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Abstract 

Recently triboelectric nanogenerators (TENGs) have attracted huge interest because of their 

flexibility to harvest wasted mechanical energy. However, triboelectrification is a well-known 

phenomenon for centuries, the underlying physics behind it is still under debate, so a 

comprehensive study on triboelectrification is needed. Herein, effects of polyvinylidene fluoride 

(PVDF) friction layer’s thickness, contact area and porosity on TENG’s performance were 

investigated. Results showed that increasing surface area or decreasing thickness of friction layer 

positively affected the performance of TENG. This is mainly attributed to improvement of PVDF 

charge density. Then, for further enhancement of TENG’s performance, electroactive phase 

content of PVDF enhanced using different fabrication methods such as supercritical CO2 

processing, non-isothermal crystallization, electro-poling and electrospinning. The results 

confirmed increasing in PVDF electroactive phase content positively affected triboelectric 

properties. Consequently, by fabrication of chitin-PVDF electrospun film the average of voltage 

and current density increased to 72.8 V and 6.47 mA/m2, respectively. 
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Chapter 1 Introduction 

1.1 Background  

Harvesting wasted mechanical energy and converting it to electricity is one potential solution for 

the recent energy crisis around the world [1]. Although some technologies based on electrostatic, 

electromagnetism, and piezoelectricity had been introduced to generate electricity out of wasted 

mechanical energy, triboelectric nanogenerators (TENGs) was only introduced in 2012 for the first 

time [2-3].  

Triboelectric nanogenerator fundamentally works by conjunction of triboelectrification effect and 

electrostatic induction [4]. As Figure 1.1 shows, based on triboelectric effect when two materials 

with different triboelectric properties touch each other, electrons will transfer from one surface to 

the other. Consequently, one of them becomes positively charged and the other becomes negatively 

charged. While the other side of TENG friction layers is attached to electrodes, the whole system 

is in equilibrium as long as the charged surfaces are in contact. Once the charged surfaces begin 

to separate, a potential difference between plates will appear. As a result of electrostatic induction, 

the potential difference between plates will lead to a flow of electrons in an external circuit between 

two electrodes in order to compensate for the potential difference and to restore equilibrium. By 

removing the gap between plates, the potential difference will vanish and the electrons will flow 

back to their original position again. Periodic contact and separation of charged surface will 

thereby generate AC current in the external circuit [5]. Although triboelectrification is a well-

known phenomenon for many years, the mechanism behind it is still being investigated with 

debates and the effect of different parameters on electrification is not thoroughly clear [3].  
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Figure 1.1 Principle of triboelectric nanogenerator operation [3]. Copyright 2012. Reproduced with 

permission from American Chemical Society. 

 

TENG is a powerful technology to harvest various types of mechanical energy such as rain 

droplets, wind energy, human body motion and etc.  It also can act as a power source in small self-

powered electronic devices [3]. Improvement of TENG’s efficiency needs a comprehensive study 

on the effect of different involved parameters in TENG design.  

1.2 Polyvinylidene Fluoride (PVDF)  

Polyvinylidene fluoride (PVDF) is an inexpensive, non-toxic polymer with pyroelectric, 

piezoelectric, and triboelectric properties [6]. In addition, PVDF is known for its semi-crystalline 

structure. Generally, PVDF has five distinct crystal structures such as α, β, γ, 𝛿 and ɛ. Among them 

The presenceα trans-gauche-trans-gauche (TGTG′), β all-trans planar zigzag (TTT) and γ 

(T3GT3G′) are extensively investigated [7]. The α is the most common non-polar and stable 

polymorph in PVDF structure while β and γ are polar polymorphs. As Figure 1.2 displays, PVDF 

has a strong dipole moment that is perpendicular to its chains because of the presence of fluorine 

atoms with much higher electronegativity comparing to carbon and hydrogen atoms. β polymorph 
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possesses the highest dipole moment and most of the researches around PVDF focused on 

promoting the β phase content of PVDF  [8].  

 

Figure 1.2 The α, β and γ structure of PVDF [9]. Copyright 2014. Reproduced with permission 

from Elsevier. 

  

Special properties of PVDF make it one of the most remarkable polymers to be used as the negative 

side of friction layer beside other options such as polydimethylsiloxane (PDMS), polyethylene 

terephthalate (PET), high density polyethylene (HDPE) and polytetrafluoroethylene (PTFE) [3], 

[10], [11].  

1.3 Research Motivation  

Triboelectric nanogenerator (TENG) is a newly explored technology that can provide enough 

power for small electronic devices. A comprehensive study of different parameters of TENG is 

necessary to enhance its efficiency on energy conversion. TENG electrical outputs can be affected 
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by various parameters such as the surface charge density, chemical composition[12], surface 

area[13], thickness[14], surface structure[15], applied force[13] and etc. Triboelectric’s capacity 

can be modified by changing the geometry of friction layers [16]. Furthermore, fabrication of 

PVDF foam structure can positively increase the surface charge density and TENG electrical 

outputs [13]; however, the most important characterization of PVDF is its tunable crystal structure. 

Researches around PVDF mainly intend to elucidate the piezoelectricity characterization of PVDF 

[9]. Herein, we enhanced PVDF electroactive phase content by an inexpensive and scalable 

method and hypothesized that PVDF with higher electroactive content would enhance its 

piezoelectric and triboelectric properties.  Promotion of PVDF electroactive phase content 

commonly achieved by mechanical stretching of non-polar polymorphs (i.e., α) [8], [17], melting 

and resolidifying under specific conditions [18], addition of nucleating agents [19], ultra-fast 

cooling [20], applying external electrical field [21] or developing PVDF copolymers [22], which 

are usually expensive and time-consuming.  

1.4 Thesis Structure 

The first chapter provides the background and motivation of this thesis research. It mainly 

summarizes TENG history and fundamental as well as PVDF specific characterization as negative 

side of TENG friction layer. The second chapter is a comprehensive literature review and it covers 

the major researches about TENG’s different modes of operation, effective parameters that 

influence TENG’s performance, fabrication of PVDF with high electroactive phase content, and 

its capability to be used in TENG. The third chapter extensively discusses the effect of friction 

layer thickness, contact area and open cell structure of PVDF on TENG performance and the fourth 

chapter reviews the effects of non-isothermal crystallization and supercritical CO2 processing 

following by electro-poling on PVDF electroactive phase content on the energy conversion 
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performance of TENG. Chapter five discusses the use of electrospinning as a potential method to 

fabricate thin PVDF films and ends with the use of chitin (i.e., a bio-based nanoparticle) as filler 

to enhance PVDF electroactive phase content and TENG performance. Finally, chapter six briefly 

concludes the results and contributions of this research and suggests some future direction for this 

research. 
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Chapter 2 Literature Review  

This chapter firstly reviews different working modes of TENG, then subsequently summarizes 

effective parameters that affect TENG performance and different strategies to increase the 

efficiency of TENG. In addition, common methods to promote electroactive phase content of 

PVDF are reviewed and the chapter ends with explaining the main objectives of this research.  

2.1 Triboelectric Nanogenerator Operating Modes 

2.1.1 Contact and Separation Mode 

Most common operating mode for TENG is the contact and separation mode (Figure 1). In contact 

and separation mode, two materials with different triboelectric properties get in contact. Based on 

their different tendency to gain or lose electron, they exchange charge on their surfaces. It should 

be mentioned that the system is in equilibrium as two materials are in contact. A potential 

difference occurs by separating the surfaces and as a result, electrons flow from one electrode to 

the other in an external circuit to restore equilibrium. When two surfaces contact again, the 

potential between them will decrease and electrons will flow back in the reverse direction. Contact 

and separation of these two charged surfaces, periodically, would result in the generation of AC 

current in the external circuit (Figure 1.1) [3], [14], [23]. 

2.1.2 Lateral Sliding Mode 

The configuration of the lateral sliding mode is shown in Figure 2.1. Similar to the contact and 

separation mode, two surfaces will share charge on their surfaces (Figure 2.1 (a)). When one plate 

slides outward, a potential difference appears between charged plates. As a result, free electrons 

from one electrode will flow to the other electrode to reach an equilibrium state and compensate 

for the potential difference (Figure 2.1 (b) and (c)). While the plates slide back to their original 
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positions, the potential difference between plates gradually vanishes and electrons flow back 

(Figure 2.1 (d)). Consequently, by repeadedly sliding the plates inward and outward, AC current 

will be generated in the external circuit [24-25]. 

 

Figure 2.1 Schematic of TENG working in lateral sliding mode [24]. Copyright 2013. Reproduced 

with permission from American Chemical Society. 

 

2.1.3 Single Electrode Mode 

The main drawback of the last two mentioned modes is that not only they both need two electrodes, 

but also they require a mobile system. Single electrode mode suggests a configuration of TENG 

that can convert mechanical energy to electrical energy by using only one electrode [3]. Single 

electrode mode includes one electrode attached to one moving dielectric and it can exchange 

electrons when touches another material (Figure 2.2). Same as contact and separation or lateral 

sliding mode, separation of opposite charges leads to potential difference and derive electrons from 

the reference electrode (Cu) in order to compensate the potential difference (Figure 2.2 (b and c)). 

When charged surfaces get in touch again, the potential difference will be removed and electrons 

will flow back to their original position (Figure 2.2 (d)). Thus, an AC current generates as a result 

of contact and separation of opposite charges [26-27]. It is worth mentioning that single electrode 

mode can work in both forms of contact separation mode or lateral sliding mode [28].  
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Figure 2.2 Working mechanism of TENG in single electrode mode [3]. With copyright permission. 

 

2.1.4 Free-standing TENG Layer Mode 

Free-standing layer is another working mode for TENGs. Figure 2.3 displays the free-standing 

layer mechanism. In this mode, two electrodes get in contact with a moving dielectric surface with 

completely different triboelectric properties. When the dielectric exchanges charges with the first 

electrode, the system is in equilibrium (Figure 2.3 (i)). In contrast, by moving the charged dielectric 

surface toward the other electrode, a potential difference derives electrons from one electrode to 

the other in an external circuit (Figure 2.3 (ii)). TENG system reaches equilibrium again when 

dielectric surface touches the second electrode completely and enough amount of electrons have 

been moved between electrodes (Figure 2.3 (iii)). In the last step, the dielectric plate slides back 

to get in touch with the first electrode again and electrons flow back to their original position 

(Figure 2.3 (iv)) [29-30].   
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Figure 2.3 Principal of free-standing layer schematic [29]. With copyright permission. 

 

2.2 Fundamental Theory of TENGs in Contact and Separation Mode 

In general, contact and separation mode can be sub-divided into two categories: dielectric-

dielectric type (Figure 2.4 (a)) or dielectric-conductor type (Figure 2.4 (b)).  

As Figure 2.4 depicts, in the dielectric-dielectric contact and separation mode, two dielectric 

materials with thickness d1 and d2 and relative dielectric constant 휀𝑟1 and 휀𝑟2 are kept in touch.  

While they exchange electrons, the charge density of dielectric surfaces changes to 𝜎  and −𝜎 . 
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Furthermore, the air gap (distance) between two dielectrics is x(t), where t is time, and the amount 

of transferred charge between the two electrodes is Q.  

 

Figure 2.4 Theoretical models for TENG in contact and separation mode. (a) dielectric-dielectric 

material, (b) dielectric-conductor material and (c) from capacitor point of view [31]. With 

copyright permission. 

 

On the other hand, in the conductor-dielectric type, the top electrode acts both as the positive side 

of the friction layers and the electrode, simultaneously. The amount of charge on top electrode 

comes from triboelectrification is: 

QTE = S𝜎          (Eq. 2.1) 

At the same time, the transferred charge between the two electrodes is -Q. Therefore, the total 

charge on the top electrode is: 

Top electrode total charge = S𝜎-Q       (Eq. 2.2) 

The strength of the electric field from Gauss theorem for the first dielectric is:  

E1= − 
𝑄

𝑆 𝜀0𝜀𝑟1
           (Eq. 2.3) 
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The strength of the electric field for the air gap is: 

Eair=  

−Q

𝑆

𝜀0
 + 

𝜎

𝜀0
           (Eq. 2.4) 

The strength of the electric field for the second dielectric is: 

E2= − 
𝑄

𝑆 𝜀0𝜀𝑟2
           (Eq. 2.5) 

 

The voltage between the electrodes derived from Equation (2.4): 

V= E1d1+ E2d2 + Eairx         (Eq. 2.6) 

By substituting Equations 2.1, 2.2 and 2.3 into Equation 2.4, the V-Q-X relation can be found as 

below: 

V=  − 
Q

Sε0
(

d1

εr1
 +  

d2

εr2
 +  x(t)) +  

σ

ε0
x(t)       (Eq. 2.7) 

For the conductor-dielectric type, the value of d1 is zero. Thus, the voltage would be in the form 

of Equation 2.6: 

V= E1d2 + Eairx          (Eq. 2.8) 

The relation between V-Q-X can be given by [31]: 

V=  − 
Q

Sε0
(

d2

εr1
+  x(t)) +  

σ

ε0
x(t)        (Eq. 2.9) 

The V-Q-X relation can be simplified if we define the effective thickness constant of all dielectrics 

between two conductive electrodes as following: 
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d0= ∑
d𝑖

εri

n
i=1            (Eq. 2.10) 

where di and 휀ri are the thickness and the dielectric constant of ith dielectric between the two 

metallic electrodes, respectively. As a result, we can simplify V-Q-X relation to: 

V=  − 
Q

Sε0
(d0 +  x(t)) +  

σ

ε0
x(t)        (Eq. 2.11)  

Moreover, the intrinsic output characterization such as the open circuit voltage (VOC), the short 

circuit charge (QSC) and the TENG capacity can be given by: 

VOC= 
σ

ε0
x(t)           (Eq. 2.12) 

QSC= 
S.σ

d0+𝑋(𝑡)
x(t)           (Eq. 2.13) 

C=  
ε0S

d0+𝑋(𝑡)
             (Eq. 2.14) 

From different aspects, TENG resembles a capacitor in terms of energy storage [16] and as Figure 

2.4 (c) displays dielectric surfaces play the role of capacitor’s plates. Combining of TENG as 

capacitor and electrostatic induction point of view can be another approach to derive V-Q-X 

relation. 

In electrostatic induction, a node is defined as a surface or volume with the same electric potential. 

Through this definition, the top electrode can be considered as the first node. By assuming that the 

area of friction layers are infinite and the dielectric layers are all uniform, the surface of the 

dielectric can be considered as node 2. In addition, node 3 is the bottom electrode since it has a 

constant electric potential. Every two nodes are connected by electrical lines, which indeed 

correspond to a capacitor. It is worth mentioning that because the dielectric surface is 

hypothetically infinite, node 2 blocks the electrical line connection between nodes 1 and 3. 
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Consequently, from the capacitance point of view, in conductor-dielectric mode, TENG is 

equivalent to a circuit including two flat-panel capacitors of C1 and C2 (Figure 2.4 (c)) [31].  

2.3 Progress in the Development of Triboelectric Materials 

TENG’s simplicity and flexibility to harvest wasted mechanical energy are astonishing, but the 

major drawback of TENG is the generation of high output voltage but low current density [32]. 

Moreover, theoretical models of TENG in former section revealed that charge density is the most 

important parameter on TENG’s performance. 

In general, researches that aim to enhance TENG’s performance focus either on increasing TENG 

charge density or designing a novel configuration to harvest a special type of mechanical energy. 

In the next section, researches related to some parameters that directly affect charge density are 

reviewed. 

2.3.1 Friction Layer Material 

In TENG design criteria, material selection is one of the very first steps. Most of the known 

materials have triboelectric properties naturally. Triboelectric series is a simple table that aims to 

organize triboelectric materials based on their tendency to lose or gain electron. Different 

triboelectric series are presented in different references but none of them are quantified [3]. Table 

2.1 represents a simple triboelectric series. When a material with a high tendency to lose electron 

(i.e., near the top of table) touches a material with a lower tendency to lose electron (i.e., near the 

bottom of table), they will be able to exchange more electrons because of their larger difference in 

triboelectric properties [33].  
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Table 2.1 Triboelectric series following a tendency of easy losing electrons (positive) to gaining 

electrons (negative) [34]. 

Triboelectric series  

Wool 

Nylon 

Viscose 

Cotton 

Silk 

Acetate 

Lucite 

Poly(Vinyl alcohol) 

Dacron 

Velon 

Polyethylene 

Teflon 

 

2.3.2 Surface Treatment 

Surface treatment includes all the modifications on the TENG friction layers in order to enhance 

charge generation and storage during their contact and separation [34]. Fabrication of surfaces with 

microstructure patterns or foam structures are two important methods in order to modify the 

friction layer surface.  

Fan et al. studied the effect of different microstructure patterns on triboelectric performance. They 

fabricated PDMS (polydimethylsiloxane) film with line, cube and pyramid microstructure patterns 

and compared TENG output with non-patterned PDMS film. Figure 2.5 illustrates both voltage 

and current increased when the pattern changes from solid to line, cube and pyramid, respectively 

[15]. This can be attributed to the fact that friction layers with more complex surface structures led 

to higher triboelectric effect since the separation of triboelectric charges occurs easier in 

microstructured surfaces. Moreover, the presence of air voids improved the capacitance and 
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effective dielectric constant significantly. On the microstructured surfaces, triboelectric charges 

were more easily separated [15]. 

 

Figure 2.5 Effect of microstructured friction layer on TENG output. (a) TENG output voltage and 

(b) TENG output current [15]. Copyright 2012. Reproduced with permission from American 

Chemical Society. 

 

Fabrication of foam structures in the friction layers is considered as another surface treatment 

method [35]. Indeed, foam structure provides higher surface area to volume ratio and consequently 

improves TENG charge density and performance. Lee et al. fabricated a hydrophobic sponge 

structure of PDMS and investigated the effect of different pore sizes in the friction layers on TENG 

performance. A piece of aluminum foil acted as the positive side of the friction layer and the 

electrode simultaneously. Figure 2.6 summarizes the output voltage of the fabricated TENG under 

various contact forces using PDMS foams with different pore sizes.  
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Figure 2.6 Effect of PDMS porosity and contact force on TENG output voltage [13]. Copyright 

2014. Reproduced with permission from Wiley Online Library. 

 

Figure 2.6 shows that the output voltage could be increased by either increasing the contact force 

or decreasing the PDMS pore size. With the sponge structure, the area to volume ratio increased 

when the pore size decreased. As a result, charge density and output voltage increased. Moreover, 

some extra charges generated on the surface of the inner pores, which contributed to the 

improvement of sponge-based TENGs performance [13]. Furthermore, a stronger contact force 

helped the effective contact area to reach its maximum value [36].  

2.3.3 Chemical Treatment 

In chemical treatment friction layer’s triboelectric properties enhances by manipulating chemical 

composition or structure of material. Fabrication of high dielectric composites [37], fluorinated 

surfaces [38], ion injection [39], improvement of electroactive phase content count as part of the 

chemical treatment methods to enhance TENG performance [36], [40-41].  

Chen et al. enhanced the performance of TENG by adding high dielectric nanoparticle fillers in 

PDMS sponge structure. SiO2, TiO2, BaTiO3 and SrTiO3 were used as high dielectric nanoparticles 
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with relative permittivity of 3, 80, 150 and 300, respectively. Figure 2.7 shows the effect of 

different fillers and the volume ratio of filler to PDMS on TENGs outputs [37].  

 

Figure 2.7 Electrical measurements of the fabricated film based TENG (f = 2.5 Hz). (a) Open-circuit 

voltage, (b) short-current density, (c) amount of transferred charges, (d) comparison of relative 

permittivity of different matrixes, (e) schematic of composite films, (f) Relative permittivity changes 

as a function of SrTiO3 content from 0 to 25 vol %. The insets show SEM images of composite films 

at various volume ratios. The scale bars for SEM are 1 μm [37]. Copyright 2016. Reproduced with 

permission from American Chemical Society. 

 

Experimental observation revealed that the relative permittivity directly affects the electrical 

output of TENG. Increasing the dielectric constant of the composite would result in higher output 

voltage and current by the nanogenerator. It is worth mentioning that SiO2 and PDMS have similar 

dielectric constant; thus, the addition of SiO2 could not significantly change the TENG 

performance. Figure 2.7 (d) shows that the relative permittivity of composite followed Maxwell’s 

equation and increased linearly by increasing volume ratio of filler in polymeric matrix [42]. In 
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contrast, the voltage and current density decreased when the volume ratio of filler was above 15%. 

This behavior attributed to the excess amount of filler particles appeared on the surface of PDMS 

which led to a decrease in PDMS effective area of friction layer [37].  

Functionalizing the friction layer is another powerful tool to enhance TENG’s efficiency. For 

instance, fluorine atoms have the highest electronegativity among all elements. Functionalizing 

the friction layer surface with fluorine atoms promotes the friction layer’s tendency to attract 

electron during the contact and separation process. Shin et al. illustrated that polyethylene 

terephthalate (PET)-based nanogenerator output voltage was increased from 4 V to 330 V under 

the same conditions only by the addition of poly-L-lysine and trichloro(1H,1H,2H,2H-

perfluorooctyl) silane (FTOS) on the PET surface [38]. Since this method was complicated, 

another alternative method was to modify the friction layers that naturally have fluorine atoms in 

their structures. PVDF is one of these materials and has electroactive polymorphs (i.e. β and γ) in 

its semi-crystalline structure. Increasing PVDF’s electroactive phase content can enhance its 

ability to attract electron within contact and separation. Different methods are suggested to 

promote PVDF β and γ contents, which will discuss in the next section.  

2.3.4 Promoting PVDF Electroactive Phase Content 

2.3.4.1 Mechanical Stretching 

Stretching PVDF film at elevated temperature is one of the most commonly used approach that 

leads to a transformation of the α polymorphs to β polymorphs. The applied stress by mechanical 

force allows the dipoles of PVDF chains to align normally to the direction of stress [9]. Under 

elevated temperature which optimally is 80℃, the mobility of PVDF chains increases and the 

higher mobility of chains would result in more transformations of α polymorphs to β polymorphs.  
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It is worth mentioning that mechanical stretching can only turn a portion of α phase to β phase and 

needs the application of heat and force simultaneously [43].  

2.3.4.2 Annealing 

Transformation of α to β can occur by exposing PVDF film to heat. It has been shown that higher 

mobility of PVDF chains at elevated temperature (80 to 115℃) is favorable to increase the β phase 

content of PVDF. At a temperature lower than 80℃, chains mobility is insufficient for crystal 

transformation; however, at a temperature higher than 115℃, chain mobility is too high, which 

would lead to β phase reverting back to α phase [44].  Moreover, it is reported that melting crystal 

structure at higher temperature (above 160℃)   followed by slow cooling is favorable to promote 

γ phase content of PVDF. Under these conditions, γ polymorphs grow by using α crystal as seed 

[45-46]. 

2.3.4.3 Fast Cooling 

Quenching is a useful method to convert α polymorph to β polymorph. Comparing to α polymorph, 

nucleation rate for β phase can be promoted at lower temperatures. Therefore, the β phase 

nucleation is dominant at lower temperature. At higher quenching rates, PVDF does not have the 

opportunity to form much of α polymorph. As a result, the formation of β polymorph will be 

dominant [47]. 

2.3.4.4 High Pressure 

It has been proven that increasing the quenching pressure from 200 MPa to 700 MPa could promote 

β phase content of sample from 0 to 100% and increasing the pressure to 800 MPa led to the 

formation of PVDF with 100% β crystal [48]. 
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2.3.4.5 Electrospinning 

A simple fabrication method of PVDF with high electroactive phase content is electrospinning. As 

Figure 2.8 shows that electrospinning consists of three major components: high voltage supplier, 

metal collector and needle-syringe to provide feed [9].  

 

Figure 2.8 Electrospinning setup for PVDF fabrication [9]. Copyright 2014. Reproduced with 

permission from Elsevier. 

 

In the electrospinning process, PVDF solution fills the syringe, which is being pushed by a syringe 

pump. Under a high voltage, solution droplets stretch and collect on the metallic collector. Flow 

rate, needle diameter, applied voltage and collector type are the most important parameters in 

electrospinning process. In general, β phase of PVDF can be promoted by manipulation of 

electrospinning parameters in order to improve stretch of  PVDF fibers [49]. 
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2.3.4.6 Electro-poling 

Electro-poling uses the power of electric field to align dipoles along the electric field. In this 

method, an electrical field up to 100 MV/m was applied to the PVDF film for polarization [41]. 

This method is usually used as a post-treatment processing.  

2.3.4.7 Nanofillers 

Some nanofillers have proven their abilities to promote β or γ content of PVDF by taking advantage 

of intermolecular interactions. Takur et al. revealed that remarkable improvement in PVDF β phase 

up to 80% by making PVDF composite of Ni(OH)2 nanobelt. The hydrogen bond between fluorine 

atoms of PVDF and –OH group of Ni(OH)2 leads to alignment of PVDF chains on the surface of 

nanobelt and forms electroactive β phase [50]. It is reported that BaTiO3 ceramic filler can increase 

the β phase content of PVDF up to 80% only by the interaction between the local electric field 

around nanofiller and PVDF dipole [19]. On the other hand, KBr powder was used to promote the 

γ phase content of PVDF. In an isothermal crystallization at 165℃ for 40 min, KBr acted as γ phase 

nucleation agent. It was reported that KBr particle provides a crystallization surface for γ 

polymorphs which must be attributed to the epitaxial growth of the γ-form PVDF crystallites on 

KBr surfaces [51]. 

2.4. Research Objectives 

This research followed several short-term and minor objectives in order to satisfy its long-term 

objective. The main objective of this research was the development of a PVDF-based triboelectric 

nanogenerator with high triboelectrification and conversion efficiency. TENG with high 

conversion efficiency can be used as a reliable power source to run small electronic devices, 

particularly self-powered sensors. 
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Achievement to PVDF-based TENG with high conversion efficiency is impossible unless the 

effects of different design parameters on TENG performance have been elucidated. This was one 

of the short-term objectives of this research. 

Geometric parameters such as the contact area and the thickness of friction layers were investigated 

as an effective parameter on TENG output signals. Moreover, PVDF porous structures with 

different pore sizes were fabricated to study the effects of the surface areas of friction layers on 

the TENG performance. In the second phase, non-isothermal crystallization and supercritical CO2 

processing followed by electro-poling were used to promote electroactive phase content of PVDF 

and then the effect of electroactive phase content on TENG performance was studied.  

In the last phase, the influence of electrospinning process and chitin, PVDF-based friction layer 

were studied in order to increase the electrical output of TENG. 

A better understanding of these effective parameters helps to optimize TENG design and improve 

the efficiency of energy conversion.  
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Chapter 3 Geometrical and Morphological Parameters 

This chapter mainly discusses the effects of geometry (i.e., contact area and thickness) and 

morphology on triboelectrification. Compression molding process and salt leaching process were 

used to fabricate PVDF solid and open cell films, respectively. Different PVDF morphologies were 

studied after salt leaching process to comprehensively elucidate the effect of pore size and porosity 

on triboelectrification. 

3.1 Experimental  

3.1.1 Material 

PVDF (Kynar 741, Arkema) in powder form was used to fabricate all the PVDF samples. 

Commercial sodium chloride (NaCl) was used as leaching agent. Table 3.1 shows the physical 

properties of materials. Copper tape with conductive adhesive on one side was used as negative 

side electrode. Commercial aluminum foil acted as positive side of TENG friction layer and 

electrode at same time and double-sided tape attached electrodes to the TENG substrate plates. All 

the materials were used without further modification.  

Table 3.1 Physical properties of PVDF and NaCl 

 

 

 

 

 

Material Melting Temperature 

(℃) 

Density 

(g/cm3) 

PVDF 168 1.78 

NaCl 901 2.16 



24 
 

3.1.2 Solid Film Preparation 

PVDF solid films were fabricated by compression molding machine (Craver Press, 4386 CH). 

Based on PVDF density and volume of molds, proper amount of PVDF was loaded into molds 

with different thicknesses (i.e., 0.55, 0.22 and 0.15 mm). Each mold was held between 

compression molding machine plates for 5 minutes at 185℃ to ensure complete melting of PVDF 

powder and then compression molding pressure ramped to 10000 lbf for another 5 minutes at the 

same temperature. Subsequently, molds were cooled down and cut into rectangular shapes with 

different contact areas (i.e., 2, 4, 6 and 8 cm2). 

3.1.3 Open Cell Foam Preparation 

Open cell structures of PVDF were fabricated by combining compression molding and salt 

leaching process. The procedure can be described in 5 consecutive steps: 

Step 1. NaCl particles were sieved into different size ranges (i.e., <53, 53-106, 106-250 and 250-

500 m). 

Step 2. PVDF powder was dry-blended with 80 wt.% NaCl powders. 

Step 3. The mixture of PVDF and NaCl were loaded to molds (diameter 2 cm and thickness 0.5 

mm) and compression molding process followed similar to solid film’s preparation at 185℃ and 

10000 lbf.  

Step 4. All the samples were submerged in water for 72 hours to leach out all the NaCl salt particles 

through structure. Water was changed with fresh water daily in order to avoid saturation with salt. 

Figure 3.1 shows PVDF samples before and after leaching out the salt particles. 

Step 5. The open cell PVDF foams were dried overnight in a vacuumed oven at 60℃ to remove 

trapped water inside structure.  
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Figure 3.1 Schematic diagram of the open cell foam structure of PVDF. (a) Before leaching out 

NaCl particles, and (b) after leaching out salt. 

 

Table 3.2 summarizes all the prepared PVDF based friction layers and their particular geometrical 

and morphological characterization. 

Table 3.2 Characterization of prepared PVDF based friction layer 

Film type Material Thickness (mm) Contact 

area (cm2) 

Pore size 

(μm) 

Shape 

Solid PVDF 0.15, 0.22 and 0.55 2, 4, 6 and 8 - Rectangular 

Open cell PVDF 0.55 3.14 <53 

53-106 

106-250 

250-500 

Circular 

 

3.1.4 TENG Design 

TENG was tested in the contact and separation mode. Figure 3.2 displays a schematic of the TENG 

device which was used over this chapter. Two acrylic plates (side length 9cm × 13cm) were used 

as the top and bottom substrates. Copper tape was used as the negative side electrode and different 

sizes of fabricated PVDF-based friction layer were attached to upper acrylic plate. Al foil was 

attached to the bottom plate. TENG friction layers and electrodes were mounted on substrate plates 

by using double-sided tape. 195 g weight was added to the top plate in order to increase the contact 
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force. Additionally, a rectifier comprising 4 diodes was used to convert AC current to DC current 

before electrical measurements. TENG output was measured while the top plate and attached 

weight were dropped on the bottom plate with a frequency of 3 Hz from a height of 3 cm.  

 

Figure 3.2 Schematic design of TENG. 

   

3.2 Characterization 

Scanning electron microscopy (SEM, Quanta 3D FEG, from FEI Company) was used to study 

PVDF foam structures. SEM micrographs of porous PVDF samples were taken after cryo-

fracturing the samples under liquid nitrogen and then gold coating them with a sputter coater 

(Denton Vacuum, Desk V Sputter Coater). Open cell contents of open cell foams were investigated 

by a gas pycnometer (Quantachrome, Ultrapyc 1200e). The open cell content is defined as the 

percentage of interconnected cells with respect to the geometric volume of sample. Nitrogen gas 

was used to determine the total volume of the solid part and the closed cells (Vt) by employing 

Archimedes’ principle of fluid displacement and Boyle’s Law of gas expansion. Then, the open-

cell content (porosity) determined by Equation (3.1). 
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Porosity %=
Vg-Vt

Vg

×100                                                                                                               (Eq. 3.1)  

where Vg is the geometric volume of the foam sample. 

The surface areas of foams were measured by Micro-CT scan (SKYSCAN 1272, BRUKER) and 

a Tektronix, TBS1052B-EDU digital oscilloscope and a Keithley 2450 source meter were used in 

order to measure open circuit voltage (Voc) and short circuit current (Isc) output of TENG, 

respectively. 

3.3 Results and Discussion 

3.3.1 Effect of Geometry (Thickness and Contact Area) on TENG Performance 

PVDF solid films with different thicknesses (0.15, 0.22 and 0.55 mm) and contact areas (2, 4, 6 

and 8 cm2) were tested under the same conditions to elucidate the effect of geometry on TENG 

performance. For the positive side of friction layer, thin aluminum foil was used with the same 

contact area as the PVDF film. TENG open circuit voltage (VOC) and short circuit current (ISC) 

were measured by using an oscilloscope and a source meter, respectively. Data points were 

collected after 3 minutes of periodic contact and separation so that the friction layers would reach 

their maximum charge density capacity. The average of all VOC and ISC peaks were calculated and 

all tests were repeated by using 3 different samples under completely same conditions and the 

average in order to increase the reliability of results. The standard deviations were also reported. 

Figure 3.3 shows how the friction layer geometry affected both VOC and ISC. 
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Figure 3.3 Average of TENG output voltage and current using different thickness and contact area 

of solid PVDF as negative side of friction layer. 
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Figure 3.3 illustrates that the geometry of the friction layer had a direct effect on TENG’s electrical 

output. Increasing the contact area and at the same time decreasing the thickness of the friction 

layer enhanced the TENG’s performance. The bigger contact area of TENG’s friction layer would 

accumulate more triboelectric charges on TENG’s opposite layers and as a result led to higher 

triboelectrification, increasing the TENG output. The important point here is the unclear relation 

of contact area and TENG open circuit voltage. There is no evidence in references about the 

fundamentals behind the relation of contact area and TENG voltage. Equation 2.12 shows VOC = 

σ

ε0
x(t) while there is not any term related to contact area. Most papers assume as contact area 

increases the capacity will increase but the relationship between the capacitance of friction layer 

and surface charge density is needed to be elucidated [16].  

Moreover, output signals interpretation shows that a thinner friction layer enhanced both averages 

of voltage and current peaks, simultaneously. This can be attributed to two major reasons: first, 

thinner friction layer possesses a higher degree of electrostatic induction of triboelectric charges 

on electrode. Analytical correlation derived by Wang et al. confirms that friction layer’s thickness 

(d) has a reverse effect on the induced charge density (’) on electrodes. Equation 3.2 can be used 

to describe this correlation between induced charge density and friction layer parameters: 

' =  
𝜎.  x(t) . 𝜀r1

d1.εr1+x(t)𝜀r1
                                                                                                                          (Eq. 3.2)   

where ’ is the induced charge density;  is the triboelectric charge density, r1 is the relative 

permittivity of negative side of triboelectric layer and d1 and x(t) are the thickness of negative 

triboelectric layer and air gap, respectively [52].  
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Secondly, TENG can act as a storage device and an output device, simultaneously. TENG 

resembles flat-panel capacitors. Figure 3.4 shows that the equivalent capacitor schematic of a 

TENG. TENG in dielectric-conductor mode consists of two capacitors C1 and C2. 

 

Figure 3.4 Capacitor circuit schematic of a TENG. 

 

Essentially, the surface of the PVDF friction layer and the attached electrode played the role of the 

first capacitor plate and the surface of the PVDF friction layer and the conductive friction layer 

acted as second capacitors plates. The first capacitor has the capacitance of: 

C1  =  
휀0휀𝑟1𝑆

𝑑1
                                                                                                                                   (Eq. 3.3) 

and the capacitance of the second capacitor can be expressed as: 

C2  =  
휀0𝑆

x(t)
                                                                                                                                       (Eq. 3.4) 

where 휀𝑟1, S and d1 are the relative permittivity, contact area and thickness of the PVDF film, 

respectively, while 휀0 represents the dielectric constant of air and x(t) is air gap [16]. 
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Based on the capacitance equations, thinner films would have a better ability to store charge and 

would consequently possess higher charge density. These would enhance TENG’s output signals 

and power generation.  

3.3.2 Effect of Morphology (Porosity) on TENG Performance 

Open cell foam structures of PVDF with different pore sizes (i.e., <53, 53-106, 106-250 and 250-

500 μm) were fabricated using the salt leaching process. Figure 3.5 shows the SEM micrographs 

of fabricated samples prepared by salt particles of different sizes using the salt leaching approach. 

 

 

Figure 3.5 SEM cross-section images of open cell samples prepared with different salt particle size 

of (a) <53, (b) 53-106, (c) 106-250 and (d) 250-500 μm. 

 

(a) (b) 

(c) (d) 
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SEM micrographs revealed that PVDF foams had open cell structures and the sizes of pores almost 

corresponded to the sizes of the salt particles which were used in the fabrication process.  

Additionally, SEM images and weight of samples before and after salt leaching confirmed that all 

the salt particles had been removed by water. Pycnometer was used to measure the open cell 

content of samples and the results plotted in Figure 3.6 shows that samples possessed around 75% 

interconnected cells in their structures. 

 

Figure 3.6 Open cell content of PVDF foams prepared by salt leaching process. 

 

TENG output electrical signals were measured using open cell foams against Al foil. All 

experiments repeated in three batches with the same samples and under the same conditions. Figure 

3.7 displays the average output voltage and current density peaks and their corresponding standard 

deviations.  
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Figure 3.7 Effect of pore size and open cell structure of PVDF foam on TENG outputs. (a) Average 

of output voltage and (b) average of current density peaks. 
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TENG outputs revealed that introduction of pores into PVDF structure significantly improved the 

electrical output of the nanogenerator. On the other hand, it should be mentioned that 

nanogenerator outputs enhanced by decreasing the average pore sizes. The enhancement of TENG 

output was mainly caused by an increase in the surface area to volume ratio of the foam structure 

of the friction layers. The higher surface area of the friction layer improved the triboelectrification 

by increasing the contact area. Moreover, micro-CT scan in Figure 3.8 shows that foams prepared 

with the smallest salt particles (i.e., <53 μm) had  5 times more surface area than prepared foam 

with bigger salt particles (i.e., 250-500 μm). This confirms that smaller pores were able to provide 

higher contact area and to increase triboelectrification. 

 

Figure 3.8 Micro-CT scan results for surface area of fabricated open cell foams. 

 

Besides, foams were flexible, which means that under the contact force, friction layer would be 

compressed. As mentioned in the former section, thinner friction layer is able to generate higher 

charge density on the friction layer.  
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Output voltage and current were measured when different loads of resistors had been connected in 

the circuit in order to evaluate the TENG power density. Figure 3.9 shows the foam structure of 

PVDF with pore size smaller than 53 μm generated three times more power density when 

comparing to same size of solid PVDF. In addition, it is shown that the foam structure of PVDF 

with pores smaller than 53 μm could light up at least 30 serially connected commercial LEDs 

(Figure 3.9 (c)). 

 

 

Figure 3.9 TENG performance output. (a) Power density of TENG with open cell foam structure of 

PVDF (pore size less than 53 μm) and same size of solid PVDF. (b) Output voltage and output current 

of TENG with open cell foam structure of PVDF (pore size less than 53 μm) under variable load of 

resistors. (c) Digital photograph of LEDs running by TENG while open cell foam structure of PVDF 

(pore size less than 53 μm) was in use. 
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3.4 Conclusion 

In summary, PVDF solid films with different thicknesses and contact areas and PVDF open cell 

with different pore sizes were prepared to investigate the effects of geometry (i.e., thickness and 

contact area) and morphology (i.e., foam structure) of the friction layer on triboelectric 

nanogenerator (TENG) performance. Observations showed that TENG open circuit voltage (Voc) 

and short circuit current (Isc) increased either when the contact area of friction layer increased or 

its thickness decreased. The open circuit voltage and short circuit current changed from 5.2 V and 

0.29 μA for solid PVDF film (2 cm2 contact area and thickness 0.55 mm) to 30.1 V and 1.3 μA 

(for contact area of 8 cm2 and thickness of 0.15 mm). Thinner film has a greater ability to induce 

electrostatic charges on electrode; therefore, TENG output was enhanced by decreasing friction 

layer thickness. Furthermore, a larger contact area would result in the accumulation of more 

charges on the dielectric surface, which could improve the TENG output. TENG electrical outputs 

for open cell foam structures of PVDF with different pore sizes were measured under the same 

operating conditions. The important point here is the unclear relation of contact area and TENG 

open circuit voltage. Most papers assume as contact area increases the capacity will increase but 

the relationship between the capacitance of friction layer and surface charge density is needed to 

be elucidated. The results showed that porous PVDF generated significantly more power during 

contact and separation. Moreover, it can be revealed that when the pore size decreased, both the 

open circuit voltage and the short circuit current increased. It could be attributed to the increased 

surface area to volume ratio in foam structures and compressible structure of foams, which led to 

the decrease in the friction layer thickness under applied mechanical force. Open cell PVDF foam 

structure with pore size less than 53 μm generated power density around 2.8 μW/cm2, which was 

three times higher than the generated power density by same geometry of solid friction layer. In 
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order to evaluate the ability of TENG to operate electronic device, PVDF foam with pore size less 

than 53 μm was used to directly illuminate at least 30 commercial LEDs in series connection. This 

chapter gives a better understanding of the effects of geometrical and morphological structure of 

friction layer on the performance of the triboelectric nanogenerators and provides a novel way to 

enhance triboelectric output by tuning these parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 
 

Chapter 4 Electroactive Phase Content of PVDF and 

Triboelectrification 

 This chapter aims to elucidate the effect of PVDF electroactive phase content on 

triboelectrification. Supercritical CO2 processing, non-isothermal crystallization and electro-

poling were used to fabricate PVDF foams with high electroactive phase contents. The 

morphological and triboelectric properties of the fabricated samples were investigated.  

4.1 Experimental  

4.1.1 Materials 

PVDF powder (Kynar 741, from Arkema) was used to prepare solid and foam samples of PVDF. 

Commercial aluminum foil was used as the positive side of the friction layer and at the same time 

as the positive electrode. Copper tape with conductive adhesive was used on one side as the 

negative electrode and double side tape was used in order to mount the electrodes on the substrates. 

Carbon dioxide (CO2, purity 99.8%, Linde Gas Inc.) was used as the physical foaming agent and 

was pumped to a high pressure high temperature chamber. Commercial sodium chloride (NaCl) 

was used as the leaching agent to fabricate open cell PVDF foams. All materials were used as 

received without any further modification.  

4.1.2 Solid Film Preparation 

The compression molding process was used in order to fabricate solid PVDF films. First, proper 

amount of PVDF powder was loaded into mold (thickness 0.5 mm). Then, the mold was put into 

a compression molding machine (4386 CH, from Craver Press) preheated to 185 ℃. Compression 

molding machine’s pressure on mold set to a negligible level until the temperature stabilized again 

at 185 ℃. Consequently, the compression pressure was ramped to 5000, 10000, 15000 lbf for 30 
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seconds in each step (i.e., total 90 seconds). Finally, the heater was turned off and the mold was 

cooled down under a pressure of 15000 lbf for 8 hours.  

4.1.3 Closed Cell PVDF Foam Preparation 

Two different temperature profiles were considered for fabrication of PVDF foams in order to 

investigate their effects on promoting the PVDF’s electroactive phase content. The first 

temperature profile was only about supercritical CO2 (ScCO2) processing. Here, solid PVDF films 

prepared by compression molding machine was cut into square pieces (side length of 0.5 inches) 

and enclosed into a high pressure high temperature chamber. The chamber was then heated up to 

the saturation temperature (i.e., 160 ℃). Once the chamber had reached the saturation temperature, 

CO2 was injected into the chamber at 2000 psi for 15 minutes using a syringe pump. After 15 

minutes of subjecting the sample under the supercritical CO2 environment, the gas was released 

by opening the outlet valve. Finally, the foamed PVDF sample was taken out and submerged into 

an ice bath to quench its microstructures. In the rest of this chapter, we will refer to this process as 

temperature profile one.  

In the second temperature profile, the effects of non-isothermal crystallization and supercritical 

CO2 processing on PVDF morphology and the sample’s electroactive content had been 

investigated. In this temperature profile, the square shape of solid PVDF (side length of 0.5 inches) 

was enclosed in the same high pressure high temperature chamber. The chamber temperature was 

ramped to heating temperature (TH =180 ℃) and heater setpoint temperature immediately changed 

to the saturation temperature (i.e., 160 ℃). When the chamber temperature reached the saturation 

temperature, supercritical CO2 was injected into the chamber for 15 minutes. Finally, the gas was 

released through opening the outlet valve. Finally, the sample was taken out and submerged into 

an ice bath. It should be mentioned that in the rest of this chapter this process will be referred as 
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temperature profile two. Figure 4.1 schematically shows temperature profiles one and two adopted 

during the fabrication of PVDF foams with high electroactive phase contents. 

 

Figure 4.1 Different processing conditions (i.e., temperature, pressure and time). (a) Temperature 

profile one and (b) temperature profile two. 

 

The reason behind the selection of these two temperature profiles was based on  Eun Lee et al. 

work, since they showed these two temperature profiles can be used to fabricate PVDF foam 

structure with even size of cells and high electroactive phase content [7], [57].  

4.1.4 Preparation of Open Cell PVDF Foam with High Electroactive Content 

The open cell structure of PVDF was fabricated by the salt leaching process (details were discussed 

in Chapter 3). The effects of non-isothermal crystallization and supercritical CO2 processing  

(temperature profile two) was studied on open cell PVDF samples before leaching out the salt 

particles. At the end of process, samples were plunged into water for three days in order to leach 

salt particles out of structure. 

Moreover, the effect of non-isothermal crystallization (temperature profile two) on PVDF solid 

samples was investigated. For this reason, temperature profile two had been applied to the solid 

samples without the injection of foaming agent (CO2 gas) into the chamber. 

(a) (b) 
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4.1.5 TENG Design 

In order to increase the contact force we changed the design to a hammer system. Here, 

triboelectric properties were tested by using contact and separation of a hammer. Hammer was 

connected to a rotating motor through gears. This provided enough energy for hammer’s 

movement. Figure 4.2 shows the schematic of the hammer design to run TENG. TENG outputs 

were studied while the hammer and the mounted friction layer on it struck onto the Al foil on a 

fixed plate with a constant frequency of 1.3 Hz. Furthermore, a rectifier comprised of 4 diodes was 

used to convert AC to DC before electrical measurements.  

 

Figure 4.2 Schematic of hammer design to run TENG. 

 

4.2 Characterization 

In this section, we will review the methods which were used to characterize PVDF samples 

morphology and crystal structure.  
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4.2.1 Volume Expansion Ratio 

Volume expansion ratio (VER) of foam samples was determined using the ASTM D792 standard. 

In this method, the weights of foam samples were measured in air and deionized water and VER 

was calculated by using equation 4.1: 

VER = 
𝜌 (mair− mwater)

mair 𝜌water @ Tw

                                                                                                 (Eq. 4.1) 

 

where 𝜌 is the density of PVDF powder (i.e., 1.780 g.cm-1), mair and mwater are mass of samples in 

air and water, respectively, Tw is temperature of water and 𝜌water @ Tw is the density of water at Tw. 

4.2.2 Scanning Electron Microscopy 

Morphological properties of PVDF foam samples were characterized by using scanning electron 

microscopy (SEM, FEI Company Quanta 3D FEG). PVDF samples were cryo-fractured under 

liquid nitrogen and a gold layer was sputtered on them before taking the cross-sectional SEM 

micrographs. Additionally, SEM micrographs were further analyzed using ImageJ software to 

calculate the average of cell’s size. 

4.2.3 Fourier Transform Infrared Spectroscopy 

Fourier transform infrared spectroscopy (FTIR, VERTEX 70/80, Bruker) was used to study PVDF 

polymorphs content. Number of scans was set to 24 with the resolution of 1 cm-1 while 

wavenumber swept from 400 cm-1 to 1500 cm-1. Literature review shows that peak at 763 cm-1 

denotes to α phase and peak at 840 cm-1 denotes to both β and γ [53-54]. β and γ phase were 

distinguished by peak to valley height ratio method suggested by Cai et al. [55].  Based on this 

method peaks at 763, 1234 and 1275 cm-1 in PVDF’s FTIR spectrum were related to 𝛼, 𝛽 and 𝛾, 

respectively, and the peak at 840 cm-1 was related to both β and 𝛾. Obviously, for those samples 



43 
 

that did not have any peak at 1234 cm-1 (𝛾 peak), peak at 840 cm-1 was completely dedicated to 𝛽 

phase and electroactive phase fraction will derive by using equation 4.2: 

FEA = 
A𝐸𝐴

1.26 × A𝛼+ A𝐸𝐴
 × 100%                                                                                    (Eq. 4.2) 

where FEA is the fraction of electroactive phase in PVDF samples which equals to β  phase content 

of samples, A𝐸𝐴 and A𝛼 are the absorbance band of the electroactive and α phase at 840 cm-1 and 

763 cm-1, respectively. 

For those samples that contained both peaks at 1234 cm-1 and 1275 cm-1 in their FTIR spectrum 

band (Figure 4.3), Equations (4.3) and (4.4) were used to calculate the β and γ phases contents 

separately. 

F𝛽 = FEA × 
∆Hβ

∆Hβ+ ∆Hγ
                                                                                                 (Eq. 4.3) 

F𝛾 = FEA × 
 ∆Hγ

∆Hβ+ ∆Hγ
                                                                                                 (Eq. 4.4) 

 

Figure 4.3 Schematic of PVDF spectrum which contains both 𝜷 and 𝜸 polymorphs in its semi-

crystalline structure. 
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where F𝛽 and F𝛾 are the percentage fraction of β and γ polymorphs in PVDF crystal structure, ∆Hβ 

and ∆Hγ are the height difference from the peaks at 1275 cm-1 and 1234 cm-1 to their nearest 

valleys, respectively. 

4.2.4 Triboelectric Properties 

Electrical outputs of TENG were measured by using a Tektronix digital oscilloscope (TBS1052B-

EDU) and a Keithley 2450 source meter. TENG electrical outputs (i.e., open circuit voltage and 

short circuit current) were collected over 40 seconds and the average level of these peaks was 

calculated.  

4.3 Results and Discussion 

All measurements were repeated three times under the same conditions and the average of data 

points and their standard deviations were calculated. Moreover, all samples were dried overnight 

in a vacuumed oven at 60 ℃ before taking the electrical measurement to eliminate the effect of 

humidity on TENG outputs [56].  

4.3.1 Effect of Temperature Profile One and Two on PVDF 

FTIR was used to study PVDF polymorphs. Figure 4.4 shows the FTIR spectrum of PVDF 

samples. Figure 4.4 displays all the PVDF samples possessed peaks at 763 cm-1 and 1275 cm-1, 

which denoted the α and β polymorphs, respectively. Moreover, it shows that the presence of 

electroactive phase peak at 840 cm-1 in all samples, which denotes both β and γ phase, 

simultaneously. Most importantly, only the PVDF samples subjected to temperature profile two 

showed the γ peak at 1234 cm-1.    
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Figure 4.4 FTIR spectra of prepared PVDF solid and foam samples: (a) solid PVDF sample prepared 

by compression molding; (b) solid PVDF sample subjected to temperature profile two without CO2 

injection; (c) foam PVDF after temperature profile one; and (d) foam PVDF after temperature 

profile two. 

 

In other words, non-isothermal crystallization was favorable for the growth of γ phase polymorphs. 

This is mainly because at high temperatures α polymorphs melt and act as the seed for nucleation 

and growth of γ polymorphs. FTIR data was further analyzed by using the peak to valley height 

ratio method and electroactive phase content (i.e., β and γ) of samples was calculated. Figure 4.5 

shows that the electroactive phase content of PVDF samples, distinctively. Figure 4.5 reveals that 

temperature profile two significantly promoted the γ phase content of samples up to 51%. 

Furthermore, it negatively affected the β phase content of samples since β content decreased from 

36% to 10% and the key reason behind it was the compactness of γ phase chains.  
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Figure 4.5 Electroactive phase content of PVDF samples. (a) Solid PVDF sample prepared by 

compression molding process; (b) solid PVDF sample subjected to temperature profile two without 

CO2 injection; (c) foam PVDF after temperature profile one; and (d) foam PVDF after temperature 

profile two. 

 

High compactness of γ phase made it difficult for CO2 molecules to diffuse into PVDF structure. 

As a result, PVDF foam would have a lower expansion rate, whereas, expansion of PVDF foam 

by CO2 injection at elevated temperature mimicked mechanical stretching of PVDF chains which 

would be favorable to promote the β phase content of PVDF. Thus, lower amounts of β phase 

existed in samples with lower volume expansion ratio were expectable. Moreover, γ phase growth 

was dominant over β polymorph’s growth in general [57]. 

Table 4.1 shows the VER of PVDF samples underwent both temperature profiles which confirms 

our observation and discussion about β and γ phase content of PVDF.  

 

 



47 
 

Table 4.1 Volume expansion ratio 

Sample type VER 

PVDF after ScCO2 processing (temp. profile one) 14 

PVDF after non-isothermal crystallization and ScCO2 processing (temp. profile two)  2.5 

 

PVDF prepared using temperature profile two possessed much higher VER, which was caused by 

the promoted diffusion and expansion of foam by CO2 molecules in the absence of γ polymorphs.  

Electrical outputs of TENG using solid and foam PVDF after both temperature profiles were 

measured under the same conditions and the results are shown in Figure 4.6. It should be mentioned 

that expanded foams were cold compressed overnight using a compression molding machine and 

mold with thickness of 0.5 mm to get rid of the effect of friction layer thickness on TENG electrical 

signals. 

 

Figure 4.6 Effect of non-isothermal crystallization and ScCO2 processing on TENG electrical 

output. (1) Average of output voltage and (2) average of output current density. (a) Solid PVDF 

sample prepared by compression molding machine; (b) solid PVDF sample subjected to 

temperature profile two without CO2 injection; (c) foam PVDF after temperature profile one; and 

(d) foam PVDF after temperature profile two. 

 

(1) (2) 
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TENG outputs showed that temperature profile two greatly improved the average electrical signals. 

Temperature profile two increased the total electroactive phase content of PVDF by around 27%, 

which would result in an increase in the surface potential level of PVDF. Higher PVDF surface 

potential increased the difference between PVDF energy level and Al fermi level. This situation 

provided more room for electron transfer between dielectric and metal before they reached the 

same surface potential level and improved TENG electrical output [36].  

On the other hand, SEM micrographs confirm that CO2 injection led to the fabrication of porous 

structure (Figure 4.7).  

 

Figure 4.7 SEM micrograph of PVDF. (a) PVDF foam after temperature profile one and before 

cold compression, (b) PVDF foam after temperature profile one and after cold compression, (c) 

PVDF foam after temperature profile two and before cold compression and (d) PVDF foam after 

temperature profile two and after cold compression. 

(a) 

(d) (c) 

(b) 
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Moreover, ImageJ software was used to analyze the average pore size for both temperature profiles 

before and after cold compression and the results are shown in Table 4.2. 

Table 4.2 Cell diameters and standard deviations 

Processing type Average of cells 

diameter (µm) 

Standard 

Deviation (µm) 

Foam samples after temperature profile one 

before cold compression (VER= 14) 

11.7 3.9 

Foam samples after temperature profile two 

before cold compression (VER= 2.5) 

4.36 1.6 

Foam samples after temperature profile two and 

cold compression 

5.3 1.01 

Foam samples after temperature profile two and 

cold compression 

2.3 0.79 

 

Injection of CO2 gas at high pressure and elevated temperature introduced closed cell structure of 

pores into solid PVDF. Moreover, as shown in the SEM images of foams processed by temperature 

profile two, difficulty in CO2 diffusion into the compact γ chains resulted in lower cell expansion 

and consequently smaller pores size. As mentioned in Chapter 3, a porous friction layer possessed 

larger surface area and charge density would enhance TENG electrical signals. In summary, foam 

prepared using temperature profile two took advantage of both smaller pores size (i.e., higher 

surface area) and higher content of electroactive polymorphs, which both would lead to generating 

more electricity in contact and separation.  

Power density of PVDF films was calculated by using the prepared PVDF films as the negative 

side of friction layer. The voltage and current were measured when different loads of resistors were 

connected in circuit. Figure 4.8 depicts the power density output of TENG and again confirms 
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foam PVDF was able to generate the highest power density due to its porous structure and higher 

electroactive phase content. 

 

Figure 4.8 Effect of porosity and EA content on TENG power density output. (a) Solid PVDF 

sample prepared by compression molding machine; (b) solid PVDF sample subjected to 

temperature profile two without CO2 injection; (c) foam PVDF after temperature profile one; and 

(d) foam PVDF after temperature profile two. 

 

4.3.2 Effect of Electro-poling  

Foam PVDF films were further modified by electro-poling method. In this method, the 

electroactive phase content of PVDF was enhanced through the exposure of the PVDF film to a 

strong electrical field. For this purpose, PVDF film was cold compressed under 15000 lbf using a 

compression molding machine overnight to make the films to be as thin as possible, Figure 4.9 

shows the SEM micrographs of PVDF foams after cold compression.  
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Figure 4.9 SEM micrograph of porous PVDF after cold compression. (a) PVDF foam after 

temperature profile one and cold compression and (b) PVDF foam after temperature profile two and 

cold compression. 

 

For electro-poling, silver paste was applied as conductive electrode on both side of PVDF thin 

films and an electrical field of 0.07 kV/μm was applied for 30 minutes on the films using a high 

voltage power supply (Gamma High Voltage Research, Ormond Beach, FL). Eventually, the silver 

paste was peeled off and the electroactive phase content as well as the triboelectric properties of 

the films were analyzed. 

FTIR analysis and the peak to valley height ratio method were used in order to measure the 

electroactive phase content of the PVDF samples after cold compression (i.e., before electro-

poling) and after electro-poling and the results are shown in Figure 4.10.  

(a) (b) 
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Figure 4.10 Effect of cold compression and electro-poling on PVDF electroactive phase content. (a) 

PVDF foams processed by temperature profile one and (b) PVDF foam processed by temperature 

profile two. 

 

Figure 4.10 shows that cold compression slightly increased the β phase content of PVDF. This was 

mainly because of mechanical stretch of PVDF film under compression molding high pressure [9]. 

β phase content promoted significantly after electro-poling, which happens obviously because of 

the rearrangement of polymer chains across the electrical field. The effects of cold compression 

and electro-poling on TENG signals were studied under the same conditions and the results are 

displayed in Figure 4.11. 
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Figure 4.11 Effect of cold compression and electro-poling on TENG outputs. (1) Average of output 

voltage and (2) average of current density.  (a) PVDF foams processed by temperature profile one 

and (b) PVDF foam processed by temperature profile two. 

 

Figure 4.11 shows that the electrical output of TENG decreased after cold compression compared 

to the output results of same films before cold compression (Figure 4.6); however, friction layers 

were thinner with a higher content of electroactive phase. The weaker output signals could be 

attributed to the disruption of foam structure after cold compression and as a result foam flexibility 

was lost and the ratio of surface area to volume decreased. SEM micrographs in Figure 4.9 reveal 

the destruction of PVDF’s porous structure. 

Additionally, significant enhancement of PVDF 𝛽 phase content led to a surge in TENG output 

signals. This could be attributed to the greater opportunity of electron transfer between Al and 

PVDF based on their higher difference in work function after electro-poling. 
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4.3.3 Effect of Temperature Profile Two on Open Cell Structure of PVDF 

Open cell structures of PVDF were prepared using the same method mentioned in Chapter 3. 

Nevertheless, before leaching out the salt particles, the samples had been subjected to temperature 

profile two in order to investigate the effects of non-isothermal crystallization and supercritical 

CO2 processing on the open cell structures of PVDF foams. At the end of the temperature profile 

two, salt particles were leached out by submerging samples in water for three days and the PVDF 

foams were dried overnight in a vacuumed oven at 60 ℃. 

FTIR and SEM were used to study the effect of temperature profile two on open cell PVDF’s 

electroactive phase contents and microstructures, respectively. Figure 4.12 shows the electroactive 

phase contents of open cell PVDF before and after temperature profile two.  

 

Figure 4.12 Electroactive content of open cell structure of PVDF. (a) Before and (b) after processing 

under temperature profile two conditions. 

 

Figure 4.12 shows that the β phase content of all open cell samples before undergoing temperature 

profile two was almost the same around 42%. After undergoing temperature profile two, their β 

phase contents decreased significantly while γ contents increased from 0% up to ~55%. This was 

mainly caused by the growth of γ crystal by using the partially melted α polymorph as the 
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nucleation seeds. Furthermore, the compactness of γ chains negatively affected the expansion of 

cells and growth of β polymorphs. 

Moreover, the triboelectric properties of open cell PVDF before and after processing under 

temperature profile two were studied. The average open circuit voltage and short circuit current 

density were measured and the results are shown in Figure 4.13.  

 

Figure 4.13 Electrical output of TENG, using open cell PVDF before and after post-

treatment (temperature profile two). (a) Average of voltage peaks and (b) average of current 

density peaks. 

 

The observations showed that after processing by temperature profile two, electrical outputs of all 

samples increased except the one with smallest pore sizes. (i.e., <53 μm). On the other hand, SEM 

micrographs in Figure 4.14 show that temperature profile two led to a decrease in the average 

cell’s size for all the samples except the one which prepared by salt particle size less than 53 μm. 

Thus, although for sample prepared with salt particle size less than 53 μm electroactive phase 

content is higher, lower electrical signals were observed because of the lower surface area and 

charge density. Table 4.3 summarizes the effect of temperature profile two on cell size. 
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Table 4.3 Cell diameters and standard deviations 

Sample Type Average of cells 

diameter (µm) 

Standard 

Deviation (µm) 

Open cell after salt leaching (salt size less than 53 

µm)  

4.7 3.9 

Open cell after salt leaching (salt size 53-106 µm) 16.37 12.2 

Open cell after salt leaching (salt size 106-250 µm) 43.68 68.5 

Open cell after salt leaching (salt size 250-500 µm) 69.97 104.3 

Open cell after non-isothermal crystallization and 

ScCO2 processing (salt size less than 53 µm) 

8.6 5.7 

Open cell after non-isothermal crystallization and 

ScCO2 processing (salt size 53-106 µm) 

11.99 8.3 

Open cell after non-isothermal crystallization and 

ScCO2 processing (salt size 106-250 µm) 

20.3 31.3 

Open cell after non-isothermal crystallization and 

ScCO2 processing (salt size 250-500 µm) 

18.1 48.2 
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Figure 4.14 Cross-section SEM images of open cell PVDF structures. Salt size less than 53 µm, (a) 

before and (b) after post-treatment, salt size 53-106 µm (c) before and (d) after post-treatment, salt 

size 106-250 µm (e) before (f) after post-treatment and salt size 250-500 µm (g) before and (h) after 

post-treatment. 

(a) (b) 

(c) (d) 

 
 (b) 

(e) 

 
 (b) 

(f) 

 
 (b) 

(g) 

 
 (b) 

(h) 

 
 (b) 
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4.4 Conclusion 

In summary, based on the combination of electro-poling, non-isothermal crystallization, and 

ScCO2 processing, the electroactive phase content of PVDF greatly increased. PVDF foam 

structure with high electroactive phase content showed a better ability to generate TENG electrical 

outputs when compared to solid PVDF with lower electroactive phase content. Electroactive phase 

content of PVDF after ScCO2 processing, non-isothermal crystallization and ScCO2 processing, 

and combination of electro-poling and non-isothermal crystallization and ScCO2 processing were 

34.5%, 62.8% and 72%, respectively. TENG performance of different films revealed that 

electroactive phase content directly affected TENG output electrical signals. This is because of the 

increase in the difference between the Fermi levels of Al foil and PVDF as a result of a higher 

potential difference between the friction layers. On the other hand, foam structures led to an 

increase in ratio of surface area to volume and charge density of PVDF film. The final open circuit 

voltage and short circuit current increased from 16.9 V and 1.56 mA/m2 for solid PVDF 

(electroactive content 36.6%) to 61 V and 5.27 mA/m2 for PVDF after electro-poling and non-

isothermal crystallization and ScCO2 processing (electroactive content 72%). Moreover, non-

isothermal crystallization and ScCO2 processing were applied to open cell PVDF and led to an 

increase in electroactive content from ~42% to ~62% and introducing additional small pores with 

a size average of 20 𝜇m to structure. TENG’s performance of open cell PVDF improved in most 

cases as a result of both higher electroactive content and ratio of surface area to volume. This study 

unambiguously elucidates the feasibility of electro-poling and non-isothermal crystallization and 

ScCO2 processing for fabrication of PVDF foam morphology with high electroactive content in 

order to improve TENG efficiency. 
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Chapter 5 Electrospun PVDF Film 

This chapter investigates the effects of electrospinning and chitin particles on the PVDF 

electroactive phase content and the PVDF film’s triboelectric properties. Chitin is a structural 

polymer that is extracted from shellfish, insects or other microorganisms. Chitin is an abundant, 

biocompatible polymer with antibacterial properties [58-59]. Moreover, chitin is able to reinforce 

mechanical properties of PVDF fibers [60]. Electrospinning is a well-known fabrication method 

to prepare fibrous polymeric films. Electrospun films are quite thin, porous and their modification 

by altering various processing parameters is easy. In the end, the effect of chitin on PVDF 

electrospun films and triboelectric properties were studied. 

5.1 Experimental 

5.1.1 Materials 

PVDF powder (Kynar 741, from Arkema) was used to prepare electrospinning solution. N, N-

dimethyl formamide (DMF, Fisher Scientific) was used as polymer solvent and chitin was 

purchased from BOCO Technology Incorporation. Commercial aluminum foil was used as 

positive side of friction layer and at the same time as positive electrode. Copper tape with 

conductive adhesive on one side acted as negative side electrode and double side tape was used in 

order to mount electrodes on substrates.  

5.1.2 Fabrication of electrospun films 

A conventional horizontal electrospinning system was used to fabricate PVDF electrospun film. 

Polymer solution with a concentration of 20 wt.% was made by adding PVDF powder to 20 cc 

DMF. Polymer dissolved in DMF at room temperature using a magnetic stirrer spun at 200 rpm 

for two hours. The polymer solution was filled into a 10 ml syringe fitted with stainless steel 
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dispensing needles with various diameters of 0.58, 0.48 and 0.25 mm. A syringe pump (model 

LEGATO 100, KD Scientific) was used to feed the needle with flow rates of 1, 2 or 3 mL/hr. A 

high voltage power supply (Gamma High Voltage Research, Ormond Beach, FL) provided 

deriving force to stretch fibers by generating a constant voltage of 15 kV or 25 kV during 

electrospinning process. The positive electrode was connected to the needle while the negative 

electrode was connected to the aluminum foil collector (side lengths of 4 × 5 cm), which was 

placed 15 cm away from needle’s tip. Electrospinning time span kept at 3 hours for all the samples. 

To investigate the effect of chitin on electrospun PVDF films, different amounts of chitin, ranging 

from 0 to 1.25 wt.%, were added to 20 cc DMF and the mixture was sonicated for two minutes. 

Subsequently, 4.7 g of PVDF was added to the solution. After proper mixing for 2 hours using a 

200 rpm magnetic stirrer, the same electrospinning setup was used to prepare the samples.  

5.2 Characterization 

Crystallinity of PVDF samples was studied using a differential scanning calorimetry machine 

(DSC 250, TA Instrument). Thermal analyses were conducted from 40 ℃ to 220 ℃ at a ramping 

rate of 10 ℃/min. The degree of crystallinity (Xc) was calculated using equation 5.1: 

Xc = 
∆𝐻f

∆𝐻f,c
 ×100%                    (Eq. 5.1) 

where ∆𝐻f and ∆𝐻f,c are the heat of fusion of PVDF samples and heat of fusion of 100% crystalline 

PVDF which is 104.7 J/gr. 

The rest of the characterization methods were done similar to chapter four and the same hammer 

setup as Figure 4.2 was used to drive TENG and investigate the effect of electrospinning on 

triboelectric properties of PVDF.  
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5.3 Results and Discussion 

Various electrospinning parameters were chosen to study their effects on PVDF fibrous film, 

electroactive phase content and degree of crystallinity. In the end, the best films prepared with 

pure PVDF and PVDF-chitin were chosen to study how chitin can improve the triboelectric 

properties of PVDF films. 

5.3.1 Effect of Feeding Rate on PVDF Electrospun Films 

PVDF electrospun films were prepared using feeding rate of 1, 2 and 3 mL/hr. The voltage was 

kept constant at 15 kV and the needle with diameter of 0.58 mm was used. As shown in Figure 

5.1(a), FTIR results showed that electrospun films prepared using a flow rate of 1 mL/hr possessed 

higher β phase content. Indeed, a low feeding rate was favorable for the formation of β polymorph 

since it led to higher stretching of fibers which helped to orient polymer chains toward β structure 

[21]. 

A delicate stretch of fibers by electrospinning facilitate crystallization and as DSC results in Figure 

5.1 (b) and SEM micrographs show lower feeding rate would result in a higher degree of 

crystallization [61].  
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Figure 5.1 Effect of electrospinning feeding rate on (a) electroactive content of PVDF and (b) degree 

of crystallinity. 

 

SEM images in Figure 5.2 reveal that an increase in the feeding rate significantly increased the 

number of beads in fibrous films. This could be attributed to lower capability of the electric field 

in higher feeding rates to finely stretch the fibers. As a result, higher feeding rate negatively 

affected the density of fibers. 

 

Figure 5.2 SEM micrographs of electrospun films prepared by different feeding rate: (a) 1ml/hr, (b) 

2 ml/hr and (c) 3 ml/hr. 

 

(a) (b) (c) 
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Moreover, influences of needle size on crystal structure and the average of electroactive phase 

content were investigated and the results showed that their effects were negligible. 

5.3.2 Effect of Applied Voltage on PVDF Electrospun Films 

In order to illustrate the effect of high voltage on the electroactive phase content and the degree of 

crystallinity of PVDF, electrospun films were prepared using voltage of 15 and 25 kV. Feeding 

rate, tip to collector distance and needle size were kept constant at 1 mL/hr, 15 cm and 0.58 mm, 

respectively. 

FTIR and DSC results showed in Figure 5.3 revealed that an increase in voltage would result in a 

decrease in the total electroactive phase content and at same time it would slightly enhance the 

degree of crystallinity. 

 

Figure 5.3 Effect of high voltage on (a) electroactive content of PVDF and (b) degree of crystallinity. 

 

Although higher voltage would be favorable to control the orientation of polymer chains to form 

β structure, the total electroactive phase content of samples decreased. This can be attributed to the 

instability of jet at higher voltages. Higher applied voltage leads to an increase in jet velocity and 
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removed droplets faster from the needle tip. Consequently, the volume of accumulated solution at 

the tip would decrease and Taylore cone shape at the tip will oscillate and became asymmetric. An 

increase in the degree of instability and oscillation of jet on needle’s tip would result in lower 

electroactive phase content [49], [62].  

5.3.3 Effect of Chitin Loads on PVDF Electrospun Films 

Herein, different loads of chitin were added to 20wt.% PVDF solution to study its effect on the 

PVDF-based electrospun films.  

 

Figure 5.4 Effect of chitin concentration on electroactive phase content of PVDF. (a) Electroactive 

content of PVDF and (b) degree of crystallinity. 

 

Figure 5.4 shows that chitin can improve the electroactive phase content of PVDF. Chitin is able 

to create hydrogen bonds with PVDF chains and through these hydrogen bonds it can rearrange 

the PVDF chain’s to β conformation, however, when chitin load passed 0.7 wt.%, β phase content 

decreased drastically. This can be attributed to the aggregation of chitin particles in the 

electrospinning solution [63]. 

(a) (b) 
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In contrast, an increase in chitin concentration would result in a decrease in the degree of 

crystallinity. This can be attributed to the limitation of PVDF chain movement in presence of chitin 

based on intermolecular interaction [60].  

Furthermore, SEM micrographs in Figure 5.5 show that increasing the load of chitin led to an 

increase in the number of beads. This could be a side effect of chitin particle’s aggregation. 

 

Figure 5.5 Effect of chitin load on PVDF electrospun morphology. (a) 0.02 gr, (b) 0.1 gr and (c) 0.3 

gr chitin in PVDF and DMF solution. 

 

5.3.4 Improvement of PVDF Triboelectric Properties Through Electrospinning 

The effect of electrospinning and chitin on the triboelectric properties of PVDF were investigated. 

For this reason, PVDF films were prepared by electrospinning under 1 mL/h feeding rate, 15 kV 

of voltage, needle diameter of 0.58 mm, with and without 0.4 wt.% of chitin load.  

Average of open circuit voltage and short circuit current density is shown in Figure 5.6 revealed 

that adding chitin into electrospun solution increased the electrical outputs of TENG around 5 V 

and 0.6 mA/m2, respectively.  

(a) (b) (c) 
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Figure 5.6 Effect of electrospinning and chitin on electrical signal output of TENG: (a) average of 

voltage peaks and (b) average of current density peaks. 

 

It is worth mentioning here that the problem with pure PVDF electrospun films was their weak 

mechanical properties which made them tear during contact and separation, while chitin enhanced 

the strength of electrospun films significantly to the point where films would be able to withstand 

contact force for a longer period of time. Furthermore, PVDF-chitin electrospun films increased 

the average of Voc and Isc around 11.8 V and 1.2 mA/m2, compared to the samples prepared through 

non-isothermal crystallization and ScCO2 processing followed by electro-poling (chapter 4). 

Obviously, one can expect that the better performance of chitin-PVDF based electrospun films not 

only caused by their smaller thickness (thickness of around 30 μm) but also their higher 

electroactive phase contents. Moreover, these films were successfully used to directly light up at 

least 60 serially connected LEDs.  

5.4 Conclusion 

In this chapter, electrospinning was investigated as an easy and well-known processing method to 

improve the electroactive phase content of PVDF films and simultaneously electrical output of 
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TENG. Effect of some processing parameters such as feeding rate, needle size and voltage on 

PVDF electrospun films were studied in order to optimize the electrospinning process. Results 

showed that lower feeding rate and voltage were favorable to prepare finer fibers and enhanced 

electroactive phase content since fibers stretching would happen easier through lower feeding rate 

and also formed jet on needle tip in lower applied voltage was more stable. It was revealed that 

needle size would not tangibly affect the electroactive phase content and the degree of crystallinity 

of PVDF electrospun films.  

In the second phase, chitin was added to the electrospinning solution and the results confirmed that 

chitin could improve the electroactive phase content of samples by creation of some hydrogen 

bonds with PVDF chains. Electroactive phase content of samples increased by 10% by the addition 

of 0.4 wt.% of chitin to 20 wt.% of PVDF solution. TENG results showed that chitin was able to 

increase the average open circuit voltage and short circuit current density around 5 V and 0.6 

mA/m2, respectively. 
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Chapter 6 Contributions and Future Directions 

6.1 Contributions 

Triboelectric nanogenerators (TENGs) are newly found technology with vast potential 

applications to generate electricity by harvesting wasted mechanical energy. The aim of this 

research was to enhance TENG’s output electrical signals through manipulation of friction layer. 

PVDF was chosen as the negative side of friction layer since it has a high tendency to attract 

electrons while touches another dielectric material. Furthermore, the process of PVDF foam 

fabrication is industrially viable and on the other hand, PVDF tunable semi-crystal structure also 

makes it a unique candidate for TENG’s friction layer.  

Here we will first review the summary of results and discussion and show how TENG’s 

performance improved step by step, then we will talk about the contribution and novelty of this 

research. 

Here is a summary of results and discussions: 

 Different geometry (i.e., friction layer contact area and thickness) of PVDF solid films 

were used and the results showed that thinner friction layer with bigger size of contact area 

was able to generate higher electrical signals. Average of output voltage and current 

increased from 5.2 V and 0.29 μA for solid PVDF film (2 cm2 of contact area and thickness 

of 0.5 mm) up to 30.1 V and 1.3 μA (for 8 cm2 of contact area and thickness of 0.15 mm), 

respectively. This enhancement in TENG performance is mainly related to higher induction 

of electrostatic charges on electrodes through a thinner film and simultaneously higher 

capacity of thinner films with larger contact.  
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 Effect of PVDF open cell structure with different pore sizes in the range of <53, 53-106, 

106-250 and 250-500 μm on TENG performance was studied. The results elucidated that 

the porous friction layer not only had significantly better performance rather than solid film 

but also smaller pore sizes were able to generate more electricity within contact and 

separation. Porous structure of PVDF has higher surface area to volume ratio and as the 

pores become smaller this ratio will increase further. Higher surface area to volume ratio 

provides more room for generation and storage of charge on the surface and promotes 

charge density and TENG electrical outputs. It is worth mentioning that the flexibility of 

PVDF porous structure provides friction layer the opportunity to compress more under the 

same mechanical force and as a result of thinner friction layer, enhanced TENG 

performance is expected. 

 Effect of supercritical CO2 processing (temperature profile one) on electroactive phase 

content of PVDF was studied. PVDF samples after temperature profile one possessed high 

volume expansion ratio, porous structure and around 34.5% of electroactive β crystal 

phase.  

 Effect of non-isothermal crystallization and supercritical CO2 processing (temperature 

profile two) on electroactive phase content of PVDF was studied. High temperature and 

slower cooling rate in non-isothermal crystallization phase were favorable for the 

conformation of γ crystal phase and after temperature profile two samples had smaller 

pores, lower VER and contained total electroactive phase content of around 62.8%.  

 The presence of γ crystal phase in temperature profile two led to a decrease in VER and 

pore size. This is mainly because of high compactness of γ chains which encounters 

diffusion of CO2 into structure and expansion of foam with difficulty. 
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 Electroactive phase of PVDF samples underwent temperature profile one and two 

promoted further through electro-poling under high voltage. Total electroactive phase 

content of PVDF increased around 10% after electro-poling as a result of rearrangement of 

polymer chains under electrical field. 

 The effect of electroactive phase content of PVDF on TENG was investigated. Electrical 

output signals showed PVDF with high electroactive phase content possesses higher level 

of energy which leads to bigger energy difference between Fermi level of positive side of 

friction layer (i.e., Al) and PVDF film. Consequently, there would be more room for 

transfer of triboelectric charges between two friction layers. Concisely, the final open 

circuit voltage and short circuit current density increased from 16.9 V and 1.56 mA/m2 for 

solid PVDF (with electroactive phase content of 36.6%) to 61 V and 5.27 mA/m2 for PVDF 

after electro-poling and temperature profile two (with electroactive phase content of 72%).   

 The practicality of temperature profile two to promote electroactive phase content of open 

cell PVDF was studied and the results confirmed that treatment under temperature profile 

two can promote electroactive phase content of open cell PVDF around 13%. 

 Finally, PVDF-chitin based electrospun friction layer was fabricated and through the 

hydrogen bond between chitin and PVDF chains electroactive phase content promoted to 

78%. As a result of high electroactive phase content and thinner friction layer, the average 

of voltage and current density increased to 72.8 V and 6.47 mA/m2, respectively.  

 

Comparing TENG’s performance from different works under different conditions is a challenge 

since so many parameters such as contact force, working mode, humidity of environment and etc. 

can directly affect the output results, however, here for a better overview Table 6.1 and 6.2 
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summarize how average of voltage and current density enhanced step by step through various 

techniques. The difference between two tables is only the TENG design that was used to collect 

electrical outputs. The design which was used to collect output signals for Table 6.1 was similar 

to Figure 3.2 with a smaller contact force, while TENG design that was used for data collection in  

Table 6.2 was schematically similar to Figure 4.2 with higher contact force.  

Table 6. 1 Summary of TENG’s performance enhancement by changing the PVDF’s geometrical and 

morphological parameters using TENG design similar to Figure 3.2. 

Fabrication 

method 

Pore size 

(μm) 

Contact 

area 

(cm2) 

Thickness 

(μm) 

β phase 

content 

(%) 

γ phase 

content 

(%) 

Voltage 

(V) 

Current 

Density 

(mA/m2) 

Compression 

molding 

Solid 4 550 38.9 0 10.2 1.35 

Compression 

molding 

Solid 4 220 38.9 0 11.3 1.61 

Compression 

molding 

Solid 4 150 38.9 0 16.3 1.7 

Compression 

molding 

Solid 3.14 500 38.9 0 7.9 1.01 

Salt leaching 250-500 3.14 500 41.6 0 7.4 1.03 

Salt leaching 106-250 3.14 500 42.1 0 10 1.21 

Salt leaching 53-106 3.14 500 41.3 0 14.4 1.71 

Salt leaching <53 3.14 500 43.4 0 20.5 2.9 

Temperature 

profile one 

50 (closed 

cell) 

3.14 500 34.5 0 20.8 2.7 
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Table 6. 2 Summary of TENG’s performance enhancement by changing the PVDF’s geometrical, 

morphological and electroactive phase content parameters using TENG design similar to Figure 4.2. 

Fabrication 

method 

Pore 

size 

(μm) 

Contact 

area 

(cm2) 

Thickness 

(μm) 

β phase 

content 

(%) 

γ phase 

content 

(%) 

Voltage 

(V) 

Current 

Density 

(mA/m2) 

Compression 

molding 

Solid 3.14 500 36.6 0 16.9 1.56 

Temperature 

profile two 

without ScCO2 

processing 

Solid 3.14 500 9.2 51.1 27.5 1.97 

Temperature 

profile one 

11.7 3.14 500 34.5 0 46.4 3.77 

Temperature 

profile two 

4.36 3.14 500 51.2 11.6 53.9 5.1 

Temperature 

profile one and 

electro-poling 

5.3 3.14 150 53.9 0 59.5 4.2 

Temperature 

profile two and 

electro-poling 

2.3 3.14 220 61.6 10.4 61 5.3 

PVDF 

electrospun film 

NA 3.14 30 67 0 67.3 5.96 

PVDF-chitin 

electrospun film 

NA 3.14 30 76 0 72.8 6.56 

 

Most of the researches focus only on one or two parameters in order to increase TENG’s efficiency, 

while in this research TENG’s performance improved step by step through a comprehensive study 

on TENG’s effective parameters. This study was necessary in order to find the existing gaps for 
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future direction. For the first time, this study showed that TENG’s electrical outputs are not related 

to the cell structure. In other words, regardless of using open cell or closed cell structure of PVDF 

film, TENG’s electrical output is same as long as the average of cell sizes are almost equal. Also, 

most of the researches around electroactive phase content of PVDF are around promoting the β 

phase crystal, however, this research confirmed that increasing in γ phase crystal content can 

improve TENG’s performance as well. Finally, fabrication of electrospun chitin-PVDF composite 

for TENG’s friction layer was the other novelty of this research in order to enhance the output 

signals. 

6.2 Future Direction 

This research aimed to study effect of different parameters such as contact area, thickness, 

porosity, electroactive phase content and electrospinning on PVDF’s triboelectric properties.  

Here are some recommendations for the future direction of this research:  

 The effect of geometry confirmed that an increase in solid PVDF contact area would result 

in an increase in open circuit voltages. Surprisingly, there is no evidence in references 

about the fundamentals behind the relation of contact area and TENG’s output voltage. 

Most papers assume as the contact area increases the capacitance of friction layer and 

charge density will increase but the exact relationship between the capacitance of friction 

layer and surface charge density is needed to be elucidated in future.  

 Fabrication of thinner porous structure with higher surface area to volume ratio by spin 

coating can be another solution to enhance TENG’s output signals. 

 Decreasing the electrospinning time in order to decrease the thickness of electrospun film 

can lead to higher degree of electrostatic induction and better TENG’s performance. 
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 Using corona poling instead of electro-poling practically provides the opportunity to apply 

higher voltage on PVDF film without breaking it down and as a result, promotes the 

electroactive content of PVDF. 

 Making a composite of PVDF with high dielectric nanoparticles (such as TiO2, BaTiO3 or 

SrTiO3) can increase the total dielectric constant and triboelectric properties of PVDF.  

 Most important potential direction for this research would be a creative design of TENG 

using PVDF films for harvesting wasted mechanical energy to power up a small electrical 

device or fabrication of self-powered sensor. 
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