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ABSTRACT 

RETROMER DEFICIENCY IN AMYOTROPHIC LATERAL SCLEROSIS 

Eduardo J Pérez-Torres 

The retromer is a protein complex whose function is to mediate the recycling of proteins 

from the endosome to either the plasma membrane or the trans-Golgi network. A deficit in retromer 

function has been associated with multiple neurodegenerative disorders, including Alzheimer’s 

disease (AD) and Parkinson’s disease (PD). In both AD and PD, deficiencies have been found in 

retromer expression both in patient tissues and in animal models of disease. Furthermore, 

mutations in the retromer and in retromer-associated genes have been strongly linked with both 

diseases. Despite ample evidence of the link between the retromer and neurodegeneration, little is 

known about the retromer in the context of amyotrophic lateral sclerosis (ALS), another common 

neurodegenerative disorder. ALS is an adult-onset neurodegenerative disorder of the upper and 

lower motor neurons (MNs) characterized by muscle wasting and weakness leading to death within 

3-5 years after diagnosis. To date, the most commonly used model of ALS is a transgenic (Tg) 

mouse that overexpresses an ALS-causing G93A mutation in the human superoxide dismutase 1 

(SOD1) gene. In this study, I first establish a link between the retromer and ALS by showing that 

cells from ALS patients as well as tissues and cells from SOD1G93A-Tg mice express lower protein 

levels of the retromer core components—vacuolar protein sorting 35 (Vps35), Vps26a, and Vps29. 

I then establish that deficiencies in retromer core proteins have functional consequences in an in 

vitro model of ALS. Having found significant deficiencies in the retromer in SOD1G93A-Tg mice, 

I then followed the model of studies performed in mouse models of other neurodegenerative 

disorders by investigating whether repletion of retromer levels, either virally or pharmacologically, 

in SOD1G93A-Tg mice confers a therapeutic benefit. Surprisingly, I find that rather than 



 

 

ameliorating disease, repletion of retromer levels in SOD1G93A-Tg mice exacerbates it, resulting 

in a faster decline in motor performance, earlier mortality, and a decrease in MNs in the spinal 

cord. Finally, since retromer repletion causes deleterious effects on SOD1G93A-Tg mouse disease 

progression, I study the effect of a single allele deletion of Vps35 in SOD1G93A-Tg mice and find 

that this depletion of the retromer results in amelioration of disease, including delayed onset of 

symptomatology, slower decline of motor deficits, delayed mortality, and an increase in MNs in 

the spinal cord. Altogether, the findings reported herein, support the notion that a mild defect in 

retromer develops over the course of the disease, which, rather than being deleterious may be 

therapeutic in mutant SOD1-induced MN degeneration. Perhaps this unexpected outcome may be 

explained by the fact that the observed mild nature of the defect is not sufficient to kill MNs but 

enough to alter the trafficking of specific cargos such as AMPA receptors, allowing MNs to better 

withstand the neurodegenerative process.  
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1 Endosomal trafficking  

If the mitochondrion is the powerhouse of the cell, and the Golgi is the post office, then 

the endosome can best be characterized as the warehouse of the cell. While some enzymatic 

reactions do occur in the endosome, the majority of the materials that are brought into the 

endosome are ultimately meant for either another compartment of the cell or degradation by the 

lysosome. As such, the trafficking to and from the endosome is paramount to its function. What is 

a warehouse if nothing is ever added to or taken from it?  

The endosomal compartment can be broadly subdivided into three types of endosome: the 

early endosome (EE), the late endosome (LE), and the recycling endosome (RE). While it is 

perhaps sometimes useful to speak of these as three discrete classes of endosome, it is important 

to keep in mind that evidence suggests that these are not physically easily distinguished and that 

the continuous flow of materials and membranes among them suggests more of a continuum. That 

said, EEs, LEs, and REs are often distinguished via specific marker proteins and lipids found on 

their surfaces.  

Broadly, there are three major axes whereby endosomal trafficking takes place: endosomal 

maturation--that is, the process whereby an EE becomes an LE--, exchange with the trans-Golgi 

network (TGN), and exchange with the plasma membrane (PM). Here, I will discuss how proteins 

are processed and trafficked along these axes.  
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1.1.1 Endocytosis  

Endocytosis is perhaps one of the most versatile forms of cellular trafficking, as it shuttles, 

not only the PM’s own membrane and membrane-bound proteins, but also extracellular materials 

into the intracellular space. Thus, it can have an equally wide range of purposes in various cell 

types including regulation of synaptic and developmental signaling, hormone signaling, and 

delivery of nutrients into the cell. With only a few exceptions, the vesicles formed via endocytosis 

are ultimately delivered to the endosome. There are many forms of endocytosis, and how such 

different forms are subdivided, defined, and elucidated is hotly debated in the field. It is generally 

understood, however, that all endocytosis can be broadly divided into two forms: clathrin-

dependent and clathrin-independent. Of these, clathrin-dependent endocytosis (CDE) is the most 

deeply studied and the most widely understood. 

 CDE can be incited by numerous processes including simply random chance (Ehrlich et al. 

2004), but whatever the inciting incident, CDE begins with the recruitment of the proteins that 

make up the CDE pioneer module to the PM. First, F-BAR domain only protein 1 (FCHO1), 

FCHO2, and the adaptor protein 2 complex (AP2), bind to the PM (Henne et al. 2010; Cocucci et 

al. 2012; Taylor, Perrais, and Merrifield 2011; Umasankar et al. 2012). These adaptor proteins are 

recruited to the PM via their recognition of the specific phosphoinositide (PIP) found in the lipid 

bilayer of the plasma membrane, PI(4,5)P2 (Antonescu et al. 2011; Zoncu et al. 2007; Di Paolo and 

De Camilli 2006). Once at the PM, the adaptor proteins recruit the scaffold proteins, epidermal 

growth factor receptor substrate 15 (EPS15), EPS15-like 1 (EPS15L1), and intersectins 1 and 2, 

which cluster the adaptor proteins, forming the pioneer module (Stimpson et al. 2009; Umasankar 

et al. 2012; Ma et al. 2016; Taylor, Perrais, and Merrifield 2011; Cocucci et al. 2012; Henne et al. 

2010; Brach et al. 2014). Finally, clathrin and other associated coat proteins are recruited to the 
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pioneer module to form a clathrin-coated pit (CCP). It has been shown that one of the mechanisms 

that induces this recruitment involves the binding of PI(4,5)P2 and cargo proteins to AP2, 

which  causes a conformational change in AP2 that exposes its clathrin-binding site (Traub 2009; 

Kadlecova et al. 2017; Kelly et al. 2014; Jackson et al. 2010). 

 

 

Figure 1.1 Stages of Clathrin-Dependent Endocytosis 

Reproduced from (Kaksonen and Roux 2018) 

 

At this point, studies have pointed to a possible cargo checkpoint in which, if a certain 

amount of cargo is not present in a given CCP, the vesicle-forming process is either aborted or 

delayed, assuring that any endocytosed vesicles contain a sufficient amount of cargo to be 

transported (Mettlen et al. 2010; Mettlen et al. 2009; Carroll et al. 2012; Ehrlich et al. 2004; Loerke 

et al. 2009; Henry et al. 2012). The mechanism for this checkpoint is not well understood, but is 

hypothesized to involve the interaction between dynamin and the CCP coat (Loerke et al. 2009). 

Upon further maturation of the CCP, the molecular conformation of the clathrin coat causes the 

membrane to bend, and the vesicle undergoes dynamin-mediated scission from the PM 

(Kirchhausen and Harrison 1981; Pearse 1975; Heuser 1980). 

On the way to the endosome, the vesicle loses its clathrin coat. First, the PI(4,5)P2 in the 

vesicle is dephosphorylated to PI4P by an inositol 5-phosphatase (McPherson et al. 1996; Cremona 

et al. 1999; Varnai et al. 2006; Zoncu et al. 2007; Erdmann et al. 2007; Nandez et al. 2014). An 
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inositol 3-kinase then converts PI4P to PI(3,4)P2, which can be dephosphorylated further to PI3P 

(the PIP found in the endosome) (Posor et al. 2013; Zoncu et al. 2009). Auxilin can bind 

specifically to PI(3,4)P2 or PI3P, and once it does, it recruits heat shock cognate 71 kDa protein 

(HSC70), which consumes ATP to actively cause a steric hindrance that disrupts the clathrin coat 

(Massol et al. 2006; Schlossman et al. 1984; Braell et al. 1984; Ungewickell 1985; Barouch et al. 

1994). Once uncoated, and with an endosomal-identified lipid bilayer, the vesicle is then free to 

fuse with the endosome via a Rab5-mediated mechanism. Thus, cargo from the extracellular space 

and from the PM enter the luminal space and the lipid bilayer of the endosome, respectively. 

 

1.1.2 Golgi-to-Endosome Transport 

Once a protein has been synthesized in the rough endoplasmic reticulum and processed 

through the Golgi apparatus to the TGN, it may be localized to the endosomal compartment of the 

cell. Perhaps the best-characterized way this can happen is through a mannose-6-phosphate (M6P) 

modification which is then recognized by one of two M6P receptors (MPRs). These can be either 

cation dependent (CD-MPR) or cation independent (CI-MPR), referring to whether or not the M6P 

residue needs to be bound to a divalent cation in order to be recognized by the MPR. Once the 

MPR is bound to its cargo, it is, in turn, recognized by the adaptor protein 1 complex (AP1) and a 

family of proteins known as Golgi-localized, gamma-ear-containing, ADP-ribosylation-factor 

binding proteins (GGA) (Doray et al. 2002). These proteins recruit the MPR-cargo complex to 

endosome-fated clathrin-coated vesicles. These vesicles then undergo a process similar to those 

involved in CDE until they arrive at the endosome. 
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Once the cargo vesicle is delivered to the endosome, the relatively low pH of the endosome 

causes the MPR to release its cargo. When this cargo is a lysosomal enzyme, the enzyme remains 

inactive in the endosome until it is activated by the even lower pH of the lysosome. 

It is important to note that other cargo-recognizing proteins act in a similar way to MPRs, 

but do not require a M6P modification on the cargo protein. Indeed, in patients with I-cell disease, 

in which a deficiency in UDP-N-acetylglucoseamine-1-phosphotransferase prevents proteins from 

acquiring the M6P modification, cells still have some measure of TGN-to-endosome transport, 

with some cells not being affected at all (Kollmann et al. 2010). The VPS10 family of proteins is 

another group of cargo-recognizing proteins in the TGN-to-endosomal pathway, and includes 

sortilin and other proteins named after it: sortilin related VPS10 domain containing receptors 1, 2, 

and 3 (SORCS1, SORCS2, SORCS3), and sortilin related receptor 1 (SORL1) (Burda et al. 2002; 

Willnow, Petersen, and Nykjaer 2008; Marcusson et al. 1994). Indeed, sortilin and SORL1 are 

known to have cytoplasmic tails closely resembling that of CI-MPR, and are sorted into the same 

vesicles as CI-MPR by AP1 and the GGA (Canuel et al. 2008; Coutinho, Prata, and Alves 2012; 

Nielsen et al. 2001; Mari et al. 2008). 

 

1.1.3 Endosomal Maturation 

A protein that arrives to the EE and remains within the endosomal compartment without 

being recycled elsewhere will ultimately either be degraded or take part in degradation. This will 

occur when the endosome fuses with a lysosome, creating the endolysosome where the 

intraluminal pH is significantly lowered, and enzymes are activated such that degradation can take 

place. For this to happen, the EE must first acquire the proteins to be degraded and mature into the 

LE. 
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1.1.3.1 Multivesicular Bodies 

Besides being transported to the endosome from the PM or the TGN, proteins can enter the 

endosome directly from the cytosol through the formation of intraluminal vesicles (ILV). This 

process results in a multivesicular body (MVB), a round matured endosome which is a highly 

distinct organelle in that it contains vesicles within its lumen derived from the more tubular system 

of the early endosome. The molecular process of MVB formation is mediated via a series of 

complexes known as the endosomal sorting complex required for transport (ESCRT) system. The 

ESCRT system involves 4 complexes, ESCRT-0, -I, -II, and -III, and the process by which the 

interaction of these complexes with protein cargoes results in the formation of ILVs has only 

recently been better understood and is currently heavily studied.  

A protein, either in the cytosol or bound to a membrane, is targeted to the MVB via the 

addition of ubiquitin moieties, which are recognized by several proteins in the early acting ESCRT 

complexes (Raiborg and Stenmark 2009). The first of these, ESCRT-0, is made up of two proteins-

-Hrs and STAM--, each of which has two low-affinity ubiquitin-binding motifs (Hofmann and 

Falquet 2001; McCullough et al. 2006; Mayers et al. 2011; Mizuno et al. 2003; Ren and Hurley 

2010). Hrs also has a PI3P-binding motif, thus tethering ubiquitinated proteins to the endosomal 

membrane (Gaullier et al. 1998; Burd and Emr 1998; Raiborg et al. 2001). Finally, ESCRT-0 can 

multimerize, both by binding directly to other ESCRT-0 complexes and by binding to clathrin, 

which can form a flat lattice (Mayers et al. 2011; Takahashi et al. 2015; Sachse et al. 2002; Raiborg 

et al. 2001; Raiborg et al. 2002). All this together makes it so that ESCRT-0 creates an area with 

a high concentration of ubiquitin-binding motifs that recruit ubiquitin-tagged proteins to one area 

of the endosomal membrane. 
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In contrast to that of ESCRT-0, the mechanisms of ESCRT-I and ESCRT-II are far less 

understood. It is known that ESCRT-0 can bind ESCRT-I, which, in turn, can bind ESCRT-II, 

which itself recruits ESCRT-III (Bache et al. 2003; Katzmann et al. 2003; Lu et al. 2003; 

Kostelansky et al. 2007; Teo et al. 2004; Teo et al. 2006). Furthermore, proteins in both ESCRT-I 

and ESCRT-II contain ubiquitin binding domains that display a much higher binding affinity for 

ubiquitin than for ESCRT-0, but each ESCRT-I or ESCRT-II complex only contains one ubiquitin 

binding domain (Garrus et al. 2001; Agromayor et al. 2012; Slagsvold et al. 2005; Hirano et al. 

2006; Alam et al. 2006). Thus, it is thought that the purpose of ESCRT-0 is to create a local area 

of relatively high concentration of ubiquitinated proteins which are then passed more 

discriminatingly to ESCRT-I and ESCRT-II. However, whether these complexes serve some sort 

of discriminatory function or how they would do that is an area of active investigation. 

 

 

Figure 1.2 Interactions Within the ESCRT Machinery 

Reproduced from (Raiborg and Stenmark 2009) 

 

Once ESCRT-0, ESCRT-I, and ESCRT-II have been sequentially recruited, ESCRT-II 

recruits ESCRT-III to the endosomal membrane. The ESCRT-III complex is made up of at least 
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four essential subunits in yeast: Vps2, Vps20, Vps24, and Vps32, termed charged multivesicular 

body proteins (CHMP) 2, 6, 3, and 4 respectively in mammals (Teis, Saksena, and Emr 2008). 

ESCRT-II recruits ESCRT-III via the direct binding of its Vps25 subunit to Vps20 (Teo et al. 

2004). This binding causes a nucleation event that activates inactive Vps32 subunits in the cytosol, 

which then polymerize in a coiled filamentous chain from the Vps20 base (Saksena et al. 2009; 

Teis, Saksena, and Emr 2008). Bro1--termed ALIX in mammals--binds both the Tsg101 subunit 

of ESCRT-I and Vps32, helping stabilize this oligomerization event (von Schwedler et al. 2003; 

McCullough et al. 2008; Katoh et al. 2003; Pires et al. 2009; Pashkova et al. 2013). Finally, this 

chain is capped by Vps24 and Vps2 (Teis, Saksena, and Emr 2008; Saksena et al. 2009).  

The coiled chain of ESCRT-III serves two purposes. First, it allows for the deubiquitination 

of cargoes. Once the early ESCRT complexes have gathered the cargoes to be engulfed into the 

MVB via association with the ubiquitin modification, they need to be deubiquitinated to recycle 

and avoid the quick depletion of cell reserves of ubiquitin. To this end, ESCRT-III along with 

ALIX and the STAM subunit of ESCRT-0 recruit deubiquitinating enzymes (Amerik et al. 2000; 

Swaminathan, Amerik, and Hochstrasser 1999; Row et al. 2006; Mizuno et al. 2006; McCullough 

et al. 2006). The tight coil of ESCRT-III keeps the newly deubiquitinated cargo from diffusing 

away from the bud (Nickerson, Russell, and Odorizzi 2007; Teis et al. 2010). The second and 

arguably most important purpose of ESCRT-III is membrane abscission. While in CME, dynamin 

creates a tight coil around the stalk that brings membranes together and cuts a vesicle off, ESCRT-

III does the same thing, but from the inside of the stalk. It has been shown that once the Vps32 coil 

has been capped by Vps24 and Vps2, this cap recruits Vps4, an ATPase that can force the 

disassembly of the coil (Lata et al. 2008; Ghazi-Tabatabai et al. 2008; Saksena et al. 2009). How 
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exactly this disassembly results in vesicular budding, and how ESCRT machinery manages to not 

be trapped within the vesicle are not fully understood and are areas of active investigation. 

It is important to note that while the loading of ubiquitinated proteins into the ILVs is best 

understood, this is not the only method whereby cargo enters the ILVs. Indeed, these vesicles 

contain not just proteins, but also often RNA, which may enter the vesicles via association to RNA-

binding proteins or even simply random loading of cytoplasm into the vesicle (Shurtleff et al. 2016; 

Yang et al. 2004; Yamashita et al. 2008; Wurmser and Emr 1998). 

 Once the MVB has been formed from an EE, it can have one of multiple fates: fusion with 

the PM, fusion with an autophagosome to create an amphisome, or terminal maturation into a late 

endosome, and ultimately an endolysosome. The mechanism by which an MVB fuses with the PM 

is poorly understood, but, nonetheless, it results in the release of its ILVs into the extracellular 

space as exosomes which can have a variety of functions depending on cell type, environment, and 

the cargo released in the exosomes (Raposo and Stoorvogel 2013).  

 

1.1.3.2 Maturation of the Endosomal Membrane 

 Above, I briefly mentioned that certain proteins and lipids can be found on the surfaces of 

different types of endosomes, differentiating them from each other. These markers often play an 

essential role in trafficking and defining the molecular composition of the endosome. In this 

section, I will outline some of the ways in which the markers on endosomal membranes aid the 

function of the endosome and how the markers found on EEs change as the endosome matures 

into a LE in preparation to form the degradative endolysosome. 

 Perhaps the most important and well-known marker of EEs and LEs are the Rab GTPases 

(hereafter referred to as just Rabs) found on their surfaces. A Rab is a class of peripheral membrane 



10 

 

proteins which direct protein machinery to specific organelles, which is crucial for the correct 

sorting of trafficked vesicles to particular organelles (Wandinger-Ness and Zerial 2014). Rabs exist 

in one of two states: the GTP-bound form is active while GDP-bound form is inactive. In order to 

switch between these two states, they require two regulatory proteins: the guanine nucleotide 

exchange factor (GEF) replaces the Rab-bound GDP for GTP, activating the Rab, while the 

GTPase activating protein (GAP) activates the GTPase activity of the Rab, hydrolyzing its bound 

GTP to GDP, inactivating it. The specificity of localization of Rab proteins to their membranes is 

controlled by a combination of their activation state and binding by GDP dissociation inhibitor 

(GDI). Rab proteins have a hydrophobic prenyl group modification which anchors them to the 

lipid bilayer. In their inactive state, GDIs bind the prenyl group, making the Rab soluble, and 

detaching it from the membrane (Goody, Muller, and Wu 2017). Thus, Rabs are only localized 

and associated to membranes in their activated state, making the localization of GEFs one of the 

main ways in which Rabs are targeted to specific organelles (Kummel and Ungermann 2014; Yu 

and Hughson 2010). Membrane-tethered active Rabs can then recruit other proteins, termed 

effectors to serve any of a number of functions in vesicle trafficking (Vetter and Wittinghofer 

2001). While many different Rabs are expressed on the membranes along the endosomal-

lysosomal pathway, the primary Rabs that direct vesicular transport and fusion on the membranes 

of EEs and LEs are Rab5 and Rab7, respectively (Rink et al. 2005; Poteryaev et al. 2010).  

 The first step in the formation of the EE involves the identification of a cargo to be 

trafficked to the EE. A membrane cargo that has been endocytosed is ubiquitinated by any of a 

host of ubiquitin ligases; the ubiquitin moiety is recognized by Rabex5, the Rab5 GEF, which 

consequently activates Rab5, recruiting it to the membrane (Lee et al. 2006; Mattera et al. 2006). 

Activated Rab5 can then recruit a number of effectors, among them Rabaptin5, which itself can 
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then recruit Rabex5 (Horiuchi et al. 1997). This creates a positive feedback loop which results in 

a high concentration of Rab5 at the membrane of the vesicle carrying the cargo, making it an EE-

identified membrane which can be fused with the EE. Of the effectors Rab5 recruits, early 

endosome antigen 1 (EEA1) and the class C core vacuole/endosome tethering (CORVET) complex 

are essential to the tethering and fusion of vesicles to be incorporated into the EE, as they 

coordinate the activity of proteins called soluble N-ethylmaleimide-sensitive factor attachment 

protein receptors (SNARE) (de Renzis, Sonnichsen, and Zerial 2002; Perini et al. 2014; Lachmann 

et al. 2014; Balderhaar et al. 2013; Ohya et al. 2009). SNAREs are long membrane-bound proteins 

that induce membrane fusion between vesicles and organelles by coiling together tightly, bringing 

the membranes close enough together to fuse (Jahn and Scheller 2006; Sudhof and Rothman 2009). 

While SNAREs can induce lipid bilayer fusion independently in vitro, at physiological conditions, 

EEA1 and the CORVET complex are needed to coordinate SNARE activity between vesicles and 

the EE (Starai, Jun, and Wickner 2007). Another important Rab5 effector is the class III 

phosphatidylinositol 3-kinase (PI3K) complex, which phosphorylates phosphatidylinositol (PI) to 

PI 3-phosphate (PI3P) (Shin et al. 2005). The synthesis of PI3P at the EE membrane is crucial, as 

PI3P is heavily involved in the to the identity of the EE membrane and in the binding of EE-

specific proteins to the EE membrane. Indeed, EEA1 is localized to the EE via its binding of both 

Rab5 and PI3P (Stenmark et al. 1996; Lawe et al. 2002). 

 The process of the maturation of an EE to a LE involves a process called Rab conversion 

whereby Rab5 is stripped from the endosomal membrane and is replaced by Rab7 (Rink et al. 

2005). Rab conversion takes place on the surface of an MVB, and is started when Rab5 and PI3P 

recruit the Mon1-Ccz1 complex to the membrane of the EE (Poteryaev et al. 2010; Lawrence et 

al. 2014; Cabrera et al. 2014). The Mon1 of the complex displaces Rabex5 from the membrane, 
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preventing further recruitment of Rab5 to the endosomal membrane, while the Ccz1 of the complex 

functions as a Rab7 GEF, recruiting Rab7 to the membrane (Poteryaev et al. 2010; Nordmann et 

al. 2010; Poteryaev et al. 2007; Cabrera et al. 2014). Rab7 then recruits TBC2, the Rab5 GAP, 

which actively inactivates and detaches Rab5 from the endosomal membrane (Haas et al. 2005). 

 Once the endosomal membrane is marked with Rab7 rather than Rab5, it is termed the LE. 

In the LE, Rab7 recruits its own effector proteins to coordinate trafficking and membrane fusion. 

The Rab7 effector complex homotypic fusion and protein sorting (HOPS) is the LE corollary to 

CORVET, and, in fact, shares four of its subunits with CORVET (Spang 2016; Balderhaar et al. 

2013). Like CORVET in the EE, HOPS mediates vesicle tethering and fusion at the membrane of 

the LE. The process of maturation to the LE also involves the exchange of PI3P at the membrane 

for PI(3,5)P2, the PIP that typifies LE membranes, which occurs via three axes: PI3P is directly 

phosphorylated to PI(3,5)P2 by the kinase PIKfyve; excess PI3P is dephosphorylated to PI by a 

class of proteins called myotubularins; and the Rab7 effectors, suppressor of organelle fusion 

(SORF), inhibit the catalytic activity of PI3K, preventing the synthesis of more PI3P (Zolov et al. 

2012; Cao et al. 2008; Liu et al. 2016; Poteryaev et al. 2010; Robinson and Dixon 2006; Gary et 

al. 1998). Finally, while EEs are relatively acidic compared to the cytosol and TGN, as they mature 

into LEs, and finally endolysosomes, the pH of endosomes gradually decreases. This is mediated 

by vacuolar ATPase (V-ATPase), a proton pump that acidifies the lumen. While V-ATPase is 

found on the membrane of many organelles, LEs and lysosomes actively recruit it via the Rab7 

effector, Rab interacting lysosomal protein (RILP) (De Luca et al. 2014; Gary et al. 1998). 
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1.1.4 Macroautophagy 

 Macroautophagy is the process by which the cell, as the name would suggest, eats large 

parts of itself. Macroautophagy (hereafter referred to as just autophagy) is generally induced by 

different forms of cellular stress. It can therefore serve multiple functions including clearance of 

abnormal protein aggregates, clearance of old or damaged organelles, and breaking down of 

cellular proteins and structures for the recycling of nutrients during cellular starvation. Autophagy 

can broadly be said to have 4 steps: initiation via nucleation of a membranous structure known as 

the phagophore, elongation of the phagophore, envelopment of material to be degraded by the 

phagophore to form the autophagosome, and fusion of the autophagosome with either the 

endosome or the lysosome to form either an amphisome or an autolysosome, respectively.  

 

 

Figure 1.3 Overview of Autophagy 

Reproduced from (Zhao and Zhang 2019) 

 



14 

 

 Initiation of autophagy can occur via any of a number of pathways, but these all converge 

into a common pathway that begins with the inactivation of mammalian target of rapamycin 

complex 1 (mTORC1) (Kim et al. 2002; Noda and Ohsumi 1998). mTORC1 normally inhibits the 

unc-51-like kinase (ULK) complex formation via the phosphorylation of its components ULK1 

and ULK2 (Hosokawa et al. 2009). No longer inhibited, the ULK complex can form, recruited to 

the endoplasmic reticulum (ER) by resident proteins VAPA and VAPB (Karanasios et al. 2016; 

Zhao, Liu, et al. 2018). At the ER membrane, ULK recruits the PI3K complex to make a PI3P-

dense region known as the omegasome, which serves as the platform for the nucleation and 

elongation of the phagophore (Itakura and Mizushima 2010; Zhao and Zhang 2018; Axe et al. 

2008).  

The origin of the membrane that forms the phagophore adjacent to the omegasome has 

proven to be elusive. It is known that ATG9-tagged vesicles, which are normally involved in 

trafficking between the TGN and the endosome, are incorporated in the phagophore, but evidence 

exists that points to multiple organelles possibly contributing membrane to the phagophore, 

including the PM, mitochondria, ER, endosomes, and Golgi (Lamb, Yoshimori, and Tooze 2013; 

Karanasios et al. 2016; Hailey et al. 2010; Ravikumar et al. 2010; Orsi et al. 2012; Ge et al. 2013; 

Graef et al. 2013; Puri et al. 2013). Whatever its origin, the phagophore membrane needs to be 

modified to include a family of proteins known as light chain 3 (LC3) which are membrane 

markers vital to the function of the autophagosome.  Proteins at the membrane of the phagophore 

including the PI3K complex recruit the ATG12-ATG5:ATG16L complex, which conjugates LC3 

to phosphatidylethanolamine (PE), a lipid that anchors the normally soluble LC3 to the phagophore 

membrane (Kabeya et al. 2000; Mizushima et al. 2003; Mizushima et al. 1998; Nakatogawa et al. 

2009; Itoh et al. 2008).  
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When the phagophore has been successfully formed, MTMs in the membrane decrease 

levels of PI3P, inducing dissociation of the machinery used to create the phagophore, and the ER 

protein VMP1 mediates detachment of phagophore from the ER (Vergne et al. 2009; Cebollero et 

al. 2012; Zhao et al. 2017). Once detached from the ER, the phagophore can envelop cytosolic 

material and organelles, forming a double membraned structure known as the autophagosome. The 

closing of the autophagosome is mediated by ESCRT machinery similar to the formation of the 

MVB (Takahashi et al. 2018; Rusten and Stenmark 2009; Yu and Melia 2017). 

The fusion of the autophagosome and the endosome or lysosome begins with the tethering 

of their membranes by dedicated tether proteins which bind to markers of each membrane, often, 

but not always Rab7 and an LC3. Such tether proteins include EPG5, PLEKHM1, BRUCE, and 

GRASP55 to name a few (Wang, Miao, et al. 2016; McEwan et al. 2015; Ebner et al. 2018; Zhang, 

Wang, et al. 2018). Once the autophagosome has been tethered to the endosome or lysosome, 

HOPS machinery at the autophagosome mediates the fusion of the membranes (Jiang, Nishimura, 

et al. 2014; Takats et al. 2014). This machinery is recruited by UVRAG, which itself is recruited 

by protein associated with UVRAG as autophagy enhancer (Pacer), a protein bound to the 

autophagosome via interaction with the autophagosome-specific SNARE, STX17, and with the 

autophagosome’s PIPs (Cheng et al. 2017; Liang et al. 2008).  

Once the outer membrane of the autophagosome has fused with the endosome or lysosome, 

the resultant amphisome or autolysosome, respectively, contains an ILV composed of the 

autophagosome’s inner membrane and the material within it that was phagocytosed. This ILV is 

reminiscent of a much larger version of those found in MVBs, and can be trafficked and degraded 

similarly.  
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1.1.5 Recycling 

 I have thus far discussed the processes whereby a protein cargo can enter the endosomal 

compartment and how such cargoes can be degraded. However, many proteins that enter the 

endosome are not meant to be immediately degraded. If that were the case, it would make the 

endosome an ultimately useless organelle that only became useful on merging with a lysosome. 

Moreover, it would increase the rate of degradation of many proteins to the point of extreme 

inefficiency. A receptor at the PM would only be able to be stimulated and endocytosed once 

before being destroyed. Any given MPR would only be able to deliver a single cargo before being 

stuck in the endosome and degraded. Finally, it would create the absurd situation where the PM 

and the TGN quickly depleted their membrane lipids by transporting them to the endosome. 

Indeed, it is essential that the endosome transport lipids and cargoes back to the PM and TGN at a 

highly coordinated rate. 

 The process by which a protein is exported from the endosome to either the PM or the TGN 

is called recycling. There are myriad ways in which recycling can occur, and of the endosomal 

trafficking pathways, recycling is perhaps the least well understood. However, in recent years, 

great strides have been made in the study of endosomal recycling. Endosomal recycling is broadly 

subdivided into two categories: the fast recycling pathway, which involves the direct recycling 

from the EE or LE to the PM or TGN; and the slow recycling pathway, which involves trafficking 

through the RE as an intermediate compartment. Here, I will discuss some of the better understood 

mechanisms in these categories of endocytic recycling. 
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1.1.5.1 Slow Recycling 

 Above, I discussed the subdivision of endosomes into early endosomes, late endosomes, 

and recycling endosomes. While I have thus far discussed EEs and LEs in detail, I have yet to 

address the RE. This is in part due to its specialized role in recycling, a pathway distinct from the 

ones mentioned above, but it is at least also partly due to its significantly more murky definition. 

The defining of the RE is significantly more recent than that of the EE or LE, and the structure we 

now call the RE was previously indistinguishable from the EE. However, while the RE remains a 

relative mystery, certain molecular markers and morphological peculiarities have helped to shed 

some light on what it is and how it functions. 

The RE is an endosomal compartment dedicated to the recycling of proteins to the cell 

surface. Particularly, endocytosed PM receptors, when brought to the EE, may be trafficked to the 

RE to then be released back to the PM (Marsh et al. 1995). In most cells, REs seem to be localized 

to the endocytic recycling compartment (ERC), a tubulovesicular compartment located 

perinuclearly at the microtubule-organizing center (MTOC) (Ghosh et al. 1998; Burkhardt et al. 

1997; Soldati and Schliwa 2006). However in some cell types--such as neurons--, REs can be more 

spread out throughout the cell (Joensuu et al. 2017).  

The Rab that has been historically used to define REs is Rab11, which seems to be an 

important moderator of ERC structure and of trafficking to and from REs (Pasqualato et al. 2004; 

Ren et al. 1998; Baetz and Goldenring 2013). However, whether Rab11 is as cohesive a moderator 

and definer of REs as Rab5 and Rab7 are of EEs and LEs is unknown, as Rab8 has also proven an 

important regulator in RE function. Indeed, it is uncertain whether Rab11 and Rab8 are localized 

to the same membrane or to distinct subcompartments of the ERC (Roland et al. 2007). While 

Rab8 and Rab11 have distinct effectors that contribute to RE function and structure, both share 
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some effectors, and Rab11 can interact with the Rab8 GEF, Rabin8 (Knodler et al. 2010). 

However, the actual mechanisms whereby Rab8, Rab11, and their various effectors contribute to 

ERC structure and protein recycling remain elusory. 

 

1.1.5.2 Rapid Recycling 

 While the nature of the RE has made the mechanisms of slow endosomal recycling 

somewhat of an enigma, some of the more direct mechanisms of rapid recycling from the EE or 

LE to the PM or TGN are better understood, particularly through recent years’ studies. 

 

1.1.5.2.1 Retromer  

 The retromer complex is perhaps the best characterized form of endosomal recycling, at 

least in part due to its known involvement in multiple diseases, particularly neurodegenerative 

diseases, a connection that I will explore in a later section (Small and Petsko 2015). The retromer 

is an ancient recycling pathway vital to the proper trafficking of a diverse set of cargoes in all 

eukaryotes (Burd and Cullen 2014). Here, I will discuss the function of the retromer in direct 

trafficking from the endosome to both the PM and the TGN. 

 The retromer is composed of a number of subcomplexes and associated machinery, but is 

generally understood to be defined by its core, which is composed of a trimer of vacuolar protein 

sorting-associated protein 26 (Vps26), Vps29, and Vps35 (Seaman 2005; Hierro et al. 2007; Haft 

et al. 2000). In mammals, Vps26 has two paralogues, Vps26a and Vps26b, which, while having 

mostly redundant functions, have been shown to behave in some distinct ways (Kerr et al. 2005; 

Collins et al. 2008; Gallon et al. 2014). Specifically, the retromer with Vps26b has been shown to 

be less able to recycle CI-MPR, and the two paralogs are found differentially expressed both in 
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different tissues and in different subcellular localization with Vps26a being expressed in a more 

broad selection of tissues and more commonly found associated to the endosome (Bugarcic et al. 

2011; Kim et al. 2010). 

 

 

Figure 1.4 Composition of the Retromer Complex 

Reproduced from (Cullen and Steinberg 2018) 

 

In yeast, where the retromer was first described, the retromer core subcomplex is crucially 

associated to Vps5 and Vps17, two members of a family of proteins known as sorting nexins 

(SNX) (Seaman et al. 1997; Horazdovsky et al. 1997). SNX proteins are defined by the inclusion 

of a phox-homology (PX) domain, an inositol- and protein-binding domain crucial to SNX protein 

function (Chandra and Collins 2018; Teasdale and Collins 2012). In mammals, the function of 

Vps5 can be performed by one of a few different SNX proteins, which can lead to differential 

retromer functions from different associated SNX proteins. The best-established retromer-

associated SNX proteins in mammals are SNX3 and SNX27, with a close homologue of SNX3, 

SNX12, being proposed as another possibility (Simonetti et al. 2017; Priya et al. 2017; Harterink 
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et al. 2011; Temkin et al. 2011; Steinberg et al. 2013). Another SNX complex, known as the SNX-

BAR heterodimer, was originally thought to also fill this function in mammals, but this has recently 

been put into question. Here, I will first describe the function of the retromer and its interactions 

with SNX proteins, and later discuss why the SNX-BAR heterodimer may work independently of 

the retromer.   

As a first step of retromer function, a number of subunits of the retromer complex are 

recruited to the endosome through a combination of endosomal markers and recognition of 

membrane-associated cargoes to be transported. Evidence suggests that the core complex is 

recruited via the direct interaction between Vps35 and Rab7 (Priya et al. 2015; Rojas et al. 2008; 

Seaman et al. 2009; Harrison et al. 2014). One study has suggested that this interaction occurs 

specifically during the process of Rab conversion in endosomal maturation (Rojas et al. 2008). 

The bond between SNX proteins and the core complex is also crucial in the recruitment of retromer 

to the endosome. SNX3 and SNX27 have been shown to bind PI3P via their PX domain, thus 

recruiting them to the endosomal membrane (Xu et al. 2001; Ghai et al. 2011; Ghai et al. 2015). 

They can then influence the structure and binding of the core complex by binding Vps26, with 

SNX3 having a second lower-affinity interaction with Vps35 (Gallon et al. 2014; Steinberg et al. 

2013; Lucas et al. 2016). 

The retromer machinery has the ability to recognize cargo to be recycled, usually via motifs 

on the cytosolic side of a transmembrane protein. This not only serves to recruit retromer 

machinery to the endosome, but also to ensure that the correct cargoes are being specifically 

recycled by the retromer. In both the SNX27- and SNX3-retromer, it has been shown that direct 

binding of the SNX protein to Vps26 promotes recognition of the cargo. Specifically, the point of 

direct interaction between SNX3 and Vps26 creates a binding surface which can recognize cargo 
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proteins, and the interaction between SNX27 and Vps26 causes a conformational change in 

SNX27 such that its protein-binding psd95/dlg/zo‐1 (PDZ) domain binds cargoes with a 

significantly higher affinity (Lucas et al. 2016; Gallon et al. 2014). Furthermore, it has been shown 

that the modification of the cargoes can cause them to be specifically targeted to be recycled by 

the SNX27-retromer. A kinase, such as G protein-coupled receptor kinase 5 (GRK5), may 

phosphorylate a cargo on its PDZ-binding surface either increasing or decreasing the affinity of 

the surface for the PDZ domain of SNX27 (Cao et al. 1999; Clairfeuille et al. 2016). This has been 

shown to be the case for a number of retromer cargoes including the β2-adrenergic receptor, and 

N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 

(AMPA) glutamate receptors (Clairfeuille et al. 2016). 

At the endosome, the retromer machinery disrupts the membrane to form a tubule where 

cargoes are concentrated. How this tubulation occurs in mammals is currently an open question, 

and studies have pointed to a number of proteins associated with the retromer machinery, including 

EH domain‐containing protein 1 (EHD1), that may be involved (Cai et al. 2013; Caplan et al. 

2002). In yeast, Vps5 and Vps17, besides containing a PX domain, also contain a 

bin/amphiphysin/rvs (BAR) domain, which has a curved shape that can cause membrane 

tubulation (Teasdale and Collins 2012; Horazdovsky et al. 1997; Seaman et al. 1997). The 

mammalian proteins SNX1, SNX2, SNX5, and SNX6 also containing BAR domains and form a 

heterodimer of SNX1 or SNX2 with SNX5 or SNX6, the aforementioned SNX-BAR heterodimer 

(Carlton et al. 2004). SNX1 and SNX2 are homologues of Vps5, and SNX5 and SNX6 are 

homologues of Vps17. Due to a combination of this homology and the fact that the SNX-BAR is 

localized to the same endosome as the retromer, it has long been understood that the SNX-BAR 

heterodimer performed the same function in mammals as Vps5 and Vps17 do in yeast (Carlton et 
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al. 2005; Kvainickas et al. 2017; Rojas et al. 2007). However, recent studies have shown that this 

is unlikely to be the case. While the heterodimer can interact with the retromer core, the affinity is 

relatively weak compared to that between the core and SNX3 or SNX27 (Simonetti et al. 2017; 

Steinberg et al. 2013; McGough et al. 2018). Also, while both the retromer and SNX-BAR 

complexes occupy the endosomal membrane, it has been shown through super‐resolved stimulated 

emission depletion (STED) microscopy that retromer and SNX1 occupy distinct sublocations of 

said membrane (Kvainickas et al. 2017). Finally, studies have shown that the SNX-BAR 

heterodimer can, independently from the retromer, recycle CI-MPR to the TGN (Kvainickas et al. 

2017). Thus, while it seems that the retromer and the SNX-BAR heterodimer perform similar 

functions, and have some ability to interact, it is becoming more and more apparent that they are 

not as functionally close as was previously assumed. 

Once recruited to the endosomal membrane, the retromer recruits a number of accessory 

proteins. Among these are Tre‐2/Bub2/Cdc16 1 domain‐containing 5 (TBC1D5) and Vps9‐

ankyrin repeat protein (VARP) (Jimenez-Orgaz et al. 2018; Hesketh et al. 2014). TBC1D5 binds 

to Vps29 and is a Rab7 GAP whose Rab7-inactivating activity is crucial to the coordination of 

endosomal maturation with retromer recycling (Borg Distefano et al. 2018; Seaman, Mukadam, 

and Breusegem 2018; Jimenez-Orgaz et al. 2018; Jia et al. 2016). The inactivation of Rab7 delays 

the maturation of the endosome as long as there are retromer complexes attached to the endosomal 

membrane, so that only once the retromer has removed the cargoes to be recycled can Rab 

conversion be completed. VARP also binds Vps29 and serves a similar function in that VARP 

binds vesicle-associated membrane protein 7 (VAMP7), a SNARE protein crucial to the fusion of 

the endosome with the lysosome (Hesketh et al. 2014; Schafer et al. 2012). Thus until the retromer 
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has gathered its cargoes and VAMP7 is no longer sequestered by retromer-bound VARP, the 

endosome cannot fuse with a lysosome and begin the process of protein degradation. 

FAM21 is recruited by Vps35 and is the largest protein in a pentamer known as the 

Wiskott–Aldrich Syndrome protein and scar homology (WASH) complex, the other members of 

which are WASH1, CCDC53, strumpellin, and SWIP (Harbour, Breusegem, and Seaman 2012; 

Jia et al. 2012). The WASH complex is crucial in the recruitment and initiation of the actin-related 

protein 2/3 (Arp2/3) complex (Derivery et al. 2009; Gomez and Billadeau 2009; Jia et al. 2010). 

Arp2/3 serves as a nucleation site for actin polymerization and branching, which is essential to the 

stabilization and eventual scission of the recycling tubule from the endosome (Gomez et al. 2012; 

Derivery et al. 2012). Much like with the formation of the recycling tubule, the scission of the 

tubule from the endosome is still largely not understood, and multiple retromer-associated proteins 

have been thought to be involved, including EHD1 (Simunovic et al. 2017). 

The retromer recycling tubule, once excised from the endosome, gets transported either to 

the TGN or to the PM. Due to the interaction of SNX27 with a functional domain most commonly 

found on PM proteins, it is thought that the SNX27-retromer specifically mediates recycling to the 

PM, though the precise mechanism for this is not currently understood. Indeed, due to the recent 

revelation that the SNX-BAR heterodimer may not be directly involved in retromer function, much 

of what was previously understood about the transport of retromer-coated vesicles has been put to 

question. It has been previously shown that SNX6 interacts directly with the dynein/dynactin 

motor complex, which mediates retrograde transport along microtubules in the cell (Wassmer et 

al. 2009; Hong et al. 2009). And indeed, dynein dysfunction and retromer dysfunction show similar 

effects in endosomal missorting (Kimura et al. 2016). Thus, while it is possible, and even likely 

that retromer-coated vesicles are trafficked by the dynein/dynactin motor complex, how exactly 
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this interaction occurs may not be as clear as once thought. Similarly, the independence of the 

SNX-RAB heterodimer from the retromer has also led some to believe that despite previous study, 

the retromer may not even be involved in the trafficking of what was once considered its main 

model cargo, CI-MPR. However, recent studies have quelled that theory with an apparent middle 

ground. CI-MPR is indeed trafficked by a number of different, apparently redundant mechanisms 

including the retromer complex. However, the TGN receives these cargoes via three different 

golgins, golgin-97, golgin-245 and GCC88, depending on the vesicle’s mechanism of origin. 

Retromer-coated vesicles are docked to the TGN via interaction with GCC88, the SNX-BAR 

heterodimer uses golgin-245, and an as yet unknown mechanism uses golgin-97 (Cui et al. 2019). 

Meanwhile docking of retromer-coated vesicles to the PM remains somewhat of a mystery. 

 

1.1.5.2.2 COMMander 

 A much more recently discovered endosomal recycling system involves the COMMander 

complex. While it is not nearly as well characterized as the retromer complex, certain structural 

and functional similarities to the retromer have eased the process of unravelling the mechanism of 

the COMMander complex. The COMMander is mainly identified through two subcomplexes: the 

retriever heterotrimer and the COMMD/CCDC22/CCDC93 (CCC) (Mallam and Marcotte 2017; 

McNally et al. 2017; Bartuzi et al. 2016). However, before either of these subcomplexes had been 

found, what had been established was that there was an unknown link between SNX17 and the 

WASH complex that recycled certain cargoes from the endosome independently of the retromer 

(Lee et al. 2008; Steinberg et al. 2012; McNally et al. 2017). Here, I will describe what is currently 

known of the COMMander complex. 
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 The similarities between the retromer and the COMMander start with SNX17, which is a 

homologue of SNX27. As a SNX protein, SNX17 has a PX domain that can recognize PI3P, 

recruiting it to the endosome (Ghai et al. 2011). Unlike SNX27, SNX17 does not have a PDZ 

domain, but rather can recognize cargoes directly through its 4.1/ezrin/radixin/moesin (FERM) 

domain, which it has in common with SNX27 (Ghai et al. 2013; McNally et al. 2017). SNX17 has 

also been shown to directly bind the retriever complex (McNally et al. 2017). 

 

 

Figure 1.5 Composition of the COMMander Complex 

Reproduced from (Cullen and Steinberg 2018) 

 

 The retriever complex, is highly similar to the retromer complex in that of its three 

component proteins, one, Vps29, is shared, and the other two are so closely homologous in 

structure (though not sequence), that they have been renamed from chromosome 16 open reading 

frame 62 (C16orf62) and Down syndrome critical region protein 3 (DSCR3) to Vps35l and 

Vps26c, respectively (McNally et al. 2017). Again, similar to the retromer and its associated SNX 



26 

 

proteins, the assembled retriever complex seems to be recruited to the endosome via the direct 

interaction between SNX17 and Vps26c (McNally et al. 2017; Gallon et al. 2014). Importantly, 

while a direct interaction between the retromer and its cargoes has been shown, there is currently 

no evidence that the retriever complex interacts with cargoes directly rather than through common 

association to SNX17. 

 While both the retromer and retriever require the recruitment of the WASH complex for 

the formation of recycling tubules, retriever requires an intermediary whereas retromer does not 

(Harbour, Breusegem, and Seaman 2012; Phillips-Krawczak et al. 2015). To form the entire 

COMMander complex, retriever must bind the CCC complex, which is composed of coiled‐coil 

domain‐containing protein 22 (CCDC22), CCDC93, and 10 members of the copper metabolism 

mouse U2af1‐rs1 region 1 domain (COMMD) family (Wan et al. 2015; Mallam and Marcotte 

2017). It is currently unclear how many or what combination of the COMMD1 - COMMD10 

proteins are necessary for the formation of the CCC complex, and indeed, it is possible that 

different combinations of them can form functionally distinct CCC complexes. Various COMMD 

proteins have been shown to bind known COMMander cargoes, which provides evidence for this 

possibility (Li et al. 2015; Bartuzi et al. 2016; Phillips-Krawczak et al. 2015). However, while the 

function of the COMMD proteins is not well understood, it is known that the CCDC22 and 

CCDC93 proteins can bind both the retriever complex and FAM21, providing the basis for the 

recruitment of WASH, which likely leads to a tubulation cascade similar to the one that occurs in 

the retromer, though the study of the COMMander complex-associated WASH complex has not 

been as robust as the retromer-associated WASH complex (Phillips-Krawczak et al. 2015). 
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1.2 Retromer in Neurodegenerative Disease 

 Given the retromer’s central role in endosomal trafficking, it makes sense that the 

dysfunction of the retromer would cause significant cellular dysfunction and disease pathology. 

Indeed, the knocking out of Vps35 or Vps26a has proven to be embryonically lethal in mice, 

though the knockout of Vps26b causes no overt pathology (Wen et al. 2011; Lee et al. 1992; Kim 

et al. 2010). Further studies have shown an important role for the retromer in multiple diseases, 

particularly neurodegenerative diseases, which is currently the subject of widespread study. In this 

section, I will review the studies that have been performed on how the retromer is connected to 

such diseases. 

 

1.2.1 Alzheimer’s Disease 

 Alzheimer’s disease (AD) is both the most common neurodegenerative disease and the 

most common cause of dementia (Ballard et al. 2011). While usually sporadic in origin, AD has 

been shown to be associated with a number of genetic mutations (Nikolac Perkovic and Pivac 

2019). AD is characterized pathologically by the accumulation in the brain of intracellular 

neurofibrillary tangles (NFTs) and plaques of toxic β-amyloid (Aβ) peptide (De Strooper 2010; 

Zheng and Koo 2011). NFTs are formed by the microtubule-associated protein tau, while Aβ is 

the product of the successive cleavage of amyloid precursor protein (APP) through β- (BACE1) 

and ϒ-secretase (Citron et al. 1992; Cai, Golde, and Younkin 1993; De Strooper 2010; Gendron 

and Petrucelli 2009). The cleavage of APP by BACE1 occurs predominantly in the EE, whereas 

the alternative non-toxic cleavage of APP to APPα by α-secretase occurs at the PM, thus the 

sequestering of APP to the endosome promotes the production of toxic Aβ (Sisodia 1992; Jiang, 

Li, et al. 2014; Checler 1995; Parvathy et al. 1999; Komano et al. 1998).  
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 AD was the first disease to be associated to retromer dysfunction when a microarray study 

performed on the AD-affected entorhinal cortex from patients showed a decrease in the expression 

of VPS35, and a follow-up protein analysis showed a decrease in both VPS35 and VPS26A (Small 

et al. 2005). This retromer deficiency has since been replicated in an AD mouse model which 

overexpresses the AD-associated human KM670/671NL Swedish APP variant (Chu and Pratico 

2017). Further genetic analyses have shown links between AD and retromer-associated proteins, 

particularly WASHC4, SNX1, SNX3, and RAB7A (Vardarajan et al. 2012). Variants in the 

retromer cargoes SORCS1, SORCS2, SORCS3, and particularly SORL1—which I have 

previously mentioned are important cargo-recognizing proteins in the TGN-to-endosomal 

pathway—have also been linked to AD (Reitz et al. 2013; Vardarajan et al. 2015; Fjorback et al. 

2012). Importantly, SORL1 is known to traffic APP, and a disruption of SORL1 increases Aβ 

production whereas SORL1 overexpression decreases it (Dodson et al. 2008; Andersen et al. 2005; 

Offe et al. 2006; Rogaeva et al. 2007). Similar changes in Aβ occurs with the disruption or 

overexpression of Vps35 and Vps26a (Small et al. 2005; Bhalla et al. 2012; Muhammad et al. 

2008; Wen et al. 2011; Ansell-Schultz et al. 2018). Indeed, the viral overexpression of VPS35 in 

a triple transgenic (3xTg) mouse model of AD has shown to effect not only a decrease in Aβ 

production, but also the amelioration of AD-associated behavioral deficits (Li, Chiu, and Pratico 

2019). Given the involvement of retromer dysfunction in AD, pharmacological chaperones have 

been made that stabilize the retromer complex, aiding its function and preventing the degradation 

of its components (Berman et al. 2015; Mecozzi et al. 2014). As with viral overexpression, these 

chaperones have been shown to decrease the production of Aβ in neuronal cultures (Mecozzi et al. 

2014; Chu and Pratico 2017). Thus, a model has arisen whereby under physiological conditions, 

the retromer traffics APP-bound SORL1 away from the endosome, preventing toxic Aβ 
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production, but disruption of this pathway leaves APP sequestered in the endosome, where BACE1 

can cleave it. Furthermore, BACE1 itself has also been shown to be trafficked by the retromer, and 

disruption of the retromer core results in the sequestration of BACE1 to the endosome, where the 

acidity levels allow for optimal APP β-secretase cleavage, so higher Aβ levels are produced (He 

et al. 2005; Wen et al. 2011; Wang et al. 2012).  

 

 

Figure 1.6 Effect of Retromer Dysfunction on APP Trafficking 

Reproduced from (Small and Petsko 2015) 

 

Under physiological conditions, the retromer has an important role in microglia in the 

recycling of phagocytic and cell signaling receptors to the cell surface (Lucin et al. 2013; Yin et 

al. 2016). However, AD patient microglia have been shown to have a cell-specific decrease in 

retromer components, resulting in a decrease in the transport of various receptors to the PM (Lucin 

et al. 2013). One particularly notable such receptor is triggering receptor expressed on myeloid 

cells 2 (TREM2), which mediates the sensing and phagocytosis of Aβ (Wang, Cella, et al. 2015; 

Choy et al. 2014). AD-associated TREM2 mutations have been shown to impede its association to 
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the retromer and its transport to the PM, thus decreasing the clearance of Aβ by microglia 

(Guerreiro et al. 2013; Kleinberger et al. 2014; Yin et al. 2016; Rojas et al. 2008; Choy et al. 2014).  

Finally, a less well-defined method of retromer deficiency resulting in AD pathogenesis 

has been proposed involving the NFTs formed in AD (Small and Petsko 2015). NFTs are formed 

when neurons endocytose extracellular tau to the endosome where the pathogenic processing of 

tau (Wu et al. 2013; Michel et al. 2014). Microglia normally participate in the clearance of 

extracellular tau, preventing its delivery to neurons (Majerova et al. 2014; Bolos et al. 2017; Luo 

et al. 2015). Furthermore, it has been shown that a deficiency in cathepsin D (CathD), a protease 

trafficked by CI-MPR, can increase the pathogenic processing of tau (Khurana et al. 2010). Thus, 

two possibilities arise as to how retromer dysfunction may enhance NFT formation. First, much 

like with TREM2, if a decrease in tau-recognizing phagocytic receptors on the surface of microglia 

prevents them from clearing extracellular tau, more will be available for endocytosis by neurons. 

Second, since retromer deficiency causes CathD to fail to be delivered to the endosome, replicating 

a CathD deficiency, which, as mentioned above, increases the pathogenic processing of tau. This 

is supported by the fact that a study has shown that human induced pluripotent stem cell (iPSC)-

derived neurons show a reduction in pathogenic tau phosphorylation upon the stabilization of the 

retromer (Young et al. 2018). Furthermore, the viral delivery of VPS35 to 3xTg mice has shown 

to decrease cortical NFT formation (Li, Chiu, and Pratico 2019). Finally, a study in two other 

diseases that result in the accumulation of tau—known as tauopathies, which will be discussed 

further below—have shown that retromer rescue can reduce tau accumulation (Vagnozzi et al. 

2019). 
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1.2.2 Parkinson’s Disease 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, and 

results in the degeneration of dopaminergic neurons in the substantia nigra of the midbrain, which 

causes a number of motor deficits in patients (Postuma et al. 2015; Forsaa et al. 2010). It is 

important to note that while PD is viewed as a primarily motor system disorder, there are a number 

of other neurological symptoms associated with PD such as cognitive dysfunction, psychosis, and 

mood disorders (Lim, Fox, and Lang 2009; Barone et al. 2009; Hussl, Seppi, and Poewe 2013; 

Chou, Koeppe, and Bohnen 2011). PD pathology is accompanied by the accumulation of toxic 

protein aggregates containing α-synuclein (SNCA) (Burre, Sharma, and Sudhof 2018). While 

usually sporadic in nature, PD has been shown to be linked to heritable mutations in roughly 10% 

of cases (Simon, Tanner, and Brundin 2020; Hernandez, Reed, and Singleton 2016; Lesage and 

Brice 2009).  

The link between PD and the retromer was first established by exome sequencing of 

patients, which established an autosomal dominant missense D620N mutation in VPS35 as 

causative of PD (Vilarino-Guell et al. 2011; Zimprich et al. 2011). More recently, an increasing 

number of mutations in VPS35 have been tentatively linked to PD (Nuytemans et al. 2013; 

Vilarino-Guell et al. 2011; Bandres-Ciga et al. 2016; Verstraeten et al. 2012; Sharma et al. 2012; 

Gustavsson et al. 2015; Zimprich et al. 2011; Lesage et al. 2012; Chen et al. 2013). However, since 

the D620N mutation was the first found and has shown the most robust association to PD, much 

of the study of the link between the retromer and PD has centered around the effects of this 

mutation. Though a few studies have indicated that it may cause a toxic gain of function, it is 

generally understood that the D620N mutation results in a loss of function in the retromer (Mir et 

al. 2018; Tsika et al. 2014). While the mutation does not cause a defect in the formation of the 
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retromer core, it has been shown that it results in a deficiency in the recruitment of FAM21, and 

therefore, the WASH complex, ultimately impairing the ability of the retromer to function 

(Zavodszky et al. 2014; McGough et al. 2014; Seaman and Freeman 2014; Vilarino-Guell et al. 

2011; Follett et al. 2014). The study of the downstream effects of this dysfunction have shown 

numerous possible mechanisms whereby it results in PD pathology.  

First, as with most retromer dysfunction, the VPS35 D620N mutation results in the 

mislocalization of CI-MPR, which then leads to decreased delivery of CathD to the lysosome 

(MacLeod et al. 2013; Follett et al. 2014; McGough et al. 2014; Miura et al. 2014). Since CathD 

is the main protease involved in the degradation of SNCA at the lysosome, this results in the 

decreased clearance of SNCA, and thus the accumulation of SNCA aggregates (Miura et al. 2014; 

Follett et al. 2014; Sevlever, Jiang, and Yen 2008; Cullen et al. 2009). A study showed that in both 

a heterozygous Vps35 knockout mouse and a mouse virally overexpressing the VPS35 D620N 

mutant, the dysfunction of the retromer resulted in the mislocalization of lysosome-associated 

membrane glycoprotein 2a (Lamp2a), a protein involved in the lysosomal degradation of SNCA 

(Tang, Erion, et al. 2015). A final study proposed a third mechanism whereby the dysfunction of 

the retromer in PD may contribute to the reduced clearance of SNCA, involving the disruption of 

autophagy (Zavodszky et al. 2014). Namely, it showed that, through a poorly understood 

mechanism, the VPS35 D620N mutation leads to the mislocalization of ATG9A, a protein 

associated to membranes involved in the formation of the phagophore (Zavodszky et al. 2014; 

Karanasios et al. 2016; Orsi et al. 2012).  

Mitochondrial dynamics have also long been proven to be crucial to the pathogenesis of 

PD (Winklhofer 2014; Winklhofer and Haass 2010; Trancikova, Tsika, and Moore 2012).  

Interestingly, in a poorly understood mechanism, the retromer has been shown to contribute to the 
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formation of mitochondria-derived vesicles (MDV), though whether this process is disrupted by 

PD-linked VPS35 mutations is unknown (Braschi et al. 2010; Sugiura et al. 2014). However, 

studies in mice both in vitro and in vivo as well as in fibroblasts from patients with the VPS35 

D620N mutation have shown that the VPS35 D620N mutation results in increased mitochondrial 

fission and decreased mitochondrial function, both of which could be reversed by the 

pharmacological inhibition of mitochondrial fission (Wang, Wang, Fujioka, et al. 2016; Zhou et 

al. 2017; Tang, Liu, et al. 2015).  

Another effect of retromer deficiency that the VPS35 D620N mutation has been shown to 

recapitulate involves the trafficking of neurotransmitter receptors. First, both the depletion of 

Vps35 and the overexpression of VPS35 D620N have been shown to cause the mislocalization of 

the AMPA glutamate receptors GluR1 and GluR2, resulting in impaired dendritic spine maturation 

and synaptic transmission (Tian et al. 2015; Munsie et al. 2015; Temkin et al. 2017). Furthermore, 

this mislocalization results in the impairment of long-term potentiation (LTP) in the mouse 

hippocampus (Temkin et al. 2017). The retromer also traffics dopamine receptor D1 (DRD1), 

which is depleted at the cell surface upon the depletion of VPS35 and increased upon 

overexpression of VPS35 (Wang, Niu, et al. 2016). Notably, the overexpression of VPS35 D620N 

has no effect on DRD1 cell surface expression, which may indicate that the deficiencies in 

dopamine signaling, and resulting cognitive symptoms involved in PD may at least in part be due 

to the dysfunction of the retromer (Wang, Niu, et al. 2016; Narayanan, Rodnitzky, and Uc 2013). 

Besides the mutation of VPS35, retromer deficiency has also been linked to other PD-

associated mutations, most notably SNCA and leucine-rich repeat kinase 2 (LRRK2). Mutations 

in LRRK2 and either mutations or multiplications of SNCA are causative of PD (Hernandez, Reed, 

and Singleton 2016; Stefanis 2012; Paisan-Ruiz, Lewis, and Singleton 2013). I already described 
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above much of what has been discovered about how retromer deficiency interacts with SNCA 

accumulation. One more study showed that the overexpression of VPS35 could rescue the 

hippocampal neuron loss found in a transgenic (Tg) mouse which overexpresses human SNCA 

(Dhungel et al. 2015). Similarly, studies in LRRK2 mutant drosophila models have shown that the 

neurotoxicity and behavioural deficits that these mutations elicit are rescued by the overexpression 

of VPS35 (Linhart et al. 2014; MacLeod et al. 2013). Interestingly, brain tissue analysis from both 

mouse models of LRRK2 mutations and post-mortem PD patients with mutations in the LRRK2 

gene show a decrease in VPS35 as well as CI-MPR expression (Zhao, Perera, et al. 2018; MacLeod 

et al. 2013). 

 

1.2.3 Other Neurological Disorders 

 The retromer has mostly been studied in the context of AD and PD, partly due to the strong 

association that retromer dysfunction has with those diseases, and partly due to the large 

prevalence of these diseases. However, further study has shown connections of the retromer with 

several other neurological disorders, which I will describe here. 

 Down syndrome (DS) is a chromosomal abnormality that is caused by a trisomy in 

chromosome 21, and results in a variety of symptoms including developmental impairment and 

intellectual disability (Bull 2011; Roizen and Patterson 2003; Brown et al. 1990). Tissue analysis 

from the Ts65Dn mouse model of DS and well as post-mortem analysis of brains from DS patients 

has shown a decrease in the expression of SNX27 (Wang, Zhao, et al. 2013). The overexpression 

of SNX27 in the Ts65Dn mouse has proven to correct abnormalities found in these mice, including 

cognitive and LTP deficits, and reduced levels of AMPA glutamate receptors at neuronal synapses 

(Wang, Zhao, et al. 2013). Further study has shown that this deficiency results in the 
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mislocalization of G protein‐coupled receptor 17 (GPR17) at the cell surface of oligodendrocytes, 

which leads to aberrant oligodendrocyte maturation and deficient myelination, effects which have 

been associated with DS pathology (Meraviglia et al. 2016; Olmos-Serrano et al. 2016). Patients 

with DS develop early-onset AD, likely at least partly due to the presence of the APP gene on 

chromosome 21 and its resultant multiplication (Lai and Williams 1989). However, further 

evidence shows that the deficiency in SNX27 in DS may also contribute to this development, as a 

decrease in SNX27 has been shown to increase Aβ production, specifically via an increase in ϒ-

secretase activity as well as in the delivery of APP to the cell surface (Wang et al. 2014; Huang et 

al. 2016). 

Progressive supranuclear palsy (PSP) is a disease that results in PD-like symptoms, though 

its pathology is more similar to AD in that it involves tau-positive aggregates in several areas of 

the brain (Forrest, Kril, and Halliday 2019; Takahashi et al. 2002; Steele, Richardson, and 

Olszewski 1964). Pick’s disease, a subclass of frontotemporal dementia (FTD), is a disease that, 

like AD, results in dementia and tau-positive aggregates, however, these are not accompanied by 

Aβ plaques (Hodges 2001; Forrest, Kril, and Halliday 2019). Recently, a study implicated the 

retromer in the pathogenesis of these two tauopathies (Vagnozzi et al. 2019). This study first 

showed that retromer levels are reduced in the brains of patients with these tauopathies. It also 

showed that the silencing and overexpression of VPS35 cultured neuroblastoma cells resulted in 

the overproduction and reduction of pathogenic forms of tau protein, respectively. Finally, it 

showed that the pathological and behavioural defects found in a mouse model of tauopathy were 

made more severe by the genetic downregulation of Vps35.  

Neuronal ceroid lipofuscinosis (NCL) is a subgroup of a family of lysosomal storage 

disorders (LSD). NCL is characterized by the accumulation of lysosomal lipopigments in cells, 
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which results in a number of motor and psychological symptoms (Williams and Mole 2012; Kauss, 

Dambrova, and Medina 2019). Currently there are at least 13 genes whose mutation is known to 

cause NCL, including some that are connected to trafficking in the endosomal compartment (Butz 

et al. 2019). Namely, CLN3 is involved in the trafficking of CI-MPR between the TGN and the 

endosome (Metcalf et al. 2008). CLN5 is also involved in trafficking, and indeed is known to 

recruit the retromer to the endosome, such that a depletion in CLN5 results in the degradation of 

CI-MPR and sortilin due to decreased endosomal recruitment of the retromer (Mamo et al. 2012). 

Furthermore, CathD—whose function is, as I have described above, dependent on the retromer—

is another gene whose mutation causes NCL (Jalanko and Braulke 2009). 

Hereditary spastic paraplegias (HSP) are a groups of genetic disorders which result in lower 

limb spasticity and weakness (Harding 1983). Currently there are over 70 known genes that can 

cause HSP, a number which continually grows (Novarino et al. 2014; 'OMIM Phenotypic Series - 

PS303350'  ; de Souza et al. 2017). Many of these genes are known to be involved in membrane 

trafficking, including the WASH complex protein strumpellin (Blackstone, O'Kane, and Reid 

2011; Valdmanis et al. 2007; Freeman, Seaman, and Reid 2013). However, the mechanistic effect 

of this mutation on the development of HSP is unknown.  

Similarly, a mutation in the WASH complex protein SWIP has been found to cause 

autosomal recessive intellectual disability (ARID) by significantly reducing the expression levels 

of SWIP and destabilizing the WASH complex (Ropers et al. 2011). 

Mutations in the retromer-recruiting RAB7 have been shown to cause Charcot-Marie-

Tooth (CMT) hereditary neuropathy, a disease characterized by the weakness and wasting of the 

distal limbs (Verhoeven et al. 2003). 
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Finally, mutations in the retromer-binding SORCS2 have been shown to be associated with 

schizophrenia and bipolar disorder (Ollila et al. 2009; Christoforou et al. 2011). 

 

1.3 Amyotrophic Lateral Sclerosis 

Amyotrophic lateral sclerosis (ALS), also known as Lou Gherig’s disease, is the most 

common adult-onset paralytic disorder, with a mean age of onset of roughly 65 years (Chio et al. 

2013; Rowland and Shneider 2001). ALS results in the axonal retraction and degeneration of both 

upper and lower motor neurons (MN), located in the brain and spinal cord (SC), which control 

skeletal muscle movement (Rowland and Shneider 2001). This results in patients suffering from 

progressive muscle weakness, paralysis, and finally death from respiratory failure within a median 

of 3-5 years after diagnosis (Rowland and Shneider 2001; Mizutani et al. 1992). Affecting roughly 

two out of every 100,000 people every year, ALS is the third most common neurodegenerative 

disorder after AD and PD, and due to the high mortality of the disease, the total amount of people 

affected by ALS is not much higher with about 5 people per 100,000 living with the disease (Mehta 

et al. 2016). 

Particularly given the lethality of the disease, treatments for ALS have been aggressively 

pursued in the medical field, but thus far, no cure for the disease has been found. The only FDA-

approved drugs to treat ALS are riluzole and edaravone (Miller et al. 2007; 'Safety and efficacy of 

edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, 

placebo-controlled trial'  2017). However, the effects of these treatments are fairly modest with 

riluzole extending life expectancy by merely two months and edaravone slightly slowing the 

progression of disease symptoms, but showing no clear extension of life expectancy (Miller et al. 

2007; 'Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: 
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a randomised, double-blind, placebo-controlled trial'  2017; Ito et al. 2008). While uncommon in 

the United States, mechanical ventilation has also been used to extend the life of ALS patients up 

to 6 years, but this does not result in any modification of the disease pathology (Dybwik et al. 

2010; Tagami et al. 2014). 

 

1.3.1 Clinical features of ALS 

1.3.1.1 Symptoms and diagnosis of ALS 

The symptoms of ALS are multiple, and are generally split into those caused by upper MN 

degeneration and those caused by lower MN degeneration. In general, these can be distinguished 

as symptoms that result from an inability to control the muscle of the muscle as opposed to those 

caused by an inherent weakness, respectively. Some common examples of upper MN symptoms 

include exaggerated reflexes, spasticity, and the presence of inappropriate, sudden, and 

uncontrollable laughing or crying, a syndrome known as pseudobulbar affect. Two tests that show 

degeneration of upper MNs include the lower limb Babinski sign—the reflexive extension as 

opposed to the normal flexion of the toe upon plantar stimulation of the foot—and the 

corresponding upper limb Hoffman sign—the reflexive flexion of the thumb and index fingers 

upon the flicking of the fingernail of the middle finger. Some of the more common lower MN 

symptoms include muscle weakness, muscle atrophy, and small, involuntary twitching of the 

muscle known as a fasciculation. The most common initial presentation of ALS is asymmetric 

weakness of the limbs, often found due to an inability to perform an ordinary task involving fine 

motor skills of the finger (Swinnen and Robberecht 2014). 
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Figure 1.7 Symptoms of ALS by Origin of Degeneration 

Reproduced from (Swinnen and Robberecht 2014) 

 

The symptoms of ALS can be further divided by which segment of the body, and thus 

which group of neurons are affected. Namely, these are the bulbar region, which is innervated by 

a subset of cranial nerves, and the cervical, thoracic, and lumbrosacral regions, which are 

innervated by the respective sections of the SC. The diagnosis of ALS is dependent on evidence 

of the degeneration of both upper and lower MNs, through either symptomatic or 
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electrophysiologic evidence, which progresses over the course of months or years to multiple 

segments of the body (de Carvalho et al. 2008; Costa, Swash, and de Carvalho 2012; Brooks 1994). 

As there is no diagnostic test that can definitively confirm or exclude the diagnosis of ALS, 

diagnosis also requires the exclusion of other diseases that may cause similar symptomatology via 

neuroimaging, laboratory testing, and electromyography, among other tests.  

The presence of certain symptoms not associated to ALS may also help to exclude it. Some 

such symptoms include, sensory loss, involuntary movement, cerebellar ataxia, autonomic 

dysfunction, and the involvement of the ocular or anal sphincter muscles, the only skeletal muscles 

that are not affected by ALS except in rare cases of ventilator-supported longstanding disease 

(Swinnen and Robberecht 2014). However, the presence of one or more of these symptoms in the 

context of what would otherwise be diagnosed as ALS is considered to indicate what is known as 

an ALS-plus syndrome. 

Cognitive and psychiatric symptoms do not exclude the diagnosis of ALS, as FTD, a 

disease that results in behavioural and cognitive changes, co-occurs in about 10% of ALS patients 

(ALS-FTD) (Lomen-Hoerth 2004; Ferrari et al. 2011). This association has lead to the re-thinking 

of ALS and FTD not as distinct diseases, but rather as a spectrum of disease. Indeed genetic 

mutations that are associated with ALS—a topic that I will expand on in a later section—are often 

also associated with FTD (Guerreiro, Bras, and Hardy 2015). 

 

1.3.1.2 Motor neuron disease and clinical variants of ALS 

While ALS is often used interchangeably with the term “motor neuron disease” (MND), it 

is important to note that ALS is actually one of a set of MNDs. MNDs are characterized by the 

degeneration of a combination of upper and/or lower MNs, resulting in a combination of upper 
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and/or lower MN symptoms. ALS is distinguished as involving both upper and lower MNs which 

innervate muscles in the entire body. While other MNDs often progress to true ALS, this is not 

always the case, and a patient with an MND may never develop ALS. When conversion to ALS 

does happen, the case is given a designation as a particular clinical variant of ALS.  

MND patients that present with only lower MN symptoms are diagnosed with progressive 

muscular atrophy (PMA). These patients have a higher median survival than patients with ALS by 

about 1 year (Kim et al. 2009; Visser et al. 2007). While most patients with PMA never develop 

upper MN symptoms, roughly 20% of patients do, and those that do not often present with upper 

MN pathology on post-mortem analysis identical to that found in ALS (Kim et al. 2009; Ince et al. 

2003; Tsuchiya et al. 2004). When a patient with PMA develops upper MN symptoms, they are 

re-diagnosed as having lower motor neuron-onset ALS. 

The converse of PMA is primary lateral sclerosis (PLS), which presents with symptoms of 

upper, but not lower MN degeneration. Patients with PLS have a significantly higher life 

expectancy than those with ALS by about 7 years, but unlike with PMA, the majority of patients 

diagnosed with PMA eventually progress to ALS (Gordon et al. 2006; Tartaglia et al. 2007). When 

this occurs, the patient is said to have upper motor neuron-onset ALS, which has a life expectancy 

between that of PLS and classic ALS (Gordon et al. 2006). 

Unlike with PMA and PLS, patients with the MND known as progressive bulbar palsy 

(PBP) show symptoms of both upper and lower MN degeneration. However, in these patients, 

these symptoms are confined to muscles innervated by the cranial nerves, such as those that control 

chewing, swallowing, speaking, and facial expression. While patients occasionally do not progress 

to ALS from PBP, almost all do, so studies in pure PBP are scant (Karam, Scelsa, and Macgowan 

2010). ALS that develops from patients with PBP is known as bulbar-onset ALS. While bulbar-
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onset ALS is significantly less common than spinal-onset ALS—where symptoms begin in the 

arms and legs—, it results in a faster and more severe progression of the disease (Al-Chalabi et al. 

2016; Swinnen and Robberecht 2014). 

 

1.3.2 Neuropathology of ALS 

1.3.2.1 Gross neuronal degeneration and gliosis 

As mentioned above, the primary finding in the neuropathology of ALS is the loss of upper 

MN in the motor cortex and lower MN in the SC. These degenerated neurons are replaced by glial 

scar tissue from reactive astrocytes and microglia: the sclerosis referred to in “amyotrophic lateral 

sclerosis” (Ekblom et al. 1994; Schiffer et al. 1996; Murayama et al. 1991; Saberi et al. 2015; 

McGeer and McGeer 2002). Degenerating neurons in ALS that have not yet been lost are seen to 

display a reduction in size as well as vacuolization and fragmentation of the Golgi apparatus 

(Saberi et al. 2015; Gonatas, Stieber, and Gonatas 2006; Gonatas, Gonatas, and Stieber 1998; 

Okamoto et al. 1990).  

As upper MNs in the motor cortex are lost, so too, on pathological analysis, can the atrophy 

and subsequent gliosis of the corticospinal tract along which their axons travel be seen. These 

changes in white matter are sometimes visible in the magnetic resonance imaging (MRI) of 

patients (Rajagopalan et al. 2013; Kassubek et al. 2005; Roccatagliata et al. 2009). Similarly, as 

lower MNs in the ventral horn of the SC are lost, so too do the motor nerves along which their 

axons travel atrophy with the loss of the MN fibers (Sobue et al. 1981; Nodera et al. 2014). 

Interestingly, an approximately 30% decrease in the density of sensory neuronal fibers that travel 

along the SC white matter has also been seen, though this does not seem to result in any noticeable 

clinical pathology (Bradley et al. 1983).  
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Interestingly, in ALS patients that exhibit symptoms of dementia, gross atrophy of the 

frontal and/or temporal cortex can be seen, which is particularly pronounced in patients that have 

been diagnosed with ALS-FTD (Chang et al. 2005; Murphy et al. 2007) 

 

1.3.2.2 Inclusion bodies 

 As with most neurodegenerative diseases, one of the hallmarks of the neuropathology of 

ALS, besides the actual degeneration of neurons, is the presence of protein aggregates, termed 

inclusion bodies due to their presence within the degenerating neurons and the surrounding 

reactive astrocytes (Barbeito et al. 2004; Saberi et al. 2015). There are a number of different types 

of inclusions classified by their morphology, reactions to histologic stains, and particularly, their 

immunoreactivity for several given proteins (Saberi et al. 2015).  

 Bunina bodies are ubiquitin-negative inclusions found in the cell bodies of lower MN in 

the majority of ALS cases, and only rarely in upper MN. They are seen on hematoxylin and eosin 

(H&E) staining as small (3–6 μm), rounded, eosinophilic bodies found either independently or in 

chain-like formations (Piao et al. 2003). Immunostaining of Bunina bodies shows the inclusion of 

cystatin C, transferrin, and sometimes, the intermediate filament peripherin and SORCS2 (Mizuno 

et al. 2011; Okamoto et al. 1993; Mori et al. 2015). Bunina bodies are notable for being exclusively 

associated with ALS, though their role in the pathophysiology of the disease is unknown 

(Okamoto, Mizuno, and Fujita 2008). 

 Skein-like inclusions are cytoplasmic inclusions that take the form of loose filamentous 

bundles that are roughly 15-20nm in diameter (Robinson et al. 2013). They are the most commonly 

found inclusions in ALS most often seen in both upper and lower MNs, though frequently also 

found in glial cells (Arai et al. 2003). Skein-like inclusions are mainly characterized by their 
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immunoreactivity to ubiquitin and transactivation response DNA protein-43 (TDP-43), though 

they may also contain aggregated fused in sarcoma protein (FUS), superoxide dismutase 1 (SOD1), 

and p62 (Robinson et al. 2013; Arai et al. 2003; Sumi et al. 2009; Deng et al. 2010). Interestingly, 

TDP-43- and FUS- positive inclusions are also often found in FTD, further providing evidence for 

the connection between ALS and FTD (Geser, Lee, and Trojanowski 2010). However, it is 

important to note that TDP-43-positive inclusions are not unique to ALS and FTD, as they have 

also been found in a number of other neurodegenerative disorders (Amador-Ortiz et al. 2007; 

Higashi et al. 2007; Nakashima-Yasuda et al. 2007; Hasegawa et al. 2007; McKee et al. 2010). 

 

1.3.3 Familial ALS and associated mutations 

While ALS is mainly sporadic in origin (sALS), it presents in a familial (fALS) form in 

about 10% of patients as a result of inherited gene mutations (Byrne et al. 2011; Taylor, Brown, 

and Cleveland 2016). Despite the tendency for patients with fALS to display a relatively earlier 

onset of disease and a faster course, fALS and sALS are clinically indistinguishable and share or 

overlap in most neuropathological findings. Namely, post-mortem neuropathology has found 

SOD1- and TDP-43-positive inclusion in tissues from both fALS and sALS patients (Arai et al. 

2006; Bosco et al. 2010; Forsberg et al. 2010; Kato et al. 2000; Shibata et al. 1994). Thus, it is 

expected that they share pathogenic mechanisms.  

fALS is usually inherited in an autosomal dominant fashion, though some mutations 

display an autosomal recessive or X-linked inheritance pattern (Ince et al. 2011). The mutation of 

a growing number of genes—currently over 25—have been linked to ALS (Nguyen, Van 

Broeckhoven, and van der Zee 2018). However, these account for only about two thirds of fALS 

cases (Renton, Chio, and Traynor 2014). Interestingly, de novo mutations in these genes—mostly 
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the repeat expansion mutation in chromosome 9 open reading frame 72 (C9orf72)—also account 

for over 10% of non-inherited sALS cases (Renton, Chio, and Traynor 2014; Taylor, Brown, and 

Cleveland 2016; Alsultan et al. 2016). The genes currently known to be involved in ALS have 

been outlined in Table1.1. In later sections, I will discuss the functions and possible contributions 

to ALS pathology of some of these. However, it is worth noting that of these ALS-associated 

genes, those whose mutations cause the highest percentage of fALS cases are C9orf72 (~30%), 

SOD1 (~20%), the TDP-43-encoding TARDBP (~5%), and FUS (~5%) (Taylor, Brown, and 

Cleveland 2016; Alsultan et al. 2016). Of note, the expansion mutation of C9orf72 is also the 

mutation most frequently associated not only to ALS, but also to FTD (DeJesus-Hernandez et al. 

2011; Renton et al. 2011).  

 

Table 1.1: ALS-associated genes 

Gene 

Locus 

Chromosomal 

Location 

Gene Onset Inheritance 

Pattern 

Reference(s) 

ALS1 21q22.11 SOD1 Adult AD, AR (Rosen et al. 1993; Andersen 2006) 

ALS2 2q33.1 ALS2 Juvenile AR (Hadano et al. 2001; Yang et al. 2001) 

ALS3 18q21 Unknown Adult AD (Hand et al. 2002) 

ALS4 9q34.13 SETX Juvenile AD (Chen et al. 2004) 

ALS5 15q21.1 SPG11 Juvenile AR (Orlacchio et al. 2010) 

ALS6 16p11.2 FUS Adult AD, AR (Vance et al. 2009; Kwiatkowski et al. 2009) 

ALS7 20p13 Unknown Adult AD (Sapp et al. 2003) 

ALS8 20q13. 32 VAPB Adult AD (Nishimura et al. 2004; Millecamps et al. 2010) 

ALS9 14q11.2 ANG Adult AD (Greenway et al. 2006) 

ALS10 1p36.22 TARDBP Adult AD (Sreedharan et al. 2008; Kirby et al. 2010) 

ALS11 6q21 FIG4 Adult AD (Chow et al. 2009) 

ALS12 10p13 OPTN Adult AD, AR (Maruyama et al. 2010) 

ALS13 12q24.12 ATXN2 Adult AD (Elden et al. 2010) 

ALS14 9p13.3 VCP Adult AD (Johnson et al. 2010) 
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ALS15 Xp11.21 UBQLN2 Adult X-LD (Deng et al. 2011) 

ALS16 9p13.3 SIGMAR1 Juvenile AD, AR (Luty et al. 2010; Al-Saif, Al-Mohanna, and 

Bohlega 2011) 

ALS17 3p11.2 CHMP2B Adult AD (Parkinson et al. 2006; Cox et al. 2010) 

ALS18 17p13.2 PFN1 Adult AD (Wu et al. 2012) 

ALS19 2q34 ERBB4 Adult AD (Takahashi et al. 2013) 

ALS20 12q13.13 hnRNPA1 Adult AD (Kim et al. 2013) 

ALS21 5q31.2 MATR3 Adult AD (Johnson et al. 2014) 

ALS22 2q35 TUBA4A Adult AD (Smith et al. 2014) 

ALS23 10q22.3 ANXA11 Adult AD (Smith et al. 2017) 

ALS24 4q33 NEK1 Adult N/A (Brenner et al. 2016; Kenna et al. 2016) 

ALS25 12q13.3 KIF5A Adult AD (Nicolas et al. 2018; Brenner et al. 2018) 

FTDALS1 9p21.2 C9ORF72 Adult AD (Renton et al. 2011; DeJesus-Hernandez et al. 

2011) 

FTDALS2 22q11.23 CHCHD10 Adult AD (Bannwarth et al. 2014) 

FTDALS3 5q35.3 SQSTM1 Adult AD (Fecto et al. 2011) 

FTDALS4 12q14.2 TBK1 Adult AD (Cirulli et al. 2015) 

IBMPFD2 7p15.2 HNRNPA2B1 Adult AD (Kim et al. 2013) 

Unnamed 21q22.3 C21orf2 Adult N/A (van Rheenen et al. 2016) 

Unnamed 16p13.3 CCNF Adult AD (Williams et al. 2016) 

Unnamed 2p13.3 TIA1 Adult AD (Mackenzie et al. 2017) 

 
This table outlines the currently known genes whose mutations have been found to be associated with ALS. AD, autosomal dominant; AR, 

autosomal recessive; X-LD, X-linked; N/A, not available. 

 

 

1.3.4 Mouse models of ALS  

 A significant amount of work has gone into the production of relevant mouse models of 

ALS to study the disease. These involve transgenic and knockin mutations in many of the most 

common ALS-associated genes. However, few have been able to reproduce the severe 

pathophysiology and lethality found in the human disease. Here, I will describe some of the genetic 

ALS mouse models that are most relevant to the work done in this thesis. 
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1.3.4.1 Mutant SOD1 mouse 

 At least 12 different human ALS-causing SOD1 mutants have been transgenically 

overexpressed in mice to create models of ALS (Turner and Talbot 2008). The most widely used 

and characterized model of ALS is the one of these that overexpresses the SOD1G93A mutant 

(Gurney et al. 1994). The reason this model is the preeminent model of study in the field is that it 

most closely exhibits the pathology of human ALS, including the progressive loss of over 40% of 

the MNs in the lumbar spinal cord, extensive denervation of neuromuscular junctions (NMJ), 

resulting in progressive weakness and ultimately fatality within 4-5 months of age. However, while 

the SOD1G93A-Tg mouse does an excellent job of reproducing the lower MN pathology of ALS, it 

is important to note that it does not show any evidence of degeneration of upper MN. 

While the SOD1G93A mutation is relatively uncommon in fALS, its use in the study of ALS 

is helpful in that it retains the normal enzymatic activity of SOD1, providing evidence that the 

pathology seen is due to the toxic gain of function of the mutation rather than the loss of function 

of the enzyme. What this gain of function may be is explored further in following sections. As will 

be evident, but is worth noting here, the molecular disease mechanisms of ALS are also very 

closely replicated in the SOD1G93A-Tg mouse, including the development of protein inclusions and 

gliosis in affected areas (Nardo et al. 2016). 

One caveat to this mouse model is the fact that the progression of the disease is sensitive 

to the transgene copy number. The mouse model generally expresses 15-20 copies of the transgene, 

and the breeding of the mouse can result in spontaneous deletion of copy number, which causes 

amelioration of the disease and must be accounted for in studies that involve extensive breeding 

(Lutz 2018; Zwiegers, Lee, and Shaw 2014). It is also important to note, that while the pathology 

that develops in these mice is understood to be due to the mutation of SOD1, the comparable 
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overexpression of wild-type SOD1 (wtSOD1) can cause axonopathy in mice, though nowhere near 

the level found in SOD1G93A-Tg mouse (Joyce et al. 2011). 

The progression of disease in this model is also sensitive to the background strain of the 

mouse in which the transgene is expressed. Namely, the SOD1G93A mutation is most commonly 

used in the C57BL/6J background or in the mixed B6/SJL background, which exhibit an average 

survival of 5 and 4 months, respectively (Heiman-Patterson et al. 2005). 

 

1.3.4.2 Mutant FUS mouse 

There is a sustained interest and effort in the field to develop mouse models of ALS that 

are not reliant on the mutation of SOD1 (Morrice, Gregory-Evans, and Shaw 2018). While the 

SOD1 mouse models do model ALS well and have been proven to follow the pathogenic traits of 

disease found in humans, a diversity of models would be useful, particularly to study pathogenic 

effects of ALS not usually associated with SOD1 such as RNA mishandling. To that end, mice 

that transgenically express ALS-causing mutations in TARDBP, FUS, and C9orf27 have been 

strongly pursued (Funikov et al. 2018; Sharma et al. 2016; Stephenson and Amor 2017).  

Two such models of FUS mutation were fairly recently developed in one study (Sharma et 

al. 2016). One expresses FUSR521C, a mutant protein that causes typical adult-onset ALS in 

patients, and one expresses FUSP525L, a mutant that causes a much more aggressive, juvenile form 

of ALS (Conte et al. 2012; Vance et al. 2009). The authors of the study that made these mouse 

models showed that both show evidence of progressive ALS-like disease over the course of 3 

years. Furthermore, the rate of progression of disease pathology is consistent with the severity of 

disease that each mutant causes in humans. That is to say, both display a progressive loss of MNs 

in the SC, mislocalization of FUS to the cytoplasm in MNs, and denervation of muscles, with the 



49 

 

FUSP525L-Tg model displaying a more severe degree of all three parameters. Indeed, the FUSP525L-

Tg model also displays a decrease in motor function at 3 years of age.  

Since the mice were initially designed to express the protein under the condition of the 

excision by Cre-recombinase of a transcriptional STOP signal, the authors were also able to 

specifically express the FUS mutants in MNs, which they demonstrated was sufficient to cause 

neurodegeneration. Finally, they also showed that neither the MN-specific deletion of Fus in the 

mouse nor the transgenic expression of wild-type FUS produced similar pathogenic effects, 

showing that the ALS-like disease in these mice was specific to a gain-of-function ALS-causing 

mutation in FUS.  

 

1.3.4.3 Wobbler mouse 

 The wobbler mouse is a mouse with an autosomal recessive genetic mutation that arose 

spontaneously in 1956 in the Institute of Animal Genetics of Edinburgh, and exhibits MN 

degeneration, and associated motor symptoms, giving rise to its name (Falconer 1956). This 

mutation was later found to be a missense L967Q mutation in Vps54, one of four subunits of the 

Golgi-associated retrograde protein (GARP) complex (Schmitt-John et al. 2005). The GARP 

complex is one of numerous complexes involved in the tethering of incoming retrograde vesicles 

from the endosome to the TGN (Perez-Victoria et al. 2010). The Vps54L967Q mutation results in 

the destabilization of the GARP complex and, as such, the breakdown of endosomal transport in 

degenerating MNs (Palmisano et al. 2011; Karlsson et al. 2013).  

 It is important to note that no mutations in VPS54, or indeed any components of the GARP 

complex have been associated to ALS in humans (Meisler et al. 2008). However, the similarities 

in the disease progressions of ALS and the wobbler mouse have still made it an intriguing model 
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in the study of ALS. The wobbler mouse exhibits various hallmarks of ALS pathophysiology, 

including hyperreflexia, progressive muscle weakness, and respiratory failure resulting from the 

degeneration of both upper and lower MN, ending in premature fatality by 16 months (Duchen 

and Strich 1968; Boillee, Peschanski, and Junier 2003). Furthermore, the wobbler mouse also 

reproduces a number of the disease mechanisms seen in ALS, including protein aggregation, 

gliosis, and many of the mechanisms outlined below (Duchen and Strich 1968; Moser, Bigini, and 

Schmitt-John 2013; Dennis and Citron 2009). 

 

1.3.5 Disease mechanisms of ALS  

 A unifying theory of the mechanistic cause of neurodegeneration in ALS has proven to be 

elusive. Through a combination of the study of models of ALS and the analysis of disease-

associated genes, disturbances in the normal function of numerous cellular and molecular 

pathways have been shown to be associated to ALS. While none have been proven to be the 

definitive cause of neurodegeneration in the disease, it is possible that any, or indeed any 

combination of such disturbances may contribute to the pathogenesis of ALS. Here, I will describe 

some of the mechanisms which have been shown to possibly be involved in ALS. 

 

1.3.5.1 Proteinopathy 

 The presence of abnormal intracellular protein aggregates in ALS implies that they are 

either a consequence or a cause of dysfunction in the disease. The fact that three of the most 

common genes whose mutations cause ALS encode proteins that are found in inclusion bodies 

associated with ALS—SOD1, TARDBP, and FUS—further indicates that this proteinopathy is 

important in the disease. Indeed, it has been shown that one of the main effects of ALS-causing 
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mutations in these three proteins is their propensity to misfold and aggregate (Nomura et al. 2014; 

Scotter, Chen, and Shaw 2015; Prasad et al. 2019). However, how the formation of these protein 

aggregate may result in disease pathology is a poorly understood phenomenon.  

 The ability of heat shock proteins (HSP) to ameliorate ALS pathology via the reduction of 

protein aggregates provides strong evidence that protein aggregation acts as a toxic mechanism in 

ALS. HSPs are chaperone proteins which have an important role in maintaining cellular 

proteostasis and ensuring the correct folding of proteins in the cell (San Gil et al. 2017; Neef, 

Jaeger, and Thiele 2011). In one study, the levels of HSPs as well as those of heat shock factor 1 

(HSF1), the major transcription factor for HSPs, were shown to be decreased in neuronal tissues 

from ALS patients as well as from a TDP-43 transgenic mouse model of ALS (Chen et al. 2016). 

Furthermore, the in vitro activation and inhibition of HSF1 were shown to decrease and increase, 

respectively, the aggregation of TDP-43. The HSF1-induced decrease of protein aggregation was 

then shown to rescue the cytotoxic effects of TDP-43 overexpression. In another, similar study, 

SC tissues from SOD1G93A-Tg displayed a decrease in chaperone activity (Bruening et al. 1999). 

Primary motor neurons from this same model were then shown in vitro to display a decrease in 

protein aggregation as well as a prolonged survival in response to the overexpression of HSP70. 

In response to the evidence that HSP-mediated solubilization of protein aggregates can rescue 

neuronal toxicity in the context of ALS, therapies have ben developed to target the up-regulation 

of HSPs in patients, one—arimoclomol—of which is currently in phase III clinical trials, following 

promising phase II trials (McDermott 2019; Benatar et al. 2018). 

 A prion-like model for the inter-cellular spread of disease has become increasingly popular 

in multiple neurodegenerative disorders, including ALS (Brundin, Melki, and Kopito 2010; Zhang, 

Nie, and Chen 2018; Frost and Diamond 2010). In prion diseases, such as Creutzfeldt–Jakob 
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disease (CJD), a protein normally found in the cell is misfolded in such a way that it creates a seed 

that causes other proteins of the same type to similarly misfold and aggregate. This results in 

insoluble aggregates that move from cell to cell, causing neurodegeneration (Baldwin and Correll 

2019). Evidence for the prion-like hypothesis has been presented in ALS involving the in vitro 

transmission of misfolded SOD1 between cells (Grad et al. 2014; Munch and Bertolotti 2011). 

More recently, since TDP-43 aggregates are more common in ALS, the prion-like potential of 

TDP-43 has been further explored, and the seeding of TDP-43 aggregates in vitro has resulted in 

the formation of increased TDP-43 aggregates in cells (Feiler et al. 2015; Smethurst et al. 2016; 

Nonaka et al. 2013). Furthermore, the fact that FUS and TDP-43 contain low complexity domains 

similar to prion domains in yeast, and that a number of ALS-causing mutations are found in said 

domains has provided further evidence for this model (Harrison and Shorter 2017). 

 

1.3.5.2 RNA transport and metabolism 

 The fact that both FUS and TDP-43 contain RNA-binding domains, and are heavily 

involved in the processing of RNA has raised interest in the possibility that the pathogenesis of 

ALS involves the misregulation of RNA (Buratti and Baralle 2001; Winton, Igaz, et al. 2008; 

Buratti and Baralle 2008; Colombrita et al. 2012; Iko et al. 2004). Indeed, while both of these 

proteins function and are normally found in the nucleus, ALS-associated mutations in both of them 

result in their sequestration in the cytoplasm, where they cannot carry out their normal function 

(Dormann et al. 2010; Vance et al. 2009; Van Deerlin et al. 2008; Winton, Van Deerlin, et al. 

2008). Furthermore, studies in in vitro as well as in vivo models of ALS have shown that the 

reduced expression of both of these genes as well as the expression of their mutated forms results 

in both a neurodegenerative phenotype and wide-ranging changes in the RNA-expression profiles 
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of affected cells (Kabashi et al. 2010; Vaccaro et al. 2012; Polymenidou et al. 2011; Shiga et al. 

2012; Alami et al. 2014; Lagier-Tourenne et al. 2012; Nakaya et al. 2013; Scekic-Zahirovic et al. 

2016; De Santis et al. 2017). Other known ALS-associated genes known to have functions in RNA 

processing include ataxin-2 (ATXN2), heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), 

heterogeneous nuclear ribonucleoprotein A2 B1 (hnRNPA2 B1), matrin 3 (MATR3), T-cell-

restricted intracellular antigen-1 (TIA1), senataxin (SETX), and angiogenin (ANG) (Ostrowski, 

Hall, and Mekhail 2017; Dreyfuss et al. 1993; Alarcon et al. 2015; Coelho et al. 2015; Forch et al. 

2000; Yamasaki et al. 2009; Bennett and La Spada 2018). 

 The hexanucleotide expansion of C9orf72 has also been shown cause the RNA product of 

the gene to form RNA foci (Gendron et al. 2013). Such foci have been shown to bind and sequester 

RNA-binding proteins, including TDP-43 and FUS, thus causing alterations in RNA metabolism 

(Simon-Sanchez et al. 2012; Donnelly et al. 2013; Lee et al. 2013; Mori et al. 2013; Bajc Cesnik 

et al. 2019). Finally, while SOD1 does not contain an RNA-binding domain normally, evidence 

has shown that the misfolding of mutant SOD1 may cause it to abnormally bind to certain mRNAs, 

altering their expression profiles (Lu et al. 2007; Chen et al. 2014).  

 

1.3.5.3 Endoplasmic reticulum stress 

 The excessive accumulation of proteins in the endoplasmic reticulum (ER) causes ER 

stress, inducing a signaling pathway known as the unfolded protein response (UPR), which 

maintains proteostasis by promoting proper folding and degradation of proteins (Wang and 

Kaufman 2014; Walter and Ron 2011). However, should the UPR fail to maintain proper 

proteostasis over an extended period of time, it instead initiates an apoptotic cascade leading to 

cell death (Schroder and Kaufman 2005; Oakes and Papa 2015). 
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 Studies in tissues from both sALS patients and from the SOD1G93A-Tg mouse model have 

shown an increase in MN and glial ER stress, abnormal morphology of the ER, and the detachment 

of ribosomes from the rough ER (rER) (Lautenschlaeger, Prell, and Grosskreutz 2012; Dal Canto 

and Gurney 1995; Oyanagi et al. 2008; Atkin et al. 2008; Jaronen et al. 2013). In fact, the presence 

of ER stress in SOD1G93A-Tg mice precedes the onset of ALS symptoms, indicating an 

involvement in the early pathogenesis of disease (Saxena, Cabuy, and Caroni 2009; Tobisawa et 

al. 2003; Dal Canto and Gurney 1995). While evidence of ER stress involvement in ALS has 

mostly focused on the effect of mutant SOD1, it has been shown that mutations in TDP-43, FUS, 

and C9orf72 are also associated with an increase in ER stress (Dafinca et al. 2016; Walker et al. 

2013; Wang, Zhou, et al. 2015; Farg et al. 2012; Atkin et al. 2008). Furthermore, the mutation of 

sigma non-opioid intracellular receptor 1 (SIGMAR1), an ER chaperone that is highly expressed 

in MNs and regulates the flux of calcium between the ER and the mitochondria, is known to cause 

a juvenile form of ALS (Al-Saif, Al-Mohanna, and Bohlega 2011; Ruscher and Wieloch 2015; 

Mavlyutov et al. 2010). One study has also pointed to a possible role of vesicle-associated 

membrane protein-associated protein B (VAPB) in the UPR (Suzuki et al. 2009). 

 

1.3.5.4 Mitochondrial dysfunction 

 The proper maintenance of mitochondrial function is crucial in the function of the 

mammalian cell, particularly in the energetically costly neuron (Nicholls and Budd 2000; Engl and 

Attwell 2015). The vacuolization and fragmentation of mitochondria is one of the hallmarks of a 

degenerating MN in ALS, and has been consistently found in the pathology of ALS patients as 

well as in cell and animal models of ALS (Sasaki and Iwata 2007; Hong et al. 2012; Magrane et 

al. 2014; Wang, Li, et al. 2013; Vande Velde et al. 2011). The fact that the disruption of the 
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mitochondrial structure is a mechanism of disease in ALS is supported by the fact that mutations 

in coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10), a protein located at the 

contact sites between the outer and inner membrane of the mitochondria, disrupt the mitochondrial 

cristae structure, causing ALS (Bannwarth et al. 2014; Genin et al. 2016).  

The balance and correct regulation of mitochondrial fission and fusion is paramount to 

mitochondrial health, as fusion allows them to dilute any defects in any individual mitochondrion, 

and fission allows for the sequestration and elimination of said defects through mitophagy—

macroautophagy that engulfs and degrades mitochondria (Westrate et al. 2014). However, as noted 

above, the balance is heavily weighted towards fission in the context of ALS, and ALS-causing 

mutations are known to result in fragmented mitochondria via the dysregulation of the proteins 

that regulate fusion (Ferri et al. 2010; Wang, Li, et al. 2013). Defects in mitophagy further 

contribute to the disruption in mitochondrial quality control, as Parkin, a major regulator in 

marking mitochondria for mitophagy, has been shown to be regulated by TDP-43 and FUS. Indeed, 

decreased levels of Parkin have been shown in sALS patient MNs as well as upon the loss of TDP-

43 or FUS in mice (Lagier-Tourenne et al. 2012). Mitochondrial dynamics in ALS are further 

disrupted via the impaired axonal transport of mitochondria, which is seen in multiple ALS mouse 

models as well as in patient samples (Sasaki and Iwata 2007; Magrane et al. 2014; Bilsland et al. 

2010; Shan et al. 2010). Due to the exceptionally long axons of MNs, they are likely exceptionally 

sensitive to defects in mitochondrial trafficking, and an inability for mitochondria to arrive to and 

function at axon ends results in a lack of support for the axon terminal, and therefore, axon 

retraction. The mechanism for how mitochondrial transport disruption is not certain, but it is 

known that kinesin family member 5A (KIF5A) regulates the anterograde transport of 

mitochondria, and that its mutation can cause ALS (Campbell et al. 2014; Nicolas et al. 2018). 
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Studies have shown that besides the dysregulation of mitochondrial dynamics, dysfunction 

in the mitochondria occurs via multiple axes, including defects in the electron transport chain and 

in calcium buffering, and the production of reactive oxygen species (ROS). Mutations in SOD1, 

TDP-43, and FUS have been shown to localize the proteins to mitochondria, where they disrupt 

and decrease the efficiency of the ETC, such that the mitochondria cannot meet the energy 

requirements of the neuron (Ferri et al. 2006; Wang, Wang, Lu, et al. 2016; Deng et al. 2015). 

ROS are a by-product of the ETC which, while normally reduced by enzymes in the cell—

including SOD1 among others—, can, left unchecked, cause oxidative damage to nucleotides, 

proteins, and lipids in the cell and, particularly, the mitochondria (Murphy et al. 2008; Kim et al. 

2015). Increased levels of ROS and oxidative damage have been widely reported in patient samples 

as well as various models of ALS (Mitsumoto et al. 2008; Smith et al. 1998; Shaw et al. 1995; 

Shibata et al. 2001; Chang et al. 2008; Hong et al. 2012; Deng et al. 2015). Finally, a dysregulation 

in calcium homeostasis has been reported across multiple models of ALS as well as in patient 

tissues (Damiano et al. 2006; 1997; Morotz et al. 2012; Siklos et al. 1996; Van Den Bosch et al. 

2000). This has been attributed to the loss of contact sites between mitochondria and the ER, 

known as mitochondria-associated ER membranes (MAM), which allow the exchange of calcium 

between the two organelles (Stoica et al. 2014; Bernard-Marissal et al. 2015; Manfredi and 

Kawamata 2016). As noted above, the ALS-associated gene SIGMAR1 is known to regulate the 

flux of calcium at the MAM. 

 

1.3.5.5 Glutamate excitotoxicity 

 Classically, the AMPA glutamate receptor has been typified as being calcium-impermeable 

and inducing activation through permeability of sodium. However, AMPA receptors missing the 
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GluR2 subunit have been shown to be calcium-permeable, thus bringing calcium into the cell upon 

their activation by glutamate (Isaac, Ashby, and McBain 2007; Williams et al. 1997). These 

GluR2-deficient AMPA receptors have been shown to be relatively highly expressed in MNs. 

Excitotoxicity is then caused when the excessive activation of these receptors results in a build-up 

of abnormal levels of calcium in the cell, which has a number of downstream toxic effects (Corona 

and Tapia 2007; Kawahara et al. 2003). Glutamate excitotoxicity has been highly implicated in 

ALS. Indeed, riluzole, one of the only drugs used to treat ALS, is a known glutamate inhibitor 

(Andreadou et al. 2008; Fumagalli et al. 2008). Two mechanisms have been proposed whereby 

glutamate excitotoxicity may be induced in ALS. 

 First, an increase in the basal levels of glutamate would cause excitotoxicity through the 

continual re-activation of AMPA receptors. Evidence for this possibility has shown that levels of 

glutamate are increased in the plasma of ALS patients, and glutamate-receptor antagonism can 

rescue the excitotoxic effect of cerebrospinal fluid (CSF) from patients on neuronal cultures (Sen 

et al. 2005; Andreadou et al. 2008). One of the main proposed mechanisms of how glutamate 

builds up in ALS involves the failure of astrocytes to clear glutamate. Normally, astrocytes clear 

glutamate from the extracellular space via the glutamate transporter excitatory amino acid 

transporter 2 (EAAT2) (Robinson 1998). However, EAAT2 expression has been shown to be 

decreased in the context of ALS, both in patients and in various mutant SOD1 mouse models, 

resulting in defects in glutamate clearance (Lin et al. 1998; Bendotti et al. 2001; Canton et al. 1998; 

Warita et al. 2002). Furthermore, the overexpression of EAAT2 in SOD1G93A-Tg mice has shown 

to slow disease progression (Guo et al. 2003). 

 The second possible mechanism of glutamate toxicity in ALS is the result of the inherent 

hyperexcitability of the MNs themselves. Indeed, the circuitry of MNs in both ALS patients and 
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SOD1G93A-Tg mice has shown hyperexcitable disturbances (Vucic and Kiernan 2013; van Zundert 

et al. 2008). As explained above, MNs express relatively high levels of GluR2-deficient AMPA 

receptors, but the levels of functional GluR2 have been found to be even further decreased in ALS 

patient samples (Takuma et al. 1999). Furthermore, the overexpression of GluR2 in SOD1G93A-Tg 

mice showed a delay of disease onset and increased survival (Tateno et al. 2004). 

 

1.3.5.6 Glial toxicity 

 The toxic effects of glia on MNs in the context of ALS have been well documented by our 

lab and others. Such study has found that the co-culture of MNs on primary astrocytes from 

SOD1G93A-Tg mice or from post-mortem sALS patients induces MN toxicity (Nagai et al. 2007; 

Di Giorgio et al. 2008; Re et al. 2014; Haidet-Phillips et al. 2011). A similar, though less striking 

toxicity has been seen on MN co-culture with microglia (Xiao et al. 2007). Various studies have 

shown this effect to also take place in vivo via the degeneration of MNs in the context of astrocytes 

from either sALS patients or from ALS mouse models (Tong et al. 2013; Qian et al. 2017; 

Papadeas et al. 2011; Clement et al. 2003; Yamanaka et al. 2008).  

The precise mechanism of glial-induced MN death is unknown and is an area of active 

research. However, the toxicity of SOD1G93A-Tg mouse astrocytes is replicated upon treatment of 

MNs with media conditioned on these astrocytes, suggesting that this toxicity is due to the release 

of a toxic factor rather than the lack of a beneficial effect (Nagai et al. 2007). Furthermore, the 

effects of SOD1G93A-Tg astrocytes on MNs that have been shown include the downregulation of 

GluR2 expression, a decrease in antioxidant support, and the activation of the interferon-gamma 

(IFN-γ) and necroptosis pathways (Cassina et al. 2008; Re et al. 2014; Van Damme et al. 2007; 

Vargas et al. 2006; Aebischer et al. 2011). 
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1.3.5.7 Endosomal trafficking dysfunction in ALS 

 Alterations in endosomal trafficking have been well-established in multiple 

neurodegenerative disorders, including ALS. Connections with ALS include known roles for ALS-

associated genes in endosomal trafficking as well as functional studies showing deficiencies in 

certain pathways in the context of the disease. In section 1.1, I outlined the multiple axes along 

which endosomal trafficking occurs in the cell. Here, I will review the evidence that has been 

found tying endosomal trafficking dysfunction to ALS. 

 

1.3.5.7.1 Endocytosis  

 While there has historically been limited evidence for it, recently, studies have pointed to 

a possible role for the involvement of endocytosis in ALS pathogenesis. First, an in vitro study has 

shown that the aggregation of proteins, including that of the ALS-causing SOD1A4V, induced an 

inhibition in CME mediated by the sequestration of HSC70 (Yu et al. 2014). Similarly, other 

studies have shown that the overexpression of either FUS or TDP-43 also results in the inhibition 

of CME (Liu et al. 2019; Liu, Coyne, et al. 2017). Furthermore, the cytotoxic effects of FUS and 

TDP-43 are ameliorated by the upregulation of endocytosis (Liu et al. 2019; Liu, Coyne, et al. 

2017). Finally, a study on the function of the C9orf72 protein showed that its depletion results in 

the inhibition of endocytosis, implicating that its physiological function, which is currently 

incompletely understood, may involve the regulation of endocytosis (Farg et al. 2014).  
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1.3.5.7.2 Golgi-to-Endosome Transport 

 Similarly spare evidence has been found for the involvement of Golgi-to-endosome 

transport in ALS pathology. However, of particular note is the fact that Bunina bodies have been 

shown to contain SORCS2 in human samples (Miki et al. 2018; Mori et al. 2015). The study that 

initially showed this finding also showed that ALS patient samples displayed decreased 

immunoreactivity for sortilin and SORL1 (Mori et al. 2015). Furthermore, the study of sortilin in 

ALS has shown that TDP-43 regulates its splicing and expression (Colombrita et al. 2015; 

Prudencio et al. 2012; Tann et al. 2019). Rare variants in SORT1 have also been associated with 

FTD and, possibly, with fALS (Belzil et al. 2012; Philtjens et al. 2018). Finally, induced MNs 

(iMN) and fibroblasts from patients with C9orf72-associated ALS-FTD showed the abnormal 

localization and function of MPRs (Shi et al. 2018; Aoki et al. 2017). Altogether, these studies 

point to the possible involvement in ALS of deficiencies in the Golgi-to-endosome transport 

receptors. 

 

1.3.5.7.3 Endosomal Maturation 

 As described above, the proper coating of the endosome with endosomal markers such as 

Rab5 and EEA1 is crucial to its function and proper maturation. Alterations in this coat can have 

devastating effects on normal protein trafficking function in the cell. Indeed, this is what is seen 

upon the disturbance of the function or expression of alsin, the protein encoded by the ALS2 gene, 

whose mutation can cause ALS (Hadano et al. 2001; Panzeri et al. 2006; Lai et al. 2009; Hadano 

et al. 2006). Under normal conditions, alsin associates to EEA1 and functions as a GEF for Rab5, 

but ALS-associated mutations create a truncated alsin which can no longer bind EEA1 (Panzeri et 

al. 2006; Topp et al. 2004). The downstream effects of this have been studied in alsin-deficient 
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mice which exhibit reduced endosomal size due to deceased endosomal fusion, a disruption in the 

transport of proteins, including brain-derived neurotrophic factor and GluR2, and progressive 

degeneration of cerebellar and MNs (Hadano et al. 2006; Devon et al. 2006; Lai et al. 2006). 

Recent studies into the function of C9orf72 have shown that it is also a Rab GEF. Though it is a 

field of active study which particular Rabs it activates, it has been widely shown to colocalize with 

and activate Rab5 and Rab7 (Iyer, Subramanian, and Acharya 2018; Farg et al. 2014; Aoki et al. 

2017).  

 Two other proteins involved in endosomal maturation have been shown to be associated to 

ALS: CHMP2B and spastic paraplegia-11 (SPG11) (Parkinson et al. 2006; Orlacchio et al. 2010). 

CHMP2B has, as noted above, an important role in endosomal maturation, as it forms part of the 

ESCRT-III complex, so its mutation predictably causes defects in endosomal/lysosomal transport 

and lysosomal storage pathology (Clayton et al. 2015; Clayton et al. 2018). Meanwhile, SPG11 

has an, as of yet, poorly characterized role in endosomal maturation, but it is known that it forms 

part of the adaptor protein complex 5 (AP5), whose depletion results in swollen MVBs and the 

impaired trafficking of CI-MPR (Hirst et al. 2011). 

   

1.3.5.7.4 Macroautophagy 

 The buildup of aggregated proteins as well as defective mitochondria are hallmarks of 

ALS, so their proper clearance is of vital importance. However, the study of the pathology of ALS 

and various ALS-associated genes have shown that a deficiency in said clearance via autophagy 

may itself be a causative mechanism in the disease.  

 Optineurin (OPTN) is a protein that binds LC3 and the myosin VI motor protein, aiding in 

the trafficking of autophagosomes to lysosomes (Tumbarello et al. 2012). Multiple ALS-causing 
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mutations in as well as the depletion of OPTN have been proven to reduce the ability of OPTN to 

bind to myosin VI, thus preventing the fusion of the autophagosome with the lysosome necessary 

for proper autophagy (Wild et al. 2011; Sundaramoorthy et al. 2015; Shen et al. 2015). 

Furthermore, a study in sALS patient SC MNs showed similarly reduced binding of OPTN with 

myosin VI as well as OPTN-positive inclusions (Sundaramoorthy et al. 2015). Relevantly, ALS-

associated mutations in TANK-binding kinase 1 (TBK1) are known to disrupt its physiological 

activity of phosphorylating OPTN and p62—another autophagy-related protein (Gijselinck et al. 

2015; Oakes, Davies, and Collins 2017; Cirulli et al. 2015). 

 ALS-causing mutations in SOD1 and FUS have also proven to disrupt the initiation of 

autophagy (Nassif et al. 2014; Ryu et al. 2014). Tissues from ALS-FTD patients with the C9orf72 

expansion have also been shown to express markers of impaired autophagy (Al-Sarraj et al. 2011). 

The study of iMNs from these patients has shown swollen autophagosomes, indicating that they 

are non-functional (Aoki et al. 2017). 

 

1.3.5.7.5 Recycling 

 Evidence of the involvement of recycling defects in ALS start with the above described 

wobbler mouse. While, as mentioned above, no mutations in the GARP complex have been linked 

to ALS, the fact that its destabilization so closely reproduces ALS pathology in mice is of great 

interest. It is important to note, given the subject of this thesis, that, while they work via similar 

pathways, no direct interaction has been established between the retromer and the GARP complex. 

Indeed, the GARP complex has been shown to take part in the retrograde trafficking of CI-MPR 

(Perez-Victoria, Mardones, and Bonifacino 2008). 
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 The interaction of ALS-associated genes with Rab11 also provides some evidence as to the 

involvement of retrograde trafficking in ALS. Namely, Rab11 is one of the main Rabs on which 

C9orf72 has been shown to have GEF activity (Iyer, Subramanian, and Acharya 2018). In one 

study, TDP-43 function has been shown to be important in the regulation of Rab11-positive 

recycling endosomes (Schwenk et al. 2016). Specifically, the knockdown of TDP-43 in cultured 

neurons resulted in decreased dendritic trafficking of Rab11-positive endosomes, resulting in 

dendrite loss, which was phenocopied with the dominant-negative expression of Rab11.  

 Finally, during the course of two studies, despite not being the primary subject of study, 

findings have shown possible connections between ALS and the retromer. First, Western blots run 

on iPSc-derived MN from ALS-FTD patients with a C9orf72 expansion showed a trend towards 

the decreased expression of VPS26, though the finding was not statistically significant (Aoki et al. 

2017). Another study was performed on a Drosophila model of ALS which expresses a loss of 

function mutation in the fly orthologue of the human ALS-associated gene VAMP-associated 

protein B (VAPB) (Sanhueza et al. 2015). The study involved a screen of overexpressed genes to 

see which rescued the defects in eye morphology seen in the model, and one of the identified 

rescuers of pathology was VPS35. 

 

1.4 Specific Aims 

 Given the extensive evidence of the involvement of both endosomal trafficking dysfunction 

in ALS and retromer dysfunction in neurodegenerative disease, over the course of my work, I 

sought to see whether retromer dysfunction may be involved in the pathology of ALS. In this 

thesis, I present this work over the course of three chapters (2-4). 
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 In Chapter 2, I present an analysis of the expression profile of retromer components in 

human ALS patient samples and in SOD1G93A-Tg mice, both in vivo and in vitro. Generally, I show 

a widespread decrease in retromer levels in the context of ALS.  

In Chapter 3, I then explore the possible causes for decreased expression of retromer in 

ALS as well as some of the downstream effects of this deficiency, including APP trafficking and 

MN viability. 

 In Chapter 4, I study the effect of the repletion of retromer levels in the SOD1G93A-Tg mice 

via pharmacological and viral means. Strikingly, I find that rather than ameliorate disease 

progression, the upregulation of the retromer in these mice causes the enhanced progression of 

disease in these mice. 

 To follow up on the results in Chapter 4, in Chapter 5, I performed a corollary study in 

which I decreased retromer levels in the SOD1G93A-Tg mice via the heterozygous deletion of an 

allele of Vps35. Interestingly, and in keeping with the results of Chapter 4, this resulted in the 

amelioration of disease phenotypes in mice.  

 Overall, my conclusions for this work are that, while there is indeed a decrease in retromer 

expression in the context of ALS, this is not necessarily a pathogenic mechanism, and may indeed 

be a compensatory mechanism by the cell to maintain homeostasis. Further work is warranted in 

unravelling (1) what the possible beneficial downstream effects of retromer dysfunction in the 

context of ALS are and (2) whether there is a therapeutic benefit to be found in the inhibition of 

retromer function for this disease. 
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CHAPTER 2 

RETROMER QUANTIFICATION IN CELLS AND TISSUES FROM ALS PATIENTS 

AND MOUSE MODELS OF ALS 

 

2.1 Introduction 

 The retromer is a protein complex that is involved in the trafficking of proteins from the 

endosome to the trans-Golgi network (TGN) or to the plasma membrane (PM), a process known 

as recycling. The central defining core components of the retromer are vacuolar protein sorting 35 

(Vps35), Vps29, and Vps26 (Seaman 2005; Hierro et al. 2007; Haft et al. 2000). Vps26 in 

mammals has two paralogues, Vps26a and Vps26b, which exhibit some functional differences, 

though Vps26a seems to be the subunit predominantly used in the retromer (Kerr et al. 2005; 

Collins et al. 2008; Gallon et al. 2014). Vps29 has two isoforms that arise from alternative splicing, 

though the functional difference between the two isoforms is not well understood (Wu et al. 2019). 

The retromer complex is vital to the normal function of the cell, and indeed the complete deletion 

of either Vps35 or Vps26a in mice has proven to be embryonically lethal (Tang, Erion, et al. 2015).  

Recent research has shown that the dysfunction of the retromer complex is likely a major 

factor in the pathogenesis of multiple neurodegenerative diseases. The first evidence of this 

connection came from the finding that the entorhinal cortexes of patients with Alzheimer’s disease 

(AD) have a decreased expression of retromer core components. This deficiency was shown to be 

found both in the expression of the mRNA encoding for VPS35 and in the protein levels of VPS35 

and VPS26 (Small et al. 2005). Since then, samples from affected tissues of patients with 

Parkinson’s disease (PD), Down’s Syndrome (DS), Progressive Supranuclear Palsy (PSP), and 

Pick’s disease have shown to have deficiencies in the expression of components of the retromer 
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complex (Small et al. 2005; Zhao, Perera, et al. 2018; Wang, Zhao, et al. 2013; Vagnozzi et al. 

2019). Further, mouse models of AD, PD, and DS have replicated these deficiencies (Chu and 

Pratico 2017; MacLeod et al. 2013; Wang, Zhao, et al. 2013). Evidence of retromer involvement, 

particularly in AD and PD has further grown, including both in functional studies of the interaction 

and in disease-associated genetic mutations in retromer functional subunits. Most notably, the 

partial loss of function mutation of VPS35 has been shown to cause PD (Zavodszky et al. 2014; 

McGough et al. 2014; Seaman and Freeman 2014; Vilarino-Guell et al. 2011; Follett et al. 2014; 

Zimprich et al. 2011). 

Pathological mechanisms of neurodegenerative diseases tend to overlap with each other. 

Especially since most neurodegeneration is accompanied by defects in proteostasis that lead to 

protein aggregation, defects in endosomal trafficking are often apparent in most neurodegenerative 

diseases. Despite this, currently, no studies have explored the possible involvement of the retromer 

in the pathology of amyotrophic lateral sclerosis (ALS).  

ALS is neurodegenerative disorder of the upper and lower motor neurons (MNs) 

characterized by muscle weakness, paralysis, and death within 3-5 years after diagnosis (Rowland 

and Shneider 2001). While ALS is mainly sporadic (sALS), it presents in a familial (fALS) form 

in ~10% of patients as a result of gene mutations (Byrne et al. 2011). Since both forms of ALS are 

virtually indistinguishable, it is expected that they share pathogenic mechanisms, and thus, the 

study of models of fALS has the potential to uncover pathogenic mechanisms for sALS. One 

commonly mutated gene in fALS encodes for superoxide dismutase 1 (SOD1) (Lattante et al. 

2012; Pasinelli and Brown 2006), and overexpression of mutant SOD1G93A in transgenic (Tg) mice 

reproduces most hallmarks of ALS including selective degeneration of MNs, progressive muscle 

weakness, and premature fatality. Studies in systems using astrocytes from these mice or from 
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patients with either fALS or sALS have shown that astrocyte toxicity to MNs may play an 

important role in ALS-related neurodegeneration (Cassina et al. 2005; Di Giorgio et al. 2007; Di 

Giorgio et al. 2008; Nagai et al. 2007; Sreedharan and Brown 2013; Re et al. 2014). 

Since the retromer has been heavily implicated in neurodegeneration, I sought to determine 

whether the connection between retromer deficiency and neurodegeneration extends to ALS. 

Accordingly, I performed a descriptive study, looking at the expression levels of Vps35, Vps26a, 

and Vps29 in different contexts of the disease. I predominantly did so by employing the SOD1G93A-

Tg mouse, and I then extended the study to looking at expression levels of the retromer core 

components in human post-mortem samples from ALS patients. Given the direct involvement of 

both MNs and astrocytes in ALS, I concentrated my study on expression levels in these cells as 

well as in tissue lysates. Overall, I showed that the expression of the retromer core components is 

decreased in both mouse models of fALS and in human samples of sALS.  

 

2.2 Results 

2.2.1 Characterization of retromer expression in SOD1G93A-Tg mouse tissues 

To examine the possible defect of retromer in ALS, I choose to begin my work by looking 

at the expression of retromer components in the spinal cord (SC) of the SOD1G93A-Tg mouse. I 

choose to look at three time-points: post-natal day 60 (P60), before the onset of disease in this 

model; P90, the time at which symptoms of disease are first seen in these mice; and P120, the time 

at which the disease has progressed into overt pathology, 10-20 days before expected fatality in 

these mice.  
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Figure 2.1 Retromer Core Components Exhibit Lower Expression in the Spinal Cord of 

SOD1G93A-Tg Mice in an Age-Dependent Manner 

 
Western blots were run on SC lysates from SOD1G93A-Tg and NTg mice and quantified at P60 (A), P90 (B), and P120 

(C). Results presented as mean ± SEM. n=4, *P<0.05, **p<0.01, ***p<0.001 in unpaired Student t-test. 



69 

 

 I performed Western blot analysis of the lysate of SC from SOD1G93A-Tg mice for Vps35 

and Vps26a, two of the core components of the retromer. While I attempted to perform Western 

blot analysis of Vps29 as well, the antibody I used revealed poorly defined band to properly 

quantify this subunit. Testing alterative antibodies did not improve the signal and thus Vps29 

Western blotting was not assessed in mouse tissue but, as shown later, on cell systems, where the 

signal was much sharper on the form of well-defined doublet corresponding to the two splice 

variants of the protein. Western blots in the SC at P60 showed that there was a slight statistically 

significant increase in Vps26a (Student t-test, p=0.026) and no statistically significant change in 

Vps35 (Student t-test, p=0.32) (Fig. 2.1A). At P90, there was no statistically significant change in 

either Vps26a (Student t-test, p=0.31) or Vps35 (Student t-test, p=0.25) (Fig 2.1B). Thus, at earlier 

stages of disease, I observed either no or mild changes in the expression levels of retromer core 

components. In contrast, at P120, I saw a large drop in the protein expression of both Vps35 

(Student t-test, p=0.000025) and Vps26a (Student t-test, p=0.0052), consistent with a defect in the 

retromer at a more advanced stage of the disease in this mouse model of ALS (Fig. 2.1C).  

 In AD, the decreased expression of VPS35 protein has been correlated to the decreased 

expression of VPS35 mRNA (Small et al. 2005). Furthermore, the disruption of mRNA processing 

has been well tied to ALS (Colombrita et al. 2015; Gendron et al. 2013; Chen et al. 2014). Thus, 

to determine whether the reduction in retromer component levels in the SOD1G93A-Tg mice SC 

was due to the reduction of mRNA expression, I performed quantitative RT-PCR on the lysate of 

these same SC. Intriguingly, rather than a decrease in expression, I saw modest, though statistically 

significant increases in Vps35 at P60 (Student t-test, p=0.016) and in Vps26a at P120 (Student t-

test, p=0.028) and at least a small trend towards an increased expression of both Vps35 (Student 

t-test, P90 p=0.099, P120 p=0.37) and Vps26a (Student t-test, P60 p=0.24, P90 p=0.34) mRNA 
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across ages (Fig.2.2). Thus, these results indicated that decreased content of proteins for the 

retromer core components in SOD1G93A-Tg mouse SC are not due to a loss of expression of their 

respective mRNAs. Accordingly, the changes in retromer proteins in the symptomatic SOD1G93A-

Tg mouse SC originate most likely from alterations in retromer subunits translation and/or 

degradation. 

 

Figure 2.2 mRNA of Retromer Core Components Exhibit No Decreases in Expression in the 

Spinal Cord of SOD1G93A-Tg Mice Over Time 

 
qPCR analysis of SC lysates from SOD1G93A-Tg and NTg mice and quantified at P60 (A), P90 (B), and P120 (C). 
Results presented as mean ± SEM. n=4, *P<0.05 in unpaired Student t-test. 

 

SOD1G93A-Tg mice express high levels of the SOD1G93A transgene, and the G93A mutation 

does not affect SOD1 enzymatic activity (Gurney et al. 1994; Hayward et al. 2002). Thus, changes 

found in the SOD1G93A-Tg mouse could conceivably be due to merely the overexpression of SOD1 

protein and the increase in its physiological function. To make sure that the retromer deficiency I 

had found the SOD1G93A-Tg mouse SC was due specifically to the ALS-associated mutation of 

SOD1, I employed a Tg mouse which overexpresses the wild-type form of SOD1 (wtSOD1) to 

similar levels as those found in the SOD1G93A-Tg mouse and shows no overt ALS-like pathology. 
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Remarkably, at P120, contrary to the changes in identified in SC of SOD1G93A-Tg mouse, Western 

blot analysis of SC of wtSOD1-Tg did not display any statistically significant changes in Vps35 

and Vps26a (Fig. 2.3). Rather, if anything, I saw a trend towards an increased expression of both 

Vps26a (Student t-test, t(x)=, p=0.16) and Vps35 (Student t-test, p=0.19).  

 

 
Figure 2.3 Retromer Core Components Exhibit No Changes in Expression in the Spinal Cord 

of wtSOD1-Tg Mice 

 
A Western blots was run on SC lysates from wtSOD1-Tg and NTg mice and quantified at P120. Results presented as 

mean ± SEM. n=4, not significant in unpaired Student t-test. 

 

I next sought to determine the tissue specificity of retromer deficiency in the SOD1G93A-

Tg mouse, since mutant SOD1 is ubiquitously expressed both inside and outside the CNS. To this 

end, I performed Western blot analysis on lysates from two other neural tissues in these mice at 

P120, namely the cerebral cortex and the cerebellum. I found that, akin to the SC, both the of these 

selected CNS regions displayed deficiencies in retromer core proteins (Fig. 2.4A, B). The cortex 

showed a modest, though statistically significant decrease in the levels of both Vps35 (Student t-

test, p=0.00013) and Vps26a (Student t-test, p=0.0052), and the cerebellum showed a significant 

decrease in the levels of Vps35 (Student t-test, p=0.013) with only a trend towards decreased levels 

of Vps26a (Student t-test, p=0.18). Since retromer deficiency seems to be widespread in neural 
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tissues, I looked at expression of retromer core components in the kidney of SOD1G93A-Tg mice 

to determine whether retromer deficiency was widespread throughout the body. However, I saw 

no significant change in either Vps35 (Student t-test, p=0.96) or Vps26a (Student t-test, p=0.73) 

in the kidney of these mice, indicating that retromer deficiency is likely restricted to neural tissues 

of the SOD1G93A-Tg mouse (Fig. 2.4C).  
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Figure 2.4 Retromer Core Components Exhibit Lower Expression in the Neural Tissues, but 

Not Non-Neural Tissues of SOD1G93A-Tg Mice  

 
Western blots were run on lysates from the cortex (A), cerebellum (B), and kidney (C) of SOD1G93A-Tg and NTg mice 

and quantified. Results presented as mean ± SEM. n=4, *P<0.05, **p<0.01, ***p<0.001 in unpaired Student t-test.  
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2.2.2 Characterization of retromer expression in ALS-affected neural cells in the SOD1G93A-Tg 

mouse  

The bulk volume of tissue in the CNS comes, not from neurons, but from glial cells. Thus, 

the decrease of expression in retromer components in the whole lysate of the SC does not 

necessarily imply an equivalent decrease in neurons, let alone in specifically MNs. Thus, I 

explored various avenues of quantifying the levels of expression of retromer core components in 

SC MNs.  

There are currently no protocols that consistently produce a pure population of MNs from 

adult mouse SC. However, the culture of cortical neurons from embryonic mouse brains can easily 

produce a neuronal population of at least 90%. I thus cultured neurons from the cortex of 

SOD1G93A-Tg mouse embryos and age-matched non-transgenic (NTg) controls. After allowing 

them to grow for 7 days, I then collected them and performed Western blot analysis on these 

neurons, which showed no changes in expression of either Vps35 (Student t-test, p=0.22) or 

Vps26a (Student t-test, p=0.65) (Fig. 2.5A). However, since neurons in the SOD1G93A-Tg mouse 

cortex have not shown any significant pathological change, it remains possible that MNs are 

specifically affected by changes in the retromer. Furthermore, since these neurons were taken from 

mouse embryos, and the retromer deficiency I have found in SOD1G93A-Tg mouse neural tissues 

seems to be time-sensitive (i.e. seen at P120 but not at P60), it is possible that these neurons were 

not yet mature enough to display changes in the retromer. I also attempted to see whether a 

difference could be seen in MNs specifically by culturing and differentiated a MN-like NSC34 

cell line stably transfected with an empty vector, wtSOD1, SOD1G93A, or SOD1G37R, generously 

provided by the lab of Dr Pamela Shaw. However, I saw no differences in these cells of any of the 
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retromer core components (one-way ANOVA, Vps26a p=0.063, Vps29 p=0.39, Vps35 p=0.47) 

(Fig. 2.5C, D), which could still be due to the aspects of these cells that are not MN-like. 

In an attempt to overcome this potential issue, I decided to quantify the immunofluorescent 

signal generated by immunohistochemistry (IHC) on sectioned SC from SOD1G93A-Tg and NTg 

mice at P120, when the retromer deficiency in the SC seems to be robust. Mean fluorescence 

intensity (MFI) analysis of the cell bodies of at least 20 MNs expressing the MN marker choline 

acetyltransferase (ChAT) from two mice of each condition showed that MNs expressed 

significantly lower levels of Vps35 (Student t-test, p<10-10) (Fig. 2.5E, F). Although quantification 

of IHC signal must be taken with caution given the fact that quantification of this method is fraught 

with a host of problems, still these results provide major support to the notion that the observed 

defect in retromer core subunits in whole SC extracts involves MNs.  
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Figure 2.5 In Vivo Motor Neurons, but Not Cultured Cortical Neurons or NSC-34 Cells, 

Expressing SOD1G93A Express Lower Levels Retromer  

 
A Western blot was run on neurons cultured from the cortex of SOD1G93A-Tg and NTg mouse embryos at E13 (A) 

and quantified (B). Another Western blot was run on NSC-34 cells expressing an empty vector, wild-type human 

SOD1, or one of two mutated human SOD1 genes. A representative blot is presented here (C) with quantification of 

5 independent experiments (D). Immunohistochemistry was performed for Vps35 (green) and ChAT (red) on SC 

sections from SOD1G93A-Tg and NTg mice at P120, of which a representative stain is presented per condition (E). 

ChAT was used as a marker of MNs, and mean fluorescence intensity of Vps35 immunostaining was quantified (F). 

All results presented as mean ± SEM. (A, B) n=4, unpaired Student t-test. (C, D) n=5, one-way ANOVA. (E, F) n=20 

neurons imaged from 2 animals per condition, ***p<0.001, unpaired Student t-test, scale bar indicates 10μm. 

 

Astrocytes have been shown to have an important role in the pathogenesis of ALS, causing 

toxicity in MNs. As I mentioned above, glial cells, and particularly, astrocytes are the most 

abundant cells in the CNS. Thus, it is likely that the retromer deficiency seen in the CNS of 

SOD1G93A-Tg mice is also seen in disease-affected astrocytes. Indeed, the fact that retromer 

deficiency was seen most strongly in disease affected areas and was not present in cultured cortical 

neurons may indicate that retromer deficiency occurs in cells involved in the pathogenesis of the 

disease such as MNs and astrocytes. Our lab has extensive experience in the culturing of primary 

astrocytes from mice, so I decided to investigate whether astrocytes from SOD1G93A-Tg mice 

displayed a deficiency in retromer expression. I cultured astrocytes from NTg and from SOD1G93A-

Tg mice at P3 and then collected these cells and ran Western blot analysis for the expression of 

Vps35, Vps26a, and Vps29. Despite the fact that these cells were collected at P3, I found that 

SOD1G93A-Tg astrocytes displayed a significant reduction in the expression of all three of these 

retromer components (Student t-test, Vps26a p=0.0059, Vps29 p=0.000013, Vps35 p=0.00015) 

(Fig. 2.6A, B). Similarly to the nature of retromer deficiency in SOD1G93A-Tg mouse SC, the 

decrease in expression of retromer component proteins in SOD1G93A-Tg astrocytes did not 

correlate with a significant change in mRNA levels of these components as measured by qRT-

PCR (Student t-test, Vps26a p=0.62, Vps29 p=0.84, Vps35 p=0.58) (Fig 2.6C).  
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Figure 2.6 Cultured Astrocytes from ALS Mouse Models Show a Decrease in Expression of 

Retromer Components  

 
A Western blot was run on astrocytes cultured from the cortex of SOD1G93A-Tg and NTg mouse embryos at P3 (A) 

and quantified (B). qPCR analysis was also performed on these astrocytes and normalized to Gapdh expression (C). 

Another Western blot was run on astrocytes cultured from the cortex of FusP517L mutant mice and Wt mouse at P3 (D) 

and quantified (E). (A-C) Results presented as mean ± SEM. n=4, **p<0.01, ***p<0.001, unpaired Student t-test. (E, 

F) Results presented from a single replicate, n=1, no statistics performed. 

 

Next, I wondered whether or not the alterations in the expression of the retromer subunits 

were specific to mouse expressing mutant SOD1. To address this question, I turned my attention 

to another mouse model of ALS produced by Dr. Neil Shneider in which mice have a P517L point 

mutation in both alleles of the Fus gene, the mouse equivalent of the human FUSP525L ALS-causing 

mutation. His lab generously provided me with a sample of astrocytes cultured from one of these 
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mice and a wild-type control littermate. I ran a Western blot analysis on these samples, and saw a 

decrease in the expression of Vps35, Vps26a, and Vps29 in the astrocyte sample from the FusP517L 

mutant mice (Fig. 2.6D, E). Importantly, this analysis was performed on a single replicate of 

mutant and control astrocytes, so further analysis of more biological replicates is warranted. 

However, should this result hold true on further analysis, it would provide evidence that the 

decrease in retromer expression in SOD1G93A-Tg mice is not specific to the mutation of SOD1, but 

rather to ALS. 

 

Table 2.1 Clinical Information on Patients from Whom Post Mortem Samples Were Taken 

for Tissue Analysis 
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2.2.3 Characterization of retromer expression in ALS-affected human tissues and cells  

Since I have found a deficiency in the retromer in two mouse models of ALS, a natural 

next step is to see whether a similar deficiency can be found in human tissues from ALS patients. 

To this end, I acquired post-mortem samples of cervical SC from patients with ALS and from 

control patients with no known neurological disease from the Target ALS Human Postmortem 

Tissue Core. Clinical data of the patients these samples are from can be found in Table 2.1. 

Remarkably and in striking contrast to what I have experienced with the mouse tissues, with the 

human samples, despite the fact that great care was taken to matched samples for age, form of 

ALS, and post-mortem delay, I found large variability from case-to-case for both VPS35 and 

VPS26a by Western blot analysis (Fig. 2.7A, B). Thus, despite the fact that I detected a trend 

towards a decrease in expression in both proteins in ALS samples, neither difference reached 

statistical significance (Student t-test, VPS35 p=0.21, VPS26A p=0.27) between ALS and control 

samples. Given the variability of the data and despite the meaningful effect size of this experiment 

(Cohen’s d >0.6), it is thus not surprising that the power to detect a significant difference using 7 

replicates for each group is only 0.3. Thus, there is a 70% risk of false negative. To correct for this 

high type-II error, I ran a power analysis, which revealed that a sample size of over 30 samples per 

condition would be necessary to reach a conventional power of 0.8, a sample size that I thought 

much too large to be pursued. On qRT-PCR analysis, I also found no significant change in the 

mRNA expression of VPS35 (Student t-test, p=0.41), VPS29 (Student t-test, p=0.91), or VPS26A 

(Student t-test, p=0.79), which was also accompanied by high variability among samples (Fig. 

2.7C). 



81 

 

 

 

Figure 2.7 ALS Patient SC Samples Show No Change in Retromer Expression  

 
A Western blot was run on post mortem cervical SC samples from sALS and control patients. A representative blot is 

presented here (A) with quantification of 7 replicates per group (B). qPCR analysis was also performed on these 

samples and normalized to Gapdh expression (C). All results presented as mean ± SEM. n=7, unpaired Student t-test. 

 

I next tried to see whether there was any change in retromer component expression in 

human patients that could be found in a more controlled in vitro system looking at specific cell 

types that were otherwise obfuscated when looking at whole tissue. There is currently no method 

of acquiring primary MNs from post-mortem patient samples, so the study of human MNs has 

been restricted to the study of MNs differentiated from human stem cells. To that end, I acquired 

induced pluripotent stem cells (iPSC), which had been de-differentiated from cells from either 

ALS patients with a known mutation in SOD1 or from control patients with no known neurological 

disease. I got 3 mutant SOD1 iPSC lines and 2 control lines from the Columbia Stem Cell Core. 
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A third control iPSC line was generously provided by the lab of Dr. Michael Boland. Karyotyping 

performed on all lines by the core or by the Boland lab showed no abnormalities. Clinical data for 

the patients can be found on Table2.2. 

 

Table 2.2 Clinical Information on Patients from Whom iPSCs were Generated 

 

 

 Our lab has experience using a published method of fast differentiation of MNs from 

iPSCs, the protocol for which can be found in the Methods and Methods section of this thesis. This 

method produces a cell population that is roughly 70% MNs as indicated by expression of the 

homeobox protein MN marker HB9. This has previously been published and our lab has replicated 

this level of MN purity. I performed this differentiation protocol on iPSC from SOD1-ALS patients 

and from control patients and ran a Western blot analysis for the expression of VPS35, VPS26A, 

and VPS29. This showed that the iPSC-derived MN from ALS patients showed a significant 

decrease in the expression of VPS35 (Student t-test, p=0.0090). There was no significant change 

in the expression of VPS26A (Student t-test, p=0.47) or VPS29, but a marked trend was noted in 

decreased VPS29 expression (Student t-test, p=0.083). This provided evidence that a deficiency in 
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the retromer in the context of ALS was not specific to the mouse, but rather could be found in the 

context of human ALS as well. 

 

 

Figure 2.8 iPS-Derived MNs from SOD1-ALS Patients Express Lower Levels of VPS35  

 
iPSCs from SOD1-ALS and control (CTL) patients were differentiated into MNs. Immunocytochemistry for MN 

marker HB9 (A) was quantified (B), serving as validation of successful differentiation of iPS-MN. A Western blot 

was then run on these iPS-MNs for retromer core proteins (C) and quantified (D). (A, B) Results are presented as ratio 

of HB9+ cells per total cells as indicated by nuclear DAPI counterstain, from a single replicate. n=1, no statistics 

performed. (C, D) Results presented as mean ± SEM. n=3, **p<0.01, unpaired Student t-test.  

 

 Since both MNs and astrocytes in the SOD1G93A-Tg mouse model showed a deficiency in 

the retromer, I then sought to determine whether astrocytes from ALS patients showed a similar 

decrease in retromer expression. I am in the process of differentiating the exact same human iPSC 

lines used for MNs to astrocytes, but the protocol for iPSC-derived astrocytes requires a longer 
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time to achieve (Roybon et al. 2013). Therefore, while pursuing this road, I took advantage of our 

bank of primary astrocytes cultured from tissues from patients with sALS and from control patients 

with no known neurological disease (Re et al. 2014). I performed a Western blot analysis on lysates 

collected from these astrocytes and found that sALS astrocytes expressed a statistically significant 

decrease in VPS35 (Student t-test, p=0.024), VPS26A (Student t-test, p=0.0024), and VPS29 

(Student t-test, p=0.012), compared to control astrocytes. Data for the patients from which these 

astrocytes were cultured can be found in Table 2.3. The decreased expression of retromer core 

components in these cells provides evidence that not only MNs, but also astrocytes display a 

deficiency in the retromer, similar to what I have found in the SOD1G93A-Tg mouse model. 

 I also performed qRT-PCR analysis on these cultured human astrocytes and found a 

marked increase in the expression of VPS35 (Student t-test, p=0.025), VPS26A (Student t-test, 

p=0.0021), and VPS29 (Student t-test, p=0.00085). These results suggest that human astrocytes 

may be the site of a compensatory mechanism, possibly in response to the retromer dysfunction 

caused by the decreased expression of retromer proteins. Incidentally, in project independent to 

the work done for this thesis, I performed an unbiased RNAseq analysis of these astrocytes and 

found an enrichment for the PI3K pathway, which is crucial to not only retromer function, but also 

to endosomal trafficking as a whole. Genes from the pathway that were upregulated include 

PIK3CA, JAK2, and AKT3. 
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Table 2.3 Clinical Information on Patients from Whom Primary Astrocytes Were Cultured 

Post Mortem 
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Figure 2.9 Primary Astrocytes Cultured from sALS Patients Express Lower Levels of 

Retromer Core Components 

 
Primary astrocytes were cultured from post-mortem cortical tissues from sALS and control (CTL) patients. A Western 

blot was run on these astrocytes for retromer core components, of which a representative blot is presented here (A) 

with quantification of 5-7 replicates per group (B). qPCR analysis was also performed on these samples and 

normalized to Gapdh expression (C). RNAseq has also been performed on these samples, of which results from GSEA 

for Gene ontology pathway (Panther) enrichment analysis are presented here (D). (A-C) Results presented as mean ± 

SEM. n=5-7, *p<0.05, **p<0.01, ***p<0.001, unpaired Student t-test. (D) Results presented as top hits from 

normalized enrichment score. n=5-7, dark blue=FDR<0.05, PANTHER analysis. 
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2.3 Discussion 

 In this chapter, I sought to determine whether there was a possible connection between the 

retromer and ALS. I did so by following the model of previous studies that have linked other 

neurodegenerative diseases to the retromer. Since deficiencies in retromer components have been 

found specifically in the affected areas of various neurodegenerative diseases, I looked at the 

affected tissues and cells in the SOD1G93A-Tg mouse and in ALS patients. Previously, a study 

performed on iPS-derived MNs from patients with an ALS-causing expansion in the C9orf72 gene 

showed an incidental trend towards the decreased expression of VPS26A. However, this thesis 

presents the first comprehensive demonstration of a decrease in the expression of retromer 

components in the context of ALS. This decrease was seen consistently in the context of the 

SOD1G93A-Tg mouse and in the culture of human cells affected by ALS.  

 

2.3.1 Retromer depletion in ALS MNs 

 As MNs are the primary cell type associated with the pathology of ALS, any alterations in 

the functional processes of these cells are immediately suspect. It is difficult to obtain a pure 

enough population of MNs to be able to study retromer deficiencies in these cells. Thus, in my 

work, I have employed a number of avenues to study MNs via quantitative analysis of IHC and 

the use of iPSC-derived MN. From these, two experiments showed a decrease in the expression of 

Vps35.  

As mentioned in the result section, the quantification of fluorescence intensity of IHC, 

while appealing, must be taken with caution, as this approach is fraught with a host of possible 

technical problems such differences in tissue fixation, background fluorescence, signal 

amplification by antibodies, and poor linearity of the signal, to cite only a few. That said, 
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quantification of the mean fluorescence intensity (MFI) of protein IHC has often been employed 

to predict relative differences in protein expression between conditions. My analysis of relative 

MFI of Vps35 IHC in SC MNs showed a stark difference between P120 SOD1G93A-Tg mice and 

control NTg mice. Thus, while it cannot be said that proteins expression necessarily differs 

between the two conditions to the extent that the MFI differs, my data indicate a strong likelihood 

that there is a difference to at least some extent.  

These data are supported, and indeed enhanced by my finding that MNs derived from 

iPSCs from ALS patients with known ALS-causing SOD1 mutations show a decreased expression 

of VPS35 as well as trend towards decreased expression of VPS29. Not only does this provide 

further evidence that ALS-causing SOD1 mutations decrease retromer expression in MNs, but it 

also shows that the effect is not specific to the context of the mouse model and is generalizable to 

human cells. 

As the list of known retromer cargoes is ever-growing, and currently includes hundreds of 

candidates, the possible downstream effects of retromer deficiency in MNs are numerous and 

require further study. Possibilities for such study include retromer cargoes that are known to be 

mistrafficked by the retromer in neurons in other neurodegenerative diseases, including the AMPA 

glutamate receptor, cathepsin D, APP, and CI-MPR. Indeed, of these, the AMPA glutamate 

receptor and APP have been variously implied in the pathology of ALS. Briefly, studies have 

found that the altered trafficking and composition of the AMPA glutamate receptor results in 

greater calcium influx into the cell, which induces excitotoxicity in MNs (Corona and Tapia 2007; 

Kawahara et al. 2003). APP fragments have been shown to be increased in ALS patient 

cerebrospinal fluid (CSF), and have been proposed as biomarkers for the disease (Steinacker et al. 

2011; Stanga et al. 2018).  
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2.3.2 Retromer depletion in ALS astrocytes 

 Studies performed in our lab have shown that cultured ALS-affected astrocytes induce the 

degeneration of MNs. This was shown via experiments where NTg mouse MNs were co-cultured 

with astrocytes from the SOD1G93A-Tg ALS mouse model, resulting in the degeneration of the 

MNs (Nagai et al. 2007). While the mechanism for this toxicity is not yet completely understood, 

further experiments showed that direct contact between astrocytes and MNs was not necessary for 

it to happen, as treatment of MNs with media conditioned on SOD1G93A-Tg astrocytes resulted in 

a similar toxic effect, indicating that astrocytes were releasing a toxic factor rather than failing to 

support MNs viability (Nagai et al. 2007). Later study also showed that astrocytes cultured from 

post-mortem cortical tissues of patients with ALS had similar toxic effects on MNs (Re et al. 2014; 

Haidet-Phillips et al. 2011). Interestingly, this toxicity from patient-cultured astrocytes occurs 

regardless of whether the patent has the sporadic or the familial form of the disease, indicating that 

astrocyte-induced toxicity is not specific to any specific ALS-causing mutation, but is rather a 

generalizable mechanism of neurotoxicity in ALS. Studies from other labs have also supported 

this idea, as MN toxicity has since been shown to be induced by multiple models of ALS-affected 

astrocytes, including from transgenic mice with ALS-causing mutations in FUS (Kia et al. 2018; 

Ajmone-Cat et al. 2019; Rojas et al. 2014). Altogether, these findings have shown that decoding 

the mechanism of ALS is vital to our understanding of the disease.  

The fact that I saw a consistent decrease in retromer expression in both SOD1G93A-Tg 

mouse astrocytes and patient sALS astrocytes indicates that the retromer may be involved in the 

mechanism of toxicity caused by these cells on MNs. Indeed, the fact that astrocyte toxicity seems 

to occur due to the release of a toxic factor provides clues that improper protein processing and 

trafficking, and specifically, retromer dysfunction, may be involved in astrocyte-induced MN 
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toxicity. Indeed, retromer depletion has been shown to cause the improper processing and secretion 

of various protein products including Wnt and toxic fragments of APP (Sullivan et al. 2011; 

Belenkaya et al. 2008; Mecozzi et al. 2014; Small et al. 2005; Bhalla et al. 2012; Ansell-Schultz 

et al. 2018; Zhang et al. 2011). It is thus possible that retromer depletion may be involved in the 

formation and secretion of toxic factors from astrocytes. However, data that I will present in later 

chapters indicated that if, in fact, retromer depletion is involved in the toxic effects of astrocytes 

on MNs, it is possible that such depletion, rather than contributing to toxicity, may be a protective 

mechanism, inhibiting such toxicity. While the retromer has been extensively studied in multiple 

cell types, including neurons and microglia, there is currently no literature on the effects of 

retromer function on astrocyte biology. The results of my research indicate that the study of 

astrocytes, particularly in the context of ASL, could benefit from a deeper exploration into the 

retromer and the effects of its dysfunction within them. 

 

2.3.3 Retromer depletion coincides with active ALS pathology 

 Deficiencies in retromer expression in this study were found across multiple tissues and 

cells from the SOD1G93A-Tg mouse model of ALS. Similarly, multiple cultured cell types from 

patients with ALS showed such deficiencies. However, of interest are also the samples from the 

SOD1G93A-Tg mouse which showed no such change in the levels of retromer expression. Included 

are the lysates from mouse SCs at P60 and P90. At P60, mice do not yet show overt signs of ALS 

pathology, which start to appear around P90. While these lysates showed no significant decrease, 

when looked at together, the apparent progression from P60 to P90 to P120 shows what might be 

an interesting trajectory. At P60, SOD1G93A-Tg mice seemed to express slightly higher levels of 

both Vps35 and Vps26a compared to NTg mice, of which Vps26a was statistically significant. 
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Conversely, at P90, they then showed a slight, but not statistically significant trend towards 

decreased expression of both Vps35 and Vps26a. Ultimately, at P120, a robust decrease in 

expression was seen. This seeming progressive decrease gives way for further, higher powered 

studies performed at shorter intervals of disease progression, which it is possible could show a 

steady decrease over the lifetime of the mouse, possibly buffered by a compensatory increase in 

mRNA, rather than a complete lack of change ending in a precipitous decline at P120.  

In any case, it is clear that pre-symptomatically, SOD1G93A-Tg mice do not show any 

particularly appreciable deficiency in the retromer. Cortical neuronal cultures and kidney lysates 

from these mice as well as SC lysates from wtSOD1-Tg mice also showed no change in retromer 

expression. What all of these samples have in common is that none are known to show any overt 

pathology of ALS. Although the cortical neurons, kidney, and pre-symptomatic SC samples all 

overexpress the same SOD1G93A protein that the P120 SC does, and the wtSOD1-Tg mouse 

overexpresses the same levels of enzymatically active SOD1, it seems that the fact that these 

tissues are minimally or entirely unaffected by disease may either result or even be partially 

influenced by the lack of retromer depletion. By this model, it makes sense that ALS-affected 

astrocytes and MNs show a deficiency in retromer, as these cell types, as outlined above, are 

known to be directly involved in the pathogenesis of ALS. Further, the presence of retromer 

deficiency in P120 cortex and cerebellum may be linked to the fact that glia make up the bulk of 

the volume of neural tissues, and it has been shown that astrocytes induce MN degeneration 

regardless of the part of the CNS they originated from. While I saw no statistically significant 

change in SC samples from patients with ALS—which are obviously affected by ALS pathology—

the trends I saw in these samples and the low power does not allow me to exclude a difference 

with certainty. Furthermore, since patient often display different levels of pathology in different 
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areas of the spinal cord, it is possible that retromer expression may correlate with level of 

pathology in the area where the spinal cord sample was taken. Thus, upon further study, we may 

see a relationship between levels of retromer expression and levels of ALS pathology within the 

same area. 

 

2.3.4 Expression of retromer proteins and mRNAs in ALS tissues and cells 

Further study, some of which will be explored in later chapters of this thesis, involves 

looking at the upstream causes of retromer deficiency, and how it intersects with ALS 

pathogenesis. Since I did not find any reduction in mRNA associated to the decrease of protein 

levels of retromer core components, the work presented in this chapter enabled me to discount the 

possibility of a change in transcription of retromer components as the contributing factor to 

retromer deficiency. On first glance, this is rather surprising, as most studies that have shown a 

decrease in the expression of retromer core proteins in the context of neurodegeneration have 

shown a concomitant, likely causative decrease in mRNA levels coding for them. Indeed, the 

finding that first connected the retromer to any neurodegenerative disease involved a decrease in 

the expression of VPS35 mRNA as measures by microarray on AD patient tissue. This finding 

then ultimately led to finding a deficiency in protein levels of VPS26 and VPS35 in these tissues. 

Thus, the fact that retromer core protein-coding mRNA show no change in the context of ALS, 

and indeed show an increase in sALS patient astrocytes and SOD1G93A-Tg mouse SCs runs counter 

to much of the history of the connection between neurodegeneration and the retromer. 

However, a recent study in Pick’s disease and PSP showed similar results to those I have 

seen for ALS here, albeit in post-mortem tissue samples from patients (Vagnozzi et al. 2019). In 

that study, tissues from affected patients had decreased levels of retromer core proteins, but there 
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was no accompanying change in mRNA levels. Thus, these results appear and sound quite relevant 

to the work done in this thesis, as Pick’s disease is a form of frontotemporal dementia (FTD), 

which exhibits a high comorbidity, shares some associated gene mutations, and is thought to exist 

on a spectrum with ALS (Renton et al. 2011; DeJesus-Hernandez et al. 2011; Bannwarth et al. 

2014; Fecto et al. 2011; Cirulli et al. 2015). Thus, the results of my study are consistent with the 

results from a disease most closely linked to ALS, though the upstream cause of retromer core 

protein deficiency remains a mystery. 

The well-established role of RNA misregulation in ALS, including the fact that FUS and 

TDP-43—two of the proteins whose mutation is most often associated to ALS—are both RNA-

binding proteins, might also have indicated that retromer protein deficiencies may have been the 

result of decreased mRNA expression. However, the results from my experiments indicate that 

ALS pathology mostly does not seem to have a deleterious effect on the expression of retromer 

core protein-encoding mRNA. Indeed, quite the opposite, it seems, might be the case, as SC lysates 

from SOD1G93A-Tg mice, and especially astrocytes from patients with sALS showed a remarkable 

increase in the expression of such mRNA This could be indicative of a currently poorly understood 

mechanism known as genetic compensation in which the cell upregulates mRNA production in 

response to a reduction in the downstream effects of the protein it encodes (Rossi et al. 2015; El-

Brolosy and Stainier 2017). Similar such effects have been seen in C. elegans, which has two 

paralogues encoding for superoxide dismutase, sod-1 and sod-5, and in which the deletion of the 

sod-1 gene causes the upregulation in mRNA levels of the sod-5 gene (Yanase et al. 2009). Further 

research may elucidate the mechanism whereby retromer mRNA is upregulated in response to the 

depletion of the retromer, and whether this process is specific to the context of ALS pathology or 

not. 
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 Interestingly, RNAseq data from another project I have been conducting have shown that 

genes involved in the PI3K pathway are also upregulated in sALS astrocytes. PI3K functions in 

the formation of phosphatidylinositol 3-phosphate (PI3P), a lipid found on the membranes of early 

endosomes, and is directly involved in the recruitment of the retromer complex to the endosomal 

membrane (Shin et al. 2005; Xu et al. 2001; Ghai et al. 2011; Ghai et al. 2015). Thus, the 

upregulation of genes involved in the PI3K pathway and in the retromer may follow similar 

processes of the cell attempting to correct a dysfunction it is sensing through altered transcription. 

Indeed, it is possible that the depletion of the retromer may be due to changes in the lipid 

composition of the endosome. Interestingly, one of the genes that was upregulated in the RNAseq 

screen was AKT3, whose overexpression in MNs has been shown to be neuroprotective in 

SOD1G93A-Tg mice (Peviani et al. 2014). The connection between the results of these two analyses 

could be further explored via the study of possible alterations in lipid metabolism in sALS 

astrocytes and its effect on the retromer. 

 

2.3.5 Retromer deficiency not specific to mutations in SOD1  

The finding that tissues and cells from the SOD1G93A-Tg mouse show a decrease in 

retromer expression provides compelling evidence for the involvement of retromer deficiency in 

ALS. This is further supported by the fact a similar deficiency is seen in MNs derived from iPSCs 

from patients with SOD1-related ALS. However, these data alone would not preclude the 

possibility that it is specifically the mutation of SOD1 that results in retromer deficiency. Indeed, 

while SOD1-related ALS is clinically indistinguishable from sporadic ALS, it has been shown that 

certain features are specific, or at least highly correlated to ALS caused by a mutation in SOD1, 

including the aggregation of SOD1, the lack of TDP-43 aggregation, and a higher likelihood of 
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lower MN-predominant disease, and a decreased likelihood of comorbidity with FTD. The fact 

that I noted retromer deficiency in the context of non-SOD1-related ALS, particularly in sALS 

patient astrocytes shows that the mechanism of retromer deficiency is generalizable to ALS as a 

whole. This was further supported by the apparent decrease in retromer expression in astrocytes 

from FusP517L mutant mice, though this was seen in a single replicate, and replication of the 

experiment is warranted.  
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CHAPTER 3 

CAUSES AND EFFECTS OF RETROMER DEFICIENCY IN SOD1G93A-TG 

ASTROCYTES IN VITRO 

 

3.1 Introduction 

 In the previous chapter, I demonstrated that the context of ALS results in retromer depletion 

both in neural tissues from the SOD1G93A-Tg mouse model of ASL and in multiple CNS cell types, 

both in SOD1G93A-Tg mice and in ALS patients. In this chapter, I will study some of the possible 

upstream causes of retromer deficiency as well as some of the downstream effects.  

 

3.1.1 Degradation of retromer proteins 

 Retromer protein deficiency has been found in the context of multiple neurodegenerative 

diseases, and when this is the case, most often, an accompanying decrease in the level of retromer 

mRNA is also found. This has been the case for AD, PD, and DS (Wang, Zhao, et al. 2013; Small 

et al. 2005; MacLeod et al. 2013). This would indicate that the reason for the decreased expression 

of retromer protein in these diseases is in fact the decreased expression of retromer-coding 

mRNAs. Whether this is due to a decrease in transcription or to the mishandling of the mRNA 

post-transcription is unknown. However, my results in Chapter 2 have shown that ALS pathology 

does not seem to cause a decrease in retromer mRNA expression. Thus, the root of the difference 

in retromer protein expression in ALS is likely either a difference in the translation of these 

mRNAs or to the differential degradation of retromer proteins.  

 Previous studies have shown that the stability of the retromer complex is integral to the 

expression levels of its components. Namely, the depletion of Vps35, Vps26a, or Vps29 has been 
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shown to cause a reduction in the protein levels of the remaining retromer components, indicating 

that if the complex cannot be formed, the components are solubilized and degraded (Mecozzi et 

al. 2014; Fuse et al. 2015; Bhalla et al. 2012). Furthermore, pharmacological chaperones have been 

made that stabilize the formation of the retromer complex at the binding site between Vps35 and 

Vps29 (Mecozzi et al. 2014). Treatment of cells with these chaperones has been shown to increase 

the levels of retromer protein and function in the cells, showing further proof that the stability of 

the complex is one of the main determinants of retromer protein expression (Mecozzi et al. 2014).  

While the effects of retromer disruption on the degradation of other proteins is widely 

studies, there is precious little research on the actual methodology of the degradation of retromer 

proteins themselves. One study using proteasomal and lysosomal inhibitors in the context of the 

knockdown of retromer core proteins has shown that the proteasome is responsible for the 

degradation of Vps35 and Vps26a (Fuse et al. 2015). However, the mode of degradation of Vps29 

is unknown. The fact that Vps35 and Vps26a degradation occurs at the proteasome makes intuitive 

sense, as both of these are generally found in the cytoplasm when not associated to the retromer 

complex. How these proteins get targeted to the proteasome has not been a major subject of study. 

One study showed that the PD-associated protein parkin is involved in the ubiquitination of Vps35, 

and while it confirmed that Vps35 was degraded by the proteasome, parkin-mediated 

ubiquitination was shown to not be associated to Vps35 degradation (Williams et al. 2018). 

 

3.1.2 Retromer trafficking of APP  

 AD is characterized by the accumulation of toxic Aβ fragments of APP in the brain. At 

least in part due to this, starting with the first study to connect the retromer to AD, the trafficking 

of APP by the retromer and the effects of retromer dysfunction on APP processing have been the 
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subject of intense study (Small et al. 2005). These effects have been shown to be two-fold. First, 

the retromer is known to traffic SORL1, which itself binds APP (Reitz et al. 2013; Fjorback et al. 

2012). Thus, the disruption of the retromer prevents the trafficking of APP away from the 

endosome, where it is more likely to undergo cleavage by BACE1, the first step towards the 

formation of Aβ (Jiang, Li, et al. 2014; Checler 1995; Bhalla et al. 2012; Muhammad et al. 2008). 

Second, the retromer has also been shown to traffic BACE1 away from the endosome (He et al. 

2005; Wang et al. 2012). Since BACE1 works optimally at the acidity levels of the endosome, if 

the retromer fails to traffic it away from the endosome, it is more likely to cleave APP found there, 

producing Aβ.  

 The depletion of the retromer, due to a combination of these effects, has shown to be 

integral to the proper processing of APP. Studies that induce a deficiency in the retromer have 

shown that this results in APP being more highly concentrated in the endosome and cleaved to 

form and secrete higher levels of Aβ both in vitro and in vivo (Toh et al. 2018; Bhalla et al. 2012; 

Muhammad et al. 2008; Small et al. 2005). Conversely, treatment of cells with the above 

mentioned retromer pharmacological chaperones results in an attenuation of Aβ production 

(Mecozzi et al. 2014). Altogether, the alteration of APP trafficking and processing has been one 

of the most well-characterized effects of retromer deficiency. 

 

3.2 Results 

 In the previous chapter, I reported on reductions in the retromer core subunits in both 

human sALS and mouse fALS tissues and cells. In this new chapter, I thus sought to shed some 

light onto the reasons why this deficiency occurs as well as on downstream effects of this 

deficiency. To address these questions, I decided to focus on primary astrocytes from SOD1G93A-
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Tg and NTg mice for three main reasons: (i) these astrocytes show a consistent and robust decrease 

in retromer protein expression; (ii) they are an easily attainable, purifiable, and expandable in vitro 

cell model; and (iii) they have a well-established role in the pathogenesis of ALS in mice. 

 

3.2.1 Retromer expression is independent of astrocyte activation state  

 It has been proposed that in neurodegenerative disorders like ALS, astrocytes may adopt a 

neurotoxic phenotype, called A1 (Liddelow et al. 2017). This A1 phenotype is thought to result 

from the exposure of astrocyte to interleukin-1alpha (Il-1α), tumor necrosis factor alpha (TNFα), 

and complement component 1, q subcomponent (C1q) released by neighboring microglia 

(Liddelow et al. 2017). I thus first wondered whether the observed retromer alterations could be a 

feature of the A1 phenotype by which astrocytes, for example, rearrange their protein subcellular 

distributions to promote neurotoxic mediators. To test this idea, I cultured NTg astrocytes, and 

treated them with Il-1α, TNFα, and C1q for 7 days. After that treatment, I collected the astrocytes, 

and first confirmed that upon exposure to Il-1α/TNFα/C1q, astrocytes are enriched in at least some 

of the published A1 gene set (Liddelow et al. 2017). Specifically, I found a statistically significant 

upregulation of H2-D1 (paired Student t-test, p=0.0026) and Serping1 (paired Student t-test, 

p=0.015), and a trend towards upregulated H2-T23 (paired Student t-test, p=0.11) (Fig. 3.1A). I 

then looked at the level of expression of retromer proteins in these Il-1α/TNFα/C1q-treated 

astrocytes, and I found that, as assessed by Western blot, the levels of neither Vps35 (paired 

Student t-test, p=0.79) nor Vps26a (paired Student t-test, p=0.53) proteins differ between 

astrocytes treated with Il-1α/TNFα/C1q and those treated with vehicle control (Fig. 3.1B, C). Thus, 

the activation state of astrocytes in ALS is unlikely to be a major determinant of retromer 

expression. 
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Figure 3.1 A1 Activation of Astrocytes Incites No Significant Changes in Retromer 

Expression 

 
NTg astrocytes were treated with Il-1α, TNFα, and C1q for 7 days and collected at the end of treatment. qRT-PCR 

analysis was performed for mRNA markers of A1 activation (A). Western blot was performed on these astrocytes for 

retromer component levels. A representative blot is presented here (B) with quantification of 5 replicates per group 

(C). All results presented as fold change between astrocytes treated with A1 cocktail to those treated with vehicle, 

mean ± SEM. n=5, *p<0.05, **p<0.01 in paired Student t-test. 

 

3.2.2 Retromer degradation rate is independent of astrocyte SOD1G93A transgene expression 

 In Chapter 2, I saw that decreases in retromer protein expression in ALS tissues and cells 

never coincided with decreases in levels of mRNA expression. In fact, when there was a change 

in mRNA levels, the content of mRNAs for the retromer core components were increased instead. 

This mRNA/protein discrepancy argues that the observed changes in retromer protein expression 

are likely due to a post-transcriptional mechanism. Thus, I decided to examine whether an increase 

in the degradation of the retromer complex in the context of ALS may account for the reductions 

in retromer protein. To look at the degradation rate of retromer components in SOD1G93A-Tg and 

NTg astrocytes, I inhibited protein translation by treating astrocytes of both genotypes with 
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cycloheximide for 0, 12, or 24 hours and then followed the amount of retromer core proteins by 

Western blot, over time.  

First, I confirmed that the cycloheximide treatment successfully impaired translation. A 

Western blot for Cyclin D3, a cell cycle protein known to have a short half-life and often used as 

a control for cycloheximide treatment, showed a significant time-dependent decline in expression 

in both SOD1G93A-Tg and the NTg astrocytes (Fig. 3.2A). These results confirm that, under our 

experimental conditions, cycloheximide treatment not only inhibited protein translation, but also 

did so comparably in both SOD1G93A-Tg and the NTg astrocytes. Likewise, I found that all three 

core subunits declined over time in both SOD1G93A-Tg and the NTg astrocytes (Fig. 3.2). However, 

I found no significant difference in the rates of decay for any of the three subunits between the 

SOD1G93A-Tg and the NTg astrocytes: Vps35 (extra sum-of-squares F test, p=0.95), Vps26a (extra 

sum-of-squares F test, p=0.12), and Vps29 (extra sum-of-squares F test, p=0.67). This indicated 

that the difference in retromer expression between the two conditions was likely pre- or peri-

translational. Nonetheless, I cannot exclude with certainty that the difference in retromer subunits 

may be due difference in degradation since the studied retromer components seem to have a fairly 

long half-life, as evidenced by this assay, and thus an assay longer than 24 hours might have been 

useful to tease out subtler changes in degradation. However, I have found that astrocytes develop 

marked toxicity when treated with cycloheximide for more than 24 hours, preventing me from 

carrying on any reliable such longer experiment.  
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Figure 3.2 Cycloheximide Chase Assay for Retromer Proteins in NTg and SOD1G93A-Tg 

Astrocytes 

 
NTg and SOD1G93A-Tg astrocytes were treated with cycloheximide for 0, 12, or 24 hours. A Western blot was run on 

collected lysates from these cells. A representative blot is presented here (A). Decay of protein expression in each 

group is plotted with a best-fit one phase decay curve for Vps26a (B), Vps29 (C), and Vps35 (D). All results presented 

as fold change from time point 0 for each genotype, mean ± SEM. n=4, no significance in extra sum-of-squares F test 

for degradation rate constant K. 

 

3.2.3 APP trafficking and processing in SOD1G93A-Tg astrocytes 

 To determine whether the observed reductions in retromer subunit expression are 

associated with an altered retromer function, next, I thought to examine the processing of APP in 

SOD1G93A-Tg astrocytes. This experiment was prompted by previous demonstrations that 

deficiencies in retromer function cause an increase in the secretion of Aβ, a cleavage product the 
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retromer cargo APP (Bhalla et al. 2012; Small et al. 2005). Accordingly, I cultured both SOD1G93A-

Tg and NTg astrocytes for 7 days and then collected the media they were cultured in. Members of 

the lab of Dr Scott Small then ran an enzyme-linked immunosorbent assay (ELISA) on these 

samples using a kit that detects Aβ42 (Invitrogen, cat. # KMB3441). This analysis revealed 

significantly higher levels of Aβ42 in culture media conditioned with SOD1G93A-Tg astrocytes 

compared to those in media conditioned with NTg astrocytes (Fig. 3.3). Thus, this result supports 

the idea that SOD1G93A-Tg astrocytes exhibit higher rates of APP processing and secretion of Aβ42 

fragments.  

 

 
Figure 3.3 ELISA for Aβ42 in NTg and SOD1G93A-Tg Astrocytes 

 
NTg and SOD1G93A-Tg astrocytes were plated, and media was conditioned on them for 7 days. The media was then 

collected, and an ELISA for the Aβ42 fragment was performed and normalized to total protein levels in the media. 

Results presented as mean ± SEM. n=4-5, *p<0.05 in unpaired Student t-test. 

 

In light of these results, I then assessed the localization of APP within SOD1G93A-Tg 

astrocytes as another proxy of retromer function. Accordingly, I performed immunocytochemistry 

(ICC) to examine the co-localization between APP and EEA1 (a marker of the early endosomal 

membrane) to determine whether APP is being mistrafficked and sequestered in the endosome. 
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Indeed, such co-localization has previously been shown to be increased in response to a deficiency 

in the retromer (Bhalla et al. 2012). However, I found no significant difference in the co-

localization indices between SOD1G93A-Tg and NTg astrocytes (Fig. 3.4D). I also found no 

evidence of swelling of endosomal size between SOD1G93A-Tg and NTg astrocytes (Fig. 3.4C), a 

feature that has been reported with retromer ablation (Bhalla et al. 2012). Lastly, I performed an 

ICC to evaluate the co-localization between APP and Vps35 as a basic test of whether the retromer 

deficiency I had found in SOD1G93A-Tg astrocytes caused APP to be trafficked by the retromer to 

a lesser extent. With this approach, I found that ICC signal for APP did co-localize with Vps35-

positive vesicles to a significantly lesser extent in SOD1G93A-Tg and NTg astrocytes (Fig. 3.5E). 

Thus, while APP mistrafficking and alterations in endosomal dynamics are not overt in SOD1G93A-

Tg astrocytes, the above cited results are in keeping with a subtle retromer deficiency. 
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Figure 3.4 Co-localization Analysis for APP Trafficking in NTg and SOD1G93A-Tg Astrocytes 

 
ICC was performed on NTg and SOD1G93A-Tg astrocytes. Representative images for EEA1 co-stain with APP (A) 

and for Vps35 co-stain with APP (B) on NTg astrocytes are shown. Endosomal size was quantified via image particle 

analysis of EEA1 stain (C). Relative levels of co-localization of APP in either EEA1 (D) or Vps35 (E) over total APP 

were quantified. Scale bars are 10μm. All results presented as fold difference from average of NTg, mean ± SEM. 

n>30 fields of imaging from at least 3 independent experiments, *p<0.05 in unpaired Student t-test. 
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3.2.4 Neurotoxicity due to retromer depletion in an in vitro system 

 In light of the above results, I then sought to determine whether retromer deficiency is 

sufficient to cause MN toxicity. To this end, I first made a lentivirus that expressed a plasmid 

graciously provided by the Small lab, which produces a short hairpin RNA (shRNA) against 

Vps35. I validated that treatment of astrocytes over 5 days resulted in the dramatically reduced 

expression of Vps35, both in mRNA (Student t-test, p=0.00019) and in protein (Student t-test, 

p=0.000018). I also observed that the depletion of Vps35 in astrocytes, as previously documented 

in other cells (Bhalla et al. 2012; Fuse et al. 2015), causes a concomitant reduction in Vps26a 

(Student t-test, p=0.000034) and Vps29 (Student t-test, p=0.0032) despite the fact that mRNAs 

coding for both Vps26a and Vps29 showed no change (Student t-test, Vps26a p=0.79, Vps29 

p=0.81) (Fig. 3.5A-C). This is likely due to the destabilization of the retromer complex and ensuing 

increase in Vps26a and Vps29 degradation. I also noted that the silencing of Vps35 did not induce 

any overt astrocyte death over the course of at least one month. 

 Using this Vps35 shRNA virus as well as a virus expressing control shRNA, I designed an 

experiment to test the effect of retromer depletion on astrocyte-induced MN toxicity. I treated NTg 

astrocytes with either Vps35 shRNA or control shRNA. I then differentiated MNs from mouse 

embryonic stem (ES) cells expressing GFP under the HB9 motor neuron promoter. I plated these 

ES-derived MNs (ESMN) on the virus-treated astrocytes and traced the level of MN death over 

time. Interestingly, I found that ESMNs plated on astrocytes which had been depleted of Vps35 

died at a faster rate than ESMNs plated on control shRNA-treated astrocytes (paired Student t-test, 

Day 2 p=0.0018, Day 3 p=0.0079, Day 4 p=0.0018, Day 5 p=0.0033, Day 6 p=0.025, Day 7 

p=0.034). Thus, a deficiency retromer expression can kill MNs via a non-cell autonomous 

mechanism.  
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Figure 3.5 Astrocytes with a Depletion of Retromer Induce Toxicity in MNs 

 
NTg astrocytes were treated for 5 days with either Vps35 shRNA or control shRNA. Knockdown was validated by 

Western blot for retromer proteins. A representative blot is presented here (A) with quantification of 4 replicates per 

treatment group (B). qRT-pCR of these astrocytes was also performed for retromer protein-coding mRNA (C). An 

experiment was run in which treated astrocytes were co-cultured with ES-derived MNs expressing GFP under the 

HB9 promoter, and the relative viability of the MNs over time was assessed (D). All results presented as mean ± SEM. 

(B, C) n=4, **p<0.01, ***p<0.001 in unpaired Student t-test. (D) n=5, *p<0.05, **p<0.01 in paired Student t-test. 
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 Since I have also found a deficiency in the expression of Vps35 in MNs, I went on to see 

whether the downregulation of Vps35 via treatment with Vps35 shRNA could also induce cell-

autonomous toxicity in the MNs. To do this, I again differentiated ESMNs expressing GFP under 

the HB9 promoter. However, as I have noted above, a decrease in the expression of at least one 

type of non-MN cells cultured with MNs could by itself induce toxicity. Thus, in order to study 

the specific cell-autonomous mechanisms of MN degeneration, a highly-enriched MN culture was 

essential, and the differentiation of ESMNs generally produces a population of cells that is about 

20% MNs, with the rest being a mix of neural-lineage cells, including astrocytes. In order to 

achieve a pure population of ESMNs, after dissociation of the cultures, I brought the differentiated 

cells to the Columbia Stem Cell Initiative (CSCI) Flow Cytometry Core, where they put the cells 

through fluorescence activated cell sorting (FACS) to separate GFP- from non-GFP-expressing 

cells (Fig. 3.6A). Thus, we produced a highly enriched population of neurons that expressed the 

MN marker HB9. I then cultured these MNs and after 24 hours in culture, I treated them with 

either Vps35 shRNA or control shRNA. I collected mRNA from these cells 3 days post-treatment, 

and found, via qRT-PCR, a consistent downregulation of Vps35 mRNA (One sample t-test, 

p=0.0011) with no significant change in Vps26a mRNA (One sample t-test, p=0.36) (Fig. 3.6B). 

Imaging and tracking of cell survival in this enriched ESMN culture showed that retromer 

depletion produced a time-dependent increase in cell-autonomous MN loss (paired Student t-test, 

Day 1 p=0.73, Day 2 p=0.86, Day 3 p=0.22, Day 4 p=0.0017, Day 5 p=0.017, Day 6 p=0.014, Day 

7 p=0.012) (Fig. 3.6C). I repeated this experiment independently thrice from three differentiations 

of ES cells to MNs. Of note, there was no difference in survival up to 3 days post-treatment. 

However, as I have noted above, retromer component proteins have a fairly long half-life. Thus, 

the fact that MN degeneration does not occur significantly until 4 days post-treatment likely has 
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to do with the amount of time it takes for retromer depletion to reach toxic threshold in the cell. 

Once it does, it appears that retromer depletion causes an even larger increase in cell autonomous 

toxicity than in cell non-autonomous toxicity from astrocytes. 

 

 
Figure 3.6 Depletion of the Retromer Induces Cell-Autonomous Toxicity in MNs 

 
Mouse ES cells expressing GFP under the promoter of the motor neuron marker HB9 were differentiated into MNs. 

These cells were then sorted through FACS for GFP expression. Shown here is a histogram of a FACS gating that was 

used for one of the experiments (A). Purified GFP-expressing MNs were plated and treated with either Vps35 shRNA 

or control shRNA. The treatment was validated through qRT-PCR of the cells 3 days after treatment showing a 

decrease in the targeted Vps35 mRNA and not in Vps26a mRNA (B). The relative viability of these cells by treatment 

was monitored over time (C). (B, C) Results presented as fold change between MNs treated with Vps35 shRNA to 

those treated with control shRNA, mean ± SEM. n=3, *p<0.05, **p<0.01 in paired Student t-test. 
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3.3 Discussion 

 In this chapter, I followed up on the results of Chapter 2, where I had found a deficiency 

in the retromer in the context of ALS. I was curious what the possible upstream causes and 

downstream effects of retromer deficiency in ALS could be, so I used astrocytes cultured from 

SOD1G93A-Tg mice, which showed a robust deficiency in the retromer as an in vitro model for 

ALS-induced retromer deficiency. 

 

3.3.1 Retromer protein degradation 

 Since differences in mRNA expression seemed to not be the cause of retromer protein 

depletion in ALS, I posited that retromer protein degradation may be a differing factor in protein 

expression. Studies in mutant SOD1 have shown that misfolded SOD1 has a tendency to create 

abnormal protein-protein interactions that often disrupt functioning protein complexes. For 

example, one study has noted that mutant SOD1G93A and SOD1G37R are translocated into the 

nucleus of the cells in the spinal cords of Tg mice. There, they can bind to and disrupt the survival 

motor neuron protein (SMN) complex, which as the name suggests, is essential to the survival or 

MNs (Gertz, Wong, and Martin 2012). Furthermore, and of particular relevance to my research, it 

has been shown that the G93A, G85R, and A4V ALS-causing mutations in SOD1 cause SOD1 to 

bind to the dynein complex, preventing proper retrograde trafficking by this complex (Zhang et al. 

2007). Since retromer expression is highly sensitive to the proper composition of the retromer 

complex, it is possible that retromer complex destabilization could be induced by a context of 

ALS, be that the expression of mutated SOD1 or otherwise.  

However, I did not note a difference in the rate of decay of the retromer between NTg and 

SOD1G93A-Tg astrocytes. It is important to note that what I did find via my cycloheximide chase 
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experiment is that the retromer core components seem to have a long half-life, both in NTg and 

SOD1G93A-Tg astrocytes. As such is the case, it is difficult to say that the results of this experiment 

definitively mean that there are no changes in the rate of degradation of these proteins. Indeed, it 

is possible that a slight change in the rate of degradation could, over time, build up to retromer 

deficiency. However, with these limitations in mind, the fact that I saw no change in the rate of 

degradation indicates that it may be worth looking at changes in the translation of the retromer 

component mRNAs. As I have mentioned previously, the sequestration and mishandling of 

mRNAs has proven to be a part of ALS pathology. Briefly, the ALS associated proteins FUS and 

TDP-43 are RNA-binding proteins that regulate RNA processing, the ALS-causing expansion of 

C9orf72 can induce its RNA product to create RNA foci that sequester RNA handling machinery, 

and the mutation of SOD1 can cause it to abnormally bind to and sequester mRNA (Gendron et 

al. 2013; Buratti and Baralle 2001; Colombrita et al. 2012; Lu et al. 2007). Thus an experiment 

that assesses the level of effective translation of mRNAs in ribosomes may shed some further light 

on the causative factor for retromer protein deficiency. One such experiment would be polysome 

fractionation in which mRNA-associated ribosomes are separated in a gradient, and the 

distribution of a given mRNA transcript is assessed, comparing whether it is more enriched in 

fractions containing actively translating polysome fractions or in those containing ribosomes 

associated with a lower translation rate.  

 

3.3.2 APP processing in ALS 

 In this chapter, I performed a series of experiments looking at APP trafficking in 

SOD1G93A-Tg astrocytes as a possible downstream effect of retromer deficiency. It is important to 

note that while I show evidence that retromer deficiency and increased Aβ production co-occur in 
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SOD1G93A-Tg astrocytes, this does not necessarily mean that one is causative of the other. While 

it is known that a deficiency in the retromer may lead to such an effect, the increased release of 

Abets fragments can be induced by a number of processes that would have to be examined to be 

certain that retromer deficiency is the main cause of Aβ production in the context of SOD1G93A-

Tg astrocytes. However, by showing a decrease in the colocalization of APP with Vps35, I provide 

some further evidence that indeed the retromer is trafficking APP to a lesser extent in SOD1G93A-

Tg astrocytes. Further studies looking at the trafficking dynamics of APP by the retromer in ALS 

cells, perhaps via live imaging and tracking, may provide further insight into how retromer 

deficiency affects cellular and molecular dynamics specifically in the context of ALS. 

 Of particular interest to these studies is the fact that APP has been variously implicated in 

ALS pathogenesis in a number of ways. First, the CSF of patients with ALS has been shown to 

have increased levels of Aβ, such that Aβ has been proposed as a biomarker for the disease 

(Steinacker et al. 2011; Stanga et al. 2018). Furthermore, a study in SOD1G93A-Tg mice showed 

that the genetic ablation of APP in these animals resulted in clinical improvement as well as 

benefits to motor neuron survival, implicating APP in disease pathogenesis (Bryson et al. 2012). 

Finally, data which is currently in submission from our lab has shown that the misprocessing of 

APP, and specifically, β-secretase activity in astrocytes may be involved in the toxicity of 

astrocytes on MNs. Altogether, while APP is not the central topic of study of this thesis, the data 

from this chapter provide evidence for the possible interplay of retromer function and APP 

processing in ALS. 
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3.3.3 Neurotoxicity of retromer depletion 

 In this chapter, I showed that retromer depletion in either astrocytes or MNs can induce 

toxicity in MNs in an in vitro system. The implications of this are clear in the possible pathogenesis 

of ALS, considering that I have shown both of these cell populations to have a deficiency in the 

retromer in ALS and that MNs have been shown to die both of cell-autonomous and cell-non-

autonomous mechanisms in ALS. However, especially in light of the work presented in later 

chapters of this thesis, it is important to take some caveats of these experiments into account. First, 

the treatment of cells with Vps35 shRNA results in a dramatic decrease in retromer expression, far 

greater than any deficiency I found in ALS tissues or cells. It is clear from multiple studies on the 

retromer, including this thesis, that the effect of retromer deficiency is highly dose-dependent. 

Indeed, the complete deletion of Vps35 or Vps26a has proven to cause lethality during embryonic 

development (Tang, Erion, et al. 2015). Meanwhile, a single allele deletion of Vps35 results in a 

viable mouse with a normal life span, though with a modest loss of dopaminergic neurons in the 

substantia nigra at advanced ages (Tang, Erion, et al. 2015).  

Furthermore, Vps35 shRNA treatment induces a relatively sudden decrease in retromer 

expression. In contrast, the deficiency in retromer in tissues from SOD1G93A-Tg animals would 

indicate that retromer deficiency in the context of ALS progresses more insidiously over time. It 

is possible that a decrease in the expression of the retromer may be tolerated by the cell if it is 

given enough time to effect compensatory mechanisms to make up for the loss of retromer 

function. Thus, while I have shown that retromer deficiency is sufficient to cause 

neurodegeneration both cell-autonomously and cell-non-autonomously, the application of these 

data to implications in ALS must be done with caution. 
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CHAPTER 4 

RETROMER REPLETION IN SOD1G93A-TG MICE 

 

4.1 Introduction 

 As detailed in the General Introduction Chapter, there is increasing attention being paid to 

the hypothesis that retromer defects may be a shared molecular alteration in adult-onset 

neurodegenerative disorders. Indeed, deficiencies in the expression of retromer proteins have been 

found in multiple degenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease 

(PD), Down’s syndrome (DS), Progressive Supranuclear Palsy (PSP), and Pick’s disease (Small 

et al. 2005; Zhao, Perera, et al. 2018; Wang, Zhao, et al. 2013; Vagnozzi et al. 2019). These 

findings led me to ask whether ALS belongs to the growing list of neurodegenerative conditions 

linked to retromer defects. Relevant to this question, in Chapter 2 of this thesis, I showed a 

deficiency in the expression of retromer core components in tissue samples and cells from mouse 

models of ALS and patients affected with this fatal disease. These investigations indicated that the 

reduced expression of retromer core proteins became detectable in symptomatic SOD1G93A-Tg 

mice in spinal cord and to lesser extents in the cerebral cortex and cerebellum, but not in non-

neural tissues such as kidney. Of note, as I have shown to be the case for ALS and the SOD1G93A-

Tg mouse model, mouse models of AD, PD, and DS have shown similar such deficiencies (Chu 

and Pratico 2017; MacLeod et al. 2013; Wang, Zhao, et al. 2013). In Chapter 3, I generated a series 

of findings in cultured cells from SOD1G93A-Tg mice supporting the conclusion that the structural 

defects in the retromer documented in Chapter 2 are associated with functional alterations using 

primarily APP processing and trafficking as functional proxy. In Chapter 3, I also showed that 

retromer deficiency could result in MN death, both in a cell-autonomous and in a cell-non-
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autonomous manner, findings in keeping with the idea that retromer defects in ALS, as proposed 

in AD and PD, may contribute to neurodegeneration.  

Thus, as a next step toward further characterizing the role of the retromer in ALS 

pathogenesis, I sought to determine the impact of therapy aimed at correcting retromer expression 

on the ALS-like phenotype in SOD1G93A-Tg mice. The rationale here was that if retromer defects 

do indeed contribute to MN degeneration in ALS, then, mitigating them should attenuate 

neurodegeneration and, if so, have far-reaching implications for the treatment of ALS. Yet, before 

presenting my results for such an intervention in SOD1G93A-Tg mice, it is important to provide 

some information about previous investigations performed to increase retromer expression as this 

will set the stage for the work done in this chapter. 

 

4.1.1 Upregulation of retromer components in mouse models of neurodegeneration 

 One of the first of these such upregulation studies was performed in a mouse model of DS 

(Wang, Zhao, et al. 2013). While SNX27 is not considered one of the core components of the 

retromer, its primary function is to forms part of the retromer complex, and SNX27 is vital to the 

recruitment of the retromer to the endosome and of various retromer cargoes to the retromer 

(Clairfeuille et al. 2016; Ghai et al. 2014). A study performed on Ts65Dn mice, a well-

characterized model of DS, showed that these mice replicated a decrease found in DS patients in 

the hippocampal expression of SNX27 (Wang, Zhao, et al. 2013). This prompted the authors to 

perform a study in which they injected the hippocampus of adult mice with an adeno-associated 

virus (AAV) that overexpressed SNX27. They found that DS-like defects normally found in 

Ts65Dn mice, including impaired long-term potentiation (LTP) and novel object recognition, were 

corrected in mice overexpressing SNX27. 
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 Another similar study was also performed in a mouse model of PD, which overexpresses 

alpha-synuclein (SNCA), the primary protein whose aggregation is associated with PD (Dhungel 

et al. 2015). The authors found a deficiency in Vps35 expression in this mouse model and 

proceeded to inject the hippocampi of these mice at adulthood with lentiviral vectors 

overexpressing Vps35. In response to this gene therapy, the authors found that the levels of SNCA 

in the mouse’s hippocampus decreased and that hippocampal neurons were spared from the 

degeneration usually seen in this specific mouse line (Dhungel et al. 2015).   

 A third upregulation study was performed in 3xTg mice, a well-characterized model of AD 

that harbors three mutant transgenes, one of which is APP (Li, Chiu, and Pratico 2019). While the 

authors did not report any baseline differences in retromer expression in these mice, they chose to 

study Vps35 overexpression in these animals due to the reported connection between the retromer 

and AD (Small et al. 2005; Vardarajan et al. 2012; Chu and Pratico 2017). Here, the authors 

injected mice at P1 intracerebroventricularly (ICV) with an AAV that expressed VPS35 under a 

neuronal promoter. They found that 3xTg mice injected with this construct displayed a rescue in 

disease associated pathology and phenotypes, including lower levels of Aβ production and 

improvement on memory testing.  

Collectively, these three selected studies support the idea that in the context of retromer 

defect, overexpressing retromer core component such as Vps35 is achievable by viral vector and 

may have beneficial effects. As such, these previous studies provide major impetus to the 

experimental design and to one of the approaches used in this Chapter 4 to mitigate retromer defect.  
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4.1.2 Overexpression of Vps35 in a drosophila model of ALS 

 It is also particularly relevant to the work in this chapter to elaborate briefly on a study 

conducted on a Drosophila model of ALS which carries a loss of function mutation in the fly 

orthologue of the human ALS-associated gene VAMP-associated protein B (VAPB) (Sanhueza et 

al. 2015). This model displays an eye neurodegenerative phenotype, and the authors of this study 

conducted a screen for genes whose overexpression suppressed or enhanced this phenotype. 

Interestingly, one of the genes which had a suppressive effect was Vps35. 

 Altogether, the aforementioned studies support the conclusion that overexpression of 

retromer is beneficial is a variety of models of neurodegenerative disorders. However, upon 

performing studies designed to test the effect of overexpression of Vps35 in ALS, I found that the 

opposite was, in fact, the case, in that, retromer repletion in SOD1G93A-Tg mice exacerbated rather 

than ameliorated the ALS-like phenotype seen in these animals. 

 

4.2 Results 

4.2.1 Pharmacological stabilization of the retromer in SOD1G93A-Tg mice 

To evaluate whether repletion of retromer levels had any effects on ALS-like pathology in 

SOD1G93A-Tg mice, I first employed a retromer chaperone. Our collaborators in the lab of Dr Scott 

Small have developed small molecules that serve as stabilizing chaperones to the retromer core 

and have been shown in vitro to increase retromer levels in cells (Mecozzi et al. 2014). Further, 

retromer chaperones can inhibit the production of toxic APP fragments in neurons, as shown by 

decreases in the β C-terminal fragment of APP (β-CTF) in the cell as well as in secreted Aβ 

(Mecozzi et al. 2014). This indicates that chaperone-mediated retromer stabilization results in a 

functional improvement in the retromer. Further study of these chaperones by the Small Lab has 



118 

 

indicated that one of them, R33, when injected intraperitoneally (IP) daily into mice for 14 days at 

a dose of 50mg/kg of R33 in 5% DMSO (determined as the maximum tolerated dose), crosses the 

blood-brain barrier, as evidenced by its high brain/plasma ratio after (Fig. 4.1A). There, R33 can 

increase the level of retromer expression in the forebrain as well as decrease levels of the β-CTF, 

similar to its effect in vitro (Fig. 4.1B).  

 

 

Figure 4.1 R33 Crosses the Blood-Brain Barrier and Stabilizes the Retromer Complex  

 
Data and figure provided by the lab of Dr. Scott Small. (A) Plot of ratio of presence of drug in brain over that in 

plasma as measured by liquid chromatography with mass spectrometry. (B) Quantification of Western blot for 

retromer core components and βCTF in WT mouse forebrains in response to two weeks of daily R33 or veh icle 

treatment. Results presented as mean ± SEM. n=7, *p<0.05, **p<0.01 in unpaired t-test 

 

To begin, I performed a pilot study in which I treated SOD1G93A-Tg mice with a similar 

regimen of R33 for 7 days beginning at P100. At P107, I ran a Western blot on SC lysates of these 

mice which showed a marked increase in the levels of Vps35 in the mouse in response to R33 

treatment (one-way ANOVA followed by Holm-Sidak's multiple comparisons test, adjusted 

p=0.048) (Fig. 4.2).  
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Figure 4.2 R33 Repletes Retromer Levels in the SOD1G93A-Tg Mouse SC  

 
SOD1G93A-Tg mice were treated daily with R33 for 7 days, and a Western blot comparing them to SOD1G93A-Tg 

mice treated with vehicle DMSO was run on their spinal cords (A) and quantified (B). Results presented as mean ± 

SEM. n=3, *p<0.05 in one-way ANOVA followed by Holm-Sidak's multiple comparisons test. 

 

4.2.2 Effects of R33 treatment on clinical progression of disease in SOD1G93A-Tg mice 

Based on these results, I then went on to perform a small experiment in which I sought to 

determine whether chronic treatment of mice with R33 was a possible candidate that could 

attenuate ALS-like phenotypes in SOD1G93A-Tg mice. I had two experimental arms: six 

SOD1G93A-Tg mice were injected as described above with R33, and six additional SOD1G93A-Tg 

mice were injected with DMSO vehicle. I performed these injections daily starting at P60 until the 

mice were sacrificed. 

During the lifetime of these mice, I weighed them twice per week. As loss of body weight 

due to muscle atrophy is a feature of disease in both ALS patients and SOD1G93A-Tg mice, the 

time at which mice lose 10% of their peak body weight is often used as a marker of clinical onset 

(Liu et al. 2005; Dermentzaki et al. 2019). Using this parameter, I found no significant difference 

in clinical onset between SOD1G93A-Tg mice treated with R33 compared to those treated with 

vehicle (Log-rank Mantel-Cox test, p=0.70) (Fig. 4.3A).  
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Figure 4.3 Clinical Analysis of R33-Treated SOD1G93A-Tg Mice 

 
SOD1G93A-Tg mice were treated daily with either R33 or DMSO vehicle from P60 to end-stage. Mice were clinically 

assessed for age of onset as determined by age at which a mouse lost 10% of its peak body weight (A), decay of motor 

function as determined by weekly inverted grid tests starting at P60 (B), and overall survival as determined by age at 

which end-stage was reached (C). (A, C) n=6, not significant in Log-rank Mantel-Cox test. (B) Results presented as 

values of individual trials with best-fit curves for each treatment group. n=6, p<0.001 in extra sum-of-squares F test 

for LogIC50, not significant in extra sum-of-squares F test for HillSlope. 

 

I also monitored the mice for motor behavior once per week using the inverted grid test, a 

test of mouse grip strength. In this test, a mouse is placed on a grid which is then inverted and 

suspended in the air over soft padding. The mouse hangs onto the grid with all four limbs, and the 

amount of time it takes for the mouse to fall, as best of three trials, is recorded. For this test, a 

latency to fall of 60 seconds is used as the maximum. The values of these tests are then compiled, 

and charted to determine the progression of motor deficits. Values for mice from each treatment 

group are fit to a sigmoid curve and compared to each other via the extra sum-of-squares F test for 

two parameters: the rate of decay is measured by the HillSlope, and the point at which a deficiency 
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of one half is reached is measured by the LogIC50. These tests, run on R33-treated mice, showed 

that they exhibited no significant change in the rate of decay of their motor performance (extra 

sum-of-squares F test, p=0.16) but did show a significantly earlier motor impairment (extra sum-

of-squares F test, p=0.00020) (Fig. 4.3B).  

Lastly, I examined the effect of R33 administration on the survival of SOD1G93A-Tg mice. 

At the end of the progression of their disease, SOD1G93A-Tg mice exhibit extreme muscle wasting 

and weakness, which can ultimately result in failure to breathe and swallow. As such, mice are 

humanely sacrificed before they die of these causes, when they start exhibiting an inability to right 

themselves from being laid in the supine position in less than 30 seconds, a clinical stage equated 

to end-stage and used to define survival. While there was no statistically significant change in the 

survival of R33-treated mice compared to their DMSO counterparts (Log-rank Mantel-Cox test, 

p=0.070), there was a trend towards decreased survival in the R33-treated group (Fig. 4.3C), an 

observation that is worth noting in light of the results presented below for the viral vector approach.  

In light of the ambiguous results obtained for R33, which can be interpreted as this 

pharmacological agent having either no protective effect or even perhaps exacerbating the ALS-

like phenotype in SOD1G93A-Tg mice, I decided to limit my study of R33 in this mouse model of 

ALS to the presented behavioral studies. However, to pursue my investigation of the question as 

to whether correcting retromer protein expression could have beneficial effects in SOD1G93A-Tg 

mice, I next thought to utilize an approach of gene therapy as opposed to pharmacology to avoid 

possible toxic and off-target confounds.  

 



122 

 

4.2.3 Viral overexpression of VPS35 in SOD1G93A-Tg mice  

Previous studies conducted in mice have shown that overexpression of VPS35 via viral 

delivery with an adeno-associated virus (AAV) is sufficient to increase the expression of retromer 

components as a whole, resulting in increased retromer functionality (Li, Chiu, and Pratico 2019). 

Furthermore, the targeting of VPS35 is the most specific way to target the retromer, as of the core 

components, VPS29 has been shown to be involved in at least one other protein complex, and 

VPS26 has two mammalian isoforms, either of which can take part in the retromer (McNally et al. 

2017; Kerr et al. 2005). Thus, I obtained two AAV9 vectors (Virovek, Hayward, CA): one 

expressing green fluorescent protein (GFP), and one expressing VPS35, both under the strong and 

ubiquitous promoter cytomegalovirus (CMV). Using these two viruses, I performed a study similar 

to the one I had performed using R33 using the lab validated in vivo viral vector injection protocol 

that calls for a single intracerebroventricular (ICV) injection (5 μl at a viral titer of 1x10+14) at P1: 

24 SOD1G93A-Tg mice received the VPS35-AAV9 and 23 SOD1G93A-Tg mice received the GFP-

AAV9. 

First, I confirmed that, in my hands, such an injection resulted in an increase in retromer 

expression. By Western blot, I established that injection with the AAV9-VPS35 in SOD1G93A-Tg 

mice did result in increased expression in the SC of, not only total Vps35 levels (Student t-test, 

p=0.0016), but also of Vps26a levels (Student t-test, p=0.0018), compared to the expression in 

AAV9-GFP-injected mice (Fig. 4.4A, B). Furthermore, I performed IHC on sections from mice 

injected with the AAV9-GFP. This confirmed that AAV9-GFP particles robustly expressed their 

viral load in MNs, as defined by the expression of the MN marker choline acetyltransferase 

(ChAT), as well as in astrocytes, as defined by the expression of the astrocyte marker glial fibrillary 

acidic protein (GFAP) (Fig. 4.4C, D). As done in the lab for other studies, I found that with this 
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protocol, about 60% of MNs were successfully infected and about 70% of astrocytes. Of note, this 

dual cell-type transduction is advantageous for this work since I have reported in Chapter 2 that 

the retromer defect involves at least MNs and astrocytes and in Chapter 3 that low retromer 

expression is deleterious to MN both in a cell autonomous and non-cell autonomous manner. Also 

important to note is the fact that the AAV9-GFP and AAV9-VPS35 viruses were ordered from and 

produced in tandem by Virovek, which presupposes that the AAV9-VPS35 produces a similar 

expression profile of its viral load as the AAV9-GFP. 
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Figure 4.4 Validation of Retromer Overexpression in SOD1G93A-Tg Mice Injected with 

AAV9-VPS35 

 
SOD1G93A-Tg mice were injected ICV at P1 with either AAV9-GFP or AAV9-VPS35. Western blot analysis of SC 

lysates from these mice was performed at P90 (A) and quantified (B). IHC was performed on P90 SC from mice 

injected with AAV9-GFP, staining for the MN marker ChAT, and the astrocyte marker GFAP (C). Using these 

markers, the percentages of astrocytes and MNs expressing GFP was quantified (D). All results presented as mean ± 

SEM. (A, B) n=4, **p<0.01 in unpaired t-test. (C, D) n=3, no statistics performed. 

 

4.2.4 Effects of AAV9-VPS35 treatment on clinical progression of disease in SOD1G93A-Tg mice 

I then performed similar battery of tests on these SOD1G93A-Tg mice than I did on the 

SOD1G93A-Tg mice I had tested for R33. First, I weighed these mice twice per week and saw no 

statistically significant change in the clinical onset between mice injected with AAV9-VPS35 

compared to controls injected with AAV9-GFP (Fig. 4.5A). However, in keeping with the apparent 

earlier onset I had found for R33 treatment, I likewise noted a trend towards an earlier onset in 

SOD1G93A-Tg mice injected with AAV9-VPS35 as compared to those injected with AAV9-GPF 

(Log-rank Mantel-Cox test, p=0.063). 

I performed the inverted grid test on these mice weekly as well. One variation in how the 

test was performed is notable here in that rather than limiting the maximum hang time for these 

mice to 60 seconds, I sought to increase the sensitivity of this test to detect motor deficits by 

increasing the limit to 120 seconds. On this test, I found that as measured by the HillSlope and 

LogIC50 of the two groups’ fit, mice which had been injected with AAV9-VPS35 showed an 

increase in the rate of decay of motor performance (extra sum-of-squares F test, p=0.0031) as well 

as, as had been seen in the R33 mice, a slightly, but statistically significantly earlier motor 

deficiency (extra sum-of-squares F test, p=0.00048) (Fig. 4.5B). Strikingly, survival analysis of 

these mice also showed a 10.5 days earlier mortality for mice injected with AAV9-VPS35 

compared to those injected with AAV9-GFP (Fig. 4.5C). In aggregate, the clinical data cited 

above, support the idea that the overexpression of VPS35 by using viral vector gene therapy and, 
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to a lesser extent, by using pharmacological small molecules, rather than attenuating the expression 

of the ALS-phenotype in SOD1G93A-Tg mice appears to exacerbate it. 

 

 

Figure 4.5 Clinical Analysis of AAV9-Injected SOD1G93A-Tg Mice 

 
SOD1G93A-Tg mice were injected ICV at P1 with either AAV9-VPS35 or AAV9-GFP control. Mice were clinically 

assessed for age of onset as determined by age at which a mouse lost 10% of its peak body weight (A), decay of motor 

function as determined by weekly inverted grid tests starting at P50 (B), and overall survival as determined by age at 

which end-stage was reached (C). (A) n=13-14, not significant in Log-rank Mantel-Cox test. (B) Results presented as 

values of individual trials with best-fit curves for each treatment group. n=13-14, p<0.001 in extra sum-of-squares F 

test for LogIC50, p<0.01 in extra sum-of-squares F test for HillSlope. (C) n=13-14, p<0.01 in Log-rank Mantel-Cox 

test. 

 

4.2.5 Effects of AAV9-VPS35 treatment on histopathology of SOD1G93A-Tg mice 

To further elaborate on the effects of VPS35 overexpression in SOD1G93A-Tg mice, I 

examined these mice for their histopathology. I began by counting the numbers of MNs in the SCs 

of these mice by performing IHC for ChAT on vibratome-cut 70 μm-thick sections from the L4 

and L5 segments of the lumbar cords of these mice at both P90 (early symptomatic) and P120 
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(severely symptomatic). For this work, MNs were designated as ChAT-positive neurons in the 

ventral horn of these SC sections, and are reported as MN numbers per section. I found that at P90, 

AAV9-VPS35-injected SOD1G93A-Tg mice had a modest, but statistically significantly smaller 

number of SC MNs compared to AAV9-GFP-injected SOD1G93A-Tg mice (Fig. 4.6A, B). At P120, 

this difference was much more pronounced in that AAV9-VPS35-injected SOD1G93A-Tg mice 

showed ~33% fewer SC MNs compared to AAV9-GFP-injected SOD1G93A-Tg mice (Fig. 4.6A, 

C). Thus, increasing VPS35 in the CNS, and specifically in the SC, appears to be associated with 

both a clinical and a neuropathological exacerbation of the ALS-like phenotype in SOD1G93A-Tg 

mice. 

To continue the examination of neuropathological sequelae to VPS35 overexpression in 

SOD1G93A-Tg mice, I assessed the level of innervation in the tibialis anterior muscle of 

experimental mice at P120. I collected and performed IHC on 20-μm-thick sections of the muscle, 

labeling the presynaptic terminal of neuromuscular junctions (NMJ) with synaptophysin, and the 

post-synaptic terminal with fluorescence-conjugated alpha-bungarotoxin (BTX). Level of NMJ 

innervation was determined as the amount of BTX-positive NMJs that co-localized with 

synaptophysin out of total BTX-positive NMJs. A minimum of 100 NMJs were assessed per 

replicate. There was no significant difference in the proportion of innervated NMJs between 

AAV9-VPS35-injected SOD1G93A-Tg and AAV9-GFP-injected SOD1G93A-Tg mice (Student t-

test, p=0.36) (Fig. 4.7). However, a trend towards decreased innervation was noted in AAV9-

VPS35-injected SOD1G93A-Tg mice despite large variability among samples. 
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Figure 4.6 Quantification of MN Degeneration in AAV9-Injected SOD1G93A-Tg Mice 

 
AAV9-injected SOD1G93A-Tg mice were sacrificed and IHC for ChAT was performed on sections of the L4-L5 lumbar 

SC, and the ventral horn was imaged. Maximum projections of representative images are shown (A). MNs were then 

quantified as a function of ChAT-positive neurons in the ventral horn per hemisection at P90 (B) and at P120 (C). All 

results presented as mean ± SEM. n=3, *p<0.05 in unpaired t-test. 
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Figure 4.7 Quantification of NMJ Innervation in AAV9-Injected SOD1G93A-Tg Mice 

 
AAV9-injected SOD1G93A-Tg mice were sacrificed and IHC for synaptophysin and α-bungarotoxin (BTX) was 

performed on sections of the tibialis anterior at P120. Maximum projections of representative images are shown (A). 

At least 100 BTX-positive NMJs were then quantified per replicate, and percentage of NMJs staining for 

synaptophysin was recorded (B). Results presented as mean ± SEM. n=3, not significant in unpaired t-test. 

 

4.3 Discussion 

In Chapters 2 and 3, I found and elaborated on a deficiency in the retromer I found in cells 

from ALS patients and cells and tissues from ALS mouse models. Since retromer deficiency and 

its sequelae have only ever been associated with deleterious effects on the biology of cell and 

animal systems, in this chapter, I tested the hypothesis that retromer repletion could confer a 

therapeutic benefit to the SOD1G93A-Tg mouse model of ALS. To do so, I employed two different 

methods of retromer repletion: one pharmacological, and one viral. Remarkably, rather than seeing 

any attenuation of disease phenotype in SOD1G93A-Tg mice, I saw either trends toward or 

statistically significant exacerbations of both clinical and neuropathological parameters in study 

groups whose retromer levels had been increased.  
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4.3.1 Implications for retromer deficiency in ALS 

The counterintuitive results of this study reframe the retromer deficiencies found in 

Chapter 1. In mouse models of most neurodegenerative diseases that have been linked to 

deficiencies in the retromer, an exogenous increase in retromer expression leads to an amelioration 

of disease pathology (Wang, Zhao, et al. 2013; Dhungel et al. 2015; Li, Chiu, and Pratico 2019). I 

have here shown that the case with ALS and the SOD1G93A-Tg mouse is the opposite. It is possible 

that rather than being a contributor to or a negative effect of disease, retromer deficiency in the 

context of ALS is a compensatory mechanism that confers an, as yet, unknown therapeutic benefit 

to ALS pathology, a question that is explored further in Chapter 5. It is important to note that the 

mice used in this chapter, that is SOD1G93A-Tg mice on a B6/SJL mixed background, have been 

previously shown to have a median life span of between 120 to 130 days, which is closer to what 

I observed in the mice injected with VPS35-AAV9 (median 130) than in those injected with GFP-

AAV9 (median 141) (Gurney et al. 1996; Sher et al. 2014). GFP overexpression is a commonly 

used control for viral treatment in these mice, and has never shown to induce an alteration in ALS 

pathology (Leyton-Jaimes, Kahn, and Israelson 2019; Nanou et al. 2013; Thomsen et al. 2014; 

Lasiene et al. 2016). Furthermore, all studies performed in this chapter were done in littermates in 

a randomized manner making it more likely that any changes in control baselines were due to the 

shared genetics of all experimental animals. However, the differences in this study with historical 

data do indicate that the use of untreated controls in future studies would be beneficial to enhance 

the certainty that GFP transduction is not impacting disease phenotype. 
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4.3.2 R33 chaperone toxicity 

The results showing that R33 treatment accelerated disease in SOD1G93A-Tg mice are 

consistent with my findings in mice treated with VPS35-AAV9. However, I cannot discount other 

possibilities as to why R33 seemed to exacerbate the clinical features of disease phenotype in these 

mice. It is possible that R33 has toxic side effects which have not been apparent in other studies, 

either due to the fact that I treated these mice for over two months—more time than mice have 

ever been treated with R33 before—or to the context of another concurrent disease pathology, in 

which ALS exacerbates the toxicity of R33. Upon the initial recording of these results, it was also 

considered that rescue of retromer levels in SOD1G93A-Tg mice could itself be toxic to these mice. 

However, this was deemed unlikely due to the fact that retromer expression has been performed 

in the context of multiple mouse models of neurodegenerative diseases and has never shown such 

toxicity or exacerbation of pathology. Thus, the possibility that R33 could, independent of its effect 

on retromer expression, induce toxicity in mice led me to continue to pursue the possibility that 

retromer repletion could rescue ALS pathology in SOD1G93A-Tg mice. Upon reflection on these 

results, after having seen that viral overexpression induces similar advancement of disease, 

parsimony would suggest that the unanticipated effect of R33 may, in fact, likely be linked to its 

stabilization of the retromer. However, it cannot be discounted with certainty that R33 did not also 

affect the outcomes of the presented studies via an unintended off-target effect in SOD1G93A-Tg 

mice. 
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4.3.3 Relationship between clinical and pathological disease progression in VPS35-AAV9-treated 

SOD1G93A-Tg mice 

In this study, I found that the repletion of retromer levels in SOD1G93A-Tg mice resulted in 

a more advanced disease progression. Both mice treated with R33 and mice virally overexpressing 

VPS35 showed a worse clinical pathology compared to controls. Further study of VPS35-AAV9-

treated SOD1G93A-Tg mice showed that this clinical decline was accompanied by an increase in 

MN death in the SC when compared to GFP-AAV9-treated SOD1G93A-Tg mice, indicating that the 

cause of worsened progression in these mice is linked to increased ALS-like tissue pathology. By 

contrast, I found no significant difference in the level of innervation of the tibialis anterior between 

these two groups. Usually, the level of innervation of the NMJ correlates with changes in clinical 

pathology in SOD1G93A-Tg mice—i.e. mice with worse clinical pathology tend to be found to have 

lower NMJ innervation. However, the apparent discrepancy here may be attributed to a number of 

possible reasons.  

First, while I noted no significant difference in innervation of the tibialis anterior between 

the two treatment groups, I did notice a large variability in the level on NMJ innervation. Assuming 

the variability and mean difference in NMJ innervation I found in these groups, power analysis 

shows that in order to find a significant difference between these two groups with a conventional 

power of 0.8, a study would have to include 19 mice per group. Thus, assessment of tibialis 

anterior innervation in additional mice may be required to reach a conclusion that is not fraught 

with a high type II error.  

At least part of the reason for this high variability may be the fact that these mice were 

injected with an AAV9 which infects about 60% of MNs, so variability may arise merely due to 
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the chances of which specific neurons have been infected and whether they happen to be the ones 

that innervate the tibialis anterior. 

An alternative explanation may involve the fact that I looked at NMJ innervation in these 

mice at P120, which is a fairly advanced time of disease and in limb muscle notoriously susceptible 

to the diseases process. Thus, it is possible that at an earlier time point, differential innervation of 

the tibialis anterior in these mice may be found.  

Lastly, the tibialis anterior has been shown to be one of the muscles most susceptible to 

the diseases process in SOD1G93A-Tg mice (Kaplan et al. 2014; Dibaj, Schomburg, and Steffens 

2015). Thus, it is possible that if at P120, I would have also investigated other muscles in these 

mice which are more resistant to the disease process (e.g. Soleus), I might have detected differences 

in NMJ denervation consistent with the observed differences seen in motor behavior and survival. 

 

4.3.4 Implications for other diseases 

 As I reviewed above, repletion of the retromer has been shown to produce a clinical benefit 

in multiple mouse models of neurological diseases (Wang, Zhao, et al. 2013; Dhungel et al. 2015; 

Li, Chiu, and Pratico 2019). As such, a growing interest has developed in the possibility for 

disease-modifying therapies that increase retromer function, whether by viral or pharmacological 

means, particularly in the fields of PD and AD (Small and Petsko 2015; Eleuteri and Albanese 

2019; Zhang, Huang, et al. 2018; Reitz 2018). Previously, the possibility that retromer stabilization 

could have unintended toxic effects has been mentioned, and the fact that, thus far, no animal 

model has been shown to have any apparent toxic effects from excess retromer, has generally 

assuaged those concerns (Small and Petsko 2015; Reitz 2018; Zhang, Huang, et al. 2018). The 

work of this chapter provides the first evidence that retromer stabilization may, in fact, have 
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deleterious consequences that require further evaluation before retromer stabilizing treatment is 

brought to the clinic. This, of course, comes with the caveat that this study was performed in a 

mouse model of ALS that experiences severe disease pathology. It is possible that retromer 

stabilization may only be toxic in the context of ALS and that the treatment of patients with 

retromer-stabilizing therapy may still prove a viable therapeutic target in other neurological 

diseases.  

Should this be the case, caution would still be warranted with such therapy. Frontotemporal 

dementia (FTD) has been shown to co-occur in about 10% of ALS patients, which along with the 

two diseases sharing genetic determinants, has resulted in a growing understanding of FTD and 

ALS being a spectrum of disease rather than two independent diseases (Lomen-Hoerth 2004; 

Ferrari et al. 2011; Guerreiro, Bras, and Hardy 2015). Due to the fact that FTD results in a host of 

diverse psychiatric, cognitive, and neurological symptoms, patients with FTD experience a high 

rate of misdiagnosis, most often with AD (Beber and Chaves 2013; Musa et al. 2019). Thus, 

particularly should FTD prove to also be negatively affected by retromer stabilization, great care 

would have to be taken in diagnosis before retromer stabilization was pursued as a treatment in 

patients with FTD. 
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CHAPTER 5 

PARTIAL DELETION OF VPS35 IN SOD1G93A-TG MICE 

 

5.1 Introduction 

 In the previous chapter, I showed that repletion of the retromer in SOD1G93A-Tg mice, 

which have a baseline decrease in retromer expression, resulted in them experiencing both clinical 

and pathological worsening of disease. These findings led me to question whether the depletion in 

the retromer in these mice was a protective rather than a deleterious molecular event. In light of 

these unexpected outcomes and provocative hypothesis, I thus wondered whether some further 

reduction in retromer expression could have therapeutic effects in ALS. 

 The exogenous depletion of the retromer in mice has been extensively studied, both in 

otherwise genetically unaltered mice and in Tg mouse models of neurologic diseases  (Vagnozzi 

et al. 2019; Wen et al. 2011). As briefly mentioned in Chapter 4, changes in VPS35 are the most 

specific way to target the retromer, as VPS29 also takes part in the retriever complex and the 

presence of two isoforms of VPS26 makes retromer alteration via their targeting more difficult 

(McNally et al. 2017; Kerr et al. 2005). Thus, the lab of Dr Wen-Cheng Xiong has generated, and, 

over the course of several publications, characterized a mouse with a single allele deletion of 

Vps35 (Wen et al. 2011; Liu et al. 2014; Ye et al. 2019; Tang, Liu, et al. 2015; Liu, Tang, et al. 

2017; Tang, Erion, et al. 2015). Briefly, these studies have shown that mice heterozygous for 

Vps35 exhibit a subtle degeneration of dopaminergic neurons in the substantia nigra after 12 

months, likely due to impairments in mitochondrial dynamics; impairments in dendritic spine 

maturation in the hippocampus, likely due to impairments in AMPA receptor trafficking; and 

degenerative effects in the retina and cornea.  
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Furthermore, in one study, the lab crossed Vps35 heterozygous mice with the Tg2576 

mouse model of AD, which has since been shown to have an inherent deficiency in Vps35 

expression (Wen et al. 2011; Chu and Pratico 2017). This study showed that the single allele 

knockout of Vps35 in these mice exacerbated AD-like pathology in these mice, including cognitive 

deficits, increased production of Aβ, and impaired synaptic transmission.  

Finally, another study recently performed by the lab of Dr Domenico Praticò showed that 

the P301S mouse model of tauopathy displayed a deficiency in the retromer, and found that 

injection of AAV expressing a Vps35 shRNA in these mice to exacerbate their retromer deficiency 

also exacerbated both their cognitive and their motor deficits (Vagnozzi et al. 2019).  

Altogether, there is no precedent for the exogenous deficiency of retromer in mouse models 

of neurodegeneration being beneficial or even neutral to their pathology. Despite this, given my 

findings in the SOD1G93A-Tg mice that I have presented in Chapters 2-4, I sought to determine 

whether this model, and perhaps ALS as a whole may be an exception. 

 

5.2 Results 

5.2.1 Heterozygous deletion of Vps35 

 In light of the fact that in Chapter 4, I found that overexpressing Vps35 led to an 

exacerbation of the ALS-like phenotype in SOD1G93A-Tg mice, I then wondered what the effect of 

deleting Vps35 might be in this mouse model of ALS. To address this question, I employed a Cre-

lox-based conditional mouse Vps35 knockout line generated by the lab of Dr Scott Small, which 

they graciously shared with me for this work. This mouse was built with LoxP sites flanking exons 

3-5 of Vps35. Cre-recombinase can therefore induce a deletion of these exons of Vps35, resulting 

in the failure of producing Vps35 protein. For their work in Alzheimer’s disease (AD), they have 
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crossed these mutant mice with mice expressing Cre under the forebrain neuronal CamKIIα 

promoter. They found that the generated mice are viable and have a knockout of Vps35 in forebrain 

neurons as seen in IHC (Fig. 5.1A). Their Western blot of whole forebrain lysate also shows a 

decrease in Vps35 protein levels—albeit modest, probably due to a dilution effect of other cell 

types—as well as a secondary decrease in other retromer components (Fig. 5.1B, C). This decrease 

in levels of Vps26 and Vps29 secondary to the deletion of Vps35 replicates the previously seen 

effects of Vps35 knockdown in cultured neurons (Bhalla, Vetanovetz et al. 2012).  

 

 

Figure 5.1 Successful Conditional Knockout of Vps35 in Neurons 

 
Data and figure provided by the Small Lab. Mice with a heterozygous conditional knockout Vps35 gene were bred 

to express Cre under the forebrain neuronal CamKIIα promoter. IHC for Vps35 shows a lack of Vps35 expression in 

neurons of the hippocampus (A). A Western blot for Vps35 was run on hippocampal samples from these mice and 

controls. A representative blot is presented here (B) with quantification of 7 replicates per group (C). Results 

presented as mean ± SEM. n=7, **p<0.01, ***p<0.001 in unpaired Student t-test 
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In Chapter 2, I found a retromer deficiency in both MNs and astrocytes of the SOD1G93A-

Tg mouse, indicating that the effects of retromer dynamics in this mouse may not be limited to a 

single cell type. Thus, I chose to study the effect of a complete heterozygous deletion of Vps35 on 

the disease progression of SOD1G93A-Tg mice, rather than knocking out Vps35 in any single cell 

type. To create a Vps35 heterozygote mouse from the floxed Vps35 line, I first crossed it with a 

mouse expressing Cre under the CMV promoter. This CMV-Cre gene induces recombination 

across cell types in the mouse, including, importantly, the gametes. This cross, thus, resulted in a 

mouse that was effectively a Vps35 heterozygote. I then crossed this resulting mouse with an NTg 

mouse to separate out the Vps35 null allele from the CMV-Cre transgene, resulting in a true Vps35 

heterozygote with no other genetic alterations. Finally, the cross between the Vps35 heterozygous 

and the SOD1G93A-Tg mice resulted in the mice I ultimately used for my experiments in this 

Chapter. A visual schematic of the breeding paradigm for these mice is provided in Figure 5.2. 

It is important to note here that all experiments done in the SOD1G93A-Tg mouse in 

Chapters 2-4 have been performed on mice with the mixed B6/SJL background. However, the fact 

that the founder conditional Vps35 knockout mice produced by the lab of Dr Scott Small were 

produced in the B6 background necessitated for these experiments to be undertaken in SOD1G93A-

Tg mice with the B6 background. These mice have been shown to have a similar, though slowed 

disease progression as compared to those with the B6/SJL background (Heiman-Patterson et al. 

2005).  
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Figure 5.2 Breeding Scheme for Vps35 Heterozygous SOD1G93A-Tg Mice 

 
Mice homozygous for the conditional knockout floxed (fl) allele of Vps35 were bred with mice expressing Cre under 

the CMV promoter (CMV-Cre-Tg). Of the resulting mice, in those that expressed CMV-Cre transgene, Cre induced 

recombination of the floxed Vps35 allele, resulting in a tissue-wide heterozygous knockout. These were then crossed 

with a NTg mouse, resulting in, among other genotypes, a Vps35 heterozygous mouse with no transgene. This mouse 

was then bred with a SOD1G93A-Tg mouse, and those that expressed the SOD1G93A transgene were used in the 

experiments described in this Chapter. 
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 Before, reporting the results for the cross between Vps35 conditional mutant and 

SOD1G93A-Tg mice, it is worth mentioning the effects that a widespread deletion of 1 or 2 alleles 

for Vps35 using a CMV-Cre mouse line might have on the lower motor neuron pathway. I was 

consistently unable to obtained viable Vps35-/- pups by genotyping more than 6 litters, consistent 

with the previous reports showing that abrogating Vps35 in mice is lethal (Wen et al. 2011). In 

contrast, I found that Vps35+/- pups were viable and were indistinguishable from their Vps35+/+ 

littermates in terms of their morphometry and development. More importantly, up to 1.5 years, 

Vps35+/- mice did not show any evidence of clinical ALS-like phenotype. 

 

 

Figure 5.3 Hemizygous Vps35 deletion decreases retromer protein levels 

 
A western blot was run comparing retromer protein expression levels between Vps35 heterozygous and Vps35 

homozygous wild-type SOD1G93A-Tg mice at P120 (A) and quantified (B). Results presented as mean ± SEM. n=4, 

**p<0.01, ***p<0.001 in unpaired Student t-test 

 

 Previous studies have shown that the single allele deletion of Vps35 in mice produced a 

robust decrease in the CNS in levels of expression of not only Vps35, but also of Vps26a (Tang, 

Erion, et al. 2015). I confirmed that this was still the case if the heterozygote mouse also expressed 

the SOD1G93A transgene via a Western blot of SCs from Vps35 wild-type SOD1G93A-Tg and Vps35 
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heterozygote SOD1G93A-Tg mice at P120. Indeed, the Vps35 heterozygote mice displayed a robust 

decrease in both Vps35 (Student t-test, p=0.0016) and Vps26a (Student t-test, p=0.00028) 

expression in the SC (Fig. 5.3). Of note, protein expression was not compared between Vps35+/-

;SOD1G93A-Tg and Vps35+/+;NTg mice. However, it can be deduced that the changes found in the 

present experiment compound with those found in Chapter 2 between SOD1G93A-Tg and NTg mice 

to produce an even greater retromer expression decrease. 

 

5.2.2 Effects of single allele deletion of Vps35 on clinical progression of disease in SOD1G93A-Tg 

mice 

On these mice, I then ran a similar series of clinical tests to those that I had performed in 

Chapter 4 on mice injected with AAV9 virus. First, I weighed these mice twice per week, and 

recorded the time of onset as defined in Chapter 4. Here, I saw a statistically significant delay of 

onset in the Vps35+/-;SOD1G93A-Tg mice compared to Vps35+/+;SOD1G93A-Tg mice (Log-rank 

Mantel-Cox test, p=0.00043) (Fig. 5.4A). I also performed the inverted grid test on these mice as 

I had in the AAV9-injected mice, and found that Vps35+/-;SOD1G93A-Tg mice compared to 

Vps35+/+;SOD1G93A-Tg mice displayed both a delay in motor impairment and a slower rate of 

motor performance decay, as measured by changes in the HillSlope (extra sum-of-squares F test, 

p=0.032) and the LogIC50 (extra sum-of-squares F test, p=0.000000019), respectively, in the best 

fit curves (Fig. 5.4B). Finally, Vps35+/-;SOD1G93A-Tg mice compared to Vps35+/+;SOD1G93A-Tg 

mice reached end-stage significantly 17 days later (Log-rank Mantel-Cox test, p=0.0014), 

supporting the notion that they survived longer (Fig. 5.4C). Overall, these data are consistent with 

and expand on the findings of Chapter 4, showing that a decrease in the expression of the retromer 
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complex causes the mirror effect of Vps35 overexpression in that it attenuates the clinical 

expression of the ALS-like phenotype in SOD1G93A-Tg mice. 

 

 

Figure 5.4 Clinical Analysis of Vps35 Heterozygous and Wild-Type Vps35 Homozygous 

SOD1G93A-Tg Mice 

 
SOD1G93A-Tg mice with either homozygous wild-type Vps35 or with a heterozygous deletion in Vps35 were clinically 

assessed for age of onset as determined by age at which a mouse lost 10% of its peak body weight (A), decay of motor 

function as determined by weekly inverted grid tests starting at P50 (B), and overall survival as determined by age at 

which end-stage was reached (C). (A) n=8, p<0.001 in Log-rank Mantel-Cox test. (B) Results presented as values of 

individual trials with best-fit curves for each treatment group. n=8, p<0.001 in extra sum-of-squares F test for 

LogIC50, p<0.05 in extra sum-of-squares F test for HillSlope. (C) n=8, p<0.01 in Log-rank Mantel-Cox test. 

 

5.2.3 Effects of single allele deletion of Vps35 on histopathology of SOD1G93A-Tg mice 

I also performed the same set of neuropathological studies in these knockout mice as those 

performed on AAV9-injected mice in Chapter 4. MN quantification in these mice showed that 

Vps35+/-;SOD1G93A-Tg mice had ~30% more SC MNs at P120 compared to age-matched 

Vps35+/+;SOD1G93A-Tg mice (Fig. 5.5A, B); although this difference did not reach significance 
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likely because of the high variability of the MN counts in Vps35+/-;SOD1G93A-Tg mice (Student t-

test, p=0.065). Remarkably, in contrast with the findings for clinical parameters and MN counts, 

quantification of NMJ innervation of the tibialis anterior showed a statistically significant greater 

denervation of this specific limb muscle in Vps35+/-;SOD1G93A-Tg compared to 

Vps35+/+;SOD1G93A-Tg mice (Student t-test, p=0.0096).  
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Figure 5.5 Pathology Analysis of Vps35 Heterozygous and Wild-Type Vps35 Homozygous 

SOD1G93A-Tg Mice at P120 

 
SOD1G93A-Tg mice with either homozygous wild-type Vps35 or with a heterozygous deletion in Vps35 were 

sacrificed, and IHC for ChAT was performed on sections of the L4-L5 lumbar SC, and the ventral horn was imaged. 

Maximum projections of representative images are shown (A). MNs were then quantified as a function of ChAT-

positive neurons in the ventral horn per hemisection at P120 (B). IHC for synaptophysin and α-bungarotoxin (BTX) 

was also performed on sections of the tibialis anterior of these mice at P120. Maximum projections of representative 

images are shown (C). At least 100 BTX-positive NMJs were then quantified per replicate, and percentage of NMJs 

staining for synaptophysin was recorded (D). All results presented as mean ± SEM. n=3, **p<0.01 in unpaired t-test. 

 

5.2.4 Effects of single allele deletion of Vps35 in astrocytes on MN viability in vitro 

Despite the results for NMJ denervation in Vps35+/-;SOD1G93A-Tg mice, it seems that a 

superimposed partial deficit in these mice is associated with better clinical outcomes and MN 

counts compared to Vps35+/+;SOD1G93A-Tg mice. Furthermore, there seems to be no overt motor 

pathology in plain Vps35+/- mice. Yet, in Chapter 3, I have shown that Vps35 shRNA-mediated 

retromer silencing in astrocytes and MNs caused neurotoxicity in vitro. One notable difference 

between these experiments, besides the context of being in vivo versus in vitro, is that Vps35 

shRNA produces a severe and acute depletion of retromer expression in the order of about 90% 

whereas Vps35+/- mutant allele produces a chronic depletion of only about 50%. It is thus, possible 

that the apparently discrepant results reported between Chapter 3 and Chapters 4 & 5 stem from 

temporal and magnitude differences. 

To test this possibility, I repeated the MN/astrocyte co-culture experiments from Chapter 

3. However, instead of using treatment with shRNA, I used astrocytes from NTg mice either 

homozygous or heterozygous for Vps35. I cultured these astrocytes and then plated ES-derived 

HB9-GFP expressing MNs on top and assessed for differences in viability. Strikingly, I found that 

these astrocytes did not induce the same toxicity as astrocytes treated with Vps35 shRNA (Student 

t-test, Day 2 p=0.71, Day 3 p=0.48, Day 4 p=0.33, Day 5 p=0.46, Day 6 p=0.56, Day 7 p=0.69) 

(Fig. 5.6). Thus, this last experiment suggests that neurotoxicity caused by Vps35 deficit is 
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governed by a toxic threshold above which the cell can withstand and compensate for the defect 

while below it produces a degenerative effect. 

 

 
Figure 5.6 Astrocytes with a Modest Depletion of Retromer Do Not Reproduce Toxicity in 

MNs 

 
Astrocytes from either Vps35 homozygous or heterozygous mice were co-cultured with ES-derived MNs expressing 

GFP under the HB9 promoter, and the relative viability of the MNs over time was assessed. Results presented as mean 

± SEM. n=4, not significant in unpaired Student t-test. 

 

5.3 Discussion 

 In previous chapters, I demonstrated that a retromer deficiency found in the context of 

ALS, when repleted in the SOD1G93A-Tg mouse, exacerbated ALS-like disease found in these 

mice. In this chapter, I followed up on this finding, hypothesizing that the inverse might also be 

true: i.e. the further depletion of retromer expression in these mice could confer a therapeutic 

benefit to their ALS-like disease. On at least some parameters, I found that this was, indeed, the 

case. Indeed, by studying differences in the progression of disease in Vps35+/+;SOD1G93A-Tg mice 

and Vps35+/-;SOD1G93A-Tg mice, I found that inducing a retromer reduction was associated with 

a clinical benefit, including prolonged survival, as well as an attenuated loss of SC MNs. It has 

been shown that small changes in the background of SOD1G93A-Tg mice can lead to similar effects 
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on these mice. However, there is little doubt that changes in disease are due to changes in retromer 

expression due to the fact that in this study, the Vps35+/+;SOD1G93A-Tg mice and Vps35+/-

;SOD1G93A-Tg mice compared were littermates (Heiman-Patterson et al. 2005). Furthermore, 

changes found in previous studies in the Vps35+/- mice without the SOD1G93A transgene are 

unlikely to be involved in the findings in this study due to the fact that such changes have only 

been found at ages as late as 12 months, much later than the lifespan of the SOD1G93A-Tg mice 

(Wen et al. 2011; Liu et al. 2014; Ye et al. 2019; Tang, Liu, et al. 2015; Liu, Tang, et al. 2017; 

Tang, Erion, et al. 2015). 

 In this study, I found that a single allele deletion of Vps35 resulted in a significant rescue 

to the clinical pathology of the SOD1G93A-Tg mouse. This was accompanied by an increase in the 

survival of MNs in the SCs of mice with a reduction of Vps35, which is the converse of my findings 

in Chapter 4 in which I overexpressed Vps35. Together, these data suggest that MN survival in the 

SOD1G93A-Tg mouse may be modulated by the levels of Vps35 and related retromer core proteins. 

This view is in stark contrast with a wide array of studies in other models of neurodegenerative 

disease which have shown that degeneration of dopaminergic neurons in the substantia nigra as 

well as AD-, PD-, and tauopathy- related protein processing defects tend to be found upon the 

depletion of the retromer (Wen et al. 2011; Tang, Erion, et al. 2015; Vagnozzi et al. 2019). Thus, 

this study marks a possible degenerative and/or protective pathway that seems to be specific to 

MNs in the context of ALS.  

 If my genetic modulations of Vps35 expression in SOD1G93A-Tg mice provided coherent 

clinical and SC MN counts, both Vps35 overexpression and partial deletion were associated with 

severe tibialis anterior denervation. While greater muscle denervation in of SOD1G93A-Tg mice is 

to be expected in response to interventions which cause, for example, shorter survival and greater 



146 

 

SC MN loss, it is challenging to explain how greater muscle denervation in of SOD1G93A-Tg mice 

could be seen in response to interventions which cause longer survival and smaller SC MN loss in 

these mice. As mentioned in Chapter 4, to shed light onto this striking discrepancy between MN 

counts and NMJ denervation, additional time points and muscles may have to be studied. 

Furthermore, it is assumed that MN counts and NMJ innervation in Vps35+/-;SOD1G93A-Tg mice 

and Vps35+/+;SOD1G93A-Tg mice are the same at pre-symptomatic stage when no 

neuropathological signs are yet detectable (e.g. P30-45), but this supposition will also have to be 

established. Lastly, since Vps35 deletion is present since birth, could it be that some compensatory 

mechanisms develop whereby more sprouting and ensuing larger motor units take place allowing 

for better motor performance in the face of NMJ denervation? That said, whatever is the actual 

explanation for the discrepancy between SC MN counts and NMJ denervation in Vps35+/-

;SOD1G93A-Tg mice vs Vps35+/+;SOD1G93A-Tg mice, the excess in NMJ denervation associated 

with the partial deletion of Vps35 is most consistent with studies in other neuronal populations and 

diseases. Indeed, it is possible that, as has been observed in the hippocampus of Vps35 

heterozygous mice without SOD1 overexpression, synaptic deficiencies may be widespread and 

include MNs upon the depletion of Vps35 (Tian et al. 2015).  

Finally, I had found that the in vivo results of this chapter were at odds with the in vitro 

results of Chapter 3, which had shown that exogenously induced retromer deficiency in astrocytes 

or in MNs resulted in MN loss. My experiment showing that Vps35+/- astrocytes—which exhibit 

a milder retromer deficiency than that produced by shRNA silencing—did not induce in vitro MN 

toxicity implies that a certain amount of retromer deficiency is tolerated by the neural system. A 

drop beyond that threshold then results in the toxic effects of retromer deficiency becoming 

overwhelming.  
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Overall, in conjunction with previous chapters, the work done in this study provides 

evidence that the proper regulation of the retromer is paramount to the progression of disease in 

SOD1G93A-Tg mice. While the complete or near-complete removal of retromer has significant 

toxic effects both in vitro and in vivo, a partial depletion may be tolerable to cells such as MNs 

while limiting the possibly detrimental trafficking of a specific retromer cargos. This view will be 

revisited in greater detail in the next chapter.  
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CHAPTER 6 

GENERAL DISCUSSION 

 

 Deficiencies in the retromer have been connected to a host of neurologic and 

neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), 

Down’s syndrome (DS), Progressive Supranuclear Palsy (PSP), and Pick’s disease (Small et al. 

2005; Zhao, Perera, et al. 2018; Wang, Zhao, et al. 2013; Vagnozzi et al. 2019). This thesis 

represents the first comprehensive study to add ALS to this growing list of retromer-associated 

diseases. As such, this work has the potential to uncover previously unknown pathways of disease 

and therapeutic targets in ALS. In Chapters 2 and 3, I have shown that, similarly to what has been 

found in the aforementioned diseases, ALS shares a deficiency in the retromer with functional 

sequelae. Intriguingly, however, the results from Chapters 4 and 5 have demonstrated that the 

connection between retromer deficiency and ALS is unique from what has been found in any other 

disease thus far. In the SOD1G93A-Tg ALS mouse model, exogenous upregulation and 

downregulation of the retromer resulted in deterioration and amelioration of disease, respectively, 

the opposite of what has been found in studies of other neurological diseases (Vagnozzi et al. 2019; 

Wen et al. 2011; Wang, Zhao, et al. 2013; Dhungel et al. 2015; Li, Chiu, and Pratico 2019). 

The in-depth discussion of the studies performed for chapters of this thesis can mostly be 

found in the Discussion sections of their respective chapter. Thus, here, I will focus on the overall 

implications of this work and future directions that could lead to a deeper understanding of the 

interplay between ALS and the retromer. 

 Future studies expanding on this research are already currently underway, and necessarily 

include the exploration of cell specificity in retromer deficiency-associated therapy. The methods 
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I used in Chapters 4 and 5 to exogenously increase and decrease retromer expression in SOD1G93A-

Tg mice, by design, affected a multiplicity of cell types. As, in Chapter 2, I had found that at least 

both astrocytes and MNs were affected by a deficiency in retromer expression in ALS, the general 

alteration of retromer expression across cell types was warranted as a measure of the pathological 

relevance of retromer expression in ALS. Now that I have found that a ubiquitous decrease in 

retromer expression is beneficial in SOD1G93A-Tg mice, further work can distinguish which cells 

mediate this benefit. In this context, the first two cell types to consider are, of course, MNs and 

astrocytes, as data reported in this thesis support a retromer defect in at least these two main cell 

types. To address this important question of cell-specificity, in parallel to the work I have presented 

in this thesis, I have bred the conditional knockout Vps35 mice, which Dr Small provided for my 

work in Chapter 5, with mice expressing Cre-recombinase under the ChAT promoter for MN 

specificity. I have then bred the resulting mice with SOD1G93A-Tg mice, which has resulted in 

Vps35f/+;ChAT-Cre-Tg;SOD1G93A-Tg mice, which replicate the conditions of the Vps35+/-

;SOD1G93A-Tg mice that I used in Chapter 5, but with a single allele deletion of Vps35 in only 

MNs. These mice are now aging, and I anticipate that the study of these animals in the same way 

I studied Vps35+/-;SOD1G93A-Tg mice in Chapter 5, will reveal which aspects of disease pathology 

that were modified by Vps35 depletion were due specifically to a depletion in MNs. A similar 

paradigm done with a transgene expressing Cre-recombinase under MN-specific promotor can be 

done with an astrocyte-specific promoter to also shed light into the actual contribution of astrocytes 

in mediating the effect of Vps35 depletion on ALS-like phenotype. The growing recognition that 

ALS neurodegeneration results from the combination of both cell autonomous and non-cell 

autonomous effects makes these additional in vivo studies particularly insightful (Halpern, 

Brennand, and Gregory 2019; Chen et al. 2018; Hawrot, Imhof, and Wainger 2020; Phatnani et al. 
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2013). Moreover, with respect to non-cell autonomy, the focus in this work and in this discussion 

has been on astrocytes, but through cell-specific deletion of mutant SOD1, it was shown that other 

non-MN cells are also important in the expression of the ALS-like phenotype in these mice 

including microglia/macrophages and Schwann cells (Beers et al. 2006; Lobsiger et al. 2009; 

Yamanaka et al. 2008). Interestingly, while mutant SOD1 deletion in MNs, astrocytes, and 

microglia/macrophages attenuated the ALS-like phenotype in mutant SOD1 Tg-mice, an identical 

deletion in Schwann cells, for uncertain reasons, exacerbated the phenotype (Lobsiger et al. 2009; 

Beers et al. 2006; Yamanaka et al. 2008). The fact that the same intervention—mutant SOD1 

deletion—can cause opposite effects on ALS-like phenotypes depending on which cell type is the 

site of the deletion raises the importance of paying great attention to cell-context when one 

interprets the impact of a mild reduction in retromer expression in SOD1G93A-Tg mice. Thus, some 

of the unexpected results I reported in this thesis may possibly be due not only to the mild 

magnitude of retromer defect, but also to the kind of cells that are most affected by this deficit.  

 It is further notable that the retromer deficiencies described in Chapter 2 occur at a late 

stage of disease. In contrast, the retromer expression modifications studied in Chapters 4 and 5 

were done either virally at P1 or with a germline mutation, respectively. It is possible that such 

early changes in retromer expression may modify ALS-like disease in SOD1G93A-Tg mice 

differently than the late-stage changes found in unaltered mice. For example, an early change in 

retromer expression may induce a compensatory mechanism that alters other related pathways 

such as the COMMander pathway or the SNX dimer, altering cells’ reliance on the retromer 

pathway. Experiments altering retromer expression at later stages of disease—via the use of, for 

example, tamoxifen-inducible Cre-recombinase and later viral manipulation—could address this 

question. The experiments done in Chapter 4 with mice treated with R33 from P60 on provide 
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some evidence that later alteration mimics the effects of early alteration. However, further studies 

may more fully answer this question.  

 Further study on the causes of endogenous retromer deficiencies may also shine a light on 

how they in a benefit to ALS pathology. In my studies, I found that retromer protein deficiencies 

in SOD1G93A-Tg astrocytes did not correlate with a change in either mRNA expression or rate of 

protein degradation. As I mentioned previously, it is possible that changes in degradation are so 

subtle that they are undetectable over the course of 24hr. However, the alternative is that retromer 

protein mRNAs are not getting properly translated. Finding which of these may be the case could 

provide multiple diverse insights, including finding upstream mediators of ALS pathogenesis that 

could be exploited for treatment and attaining a better understanding of retromer biology as a 

whole.  

In Chapter 2, I found that SOD1G93A-Tg mice may not be the only mouse model of ALS to 

display a decrease in retromer expression. The lab of Dr Neil Shneider has developed a new model 

of ALS with a homozygous P517L point mutation in mouse Fus, from which they have cultured 

and graciously provided me a sample of astrocytes. I found that these astrocytes displayed a 

decrease in retromer expression, which while found in a single replicate, is consistent with my 

findings in SOD1G93A-Tg. Furthermore, I also found that astrocytes from sALS patients with no 

known ALS-causing mutations also showed a decrease in retromer expression. Together, these 

results imply that retromer deficiency is not specific to mutations in SOD1. Thus, the repetition of 

the studies performed in this thesis in non-SOD1 models of ALS may confirm and provide further 

information on the nature of retromer deficiency in ALS. Along these lines, since the C9orf72 

hexanucleotide repeat expansion is the most common genetic cause of ALS, it would be 

enlightening to assess retromer function in either cells or tissues from patients or mice carrying 
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such mutations (Alsultan et al. 2016). Indeed, I have previously mentioned that one study has 

already looked at the expression of VPS26A in iPSC-derived MNs from ALS-FTD patients with 

the C9orf72 expansion (Aoki et al. 2017). While they did not find a statistically significant 

difference, they did show a trend towards a decrease in the ALS-FTD cells, which, especially 

considering the results of the work of this thesis, merits further investigation. 

Since I have found that retromer deficiency is a commonality between cells from human 

ALS patients and from ALS mouse models, it is thus reasonable to hypothesize that this deficiency 

works in similar ways between the two. That is, in SOD1G93A-Tg mice, I found that retromer 

deficiency may be a biological compensatory mechanism that protects mice from what would 

otherwise be a more severe disease progression. It may very well then be the case that the same is 

true for retromer deficiency in ALS patients. Once the nature of retromer depletion-induced 

neuroprotection has been better elucidated in mouse models of ALS and in cells from those models, 

studies in human cells—particularly those that experience the phenomenon of ALS-induced 

retromer depletion such as iPSC-derived MN and primary astrocytes—could confirm whether 

retromer depletion mechanisms are shared between patients and mouse models. A finding that 

retromer depletion results in neuroprotection in a model of human ALS could have far-reaching 

implications for the treatment of ALS. In this context, some insights into the nature of the 

molecular basis for the observed beneficial effect of a mild retromer deficit in ALS may be gained 

by using a similar bioinformatics approach as has been previously used in this lab to elucidate 

pathogenic pathways, but this time on iPSC from ALS patients and controls.  

A natural question that comes to mind when alterations in the retromer modify disease is 

what downstream effect of retromer function is responsible for the disease modification. In the 

course of my study of the retromer in ALS, I have variously looked at numerous cargoes of the 
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retromer using SOD1G93A-Tg astrocytes as an in vitro model. However, most defects classically 

associated to retromer deficiency have proven elusive and are either unchanged in SOD1G93A-Tg 

astrocytes or experience such subtle changes that I was not able to detect them. However, I was 

able to see alterations in SOD1G93A-Tg astrocytes in the trafficking of APP by the retromer and in 

the release of Aβ fragments. Such alterations are often found as downstream effects of retromer 

deficiency. However, the fact that retromer deficiency in SOD1G93A-Tg mice seems to be beneficial 

makes the release of Aβ fragments an unlikely mechanism of disease modification, as one would 

expect an increase in Aβ to be toxic rather than neuroprotective (Harkany et al. 2000). Having said 

this, APP processing can generate and shed fragments other than Aβ (O'Brien and Wong 2011). 

Thus, while Aβ may be convenient to quantify given the availability of reagents, it may merely 

reflect APP processing without being the actual pathogenic fragment. Alternatively, it is also 

possible that APP processing alteration is, here, a simple marker of retromer defect and that non-

APP cargo(s) is/are instrumental in driving the effect on the ALS phenotype reported in this thesis. 

Should this be the case, identifying the retromer cargo(s) whose altered transport result in what I 

called “a therapeutic benefit” in SOD1G93A-Tg mice, which is an area of ongoing research in the 

lab, would be a research direction of major potential significance.  

  Of relevance to the above discussion is the relationship between retromer function and 

AMPA glutamate receptor trafficking. Indeed, alterations in the localization of the AMPA 

glutamate receptor in response to retromer deficiency in neurodegenerative disease have been well 

documented (Tian et al. 2015; Munsie et al. 2015; Temkin et al. 2017). Conversely, the 

overexpression of retromer components has been shown to increase levels of AMPA receptors at 

the synapse (Wang, Zhao, et al. 2013). These findings are quite pertinent to ALS, as glutamate 

excitotoxicity has long been proposed as a, if not the, key mechanism causing MN death (Foran 
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and Trotti 2009). Over the years, the minimal beneficial effects of riluzole in ALS—the first of 

only two drugs approved to treat this disease—have been used to support the glutamate hypothesis 

of ALS, given the fact that this “dirty drug”, among a host of actions, is advertised as a glutamate 

antagonist (Andreadou et al. 2008; Fumagalli et al. 2008). A proposed mechanism for how 

glutamate leads to toxicity in MNs involves the fact that MNs express a relatively high level of 

AMPA receptor deficient in the GluR2 subunit (Corona and Tapia 2007; Kawahara et al. 2003). 

A lack of this subunit makes the AMPA receptor permeable to calcium, which can then build up 

to toxic levels that cannot be adequately regulated by the cell (Isaac, Ashby, and McBain 2007; 

Williams et al. 1997). MNs from patients with ALS have been shown to be particularly deficient 

in GluR2, and indeed the overexpression of GluR2 has been shown to induce a clinically 

therapeutic effect in SOD1G93A-Tg mice (Takuma et al. 1999; Tateno et al. 2004). While it is 

unlikely that retromer deficiency would increase levels of GluR2 in the cell, as mentioned above, 

deficiencies in the retromer have been shown to result in a lower amount of total AMPA receptor 

at the synapse (Tian et al. 2015; Munsie et al. 2015; Temkin et al. 2017). Essentially, since MNs 

are preferentially producing calcium-permeable AMPA receptor, a decrease in total AMPA 

receptor at the cell surface via a lack of retromer transport may decrease glutamate excitotoxicity 

and ensuing MN degeneration. 

The retromer has also been linked to the proper regulation of autophagy. At least one study 

has shown a direct interaction between the retromer and ATG9, a protein that marks membranes 

used in the formation of the phagophore (Devereaux 2014). A PD-linked mutation in VPS35 has 

also been shown to lead to the mislocalization of ATG9, resulting in the disruption of autophagy 

(Zavodszky et al. 2014; Karanasios et al. 2016; Orsi et al. 2012). The disruption of autophagy has 

generally been thought to be of detriment to ALS, as is evidenced by the fact that multiple ALS-
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associated genes regulate autophagy (Wild et al. 2011; Sundaramoorthy et al. 2015; Shen et al. 

2015; Oakes, Davies, and Collins 2017). However, a study performed in SOD1G93A-Tg mice 

inhibiting autophagy has shown evidence that the effects of autophagy disruption may be time-

dependent (Rudnick et al. 2017). Namely, it was found that the inhibition of autophagy in 

SOD1G93A-Tg mice via a conditional knockout of Atg7 in MNs results in the increased denervation 

of the tibialis anterior at an early age, but also in the extension of survival. Thus, studying 

autophagy deficiencies and changes in the transport of Atg9 caused by retromer deficiency in 

SOD1G93A-Tg mice may elucidate how, at what age, and at what level, disrupted autophagy may 

confer a clinical benefit to Vps35+/-;SOD1G93A-Tg mice. 

The retromer is also known to be involved in the trafficking of Wntless, which itself 

mediates the secretion of Wnt proteins such that the disruption of the retromer results in a decrease 

in the production of Wnt molecules (Belenkaya et al. 2008). Meanwhile, SCs from SOD1G93A-Tg 

mice have been shown to experience an increase in Wnt expression and in the Wnt signaling 

cascade, which have been replicated in human tissues (Gonzalez-Fernandez et al. 2016; Chen et 

al. 2012; Gonzalez-Fernandez et al. 2019). These studies have implied that increased Wnt 

signaling may have a role in the pathogenesis of ALS. What that role may be has not been 

elucidated, and Wnt signaling has a large and diverse set of functions across cell types and, 

particularly, in neurons (He, Liao, and Pan 2018). However, studies in mitochondria have shown 

that Wnt signaling can result in an activation of mitochondrial biogenesis, which leads to an 

increase in the production of reactive oxygen species (ROS) (Yoon et al. 2010). The increased 

production of ROS as well as oxidative damage caused by ROS has been widely reported in 

samples from patients and mouse models of ALS, showing a possible link between Wnt signaling 

and ALS pathogenesis (Mitsumoto et al. 2008; Smith et al. 1998; Shaw et al. 1995; Shibata et al. 
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2001; Chang et al. 2008; Hong et al. 2012; Deng et al. 2015). The study of alterations in Wnt 

signaling and in ROS production in response to retromer deficiency in SOD1G93A-Tg mice may 

provide some insight into how retromer depletion affects disease progression in these mice. 

A study in the interactome of the retromer has shown that interferon gamma (IFNγ) 

receptor 2 (IFNGR2) is lost from the cell surface upon VPS35 depletion (Steinberg et al. 2013). 

Interestingly, it has been shown that IFNγ may be involved in cell death in motor neurons, as it is 

found to be elevated in SCs of ALS patients and SOD1G93A-Tg mice (Aebischer et al. 2011; 

Aebischer et al. 2012). Furthermore, the antibody neutralization of IFNγ in the cerebrospinal fluid 

(CSF) has been shown to produce a clinical benefit in the motor behavior of SOD1G93A-Tg mice 

(Otsmane et al. 2014). Thus, it is possible that a decrease in IFNGR2 at the cell surface due to 

retromer depletion could replicate an effective neutralization of IFNγ signaling. 

Overall, due to the fact that the retromer regulates the trafficking of an ever-growing list of 

hundreds of proteins, it is possible that the missorting of any one or any combination of these 

proteins may contribute to retromer depletion-induced neuroprotection in SOD1G93A-Tg mice. 

Thus, perhaps the best future study of the effects of retromer depletion would involve an unbiased 

proteomic screen. In one study, stable isotope labeling with amino acids in culture (SILAC) 

followed by mass spectrometry identified differences in surface expression of proteins in response 

to the knockdown of SNX27 or VPS35 (Steinberg et al. 2013). Similarly, the performance of 

SILAC followed by mass spectrometry on cells—most easily, astrocytes—from NTg and 

SOD1G93A-Tg mice with or without a heterozygous deletion of Vps35 could identify possible 

disease-modifying cargoes via the overlap of alterations among these groups. 
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The work I have presented for this thesis provides strong support for the idea that the 

retromer is involved in the pathogenesis of ALS. While in most diseases, this would imply that 

retromer dysfunction is pathogenic, in ALS, I have shown that retromer dysfunction is therapeutic. 

Furthermore, the progression of ALS is highly sensitive to the level of retromer expression, which 

requires precise regulation, such that an excess of either depletion or repletion of the retromer is 

deleterious in ALS.   
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CHAPTER 7 

EXPERIMENTAL PROCEDURES 

 

7.1 Mice 

For this project, Mus musculus mice were used. All mice were housed and bred in the 

Central Animal Care Facility located in the William Black Building in the pathogen-free barrier 

area of the Animal Care Facility (Room #BB-1918). For in vivo experiments, three weeks after 

delivery, pups will be weaned and separated. Columbia University’s approved Animal Welfare 

Assurance is #A3007-01. All procedures are approved by the Institutional Animal Care and Use 

Committee (IACUC). 

 

7.1.1 Lines of mice 

● WT: All breeding or experiments requiring wild-type mice used C57bl/6 or B6/SJL mice 

from the Jackson Laboratory. 

● SOD1G93A-Tg: Mice in the C57bl/6 or B6/SJL background expressing SOD1 that harbors 

the G93A familial ALS mutation have been described as generated by Jackson Laboratory (Gurney 

et al. 1994). These transgenic mice were also used to provide experimental primary astrocytes and 

animals for the in vivo experiments. Genotyping was done from 5mm tail tip cuttings from P2-5 

by PCR following the protocol published by the Jackson Laboratory. 

● Vps35Fl/Fl: These mutant mice were used to provide our source of animals for in vivo 

experiments of Chapter 5. The Vps35Fl/Fl mice were generated by the Small lab by injecting ES 

cells into the inner cell mass of C57BL/6J blastocysts. A floxed allele of the Vps35 gene contains 

loxP sites flanking exon 3-5. The injected blastocysts were then implanted into the uterus of 
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pseudopregnant foster mothers for further development. The LacZ-Neo cassette flanked by Flp 

recombinase recognition site (Frt) was removed by crossing mice carrying the Vps35-neo-lacZ-

flox allele to FLPe transgenic mice (ROSA26-FLPe), which express an Flp recombinase, to 

generate Vps35-loxP mice. Homozygous mice are viable, fertile, normal in size and do not display 

any gross physical or behavioral abnormalities. Genotyping was done from 5mm tail tip cuttings 

from P2-5 by standard PCR using the following primers: Vps35Loxp gtF 

(TGTTTTGGTAACTTCTGTGACCTT) Vps35Loxp gtR (AGCCTTTTCAGTGGACTCAGAT).  

● CMV-Cre-Tg: The generation of mice expressing Cre recombinase under the CMV 

promoter in the C57bl/6 background by Jackson Laboratory has been described (Schwenk, Baron, 

and Rajewsky 1995). These transgenic mice were used to provide our source of animals for the in 

vivo experiments in Chapter 5. Genotyping was done from 5mm tail tip cuttings from P2-5 by PCR 

following the protocol published by the Jackson Laboratory. 

 

7.2 Western blotting 

All Western blot analyses done for this thesis work were performed on mouse tissues, 

human post-mortem samples, and different cultured cell types. For mouse tissues, mice were 

euthanized with via intraperitoneal (ip) overdose injection of ketamine and xylazine, and perfused 

with cold PBS for 4 minutes at a rate of 10mL/min. Select tissues were then dissected and 

immediately frozen at -80°C. Human samples were collected post-mortem by pathologists with 

patient consent and frozen. Cultured cells were detached, centrifuged, and immediately frozen at 

-80°C as pellets. 

 Once collected, protein from tissues and cells were extracted with RIPA buffer [150mM 

NaCl, 25mM Tris pH 8.0, 1% Triton X-100, 0.5% sodium deoxycholate, 1mM EDTS, 0.1% SDS, 
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protease inhibitor cocktail (cOmplete MiniTM, Sigma), and phosphatase inhibitor (PhosSTOPTM, 

Sigma)]. For tissues, samples were flash frozen in liquid nitrogen and crushed with a mortar and 

pestle. Resulting samples were then homogenized through a small bore 27-gauge needle in 10μL 

of RIPA per 1mg of sample. For cells, 500μL of RIPA was used per an estimated 1 million cells, 

and homogenization took place through a small bore 27-gauge needle. Thereafter, all mouse and 

human tissues and cells were processed for Western blot in a similar fashion. Homogenates were 

centrifuged at 10,000g for 10 minutes, and the supernatant was collected. Protein concentration of 

samples was quantified using the Bradford Quick Start™ assay (Bio-Rad). Samples were diluted 

to 2μg of protein per 1μL in ultrapure water and 2:5 dilution of stock sample buffer (Tris-HCl ph 

6.8, 10% SDS, 25% glycerol, 5% β-mercaptoethanol, and 0.05% Bromophenol blue). Samples 

were then boiled at 95°C for 10 minutes and either stored at -80°C or allowed to cool and loaded. 

 30μg of protein sample was loaded into wells of a 5-12% Bis-Tris gel (NuPAGE®, 

ThermoFisher) submerged in MOPS buffer (NuPAGE®, ThermoFisher). Gels were run at a 

maximum of 45mA or 150V. After running, proteins were transferred onto 0.22-µm pore–size 

nitrocellulose membrane using transfer buffer (14.4g/L glycine, 3g/L Tris base, 20% methanol, 

and 0.05% SDS) at a maximum of 150mA or 35V for 1.5 hr.  

 Membranes were blocked in commercially available blocking buffer (Blocking buffer for 

fluorescent Western blotting, Rockland) for 1hr, and indicated antibodies were diluted as indicated 

in Table 7.1, and incubated on the membrane overnight at 4°C. Membranes were then washed 

three times for 5min in 0.1% PBS-Tween 20. Indicated secondary antibodies (Li-Cor® IR-680 or 

IR-800 dye conjugated) were diluted 1:10,000 in blocking buffer, and incubated on the membrane 

for 1hr at room temperature. Membranes were then washed three more 5min in 0.1% PBS-Tween 
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20, prior being imaged, and protein bands were quantified on a Li-Cor® Odyssey Imaging system 

(Lincoln, NE). 

 

Table 7.1 Antibodies Used 

Target Host Used in WB/ICC/IHC 

(Dilution) 

Company Catalogue # 

APP C-terminal rabbit ICC (1:1000) Calbiochem 171610 

β-Actin mouse WB (1:40,000) Sigma A5441 

ChAT goat IHC (1:250) Sigma AB144P 

Cyclin D3 mouse WB (1:1000) Cell Signaling 2936S 

EEA1 goat ICC (1:500) Santa Cruz 

Biotechnology 

sc-6415 

GFAP rabbit IHC (1:500) DAKO z0334 

HB9 rabbit ICC (1:1000) abcam ab26128 

Vps26a rabbit WB (1:2000) abcam ab23892 

Vps29 goat WB (1:1000) Sigma SAB2501105 

Vps35 mouse WB (1:1000), ICC (1:1000), 

IHC (1:500) 

abcam ab57632 

 

7.3 Quantitative reverse transcriptase PCR (qRT-PCR) 

All qRT-PCR done for this thesis work were performed on mouse tissues, human post-

mortem samples, and different cultured cell types. Both mouse and human tissues and cultured 

cells were prepared as described in 7.1 and then stored at -80°C until used. 

 Once collected, RNA from tissues and cells were extracted with TRI Reagent (TRI 

Reagent®, cat. # T9424, Sigma) following the manufacturer’s protocol. Samples were 
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homogenized using a small bore 27-gauge needle. After initial RNA extraction, DNAse treatment 

was performed for 25 minutes at 37°C using rDNAseI (Ambion). After DNAse treatment, an 

additional phenol-chloroform extraction of the RNA was performed and the pellet was 

resuspended in DEPC-treated water (ThermoFisher) and quantified by Nanodrop (Thermo 

Scientific). 1ug of RNA was used per sample to make cDNA with the RevertAid First Strand 

cDNA Synthesis Kit (ThermoFisher) following manufacturer’s protocol and primed with both 

random hexamers and oligo(dT) primers. 

 

Table 7.2 Primers Used for qPCR 

Target Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’) 

Mouse Vps35 CCAGGCTGTGAAGGTTCAGTCATT CCAAGCATATTGGAGGCATGCTTC 

Mouse Vps29 TGCACCAAGGAGAGCTACGACTAT ATCTTGAACTGGCCCACAGTCACA 

Mouse Vps26a ATGGCGAGTCTGTCTCAGGAAAGGTA TCCTTGATGCTCTAGCCTCTTTCCAG 

Mouse H2-D1 TCCGAGATTGTAAAGCGTGAAGA ACAGGGCAGTGCAGGGATAG 

Mouse H2-T23 GGACCGCGAATGACATAGC GCACCTCAGGGTGACTTCAT 

Mouse Serping1 ACAGCCCCCTCTGAATTCTT GGATGCTCTCCAAGTTGCTC 

Mouse Gapdh AATGTGTCCGTCGTGGATCTGA  GATGCCTGCTTCACCACCTTCT 

Human VPS35 GCTTACCAGCTGGCTTTTCGAT GCACTGATAGTCTGGTGGGCAAAT 

Human VPS29 TCAAGACTCTGGCTGGTGATGTTC CTGTCCAACAGTCACAACTTTCTGTT

C 

Human VPS26A CGGAGAATCCGTTTCAGGAAAGGT TCCTTGGTGTTCTAGCCTCTTTCCAG 

Human GAPDH CTCAACGACCACTTTGTCAAGCTC  TCTTACTCCTTGGAGGCCATGT 
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qRT-PCR was performed with the QuantStudio® 3 Real-Time PCR System (Applied 

Biosystems®) using SYBR™ Green dye (ThermoFisher). Primers used can be found in Table 

7.2. 

 

7.4 Primary cortical neuron culture 

 All cortical neuron cultured used for this thesis work derived from embryos collected from 

a pregnant female at E13 and placed in sterile cold HBSS (Gibco) where the cortex was dissected 

and the tail was collected for genotyping. Cortices were placed in a dilution of 45% glucose 

(Sigma) 1:100 in PBS where they were cut into small pieces with scissors. Trypsin-EDTA (Gibco) 

was added to a final concentration of 0.025% and the tube was placed at 37°C for 10min and 

inverted periodically. Cortex fragments were then transferred to a solution containing L15 medium 

(Gibco), 0.4% BSA (Invitrogen), and 0.01mg/mL DNAse (Worthington Biochemical). In this 

medium, cortex was mechanically dissociated via trituration and undissociated fragments were 

allowed to settle. Supernatant was then collected, and centrifuged at 300g for 5min. Resultant cells 

were resuspended in media identical to the motor neuron (MN) media described above, counted, 

and plated on laminin-coated plastic dishes. 

 

7.5 Culture and differentiation of induced pluripotent stem cells (iPSC) 

All iPSC used for this thesis work were produced, karyotyped, and generously provided by 

the Columbia Stem Cell Core or by the lab of Dr Michael Boland. iPSCs were maintained in culture 

with Essential 8 Basal Medium (Gibco) with 10μM Y-27632 ROCK inhibitor (Tocris), and 100 

U/mL penicillin and 100 µg/mL streptomycin (Invitrogen). Differentiation via formation of 

embryoid bodies was performed as previously described (Maury et al. 2015) with some 
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modification. At Day 0, cells were washed and dissociated with Accutase (Life Technologies) and 

replated on non-adherent plastic plates in N2B27 medium [1:1 ADMEM/F12 (Life Technologies) 

and Neurobasal medium (Life Technologies) with 100 U/mL penicillin and 100 µg/mL 

streptomycin (Invitrogen), 2mM glutamine (Life Technologies), 0.1mM β-Mercaptoethanol (Life 

Technologies), B27 Supplement minus Vitamin A (Life Technologies), and N2 supplement (Life 

Technologies)] with 20μM SB431542 (Stemgent), 0.1μM LDN193189 (Stemgent), and 3μM 

CHIR99021 (Selleck). After 2 days, 100nM retinoic acid (Sigma) was added. On Day 4, 

CHIR99021 was removed, and 500nM SAG (EMD Calbiochem) was added. On Day 7, SB431542 

and LDN193189 were removed. On Day 9, 10μM DAPT (Tocris) was added. On Day 11, 10ng/mL 

BDNF and GDNF (R&D systems) were added. Finally, on Day 14, the resulting embryoid bodies 

were collected for experiments. 

 

7.6 Primary astrocyte culture 

All cultured primary astrocytes used for this thesis work derived from mouse pups at 

postnatal day 3 obtained from the cross between NTg and SOD1G93A-Tg mice. DNA from pups 

was extracted for genotyping by PCR, and cortex was dissected and meninges were removed. 

Cortex was dissociated mechanically via 20 passages through an 18-gauge needle in astrocyte 

medium [1:1 Dubelco Modified Eagle’s medium (DMEM): F10 medium (Invitrogen), 10% fetal 

bovine serum (Invitrogen), 100 U/mL penicillin and 100 µg/mL streptomycin (Invitrogen), and 

2mM glutamine (Invitrogen)]. Cells were then plated on 75 cm2 flasks in astrocyte media tor 2 

weeks in a humidified incubator at 37°C under 5% CO2. Media was changed twice per week. The 

resulting culture includes a population of 95% GFAP+ astrocytes and 5% of CD11b+ microglia. 

Microglia were eliminated via agitation on a rotary shaker at 200rpm for 6hr and washed off with 
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PBS. Astrocytes could then be either collected for Western blot or qRT-PCR, or plated on either 

plastic plates or glass coverslips coated with rat collagen (Corning). Human astrocytes cultures 

were collected as previously described (De Groot et al. 1997; Re et al. 2014) and maintained in 

astrocyte media. 

 

7.6.1 Immunocytochemistry 

Cells used for immunocytochemistry were plated on glass coverslips and allowed to attach 

and grow for 2 days. Cells were then washed with PBS and fixed with 4% PFA for 20min at 4°C. 

PFA was then washed off with PBS 3 times for 5min. Then, cells were first incubated in a blocking 

solution (0.1% PBS-Triton X, 5% normal donkey serum) for 1hr and then with primary antibodies 

(diluted at concentrations specified in Table 7.1 in blocking solution) overnight at 4°C. Cells were 

then washed 3 times for 5min in 0.1% PBS-Triton X prior being incubated with the indicated 

secondary antibodies conjugated to Alexafluor-488, -594, and -647 (Invitrogen; diluted 1:400 in 

blocking solution along with 1:1000 DAPI counterstain (Sigma)) for 1hr at room temperature. 

Cells were then washed again 3 times for 5min in 0.1% PBS-Triton X prior being covered with a 

thin glass coverslip on Fluoromount-G medium (Invitrogen). Images were taken on a Leica SP8 

LIGHTNING confocal microscope equipped with a 63x objective and analyzed with the Fiji 

distribution of ImageJ software (NIH). 

 

7.6.2 Cultured astrocyte drug treatments 

 Astrocytes cultured for drug treatments were plated on rat collagen-coated plastic, allowed 

to grow in astrocyte media for 2 days, and media was replaced with media with indicated drugs 

diluted in it. Treatments include either cycloheximide (10μg/mL, Cayman Chemical) or a cocktail 
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of 3 ng/ml Il-1α (Sigma), 30 ng/ml TNFα (Cell Signaling Technology), and 400 ng/ml C1q 

(MyBioSource).  

 

7.6.3 Astrocyte conditioned medium ELISA 

For Aβ42 ELISA, astrocytes were plated for two days, washed, and then cultured in serum-

free media for 7 days. After 7 days, the media conditioned on the astrocytes was collected and 

spun down at 1000g for 10min to pellet cell debris, and the supernatant was used as recommended 

by the manufacturer (Amyloid beta 42 Mouse ELISA Kit, Invitrogen, Catalog # KMB3441). Aβ42 

concentration was normalized to total protein as measured by BCA protein assay. 

 

7.6.4 Cultured astrocyte and MN lentiviral infection 

Lentiviral vector preparation was done on HEK 293T cells (ATCC) using the CalPhos 

Mammalian Transfection Kit (Clontech) as recommended by the manufacturer, using a plasmid 

DNA mix of 5:2:3:10 of pLP1 (Invitrogen), pLP2 (Invitrogen), pLP-VSV.G (Invitrogen), and 

shRNA plasmid (kindly provided by Dr Scott Small). Supernatant with viral vectors collected was 

centrifuged at 500g for 5min to separate detached cells and debris, and the supernatant was filtered 

through a 0.22μm filter unit (ThermoScientific). Viral vectors were concentrated via 

ultracentrifugation at 50,000g for 120min from which the supernatant was disposed, and the 

pelleted lentiviral vectors were resuspended in PBS. The lentivial titer was measured via the use 

of the Lenti-X qRT-PCR Titration Kit (Clontech) as recommended by the manufacturer, and 

astrocytes or MNs were treated as previously described at a multiplicity of infection (MOI) of 15, 

which the lab has previously shown to be optimal for infecting these two mouse cell types with 

minimal toxicity (Re et al. 2014). 
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7.7 Embryonic stem cell-derived motor neuron culture 

 All embryonic stem cells (ES) used for this thesis work were derived from Tg Hlxb9-

GFP1Tmj mice expressing eGFP under the mouse HB9 promoter were differentiated as previously 

described with some modification (Wichterle et al. 2002). ES were grown in embryonic stem cell 

media [DMEM (Millipore Embryomax DMEM), 15% ES-FBS (EmbryoMax), 100 U/mL 

penicillin and 100 µg/mL streptomycin (Invitrogen), 2mM Glutamine (Gibco), 1% Non-essential 

Amino Acids (Chemicon), 1% 100x Nucleosides (Chemicon), 1% β-Mercaptoethanol (Millipore), 

1% Na-Pyruvate (100mM, Sigma), 1:1000 LIF (Chemicon ESGRO)] for 2 days on gelatinized 

T25 flasks. Cells were then trypsinized and grown in suspension in αDFNK medium [1:1 

Advanced DMEM/F12 (Gibco) and Neurobasal A (Gibco) with 10% Knock out Serum 

Replacement (Invitrogen), 100 U/mL penicillin and 100 µg/mL streptomycin (Invitrogen), 2mM 

Glutamine (Gibco), and 1% β-Mercaptoethanol (Millipore)]. 2 Days late, cells were grown in 

αDFNK medium with 1μM retinoic acid (Sigma) and 0.25μM SAG (Calbiochem) for 3 days. Then, 

cells were transferred to αDFNK medium without retinoic acid or SAG for 1 day, after which, 

cells were dissociated using Trypsin-EDTA (Gibco).  

Resulting cells were either plated on astrocytes or concentrated in MN media [Neurobasal 

Medium (Gibco), 2% Horse Serum (Gibco), 2% B27 Supplement (Gibco), 100 U/mL penicillin 

and 100 µg/mL streptomycin (Invitrogen), 0.25% β-Mercaptoethanol (Millipore), and 0.5mM 

glutamine (Gibco), supplemented with 10 ng/mL glia-derived neurotrophic factor (GDNF), 10 

ng/mL brain-derived neurotrophic factor (BDNF), and 10 ng/mL ciliary neurotrophic factor 

(CNTF), all trophic factors from R&D systems] to about 5 million cells/mL to be processed by 

FACS for GFP-positive purification. 
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7.7.1 FACS for GFP-positive motor neurons 

Cells resulting from ES differentiation to MNs were suspended in MN media at a 

concentration of 5 million cells/mL and filtered through a 35µm nylon mesh (Corning). Cell 

sorting was performed by the Columbia Stem Cell Initiative (CSCI) Flow Cytometry Core using 

a Becton Dickinson FACS Aria cytometer (BD Biosciences). Cells were gated for expression of 

GFP and collected. GFP-positive motor neurons were then centrifuged at 300g for 5min, 

resuspended in motor neuron media, and plated on laminin-coated plastic wells.  

 

7.7.2 Quantification of GFP-positive motor neurons 

Images for the quantification of ES-derived MNs were taken using a TROPHOS 

fluorescence fast plate imaging system as previously reported (Ikiz et al. 2015). Images were 

analyzed for MN counts by the MetaMorph® Microscopy Automation and Image Analysis 

Software (Molecular Devices). 

 

7.8 Immunohistochemistry of spinal cord 

All spinal cord immunohistochemistry done for this thesis work were performed on 

mouse spinal cord following the previously reported protocol (REF). Briefly, mice were 

sacrificed and perfused with cold PBS for 4min at a rate of 10mL/min, followed by perfusion 

with cold 4% PFA for 8min at the same rate. Spinal cords were then carefully dissected and post-

fixed in 4% PFA overnight at 4°C. The L4-L5 segments were dissected out with a razor blade, 

PFA was replaced with 30% sucrose in PBS, and the spinal cord was allowed to sink in the 

solution for at least 48hr. Spinal cord was set in OCT (Tissue-Tek®) in molds, frozen, and 

cryosectioned in 20μm sections mounted on glass slides.  
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Sections were first incubated in blocking solution (0.1% PBS-Triton X, 10% normal 

donkey serum) for 1hr and then in indicated primary antibodies (diluted in blocking solution to the 

concentration specified in Table 7.1) overnight at 4°C. Sections were then washed 3 times for 5min 

in 0.1% PBS-Triton X prior to being incubated with secondary antibodies conjugated to 

Alexafluor-488, -594, and -647 (Invitrogen; diluted 1:400 in blocking solution along with 1:1000 

DAPI counterstain (Sigma)) for 1hr at room temperature. Sections were then washed again 3 times 

for 5min in 0.1% PBS-Triton X and covered with a thin glass coverslip. Images of at least 20 

neurons, each from a different hemisection, were taken on a Leica SP8 LIGHTNING confocal 

microscope equipped with a 63x objective and analyzed with the Fiji distribution of ImageJ 

software (NIH). 

 

7.9 AAV9-mediated overexpression 

AAV9 viruses were produced by Virovek (Hayward, CA). For AAV9-mediated protein 

overexpression, mice were genotyped at P0, and SOD1G93A-Tg were injected 

intracerebroventricularly following the protocol routinely used in the Motor Neuron Center (REF) 

with 5x1014 viral particles. Injection took place using a 27-gauge needle with a 10μL syringe at a 

location approximately one third of the distance from the intersection between the sagittal and 

transverse sutures, and the eye, perpendicular to the skull about 2mm deep.  

 

7.10 Inverted grid test 

This motor performance test is routinely used in the lab and originate from the publication 

of Olivan et al. (Olivan et al. 2015) with minor modifications. In brief, for this test, mice were 

placed on a grid and allowed to grip it with all four limbs. The grid was then inverted and elevated 
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over soft padding, resulting in the mouse hanging inverted from the grid. Score was recorded as 

maximum hold time out of three trials up to either 60sec or 120sec. Animals were tested once per 

week within 3 hr before their night cycle began. 

 

7.11 Spinal cord motor neuron quantification 

For this quantitative morphological study, mice were sacrificed and perfused with cold 

PBS for 4min at a rate of 10mL/min, followed by perfusion with cold 4% PFA for 8min at the 

same rate. Spinal cords were then carefully dissected and post-fixed in 4% PFA overnight at 4°C. 

PFA was replaced with PBS, and the L4-L5 segment of the spinal cord, as defined by its ventral 

roots was cut out under a microscope with a razor blade. L4-L5 segments were set vertically in a 

mold in 4% agarose. A vibratome was then used to cut 70μm-thick sections, of which every other 

section was collected for immunostaining (an average of 20 sections).  

Sections were first incubated in blocking solution (0.5% PBS-Triton X, 5% normal donkey 

serum) for 1hr prior being incubated with a primary goat anti-ChAT antibody (Sigma, Catalog # 

AB144P; diluted 1:250 in blocking solution) for 3 days at 4°C. Sections were then washed 6 times 

for 15min in 0.5% PBS-Triton X prior being incubated with a secondary anti-goat antibody 

conjugated to Alexafluor-594 (Invitrogen; diluted 1:400 in blocking solution) for 3hr at room 

temperature. Sections were then washed again 6 times for 15min in 0.5% PBS-Triton X, mounted 

on glass slides and covered with a thin glass coverslip. Stacks of images were taken on a Leica 

SP8 LIGHTNING confocal microscope equipped with a 20x objective and quantified. A MN was 

defined as a ChAT-positive cell in the ventral horn of the spinal cord. 
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7.12 Neuromuscular junction innervation quantification 

For this other quantitative morphological study, mice were sacrificed and perfused with 

cold PBS for 4min at a rate of 10mL/min, followed by perfusion with cold 4% PFA for 8min at 

the same rate. The tibialis anterior muscle was then carefully dissected and incubated in PBS 

overnight at 4°C. PBS was replaced with 30% sucrose in PBS, and the tibialis anterior was allowed 

to sink in the solution for at least 48hr. Muscle was set in OCT (Tissue-Tek®) in molds, frozen, 

and cryosectioned in 20μm sections mounted on glass slides.  

Sections were first incubated in blocking solution (0.1% PBS-Triton X, 10% normal 

donkey serum) for 1hr and then incubated with a primary guinea pig anti-synaptophysin-1 antibody 

(Synaptic Systems, Catalog # 101 004; diluted 1:500 in blocking solution) overnight at 4°C. 

Sections were then washed 3 times for 5min in 0.1% PBS-Triton X, prior to being incubated with 

a secondary anti-guinea pig antibody conjugated to Alexafluor-488 or -647 (Invitrogen; diluted 

1:400 in blocking solution along with fluorescent-conjugated alpha-bungarotoxin (BTX; 1/200 α-

bungarotoxin conjugated to Alexafluor-555, Invitrogen)) for 1hr at room temperature. Sections 

were then washed again 3 times for 5min in 0.1% PBS-Triton X and covered with a thin glass 

coverslip. Images were taken on a Leica SP8 LIGHTNING confocal microscope equipped with a 

20x objective and quantified. At least 100 neuromuscular junctions as defined by the presence of 

BTX staining were imaged and assessed for innervation as defined by the presence of 

synaptophysin staining. 

 

7.13 Statistical analyses 

All data sets presented in this thesis are depicted as mean ± SEM, unless stated otherwise. 

Results correspond to at least three independent experiments and each experiment is the average 
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of 2-3 technical replicates or 3-6 coverslips or 6 96-wells per time point and per condition. For 

cultured cell quantification, values express the relative total number of neurons counted in 6 fields 

at 10x objective. Differences between means were analyzed by a two-tailed Student’s t-test. 

Differences among means were analyzed by one-way ANOVA with the different genotypes or 

treatments as the independent factors. When ANOVA showed significant differences, pair-wise 

comparisons between means were tested by Newman-Keuls post-hoc testing. Kinetics data were 

fitted by a non-linear iterative least squares method. Given the nature of the data, i.e. temporal 

decay of motor function or a temporal decay in protein levels, a variable slope dose response 

equation or a one-phase exponential decay equation were selected, respectively; more complex 

models failed to improve the fitting of the data and were thus not considered for the analyses. 

Then, the different curves were compared by the method of Extra Sum-of-Squares F test. This 

method is a form of ANOVA which tests whether one curve can fit all data sets. To compare 

survival between mouse genotypes and treatments, the nonparametric Kaplan-Meier statistics was 

used as before (Dermentzaki et al. 2019). Prior to any analysis, each dataset was tested for normal 

distribution and equality of variance and, should either criterion be violated, the appropriate non-

parametric test was used. In all analyses, the null hypothesis was rejected at the 0.05 level. All 

analyses where done with the software GraphPad Prism version 5 (San Diego, CA). 
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