions, and compute the values of a few risk capital allocation rules, which are

presented in Table 3.2.

Table 3.2 hints at the following observations.

• The substitution of the ‘composition of allocations’ method with the proposed in this

paper ‘allocation of a composition’ method leads to the outcomes of the risk capital

allocation exercise that differ in both order and magnitude; e.g., the case of the alloca-

tion rule #1. The reason, in that particular case, is that the ratio of expected values,

E[Xi]/E[S], disregards the interdependencies among the risks due to the various BUs,

and hence may yield inadequate risk capital requirements.

• In the case of the allocation rule #2, the orders, as stipulated by the two approaches,
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Figure 3.1: Bivariate log transformed density contours and marginal histograms for the fitted
multivariate mixed-gamma distribution.

# Risk capital allocation Business unit 1 Business unit 2 Business unit 3

1 E[Xi]/
∑3

i=1 E[Xi] 0.335 0.335 0.330

E[Ri] 0.262 (−21.8%) 0.335 (0%) 0.403 (22.1%)

2 CTE0.95[Xi, S]/
∑3

i=1 CTE0.95[Xi, S] 0.559 0.317 0.124

CTE0.95[Ri, S] 0.546 (−2.3%) 0.319 (0.6%) 0.135 (8.9%)

Table 3.2: Comparisons of the ‘composition of allocations’ method and the ‘allocation of a
composition’ method for compositional maps (3.14) and (3.22) with the help of the fitted
mixed-scaled Dirichlet distribution; Ri = Xi/S.

are aligned. The cause is arguably that the CTE-based risk capital allocation rule

accounts for the joint dependence of the risks due to the BUs of interest, as well as for

the dependence of each risk on the aggregate risk.
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• While the traditional approaches to the risk capital allocation exercise, e.g., the CTE-

based allocation rule or, more generally, the class of weighted allocation rules gauge

the effect of the interdependencies among risks as well as of the dependence on the

aggregate risk, the method proposed in this paper considers one more consequence of

these dependencies, that is the behaviour of the random proportion Ri = Xi/S. As

a result, e.g., the positive dependence on the aggregate risk may provide a cushion

against allocating excessive risk capital. This observation is reflected in Table 3.2.

Namely, note that the risk due to BU 1 has the highest positive conditional correlation

Corr(X1, S| S > s0.95) = 0.75 among the three risks (Corr(X2, S| S > s0.95) = 0.38 and

Corr(X3, S| S > s0.95) = 0.01), and this yields

CTE0.95(X1, S)

CTE0.95(S)
> CTE0.95(R1, S).

• Stochastic dependence is not the only driver that dictates the orders of the outcomes of

the risk capital allocation exercise within each one of the risk capital allocation rules,

#1 and #2. These orders are also determined by the shapes of the distributions of

the risks due to the three BUs. Namely, in the context of the risk capital allocation

rule #1, the risk distributed gamma draws the largest proportion of the aggregate risk

capital, as this distribution has its mass concentrated around the mean rather than in

the tails. On the other hand, in the case of the allocation rule #2, the order flips, and

the risk distributed Pareto drags the largest portion of the aggregate risk capital, since

Pareto is the most heavy-tailed of the three distributions employed in the example.
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Chapter 4

Computing the Gini index: A note

4.1 Introduction

The Gini index is a popular measure of wealth inequality (also of, e.g., income, education and

opportunity inequalities). Speaking briefly, the Gini index, G in what follows, is a relative

measure of variability that equals twice the distance between the curve of the actual distribu-

tion of wealth (aka the Lorenz curve) and the curve of the total equality. The purpose of this

note is to present an alternative expression and interpretation of the Gini index that hinge

on the notion of the size-biased distribution [95]. Our observation reveals convenient ways

to compute Gini for a great variety of statistical distributions, and, in particular, simplifies

the expressions originally reported in [80] and then reproduced untouched in a number of

sources including [72], [37] and [6]. As such, Sections 2 and 3, 4 of this note are kindred

in spirit to [76] and [80], respectively, since in the former paper an interpretation of Gini in

terms of the covariance is reported, and in the latter paper the generalized hypergeometric

function is employed to derive Gini for a number of statistical distributions.
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4.2 The Gini index through the lens of the size-biased

sampling

Let the realizations of the positive random variable (RV) X > 0 represent wealth in a

population and assume that the mean of the RV X is finite and denoted by m. As the

cumulative distribution function (CDF), F (x) := P(X ≤ x), x ∈ [0,∞), is not observable,

one is forced to work with a random sample RV in lieu of the RV X. Ideally, the just-

mentioned random sample RV, call it Y for the sake of the utopian set-up, has the same

distribution as the RV X. In such situations, and assuming that the RVs X and Y are

independent and have continuous CDFs, we readily have P(Y ≤ X) = 0.5. (From now and

on, the RV Y stands for the independent copy of the RV X.)

Unfortunately, the distribution of the random sample RV that is really observed in appli-

cations is not the same as the distribution of the desired RV X. This is because of, e.g., the

sample size-bias associated with the sampling procedure, which assigns higher probabilities

to those wealth values that are possessed by larger groups of individuals in the population

[95]. Let us denote by Y ∗, the size-biased random sample RV that, as the name suggests,

accounts for the sampling size-bias; let F ∗ denote the CDF of the RV Y ∗. Then we have

F ∗(x) =
1

m
E[X1{X ≤ x}] for all x ≥ 0, (4.1)

where 1 denotes the indicator function.

Clearly, the probability P(Y ∗ ≤ X) is in general not equal to 0.5. Moreover, as the RV

Y ∗ has first-order stochastic dominance over the RV X, and therefore over the RV Y , we

have P(Y ∗ ≤ X)/P(Y ≤ X) =: RX ∈ (0, 1). We next assert that the Gini index is closely

related to RX . To start off, we remind in passing that the classical expression for the Gini

index is

GX =
1

2m
E[|X − Y |].

Proposition 13. Let X be a positive RV with continuous CDF, F , and finite mean, m, and
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let Y denote an independent copy of X. Then

GX = 1−RX , (4.2)

where RX = P(Y ∗ ≤ X)/P(Y ≤ X).

Proof. It suffices to note that, for 1 denoting the indicator function, we have

Cov(X, F (X)) = E[XF (X)]− 0.5m = E[XE[1{Y ≤ X}
∣∣X]]− 0.5m,

and then the desired statement follows by evoking the covariance representation of the Gini

index [76] along with Equation (4.1). This concludes the proof of the proposition. ut

Equation (4.2) provides a probabilistic interpretation of the Gini index. Specifically, it

means that the Gini index quantifies the size-bias concealed in the distribution of the random

sample RV Y ∗, as opposed to the distribution of the actual wealth RV X. The closer the

value of the Gini index is to zero, the more accurate the sampling procedure (with respect

to size-bias) is.

In the remaining sections of this note, we make use of the just-stated connection between

the Gini index and the notion of size-biasing in order to compute G for a great variety of

wealth distributions. One of these distributions is a generalization of the so-called generalized

hypergeometric distribution, on which Professors Mathai and Saxena wrote: “... general

family of statistical probability distributions from which almost all the classical probability

distributions are obtained as special cases” [82].

4.3 Applications to classes of distributions with the

unbounded support

In view of Equation (4.2), in order to compute the Gini index explicitly, we need to determine

the distribution of the size-biased RV Y ∗ as well as the distribution of either one of the RVs
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(Y ∗ −X) or Y ∗/X, where the RVs X, Y, Y ∗ are mutually independent. In the rest of the

note, we show that these distributions can be readily obtained in many interesting cases.

We start with a very simple example in which the distribution of wealth is log-normal.

Example 6. Let the RVX have the log-normal distribution with the parameters µ ∈ (−∞,∞)

and σ > 0; succinctly, X ∼ LN(µ, σ2). The probability density function (PDF) of the RV

X is

f(x) =
1

x
√

2πσ2
exp

(
−1

2

(
ln(x)− µ

σ

)2
)

for x > 0.

Then we have Y ∗ ∼ LN(µ+ σ2, σ2). Therefore

0.5RX = P (log(Y ∗) ≤ log(X)) = 1− Φ
(
σ/
√

2
)
,

where Φ(·) denotes the CDF of the standard normal RV. Hence the expression for the Gini

index is immediate. This concludes Example 6.

In the same elementary fashion, Proposition 13 yields an expression for the Gini index

within the fairly large class of the generalized gamma distributions. Since the Gini index is

scale-invariant, that is GcX = GX for c > 0, in the following examples we work with the unit

scale parameters only.

Example 7. Let the RV X have the generalized gamma distribution, that is its PDF is

f(x) =
a

Γ(p)
exp(−xa)xap−1 for x > 0,

where a, p > 0 are parameters, and Γ(·) denotes the complete gamma function; succinctly,

we write X ∼ GG(a, p). All of the Weibull, gamma, half-normal distributions, among other

distributions, are particular cases in the class of the generalized gamma distributions.

It is well-known that the RVs distributed generalized gamma are closed under power

transforms and size-biasing. More specifically, we readily obtain Xa ∼ Ga(p, 1), that is

the RV Xa is distributed gamma with the shape parameter p > 0 and unit scale, and also

Y ∗ ∼ GG(a, p+ 1/a). Therefore, we immediately have P(Y ∗/X ≤ 1) = P(Z < 1), where the
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RV Z is distributed beta prime and hence

0.5RX = I

(
1

2
; p+

1

a
, p

)
,

where I(·) denotes the regularized incomplete beta function. The expression for the Gini

index follows at a stroke, and it is more concise than the one presented in [80] [also, 72].

This concludes Example 7.

In the next example, we discuss another class of distributions that has positive support

and contains such very popular in the economic theory distributions as the Singh-Maddala

and Dagum distributions as well as the Lomax and log-logistic distributions as special cases.

Proposition 13 readily yields an expression for the Gini index.

Recall at the outset that the (q + 1)× q hypergeometric function is defined as

q+1Fq


a1, . . . , aq+1

b1, . . . , bq

; z

 =
∞∑
k=0

(a1)k · · · (aq+1)k
(b1)k · · · (bq)k

× zk

k!
, (4.3)

where (p)k = Γ(p + k)/Γ(p) for k ∈ {1, 2, . . .}, and (p)0 = 1 denotes the Pochhammer

symbol. Regarding the domain of convergence for the hypergeometric function, we refer the

reader to [58] for details. Also, recall that for two independent RVs Z1(p1, q1) and Z2(p2, q2)

distributed beta, and so all of p1, p2, q1, q2 are positive shape parameters, we have [96]

P
(
Z1(p1, q1)

Z2(p2, q2)
≤ 1

)
=

1

p1Γ(q1)

[∏
i=1,2

Γ(pi + qi)

Γ(pi)

]
Γ(p+)

Γ(p+ + q2)
3F2


p1, 1− q1, p+

p1 + 1, p+ + q2

; 1

 ,

(4.4)

where p+ = p1 + p2.

Example 8. Let the RV X have the generalized beta of the 2nd kind distribution with the
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PDF

f(x) =
a

B(p, q)
xap−1 (1 + xa)−p−q for x > 0,

where a, p, q > 0 are shape parameters, and B(·) denotes the complete beta function; suc-

cinctly we write X ∼ GB2(a, p, q). As in Example 7, we set the scale parameter to one.

It is well-known that, for X ∼ GB2(a, p, q), we have Xa ∼ B2(p, q), that is pow-

ers of the RVs distributed generalized beta of the 2nd kind are distributed the simple

beta of the 2nd kind (or equivalently, beta prime). Also, it is trivial to confirm that

Y ∗ ∼ GB2(a, p + 1/a, q − 1/a). As Zi(p, q), i = 1, 2 denote independent RVs distributed

beta and having the shape parameters p, q > 0, we immediately obtain

0.5RX = P(Y ∗/X ≤ 1) = P
(
Z1(p+ 1/a, q − 1/a)

Z2(p, q)
≤ 1

)
.

By evoking Equation (4.4), we end up with

0.5RX = 1− 1

p

1

B(p, q)

Γ(p+ q)Γ(2p+ 1/a)

Γ(p+ 1/a)Γ(2p+ q)
3F2


p, 1− q, 2p+ 1/a

p+ 1, 2p+ q

; 1

 ,

which is less computationally demanding than the expressions that have been reported in

the literature thus far [e.g., 80]. This concludes Example 8.

Examples 6, 7, and 8 unify and simplify the majority of the existing expressions for the

Gini index. In the following example, we demonstrate how Proposition 13 can be employed

within an even more encompassing class of distributions. To this end, note that if the size-

biased RV Y ∗ having CDF F ∗ (e.g., Equation (4.1)) is considered a size-biased RV of order

one, then a more general size-biased RV of order a > 0, call it Y (a) say, can be defined via

its corresponding CDF, F (a) say, as following

F (a)(x) =
1

κ(a)
E[Xa1{X ≤ x}] for x ≥ 0, (4.5)

where κ(a) = E[Xa] < +∞. We mention in passing that CDF (4.5) introduces the so-called
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log-exponential family of distributions, of which all of the log-normal, generalized gamma

and generalized beta of the 2nd kind distributions discussed thus far are special cases [e.g.

55, for details].

Further, let H(·) denote the Fox-H function [see, 83]. More specifically, for a suitable

contour of integration C, i =
√
−1, (ap, bp) = {(aj, bj)}j=1,...,p and (cq,dq) = {(cj, dj)}j=1,...,q,

the Fox-H function admits the following Mellin-Barnes type integral representation,

Hm,n
p,q


(ap, bp)

(cq,dq)

;x

 =
1

2πi

∫
C

∏m
i=1 Γ(ci + dis)

∏n
i=1 Γ(1− ai − bis)∏q

i=m+1 Γ(1− ci − dis)
∏p

i=n+1 Γ(ai + bis)
x−sds, (4.6)

where 0 ≤ m ≤ q, 0 ≤ n ≤ p, bi > 0, i = 1, . . . , p, di > 0, i = 1, . . . , q and ai, i = 1, . . . , p

and ci, i = 1, . . . , q are real or complex numbers such that the complete gamma functions

Γ(ci + dis), i = 1, . . . ,m and Γ(1− ai − bis), i = 1, . . . , n do not have common poles.

It is not difficult to verify that, for any real or complex σ, the following identity holds

xσHm,n
p,q


(ap, bp)

(cq,dq)

;x

 = Hm,n
p,q


(ap + σbp, bp)

(cq + σdq,dq)

;x

 ,

where (ap + σbp, bp) = {(aj + σbj, bj)}j=1,...,p and (cq + σdq,dq) = {(cj + σdj, dj)}j=1,...,q.

Therefore, the Fox-H function can be used very naturally to establish distributions that

belong to the log-exponential class of distributions defined via (4.5) by setting the PDF of

the RV X therein to be proportional to the Fox-H function.

Recall that the Mellin transform is defined as {M f}(s) =
∫∞

0
xs−1 f(x)dx for functions f

and the values s, complex or real, such that the integral converges [e.g., 83, for more details].

Then the integral representation of the Fox-H function (4.6) can be interpreted as the inverse

Mellin transform. Hence, we readily have that the normalizing constant in Equation (4.5) is
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given by

κ (ap, bp, cq,dq) =

∫ ∞
0

Hm,n
p,q


(ap, bp)

(cq,dq)

;x

 dx =

∏m
i=1 Γ(ci + di)

∏n
i=1 Γ(1− ai − bi)∏q

i=m+1 Γ(1− ci − di)
∏p

i=n+1 Γ(ai + bi)
.

(4.7)

Example 9. Let the RV X have the Fox-H distribution, that is the PDF of the RV X is

given by

f(x) =
1

κ (ap, bp, cq,dq)
×Hm,n

p,q


(ap, bp)

(cq,dq)

;x

 for x > 0, (4.8)

where 0 ≤ m ≤ q, 0 ≤ n ≤ p, bi > 0, i = 1, . . . , p, di > 0, i = 1, . . . , q and ai, i = 1, . . . , p

and ci, i = 1, . . . , q are real or complex numbers such that the Fox-H function is well-defined,

and integral (4.7) converges. The PDF above includes as special cases the majority of the

distributions with the support (0, ∞) known nowadays. In fact, an example of a common

PDF that is not a particular case of (4.8) has eluded us thus far.

In spite of the utmost generality of the Fox-H distributions, the route to compute the

Gini index for PDF (4.8) is not different from the one we pursued in Examples 6, 7, and

8. Indeed, in addition to the already-mentioned closure under size-biasing, note that the

quotients of the independent RVs distributed Fox-H are distributed Fox-H [83]. Hence, we

have

0.5RX =
1

κ (ap + bp, bp, cq + dq,dq)
× 1

κ (ap, bp, cq,dq)
×Hm+n,m+n+1

p+q+1,p+q+1


(0, 1), (a∗p+q, b

∗
p+q)

(c∗p+q,d
∗
p+q), (−1, 1)

; 1

 ,
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where the parameters (a∗p+q, b
∗
p+q) = {(a∗j , b∗j)}j=1,...,p+q are such that

(a∗j , b
∗
j) =



(aj + bj, bj), j ∈ {1, . . . , n}

(1− cj−n − 2dj−n, dj−n), j ∈ {n+ 1, . . . , n+m}

(aj−m + bj−m, bj−m), j ∈ {n+m+ 1, . . . ,m+ p}

(1− cj−p − 2dj−p, dj−p), j ∈ {m+ p+ 1, . . . , p+ q}

,

and the parameters (c∗p+q,d
∗
p+q) = {(c∗j , d∗j)}j=1,...,p+q are such that

(c∗j , d
∗
j) =



(cj + dj, dj), j ∈ {1, . . . ,m}

(1− aj−m − 2bj−m, bj−m), j ∈ {m+ 1, . . . , n+m}

(cj−n + dj−n, dj−n), j ∈ {n+m+ 1, . . . , n+ q}

(1− aj−q − 2bj−q, bj−q), j ∈ {n+ q + 1, . . . , p+ q}

.

4.4 Applications to classes of distributions with bounded

supports

In the previous section, we elucidated the usefulness of Proposition 13 when computing

the Gini index for a multitude of wealth distributions with the support (0, ∞). Below

we consider a few examples in which the wealth distributions have bounded supports, and

Proposition 13 allows for an elementary derivation of G.

The unit-gamma distribution which we are going to discuss next, can be viewed as the

exponential transform of the classical gamma distribution as well as a limiting distribution

89



of the generalized beta distribution of the first kind [80].

Example 10. The RV X is said to be distributed unit-gamma, if its PDF is given by

f(x) =
βα

Γ(α)
xβ−1(− lnx)α−1 for x ∈ (0, 1),

where α, β > 0 are parameters; succinctly, we write X ∼ UG(α, β).

The unit-gamma distributions are closed under size-biasing, and in particular we have

Y ∗ ∼ UG(α, β+1), where the RV Y is an independent copy of the RV X as before. Further,

denote by Z1 and Z2 two independent copies of the RV Z ∼ Ga(α, 1). Then the quotient

Z1/Z2 is distributed beta prime, and we readily obtain

0.5RX = P (− ln(Y ∗) ≥ − ln(X)) = P
(
Z1

Z2

≤ β

1 + β

)
= I

(
β

1 + 2β
;α, α

)
,

where I(·) denotes the regularized incomplete beta function. This concludes Example 10.

A more general class of distributions with bounded supports is the class of the generalized

beta distributions of the first kind [80].

Example 11. Let the RV X have the generalized beta of the first kind distribution, that is

the PDF of the RV X is given by

f(x) =
a

B(p, q)
xap−1 (1− xa)q−1 for x ∈ (0, 1),

where a, p, q > are shape parameters; succinctly, we write X ∼ GB1(a, p, q).

To see that Proposition 13 is again immediately applicable, observe that ifX ∼ GB1(a, p, q),

then Xa ∼ B1(p, q) that is, the latter RV is distributed beta of the first kind. Also, we have

Y ∗ ∼ GB1(a, p + 1/a, q). Finally, let Zi(p, q), i = 1, 2 denote independent RVs distributed

beta with the shape parameters p, q > 0, then we have

0.5RX = P
(
Z1(p+ 1/a, q)

Z2(p, q)
≤ 1

)
= 1−1

p

1

B(p, q)

Γ(p+ q + 1/a)Γ(2p+ 1/a)

Γ(p+ 1/a)Γ(2p+ q + 1/a)
3F2


p, 1− q, 2p+ 1/a

p+ 1, 2p+ q + 1/a

; 1

 ,
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in which the left-most expression follows by evoking Equation (4.4). This concludes Example

11.
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Chapter 5

Conclusions

In Chapter 2, we studied the class of general multiplicative background risk models and

then introduced and investigated its special subclass, the multiplicative background risk

models with idiosyncratic risk factors distributed phase-type and the systemic risk factor

distributed arbitrarily on the non-negative half of the real line. The new constructions are a

generalization of the noble exponential multiplicative background risk models (also known as

exponential mixtures), and as such allow for much more intricate dependencies in the sense

that, e.g., the Pearson coefficients of correlation of the involved risk components must not

be identical for any pair of risk components. Also, when constructed to this purpose, the

new constructions can be considered exponential mixtures loaded for model risk. In spite of

quite remarkable generality, i.e., phase-type distributions can approximate any non-negative

distribution fairly well, the new constructions are surprisingly tractable technically. To reflect

on this fact, we derived explicit expressions for some practical tail-based risk measures and

the risk capital allocation rules based on them. Our message to practitioners is briefly this:

when modelling portfolios of dependent risks, a slight departure from exponential mixtures

may trigger significant changes in the conclusions as to the magnitudes and orders of the

required risk capitals. Hence, within exponential mixtures, mistakes are easy to make, and

the consequences may be very hard to predict.

In Chapter 3, we argued that all risk capital allocation rules nowadays aim at determining

the percentages of the aggregate risk capital that have to be set aside for the business units

of a financial entity. These percentages are risk capital allocations due to the business units,
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normalized in order to ensure the full-additivity of the end-result. We then revealed a way

to replace the aforementioned deterministic percentages with the random proportions that

sum up to one almost surely, thus getting hands directly on the stochastic phenomenon

that underpins the allocation procedure. In order to study the random proportions, we

have introduced, in the reverse order, a new class of multivariate mixed-scaled Dirichlet

distributions that govern the stochastic characteristics of the random proportions, also known

as compositions, as well as a class of multivariate mixed-gamma distributions that serve as a

basis for these compositions. We have studied some relevant (closure) properties of the two

just-mentioned classes of probability models and demonstrated that they provide versatile

yet surprisingly tractable tools for risk analysis, and in particular, for the purpose of the

risk capital allocation exercise. An important by-product of our approach to allocating the

aggregate risk capital is that it allows to unify the bottom-up and the top-down threads in

the allocations’ state-of-the-art into one encompassing method.

In Chapter 4, we revealed a connection between the Gini Mean Difference measure of

variability and the concept of statistical size-biasing to compute this measure of variability

explicitly and often effortlessly for a great variety of probability distributions, starting from

those that are as simple as the log-normal distribution and ending with such encompassing

ones as the Fox-H distribution that seemingly covers all known probability distributions on

the non-negative half of the real line. We hope this will popularize Gini Mean Difference in

actuarial science, where it has been understudied.
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