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Abstract

This paper examines the frame-invariance (and the lack thereof) exhibited in simulated anisotropic elasto-plastic responses
generated from supervised machine learning of classical multi-layer and informed-graph-based neural networks, and proposes
different remedies to fix this drawback. The inherent hierarchical relations among physical quantities and state variables in
an elasto-plasticity model are first represented as informed, directed graphs, where three variations of the graph are tested.
While feed-forward neural networks are used to train path-independent constitutive relations (e.g., elasticity), recurrent neural
networks are used to replicate responses that depends on the deformation history, i.e. or path dependent. In dealing with the
objectivity deficiency, we use the spectral form to represent tensors and, subsequently, three metrics, the Euclidean distance
between the Euler Angles, the distance from the identity matrix, and geodesic on the unit sphere in Lie algebra, can be
employed to constitute objective functions for the supervised machine learning. In this, the aim is to minimize the measured
distance between the true and the predicted 3D rotation entities. Following this, we conduct numerical experiments on how
these metrics, which are theoretically equivalent, may lead to differences in the efficiency of the supervised machine learning
as well as the accuracy and robustness of the resultant models. Neural network models trained with tensors represented in
component form for a given Cartesian coordinate system are used as a benchmark. Our numerical tests show that, even given
the same amount of information and data, the quality of the anisotropic elasto-plasticity model is highly sensitive to the way
tensors are represented and measured. The results reveal that using a loss function based on geodesic on the unit sphere in Lie
algebra together with an informed, directed graph yield significantly more accurate rotation prediction than the other tested
approaches.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Constitutive or material laws that provide the explicit relations among strain history, state variables and stress
are the key component to supplement hard constraints such as balance principles and thermodynamic laws for
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single-phase solid mechanics problems [1–5]. These constitutive laws are often proposed based on abstractions and
generalizations of phenomenological and experimental observations [6–11].

However, the recent success in machine learning and mining on big data has become an impetus for an alternative
data-driven approach, where these manual abstractions and generalization processes are either bypassed through a
new optimization procedure that minimizes the distance between points in dataset and the constraint (equilibrium
and compatibility) (cf. [1,2]) or replaced by supervised machine learning via neural networks or other artificial
intelligence (AI) tools (e.g., support vector machine) [12–15]. In the latter case, our intention to generate constitutive
laws to predict stress–strain relations must be mathematically represented as objective (or loss) function such that
the artificial intelligence may evaluate the success of the training.

In this work, our objective is to (1) explore how and why seemingly equivalent objective functions but with
different tensor representations (e.g. components vs. spectral form) for input and output may lead to orders of
difference in efficiency of the neural network training and the accuracy of the resultant models for anisotropic
elasto-plastic materials, and (2) how these differences accumulate in the multi-step informed-graph-based neural
network and cause significant performance difference.

1.1. Tensor representation and metrics for 3D rotations

Recall that anisotropic materials may exhibit principal stresses non-coaxial to the principal strains. This non-
coaxiality may originate from inherent anisotropy of the micro-structure (e.g., a stack of paper). It may also
continuously evolve during deformation (e.g., the plasticity-induced spin due to activation of slip systems of different
directions in crystal grain [16]), rotation of the fabric of granular assembles under inelastic deformation [17–19]. To
capture these anisotropic responses, previous works, such as [13], have extended the training database by expressing
the same set of stress–strain data in coordinate systems such that the discrepancy in different coordinate systems is
suppressed. Recent studies, such as [14,20,21], have introduced coordinate-free invariant metrics for the objective
function such that the resultant neural network model provides consistent predictions under arbitrary rotations.
However, there has not been yet any work that explores how different parametrization of discrepancy measure affects
the performance of the data-driven models. To analyze the influence of parametrization of machine learning objective
functions, we first represent all tensor quantities involved in the supervised learning in spectral form, then employ
different distance metrics for 3D rotation in numerical experiments. We use three scalar-valued functions suitable as
metrics for measuring the distance between tensors belonging to the special orthogonal group, i.e., (1) the Euclidean
distance between the Euler angles, (2) deviation of rotation matrices from the identity tensor, and (3) the geodesic
on the unit sphere within Lie Algebra. Such metrics are widely used in robotic and computer graphic for measuring
difference in orientation. Note that changing the objective function leads to different landscape in the parametric
space. By employing the most common first-order gradient optimization approach, i.e. ADAM, we explore how
changing the objective function affects the speed of the training, the convergence rate, and the robustness of finding
the optimal material laws.

1.2. Deep neural network and informed, directed graph

Once an objective function is defined, a suitable machine learning strategy must be selected such that the
supervised machine learning produces a mapping that maps input(s) to output(s) while maximizing the performance
metrics defined by an objective (loss) function. This mapping can be generated by classical approaches, such as
response surface [22], support vector machine [23], probabilistic learning [24], and neural network [25–27]. While
different parametrizations of objective functions will affect the training procedure of all different types of supervised
machine learning, our numerical experiments will be focusing on the deep neural network , one of the most common
technique to generate generic constitutive laws in recent years. To deal with path-dependent material responses, we
will use a combination of classical feed-forward neural network and the recurrent neural network. In this context, to
circumvent the lack of interpretability of predictions made by the classical deep neural network, we incorporate the
concepts from graph theory to introduce intermediate predictions that aim to better explain mechanism that leads
to stress predictions [3,20,28,29].

Recall that a neural network is essentially an informed, directed graph in which neurons are the vertices connected
by directed edges. In this graph approach, a prediction on stress is made by considering the information flow from
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the root (strain history) of the graph to the leaf (stress), where weights of the neurons in-between the upstream and
downstream are adjusted based on the training data. However, unlike the classical approach, where the information
flow is merely passed through neurons in the intermediate layers that have no physical meaning, the informed,
directed graph also introduce a second type of intermediate vertices that are themselves physical quantities [14,30].
Thus, the machine learning model is trained to predict intermediate quantities (e.g. such as activated slip systems,
trial stresses or slip-system-related plastic deformation in crystal plasticity or the fabric tensor and porosity of
the DEM simulation) that improve both the accuracy (by incorporating more information) and robustness (by
introducing new basis) [18,31–33].

Other challenges related to the training or failure to finish training of the NN model, such as high demand of
training data, under- or over-fitting and vanishing gradients were thoroughly addressed in [14]. Apart from this, Liu
et al. [21], Liu and Wu [4] introduced a data-driven multiscale material modeling approach, referred to as deep
material network, in 2D and 3D settings. The basic idea in this approach is to apply the mechanistic building block
scheme for RVE model reduction, as well as to apply homogenization and direct numerical simulations via LS-Dyna
on RVEs topology to generate training data. In the context of nonlinear, inelastic time-dependent material behavior,
such as the response of metals under shock waves, Stoffel et al. [15] presented an ANN-based material model
embedded into a finite element code. Within structural dynamics and the computation of response statistics, Koeppe
et al. [34] proposed the inclusion of RNN to speed up Monte Carlo method by replacing the iterative calculation
procedure used to evaluate the nonlinear, inelastic, hysteresis structural behavior. In connection with employing
machine learning in the context of mechanical behavior of polycrystalline aggregates, Frankel et al. [35] recently
developed a new approach that incorporate the pre-deformed grain morphology and orientation in the sense of image
data and using convolutional neural network. Meanwhile, Huang et al. [27] introduced uncertainty quantification to
neural network models designed for elasticity constitutive laws and the corresponding boundary value problems that
employs neural network constitutive laws. The incorporation of the image data and the uncertainty quantification,
see, e.g., [36], are important topics that will be considered in the future but is out of the scope of this study.

1.3. Major objectives, organization of contents, and notations

The goal of this research is to gain new insight on (1) how parametrization of objective functions affects
the training and prediction performance of the neural network constitutive laws for anisotropic materials and
(2) estimate the sensitivity and robustness of neural network constitutive laws incorporating different amounts
of human knowledge in the informed, directed graph (e.g. complete black box, frame-indifference models, and
physically-informed models), see, [14,37].

The organization of the rest of the paper is as follows. First, we will provide a brief overview of the construction
of graph-based neural network model for general elasto-plasticity problem at material point (Section 2). Then, we
introduce and compare metrics that seemingly provide identical physical meaning for the training of constitutive
laws, explain the properties of these metrics and the corresponding implications on the neural network training
(Section 3). The recurrent neural network for path-dependent predictions are highlighted in Section 4, followed by
numerical experiments that examine the pros and cons for each of the metrics for machine learning in Section 5. The
major approaches and findings are then summarized in Section 6. Throughout this paper, the single-grain crystal
plasticity problem is used as the test bed.

As for notations and symbols, bold-faced letters denote tensors (including vectors which are rank-one tensors);
the symbol ’·’ denotes a single contraction of adjacent indices of two tensors (e.g. a ·b = ai bi or c·d = ci j d jk ); the
symbol ‘:’ denotes a double contraction of adjacent indices of tensor of rank two or higher ( e.g. C : ϵe

= Ci jklϵ
e
kl

); the symbol ‘⊗’ denotes a juxtaposition of two vectors (e.g. a ⊗ b = ai b j ) or two symmetric second order tensors
(e.g. (α ⊗ β)i jkl = αi jβkl). Moreover, (α ⊕ β)i jkl = α jlβik and (α ⊖ β)i jkl = αilβ jk . We also define identity
tensors (I)i j = δi j , (I4)i jkl = δikδ jl , and (I4

sym)i jkl =
1
2 (δikδ jl + δilδk j ), where δi j is the Kronecker delta. As for

sign conventions, unless specified otherwise, we consider the direction of the tensile stress and dilative pressure as
positive.

2. Overview of models and informed, directed graph representation

In the machine learning material models in this contribution, we distinguish the direct or “black box” approach
from the graph-based “physical-informed” approach. In the “black box” case that employs the recurrent neural
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Fig. 1. Three variations of the informed, directed graph, representing the information flow in the machine learning-based crystal plasticity
material model. The yellow nodes (ϵn+1, σ tr

n , ϵ
p
n and σ n) represent the root nodes, the pink node (σ n+1) is the target node, whereas the

blue nodes are the intermediate nodes. The black arrows represent definitions and the red arrows represent the machine learning models,
which are either recurrent neural networks (RNN) or feed-forward regression neural networks (FFNN). The blue arrows in DG2 refer to
ML models but without a new training. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

network, the total stress is predicted merely based on the total strain history. In the graph-based “physically-
informed” approach, neural networks are making sequence of predictions not only on stress but also other
intermediate quantities that can help making the stress predictions more accurate and robustness. In this latter
case, we found that using feed-forward neural network (FFNN) to predict the path-independent responses, while
use recurrent neural network (RNN) to predict the path-dependent behaviors may lead to higher accuracy of the
stress predictions. In both case, we analyze (1) how representation (e.g. components vs. spectral form) of the tensors
in the input, output, immediate vertices of the graph, and (2) how different ways to measure the discrepancies in
the objective function affect the quality of the predictions.

We also discuss the representation of crystal plasticity model as an informed, directed graph, see, e.g. [38]
for more discussion of the directed graph scheme. This way of representation is in line with the extraction of
intermediate information (such as trial stresses and plastic strains in elasto-plasticity), which can be included as
a part of the “physically-informed” machine learning approach [14]. Following this, the machine learning model
can be thought as a procedure that employs organized knowledge and successive predictions that govern the final
outcomes of predictions.

2.1. Representation of crystal plasticity in informed, directed graph

In this paper, we select the crystal plasticity problem as our test bed. Due to the existence of slip system, a
single grain of crystal may exhibits isochoric plastic flow that depends on the combination of slip systems that are
activation. Hence, the accuracy of the stress predictions highly depends on whether the machine learning model
is able to replicate the plastic spin in each incremental step upon yielding. Note that, while the crystal plasticity
is used as an example, the design of the directed graph is general such that it also work for other anisotropic
elastoplastic materials where stress and elastic strain are not co-axial. In connection with the informed, directed
graph representation, Fig. 1, top, illustrates the direct “black box” (B B) approach, in which RNN is applied to
predict the next stress state σ n+1 based on the updated strain state ϵn+1 as well as the strain from previous time steps
according to the RNN definition. In analogy to the traction-separation model discussed in [14], the crystal plasticity
algorithm can be considered as an information flow in a directed graph. In this, two informed, directed graphs are
discussed in the following with two levels of deepness: The first one, illustrated in Fig. 1, middle, represents an
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“informed” direct relation (DG1) in which the predicted output history, here σ n , is used as an additional input,
thus, contributing to the prediction of the next output σ n+1 . This modification results in an incremental ANN,
which is in line with the path-dependent material behavior subjected to time incremental loading. In this, all the
attributes from previous time steps, such that of the strain and the stress tensors, are known. The second physically-
informed approaches, DG2, illustrated in Fig. 1, bottom, is based on the classical elasto-plasticity computational
framework [39,40] and does not incorporate lower-scale information.

Unlike DG2, both B B and DG1 graphs consider the overall behavior of the crystal without distinguishing
between the elastic and the plastic responses in the training. However, DG2 variation hybridizes two machine-
learning ANN approaches, i.e. RNN and FFNN, with the classical rate-independent computational elasto-plasticity
model. In this, a number of the relations in the return-mapping algorithm are replaced by machine learning steps,
where, similar to DG1, a time incremental framework is applied in DG2 . Thus, having the time increment
∆t = tn+1 − tn with tn+1 as the next time step and tn as the current one, the root nodes are the strain tensor
ϵn+1, the elastic trial strain ϵe, tr

n , the trial stress σ tr
n , the plastic strain tensor ϵ

p
n , and the total stress σ n from the

time step tn . The stress at next time step σ n+1 is considered as the target node. The intermediate edges ϵ
e, tr
n+1 and

ϵe
n+1 are considered as definitions and replaced by mathematical expressions in the ANN model. In particular, DG2

in Fig. 1, bottom, involves the following steps:

1. elastic trial strain ϵ
e, tr
n+1 = ϵn+1 − ϵ

p
n (Computed in DG2 as a definition)

2. trial elastic stress σ tr
n+1 = Ce

: ϵ
e, tr
n+1 (history-independent elastic step, replaced by FFNN)

3. plastic strain ϵ
p
n+1 = ϵ

p
n+1(ϵ p

n+1, σ tr
n+1, λ

p
n+1) (history-dependent plastic step, replaced by RNN)

4. elastic strain ϵe
n+1 = ϵn+1 − ϵ

p
n+1 (Computed in DG2 as a definition)

5. total stress σ n+1 = Ce
: ϵe

n+1 (history-independent elastic step, replaced by FFNN from step 2 without a
new training)

2.2. Data acquisition within isotropic/transversely-isotropic-elastic crystal plasticity

The focus in the following is on the solution of a f.c.c. single crystal under plastic deformations within small-
strain framework. In particular, we follow the “ultimate algorithm” procedure, introduced in [16,40], to identify
the set of active slip systems, where this algorithm delivers an exact solution for crystal plasticity in which the
crystals are subjected to tension, shear or mixed tension–shear deformations varying as a ramp function. An abstract
summary of the procedure is introduced in Appendix. To promote the effect of rotations on the mechanical response
and, thus, the rotation role in the accuracy of the machine learning model, we consider in the crystal plasticity two
cases of elastic response; one with isotropic linear elastic and one with transversely-isotropic elastic behavior within
small strain framework. In this, we adopt the transversely-isotropic model presented in [41] and later extended within
invariant framework in [42]. Therefore, having Ce as the elasticity tensor of the f.c.c. lattice and without the need
to change the general formulation between the stress tensor σ and the elastic strain ϵe as σ = Ce

: ϵe, the elasticity
tensor can be expressed for the isotropic case as

Ce
= λ I ⊗ I + 2µ I4

sym , (1)

with λ and µ being the microscopic Lamé constants. For the transverse isotropic case, the material is assumed to
have a single preferred direction, denoted as a with ∥a∥ = 1. The material symmetry group MGT is defined by

MGT :=
{

I ; Q(θ, a) | 0 ≤ θ ≤ 2π
}
, (2)

where Q(θ, a) represent all the rotations about the a-axis. Moreover, an anisotropy structural tensor M, which
characterizes the inherent anisotropic of the material as introduced in [43], can then be defined as M = a ⊗ a.
Following the derivations given in [41], the elasticity tensor for transversely-isotropic material applied in the
manuscript can be expressed as

Ce
= λT I ⊗ I + 2µT I4

sym + α
[
M ⊗ I + I ⊗ M

]
+ 2 (µL − µT ) I4

a + β M ⊗ M , (3)

with λT , µT , µL , α, β being material parameters and the 4th-order tensor (I4
a)i jkl is expressed in index notation

in terms of the direction a and the Kronecker delta δ as (I4
a)i jkl := ai (δ jkal + δ jlak) + a j (δilak + δikal) .
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3. Objective function in spectral form

3.1. Metrics for 3D rotations

We briefly review three distance functions or metrics reported in the literature for measuring the distance between
two 3D rotations, see, e.g., [44–46] for more details and references. The aim of this presentation is to use these
metrics, which are widely applied in, e.g., Robotics, computer vision or graphics, in the design of new machine
learning objective functions that minimize the discrepancy in the training and, thus, in the calibration, between the
reference or true rotation and the predicted rotation. Thus, having R1, R2 as two rotation tensors belonging to the
Special Orthogonal Group, SO(3), finding the distance function φi , with i referring to the type of metric, can be
formulated as follows:

For R1, R2 ∈ SO(3) find φi (R1, R2) : SO(3) × SO(3) → R+ . (4)

In the training of the machine learning model, the aim is to minimize φi , where the rotation tensors are formed by
concatenating the orthogonal, normalized eigenvectors of, e.g., the stress or the strain tensors as will be discussed
in later sections. In general, the distance functions must possess the following properties [20,45,47],

1. The statement φi (R1, R2) = 0 is equivalent to R1 = R2

2. φi (R1, R2) = φi (R2, R1)
3. φi (R1, R3) ≤ φi (R2, R1) + φi (R3, R1) with R1, R2, R3 ∈ SO(3)
4. φi (R1, R2) is bi-invariant, i.e., φi (R1, R2) = φi (R3 · R1, R3 · R2) = φi (R1 · R3, R2 · R3), R1, R2, R3 ∈ SO(3)
5. Boundedly-equivalent distance functions φA and φB fulfill the restriction (ar φA ≤ φB ≤ br φA), with ar and

br being positive real numbers.
6. Functional equivalent φA and φB require the existence of a strictly-increasing positive continuous function

fr so that fr (φA) = φB

7. Two metrics are topologically equivalent if they are either boundedly equivalent or functional equivalent

The discussed metrics in the following differ in the way that rotations are represented, the invariance and the
accuracy in measuring the rotation distances.

• Distance between the Euler Angles: Having {ϕi , θi , ψi }∈ E ⊂ R+ as the set of Euler angles of Ri , the metric
for R1 and R2 can be expressed as the Euclidean distance between the Euler Angles as

φEu =

√
d(ϕ1, ϕ2)2 + d(θ1, θ2)2 + d(ψ1, ψ2)2 . (5)

In this, the Euclidean distance for two scalar-valued quantities a1, a2 is expressed as d(a1, a2) =

min{|a1 − a2|, 2π − |a1 − a2|} ∈ [0, π] . Thus, φEu belongs to the range [0, π
√

3] . A drawback of using
Euler Angles in calculating the metric is the non-uniqueness under certain extreme cases, such as (π , π ,
0) and (0, 0, π ) can represent the same rotation, however, their metric is not zero, [45]. As a solution to
overcome this deficiency, the Euler angles can be imposed to be in half-open ranges as ϕi , θi ∈ [−π, π ) and
ψi ∈ [−π/2, π/2), which allows φEu to be valid as a metric on SO(3).

• Distance from the identity matrix: The distance between R1 and R2 can be expressed by means of the
Frobenius norm ∥ · ∥F and after reformulation as

φDI = ∥I − R1 RT
2 ∥F =

√
2

[
3 − tr (R1 RT

2 )
]
. (6)

In Eq. (6)2, the Frobenius norm was replaced by the 2nd-norm, thus, the range of φDI values becomes [0, 2] .
A mathematical proof of the validity of φDI as metric on SO(3) was discussed by Huynh [45].

• Geodesic on the unit sphere: Having SO(3) as Lie group of the 3D rotations, the skew-symmetric counterpart
matrices represent Lie Algebra so(3), which is a convenient way to represent the rotation. For a rotation matrix
R ∈ SO(3), the skew-symmetric counterpart in Lie Algebra W ∈ so(3) is computed explicitly via logarithmic
mapping. Thus, having Θ as the angle of rotation defined as

Θ := arccos
[

1
2 (tr R − 1)

]
with Θ ∈ [0, π] , (7)
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the logarithmic mapping that yields the skew-symmetric rotation matrix is computed by

W = log R =

⎧⎪⎨⎪⎩
0 if Θ = 0

Θ

2 sinΘ
(R − RT ) if Θ ∈ (0, π)

±π ˜[v] if Θ = π ,

(8)

where ˜[v] ∈ so(3) is a skew-symmetric tensor. In particular, following the discussion in [44], tr R = −1 is
associated with two solutions of log R, i.e. ±π ˜[v], where ṽ is a unit length eigenvector of R corresponding to
an eigenvalue equals to 1. In analogy, the mapping from Lie Algebra to Lie Group succeeds via exponential
mapping as explained in, e.g., [47,48]. In particular, R ∈ SO(3) can be computed as follows:

R = exp W =

{
I if Θ = 0

I +
sinΘ
Θ

W +
(1 − cosΘ)

Θ2 W 2 if Θ > 0
with Θ :=

√
1
2

(W : W ) . (9)

Having W 1,W 2 ∈ so(3) as the skew-symmetric rotation tensors corresponding to R1, R2 ∈ SO(3), the
distance function between the two rotations can be expressed as

φLie := ∥ log(R1 RT
2 )∥ = ∥ log(R1) − log(R2)∥ = ∥W 1 − W 2∥ , (10)

As a consequence of Eqs. (8) and (10), the range of φLie values is [0, π ) .

In the aforementioned metrics on SO(3), φDI is dimensionless, whereas φEu and φLie have units in radian, which is
not considered as a problem, but merely a scaled variation of φi values. Moreover, the three metrics are bi-invariant
w.r.t. to the topology on SO(3), and φLie and φDI are boundedly equivalent. A drawback related to φEu is that it
sometimes results in large values although the rotations are too close, i.e. in connection with the extreme limits of
the angles as π and −π , see, [45].

3.2. SO(3)-Invariant objective function

In the context of constitutive modeling, a material model should obey the principle of material frame indifference,
also known as material objectivity, which states that constitutive relations have to be invariant under rigid body
rotations of the actual configuration, see, [49]. In similar fashion, machine learning material models should also
preserve the principle of material objectivity or material frame indifference, in which the predicted quantities
(e.g. eigenvalues and directions) should be independent of the current frame of reference, i.e. observer-invariance.
The importance of objectivity becomes more significant when, e.g. studying deformation of anisotropic materials,
associated with large rotations of the eigenvectors. In this, the objectivity fulfillment in machine learning is
associated with good accuracy in predicting both the eigenvalues and the rotation-related quantities like the
eigenvectors, the Euler angles or the components of the skew-symmetric rotations in Lie Algebra.

In the direct relation (B B) approach and using the components of the strain tensor ϵ to predict the components
of the stress tensor σ expressed in a certain coordinate system via Voigt notation as illustrated in Fig. 2, left,
the applied objective “loss” function in the training is based on the mean squared error (MSE) between the true
output data si and the corresponding machine-predicted data sM

i , related to the stress measures. In particular, the
scalar-valued loss function can be expressed by

DM L
0 =

1
N

N∑
i=1

[
si − s M

i

]2
, (11)

where N is the number of output data points. It is worth mentioning that si are scaled to be in the range of [0, 1],
whereas sM

i , due to use of sigmoid activation function, have real-values in the range [0, 1].
The aforementioned loss function with tensors in component form does not necessarily satisfy the objectivity

constraint of the material model as was discussed in [14]. Therefore, while maintaining the ANN architecture,
we intend in the current work to test and compare different objective “loss” functions, such that based on rotation-
related quantities, and evaluate their influence on the training performance. The proposed approaches aim to enforce
the objectivity in a strict sense without the need to extend the training sets through providing database that include
rigid-body rotations, but merely through changing the way that data are presented in the input and the output layers.
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Fig. 2. Graph illustrating the strain and stress components (ϵi j and σi j ) as input and output layers in the machine learning model (left).
Illustration of the strain and stress principal components and the corresponding eigenvectors (right), where the red arrows are replaced by
RNN model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The natural datasets resulting from the computational method in crystal plasticity are the strain tensor components
and the corresponding components of the stress tensor. Thus, the first step in the underlying approach is the
application of spectral decomposition to compute the eigenvalues and eigenvectors of the strain and stress tensors,
which represent the input and the output of the machine learning model, i.e.,

ϵ =

3∑
i=1

ϵi Nϵi ⊗ Nϵi and σ =

3∑
i=1

σi Nσ i ⊗ Nσ i , (12)

where ϵi and σi are the eigenvalues of ϵ and σ , respectively. Additionally, Nϵi = (nϵi ) j e j and Nσ i = (nσ i ) j e j

are the corresponding normalized eigenvectors with the components (nϵi ) j and (nσ i ) j and the index j ∈ {1, 2, 3}.
The spectral decomposition allows to introduce alternative structure of the ML model by using the eigenvalues and
eigenvectors of the strain to predict the eigenvalues and eigenvectors of the stress as illustrated in Fig. 2, right.
Moreover, an alternative loss function based on the mean squared error (MSE) between the true output data SN i of
the eigenvalues and eigenvectors of the stress and the corresponding machine-predicted data SN

M
i can be introduced

as

DM L
SN =

1
N

N∑
i=1

[
SN i − SN

M
i

]2
. (13)

where N is the number of output data points. From comparison with DM L
0 , the computation of DM L

SN at each iteration
(ML-weights update) is more demanding as 12 components (3 for the eigenvalues and 9 for the eigenvectors) should
be considered. A comparison with respect to the efficiency will be introduced in Section 5.

Inspired from the scalar-valued metrics that represent distances between two 3D rotations, discussed in the
literature as in [44–46] and summarized briefly in Section 3.1, we introduce in the following three alternative
loss functions that can be used in the training of the ML model in an attempt to improve the fulfillment of the
material objectivity constraint. First of all, we consider the rotation tensors, formed by concatenating the orthogonal,
normalized eigenvectors of the measured strain and stress tensors and expressed, respectively, as

Rϵ =
[
Nϵ1 Nϵ2 Nϵ3

]
, Rσ =

[
Nσ1 Nσ2 Nσ3

]
, (14)

where Rϵ, Rσ ∈ SO(3). For instance, in the B B-approach ML model, Rϵ beside the strain eigenvalues ϵi belong
to the input layer, whereas Rσ beside the stress eigenvalues σi belong to the output layer. The rotation tensor
can, however, be represented by equivalent quantities such as the Euler Angles or the entities of the skew-
symmetric counterpart in Lie Algebra. In the training of the ANNs, we aim to minimize the metric Φ(Rσ , RM

σ ) :

SO(3) × SO(3) → R+ that measures the difference between the true rotation tensor Rσ (represents the measured
orientation of the principal directions of the stress) and the predicted rotation tensor RM

σ . Thus, in ideal case,
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Fig. 3. Graph illustrating the strain and stress principal components and the corresponding Euler angles (left) and the strain and stress
principal components and the corresponding components of the skew-symmetric rotation entities in Lie Algebra (right). The red arrows are
replaced during the training by the RNN model.

Φ(Rσ , RM
σ ) = 0 is equivalent to Rσ = RM

σ . The proposed loss functions (DM L
i ) can be seen as an average of two

terms; one is related to the eigenvalues of the stress DM L
σ and another term related to the rotation DM L

R , i.e.,

DM L
σR =

1
2 (DM L

σ + DM L
R ) with DM L

σ =
1
N

N∑
i=1

[
σ i − σ M

i

]2
, and DM L

R =
1
N

N∑
i=1

Φi , (15)

where N is the number of output data points. σ i , σ M
i are, respectively, the true and the predicted output data

related to the eigenvalues of stress measure, whereas Φi include the distance measures between the true and the
predicted rotations. Fig. 3, left, illustrates the structure of the machine learning (B B-graph as example) for the case
rotations represented via the Euler angles. In this, the input layer includes the principal strains and the Euler angles
related to Rϵ , which are used to predict the principal stresses and the Euler angles of the stress. Thus, having
{ϕσ , θσ , ψσ }∈ E ⊂ R+ as the set of true Euler angles and {ϕM

σ , θ
M
σ , ψ

M
σ }∈ E ⊂ R+ are the predicted ones,

adopting the Euclidean distance between the Euler angles from Section 3.1 yields for a certain test k

Φk =

√
d(ϕσ , ϕ

M
σ )2 + d(θσ , θ

M
σ )2 + d(ψσ , ψ

M
σ )2 . (16)

Applying logarithmic mappings to the 3D, SO(3) rotations (Lie group) yields an alternative representation of
the rotation via the skew-symmetric counterpart matrices, i.e. Lie Algebra so(3), as discussed in Section 3.1. Thus,
instead of the Euler angles, the training of the RNNs can be applied to predict the three entities of the skew-
symmetric rotation matrix W as illustrated in Fig. 3, right. With wσ i as the true components of the skew-symmetric
rotation tensor and wM

σ i as the predicted ones, the distance function between the true and the predicted rotations,
also called the geodesic on the unit sphere, can be expressed via the mean squared error as

DM L
R =

1
N

N∑
i=1

Φi =
1
N

N∑
i=1

[
wσ i − wM

σ i

]2
. (17)

The last loss function is based on the distance from the identity matrix. The training in this case aims to predict
the components of the rotation tensor, i.e. components of the stress eigenvectors. Unlike the loss function given in
Eq. (13), which is based on the mean squared error, the aforementioned distance function can be calculated based
on the components of the true rotation Rσ and the predicted components of RM

σ . In particular, for a certain test k,
the rotation-related term in Eq. (15) can be expressed as

Φk = ∥I − Rσ (RM
σ )T

∥F =

√
2

[
3 − tr

[
Rσ (RM

σ )T
]]

(18)

with ∥ · ∥F being the Frobenius norm. In the following sections and applications, we use abbreviations related to
each of the objective functions and summarized in Table 1.
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Table 1
Summary of the considered objective “loss” functions.

Obj. Description Eq.

DM L
0 Based on the components of the true and predicted stress tensor (11)

DM L
SN Based on the eigenvalues and eigenvector entities of the true and predicted stress tensor (13)

DM L
σEu Based on the eigenvalues and Euler angles of the true and predicted stress tensor (15), (16)

DM L
σLie Based on the eigenvalues and the components of the skew-symmetric rotation tensor (Lie Algebra) of the true and

predicted stress tensor
(15), (17)

DM L
σDI Based on the eigenvalues and the distance from the identity matrix of the predicted and true rotations (15), (18)

3.3. ML implementation highlights

The machine learning model in this work is implemented in the high-level Python deep learning open-source
code Keras (cf. [50]) with built-in LSTM neural networks together with several settings and options related, such
that for layers, optimizers, objective functions and error measures. The tensorial operations in Keras are handled
by the open-source symbolic tensor manipulation library Tensorflow, see [51], serving as the “backend engine” of
Keras. After acquiring the database from the lower-scale crystal plasticity simulations in comma separated values
(csv) format, the data are preprocessed in an open-source Python data analysis library Pandas [52]. In particular, we
distinguish in the data preparation between training, validation and testing sets. Moreover, each set is further split
into input and output subsets, where, for instance, the spectral decomposition is applied to obtain the eigenvalues and
eigenvector and with that rotation-related quantities as the Euler angles or the skew-symmetric rotation matrix. This
is followed by scaling (normalization) each sequence of input and output data from the original range to be within
the range [0, 1] . This action is carried out using the MinMaxScaler class in sklearn.preprocessing toolkit [53]. After
finishing the training, the predicted data can be rescaled to the original range using a similar scaling functionality.
Following the preprocessing, the neural network is constructed, which consists of an input and output layer according
to the description in Section 3. The number of hidden layers and the corresponding nodes have been varied to get
the best possible fit for each case. In most of the cases, a choice of two hidden layers with ca. 100 nodes gave the
best training.

4. Supervised machine learning with recurrent neural network

The focus in the underlying work is on history-dependent (path-dependent or inelastic) material mechanical
behaviors, such as in crystal plasticity. This kind of behavior can be treated within the artificial neural networks
(ANNs) though application of recurrent neural networks (RNN). In particular, the Long Short-Term Memory
(LSTM) neural network as a part of the RNN approach, introduced by Hochreiter and Schmidhuber [54], is applied
to consider the effect of history variables on the path-dependent behavior.

4.1. Overview and methods

The building of the machine learning models in this contribution involves the following steps:

1. Generation of synthetic datasets through mechanically-loaded (strain-controlled) f.c.c. single crystal to get
the strain–stress components time history.

2. Applying of spectral decomposition to extract the principal components and the related eigenvectors (principal
directions).

3. Formation of the rotation tensors through concatenating the eigenvectors, and then reformulate these to get
simplified rotation-related quantities such as Euler Angles and the geodesic on the unit sphere (through
logarithmic mapping within Lie Algebra).

4. Modify the loss function of the machine learning algorithm through application of metrics for 3D rotations
as summarized in Table 1.

5. Comparison between the three approaches of B B, DG1 and DG2, which also consider a variety of loss
functions.
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Table 2
Definition of the considered datasets in Keras machine learning model.

Dataset Description

Training Represents the data that the ML model will be fit into by adjusting the weights of the neural networks.
Validation Represents an independent dataset that uses the generated weights to measure the ML model performance during the

training process. In this, it is evaluated at each epoch (weights update) during the training, i.e. its loss function and
accuracy are calculated and compared to that related to the training dataset. Thus, it contributes to the tuning of the
neural networks weights during the training.

Testing Represents an unseen dataset, which is not a part of the training. It is used to calibrate the performance of a trained
ML model, as testing the accuracy a given configuration of the neural networks and the applied deep learning models
in Keras.

Fig. 4. Graph illustration of an ANN structure (left). A common architecture of a neuron of the LSTM variation with a cell (ct ) and input
(it ), output (ot ), and forget ( ft ) gates beside the activation functions (right).

It is also worth mentioning that if experimental data are available, such that from laboratory experiments, there is
no need to go through steps 1. and, instead, the modeler can directly start with step 2. In this work, a manual data
splitting is carried out by specifying from the beginning three datasets, i.e. training, validation and testing, with
brief definitions given in Table 2.1

Following the specification of the datasets, the artificial neural network (ANN) is constructed, which, in general,
consists at least of three types of layers, the input, the output and the hidden layers, with equal or different number
of neurons (vertices, nodes or units). As an example, Fig. 4, left, illustrates ANN with two hidden layers with 5
neurons for each, an input layer with 4 inputs and an output layer with 2 outputs.

In the training of the neural network, each neuron receives inputs (xi ) from other neurons or from the input layer
and computes an output (y) via a non-linear activation function ( f ). In particular, we have

y = f (wi xi + b) with, e.g., f (x) = σ (x) = 1/(1 + e−x ) . (19)

In this, σ (x) is the sigmoid activation function that takes a real-valued input (x) and returns it to range between 0
and 1, whereas several other activation functions, such as tanh and ReLU (Rectified Linear Unit), can be found
in Keras. In Eq. (19), wi represent the weights and b is the bias, which are adjusted to minimize the discrepancy
between the benchmark and prediction that are measured at the output layer via the loss function. Following this,
the errors related to each vertex in the output layer will be back propagated to the neurons in the hidden layer and
used to calculate the gradient of the loss function, which is also used to update the weights and, thus, minimized
the loss function values.

4.2. Deep learning using the long short-term memory (LSTM)

Unlike the feed-forward neural networks (FFNN), which can be considered as mathematical functions, artificial
recurrent neural networks (RNNs) can be seen as dynamical systems in the sense that they introduce loops in the
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network allowing for back propagation of past information into the network. Thus, they exhibit temporal dynamic
behaviors that might continuously be changing during the training of the network, see, e.g., [55] for a thorough
review and challenges. This allows them to be suitable for problems that involve time-dependent and sequence-
dependent data, such as in time-dependent material behaviors, engineering by Zhu et al. [56] or Wang and Sun [14]
to replace constitutive models by machine learning models.

In this regard, LSTM was introduced by Hochreiter and Schmidhuber [54] as a variation of the RNNs, which has
the merit of preserving the error that can be backpropagated through time and layers and presents a solution to the
problem of vanishing gradient. The LSTM is implemented in Keras and illustrated graphically in Fig. 4, right. This
shows a cell (ct ), which represents a dynamic memory of LSTM that keep the dependencies between the elements
in the input sequence. Beside this, the input (it ) gate regulates which information influx into the cell. The forget
( ft ) gate controls which values remain in the cell, whereas the output (ot ) gate controls to which extend that values
in the cell are used to compute the output activation function, see, [57] for more details.

For illustration, assuming xt as the input sequence at time t , which also include the previous outputs from the
cell ht−1, and ht as the corresponding output sequence. In order to determine what information should be forgotten
from the cell state, xt and ht−1 are passed through the forget gate, where they are subjected to a sigmoid activation
function σ and return values between 0 and 1, i.e.,

ft = σ (W f · xt + U f · ht−1 + b f ) , (20)

where W f and U f are weight matrices and b f is a bias vector related to the forget gate. Without the forget gate
connected to the reset of the cell state, the internal state values may grow indefinitely and eventually cause the
network to collapse as was discussed by Gers et al. [58]. Following this is the process of determining the information
that could be stored in the cell state, i.e. C̃t , which is a process that includes two activation functions; a sigmoid
activation function σ related to the input gate it and a hyperbolic tangent function tanh as

it = σ (Wi · xt + Ui · ht−1 + bi ) and C̃t = tanh(WC · xt + UC · ht−1 + bC ) . (21)

In this, Wi and Ui are weight matrices and bi is a bias vector related to the input gate, and WC and UC are weight
matrices and bC is a bias vector related to C̃t . Thereafter, the updated ‘current’ cell state can be calculated based
on the old cell state Ct−1 as

Ct = ft Ct−1 + it C̃t . (22)

Finally, the output signal is calculated after inclusion of the current cell state Ct and the signal through the output
gate ot as

ht = ot tanh(Ct ) with ot = σ (Wo · xt + Uo · ht−1 + bo) , (23)

where Wo and Uo are related weight matrices and bo is a bias vector.

5. Results and discussions of test cases via monotonic loading

The purpose of the following numerical experiments is to evaluate the accuracy and compare the different
objective functions following the direct or “black box” (B B) graph and the indirect or “physically-informed” (DG1
and DG2) directed graphs, as was illustrated in Fig. 1. Beside the supervised machine learning model building steps
explained in Section 4.1, we split the generated database into three sets, i.e. training, validation and testing, as was
also explained in Table 2. In a nutshell, the training subset is used for adjusting the weights of the neural networks,
the validation subset periodically evaluates the quality of training and, thus, contributes to tuning of the neural
networks weights, and the testing subset represents the unseen data and used for the final evaluation of the trained
ML model.

5.1. Applying B B-graph to isotropically-elastic crystal plasticity (Iso CP)

We test in the following the performance of several ML objective functions based on data generated from the
crystal plasticity (elasto-plastic) material model. This includes a single f.c.c. crystal with an isotropic, linear elastic
material behavior together with a maximum number of 12 activatable slip systems, see Appendix for details. The
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Table 3
Parameters of the single f.c.c. crystal with isotropic elasticity.

Parameter sym. val.

Young’s modulus E 1500
Poisson’s ratio ν 0.33
Initial yield stress τY 0 1.0
Taylor hardening ĥ 5.0
1st Euler angle θ 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦

2nd Euler angle ϕ 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦

Table 4
24 loading cases (incremental plane strain) applied to each of the 49 crystal configuration.

∆ϵ11 ∆ϵ22 ∆ϵ12 ∆ϵ11 ∆ϵ22 ∆ϵ12

(1) 0. 0. 4 · 10−4 (13) 2 · 10−4 2 · 10−4 0.
(2) 0. 0. 2 · 10−4 (14) 4 · 10−4 2 · 10−4 0.
(3) 0. 0. 1 · 10−4 (15) 1 · 10−4 2 · 10−4 4 · 10−4

(4) 0. 0. −1 · 10−4 (16) 1 · 10−4 2 · 10−4 2 · 10−4

(5) 0. 0. −2 · 10−4 (17) 1 · 10−4
−2 · 10−4 1 · 10−4

(6) 0. 0. −4 · 10−4 (18) −1 · 10−4 2 · 10−4
−1 · 10−4

(7) −4 · 10−4
−2 · 10−4 0. (19) −1 · 10−4

−2 · 10−4
−2 · 10−4

(8) −2 · 10−4
−2 · 10−4 0. (20) −1 · 10−4

−2 · 10−4
−4 · 10−4

(9) 2 · 10−4
−2 · 10−4 0. (21) 2 · 10−4 1 · 10−4 2 · 10−4

(10) 4 · 10−4
−2 · 10−4 0. (22) 2 · 10−4

−1 · 10−4 1 · 10−4

(11) −4 · 10−4 2 · 10−4 0. (23) −2 · 10−4 1 · 10−4
−1 · 10−4

(12) −2 · 10−4 2 · 10−4 0. (24) −2 · 10−4
−1 · 10−4

−2 · 10−4

material properties with consistent units are taken from [40] and summarized in Table 3. The values of the related
Euler angles show that the crystal can be found in 49 different configurations (i.e. 49 different rigid body rotations).

As a part of an initial-boundary-value problem that replicates real events, the crystal might be subjected to
many different loading scenarios. To restrict the loading cases in our numerical tests, we assume that the crystal
is under plane-strain states, i.e. ϵ33 = ϵ13 = ϵ23 = 0, which leads, however, to possible 3D rotations of the
principal stress directions. In total, 1176 experiments as a result of 24 numerical experiments for each of the 49
crystal configurations have been carried out. These experiments have been then spit into training (792 experiments),
validation (192 experiments) and testing (192 experiments) subsets. Furthermore, each of these subsets belongs to
different frames of reference, i.e. for the validation subset we have θ = 120◦ with ϕ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦

beside θ = 180◦ with ϕ = 75◦, 90◦. For the unseen testing subset, we consider θ = 30◦ with ϕ = 0◦, 15◦, 30◦,
45◦, 60◦, 75◦, 90◦ and θ = 120◦ with ϕ = 90◦. In each numerical experiment, the crystal is subjected to monotonic
incremental of one or more strain components, i.e. ∆ϵ11, ∆ϵ22 and ∆ϵ12, where 100 increments have been applied.
A summary of applied loading combinations for each crystal configuration is introduced in Table 4.

For the aim of the study, we start by testing the performance of all suggested objective functions considering
crystal plasticity with isotropic elastic response and the B B graph. In this, the rotations in the principal stresses
are associated merely with the plastic deformations, as isotropic elastic response does not lead to principal stress
rotation. For the aim of abstract writing, Table 5 presents a summary of the ML methods applied within the direct
“black box” (B B) graph.

Of particular importance in constitutive modeling is the material frame indifference (or material objectivity),
which is quantified in the case of ML models by the accuracy of predicting the frame-independent eigenvalues
and the related eigenvectors (or their rotation angles, as three eigenvectors form a rotation matrix). In the different
approaches in this work, the accuracy is quantified by calculating the discrepancy between the true data (X true)
and the predicted data (Xpred) using the scaled mean squared error (scaled MSE), which can be expressed for each
experiment (i) with number of steps (N = 100) as

scaled MSEi =
1
N

N∑
j=1

[
(X true) j − (X

M
pred) j

]2
where X true := MinMaxScaler(X true) . (24)
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Table 5
Summary of the ML methods applied within the B B approach, see, Fig. 1, left. The objective function definitions are given in Table 1.

Method Description Obj.

B Bcomp Considers the components of the true and predicted stress tensor, i.e. Fig. 2, left DM L
0

B BLie Considers the eigenvalues and the components of the skew-symmetric rotation tensor (Lie Algebra) of the true
and predicted stress tensor, i.e. Fig. 3, right

DM L
σLie

B BEul Considers the eigenvalues and Euler angles of the true and predicted stress tensor, i.e. Fig. 3, left DM L
σEu

B BSN Considers the eigenvalues and eigenvectors of the true and predicted stress tensor, i.e. Fig. 2, right DM L
SN

B BDI Considers the eigenvalues and the distance from the identity matrix of the predicted and true rotations,
i.e. Fig. 2, right

DM L
σDI

Fig. 5. ML training history related to the training and validation datasets within Iso CP; Accuracy over number of weight updates (left)
and loss function value over number of weight updates (right) following B Bcomp method.

In particular, the MinMaxScaler is constructed based only on X true data, and then this scalar is used to scale the
predicted values Xpred yielding X

M
pred. Thus, X true is found in the range [0, 1], whereas X

M
pred is not necessarily in

the range [0, 1].
As a starting point, the B Bcomp approach is applied for generation of ML material model related to isotropic

elastic crystal-plasticity (Iso CP) model. Fig. 5 shows the training history of the training and validation datasets
following the B Bcomp method within direct graph approach, where increasing the number of weight updates further
than ca. 380 does not lead to improvement of the accuracy or reduction of values of the loss function DM L

0 .
For the B BComp method, the frame-independent quantities (the eigenvalues and eigenvectors) do not result

directly from the ML model. Thus, as a part of the post-processing, the spectral decomposition is applied to extract
the three eigenvalues and eigenvectors and, thus, the related three Euler angles of the true and predicted stresses,
which allows to calculate the scaled MSE using Eq. (24). Fig. 6 illustrates the scaled MSE for each experiment of
the training, validation and testing datasets considering the B BComp ML approach, where Fig. 6, left, is related to
the overall MSE (the principal stresses and Euler angles together). The scaled MSE values in Fig. 6, middle, are
related to the pure principal stresses, whereas Fig. 6, right, are connected the Euler angles. The three cases in Fig. 6
show that the training using the components of the stress and strain tensors with the loss function DM L

0 results in
very accurate predictions with respect to the principal stress values (PV), whereas the main source of errors is the
prediction of the rotation-related Euler angles (Rot).

For evaluating the performance of the ML model, we qualitatively compare between the scaled MSE of the
testing and that of the training datasets. This is based on calculating the non-parametric, empirical cumulative
distribution functions (eCDFs), see, [59,60]. In particular, eCDFs are calculated for the MSEi of testing (Ntestdata)
and training (Ntraindata) datasets considering all the components (all), i.e. i ∈ [1, N all

testdata] , i ∈ [1, N all
traindata], only

the principal stress values (PV), i.e. i ∈ [1, N PV
testdata] , i ∈ [1, N PV

traindata], and only the rotation-related quantities
(Rot), i.e. i ∈ [1, N Rot

testdata] , i ∈ [1, N Rot
traindata]. Thus, for a dataset N with MSEi sorted in ascending order, the eCDF
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Fig. 6. Scaled MSE of the training, validation and testing datasets within Iso CP using B BComp method. Overall scaled MSE of the
predicted principal stresses and the corresponding Euler angles (left), scaled MSE related only to the principal stresses (middle) and scaled
MSE related only to the Euler angles (right).

Fig. 7. eCDF vs. scaled MSE of the training and testing dataset of Iso CP using the B BComp method.

can be computed as follows:

FN (MSE) =

⎧⎪⎪⎨⎪⎪⎩
0, MSE < MSE1,
r
N
, MSEr ≤ MSE < MSEr+1, r = 1, . . . , N − 1,

1, MSEN ≤ MSE .

(25)

Following this, Fig. 7 shows that the ML model with B BComp does not suffer from a significant over-fitting in
predicting the principal stresses (PV) as the curves of the training and testing are very close to each other. However,
some over-fitting in the prediction of the rotation-related Euler angles (Rot) can be noticed. Moreover, it shows that
most of the errors stem from the prediction of the rotations.

Alternatively, we apply and compare in the following approaches (B BLie, B BEul , B BSN , and B BDI ), which
were described in Table 5. Fig. 8 presents the eCDF vs. scales MSE curves related to the four methods. A common
observation related to the four methods is that most of the errors stem from prediction of the rotations, whereas the
principal stress values prediction is far more accurate. Moreover, unavoidable slight over-fitting can be observed in
connection with the rotation prediction (Rot) in B BEul and B BLie. Besides, the errors related to the training and
testing datasets are very close in B BSN and B BDI .

For a more comprehensive comparison, Fig. 9 presents the plots eCDF vs. scales MSE for the five methods in
Table 5. In particular, Fig. 9, right, shows that B BEul yields the least errors in prediction of the rotations, which is
followed by B BLie, whereas B BSN and B BDI yield the most errors in rotation prediction. On the other hand, Fig. 9,
left, shows that B BEul , B BLie, and B BSN yield similar accuracy in predicting the principal stress values, whereas
B BDI presents the least accurate scheme. B BComp shows inconsistency in PV prediction accuracy, as it results
in high accuracy in almost 30% of experiments and low accuracy in the rest experiments. Moreover, both B BSN

and B BDI approaches are more expensive in the training as the eigenvalues of the stresses include 3 entities and
the three eigenvectors include 9 entities (in total 12 entities), where as the B BComp, B BLie and B BEul approaches
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Fig. 8. eCDF vs. scales MSE of the training and testing datasets within Iso CP using B BLie , B BEul , B BSN , and B BDI methods.

Fig. 9. eCDF vs. scaled MSE within Iso CP of the testing dataset related to the principal stress values (PV) and the rotation-related
quantities (Rot) using B BComp B BLie , B BEul , B BSN , and B BDI methods.

include, in total, 6 entities, thus, much cheaper with regard of computational costs. Based on this, B BSN and B BDI

approaches will be excluded from the further discussions.

5.2. Applying B B-graph to transversely-isotropic-elastic crystal plasticity (TranIso CP)

The following case studies aim to test the performance of the three ML objective functions applied in B BComp,
B BLie and B BEul methods, and based on database generated from an anisotropic crystal plasticity material model
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Table 6
Parameters of the single f.c.c. crystal with transversely-isotropic elasticity (TranIso CP).

Parameter sym. val.

Lamé’s first parameter λT 1095.0
1st shear modulus µT 508.0
2nd shear modulus µL 620.0
material parameter α 10.0
material parameter β 10.0
initial yield stress τY 0 1.0
Taylor hardening ĥ 5.0
1st Euler angle θ 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦

2nd Euler angle ϕ 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦

Fig. 10. eCDF vs. scaled MSE within TranIso CP of the training and testing datasets using the B BComp method.

(TranIso CP). This is related to a single f.c.c. crystal with a transversely-isotropic elastic behavior together with a
maximum number of 12 activatable slip systems, see Appendix for details. Unlike the previous case of isotropic
elasticity, having anisotropic elasticity leads to rotations in the principal directions in both elastic and plastic regimes,
thus, making it even more challenging in the machine learning with respect to capturing the rotation patterns in the
model training.

The material properties with consistent units are based on [40,41] and summarized in Table 6, where the related
Euler angles show that the crystal can be found in 49 different configurations (different rigid body rotations). The
applied loading combinations for each crystal configuration are given is Table 4, which result in a dataset of 1176
experiments. For the ML procedure, these experiments are spit into training (792 experiments), validation (192
experiments) and testing (192 experiments) subsets.

We start by applying the B Bcomp approach within transversely-isotropic crystal plasticity (TranIso CP), which
is followed by application of spectral decomposition to extract the eigenvalues and Euler angles of the predicted
stresses. Fig. 10 shows again that most of the errors in connection with the testing and training datasets (all) are
related to the prediction of the Euler angles (Rot), whereas good predictions of the principal stress values (PV) can
be obtained. Moreover, a slight over-fitting in the training can be observed (scaled MSE of the testing dataset are
slightly greater than that of the training dataset).

In an attempt to improve the prediction of the rotations in ML material model, we alternatively apply B BLie and
B BEul , which consider in the training the three components of the skew-symmetric rotation matrix and the Euler
angles, respectively. Fig. 11 shows the eCDF vs. scales MSE curves related to the B BLie approach (left) and that
related to B BEul (right). A similar conclusion as before can be drawn here; In most of the experiments in training
and testing datasets, the errors from the rotation prediction (Rot) dominate over that from prediction of the principal
stress values (PV).

For a quantitative comparison between the aforementioned B B approaches, Fig. 12, left, shows that, except for
almost 30% of the experiments, B BLie and B BEul are more accurate than B BComp in predicting the principal stress
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Fig. 11. eCDF vs. scales MSE of the training and testing datasets within TranIso CP using B BLie and B BEul approaches.

Fig. 12. eCDF vs. scaled MSE within TranIso CP of the training and testing datasets related to the principal values (PV) and the rotations
(Rot). The applied approaches are B BComp B BLie and B BEul .

Table 7
Summary of the ML methods applied within the DG1 approach, see, Section 2.

Method Description Obj.

DG1comp Considers the components of tensors in the training together with the directed graph (DG1) in Fig. 1 DM L
0

DG1Lie Considers the eigenvalues and the components of the skew-symmetric rotation tensor (Lie Algebra) with the
directed graph (DG1) in Fig. 1

DM L
σLie

DG1Eul Considers the eigenvalues and Euler angles of tensors with the directed graph (DG1) in Fig. 1 DM L
σEu

values. However, Fig. 12, right, shows that B BEul is more accurate than B BLie in predicting the rotation attributes,
whereas B BComp has the least accuracy in rotation prediction.

5.3. Applying DG1-graph to transversely-isotropic-elastic crystal plasticity (TranIso CP)

With the aim to improving the prediction capacity of the B B approaches, especially that related to the rotation
prediction, a simple modification can applied through inclusion of the history of the output stresses. This yields
an incremental prediction scheme (DG1-approach), which makes uses of the predicted outputs at previous steps to
improve the predictions at next steps as explained in Section 2 . For an abstract writing, Table 7 presents a summary
of the ML methods applied within the DG1-approach, where the three objective functions DM L

0 , DM L
σEu and DM L

σLie
are implemented.

Starting with DG1comp method as explained in Table 7, Fig. 13, right, shows the ML accuracy and loss function
values over number of weight updates (epoch). It is obvious that the training and validation datasets yield coincide
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Fig. 13. ML accuracy and loss function values over number of weight updates for TranIso CP case using DG1comp settings (left), and a
comparison between DG1comp and B Bcomp with regard to the prediction accuracy of the eigenvalues and Euler angles of the testing dataset
(right).

Fig. 14. ML accuracy and loss function values over number of weight updates for TranIso CP case using DG1Lie settings (left), and a
comparison between DG1Lie and B BLie with regard to the prediction accuracy of the eigenvalues and the skew-symmetric rotation tensor
components of the testing dataset (right).

curves, i.e. no over-fitting occurs. Applying the spectral decomposition to generate the frame-independent quantities
of the predicted and true stresses, i.e. the eigenvalues and the related Euler angles, allows to compare between
DG1comp and B Bcomp with regard to the prediction accuracy. Fig. 13, left, shows that applying DG1comp leads to a
significant improvement in the accuracy in comparison with B Bcomp, especially in the errors related to the principal
stress values (PV). However, in spite of the accuracy improvement, the prediction of Euler angles (Rot) still the
main source of errors in the DG1comp approach, where only a portion of the testing experiments (eCDF ¡ 0.2) show
good accuracy in rotation prediction.

In an analogous treatment using DG1Lie approach (see, Table 7), Fig. 14, left, shows an alignment between the
training and the testing datasets with regards to the training accuracy and the loss function values. In comparison
with B BLie, Fig. 14, right shows the great improvement in the accuracy related to the prediction of both the principal
stress values and the rotations.

Following this, we look at the ML model performance in connection with the approach DG1Eul described in
Table 7. Unlike the case with DG1Lie, Fig. 15, left, shows that the loss function values start to increase after
around 800 epochs, however, without improving the training accuracy. Therefore, the adopted trained ML model
corresponds to 750 epochs. In comparison with B BEul , Fig. 15, right, shows that considering DG1Eul leads to
great improvement in the accuracy of principal stress values prediction. However, no improvement in the predicted
rotation accuracy can be reached.

To this end, Fig. 16 introduces a comparison between DG1Comp DG1Lie and DG1Eul with regards to the
errors in predicting the stress eigenvalues and the rotation-related quantities. In both cases, DG1Lie shows a better
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Fig. 15. ML accuracy and loss function values over number of weight updates for TranIso CP case using DG1Eul settings (left), and a
comparison between DG1Eul and B BEul with regard to the prediction accuracy of the principal stress values and the Euler angles of the
testing dataset (right).

Fig. 16. eCDF vs. scaled MSE within TranIso CP of the testing datasets related to the principal stress values (left) and the rotations (right).
The applied methods are DG1Comp DG1Lie and DG1Eul .

Table 8
Summary of the ML methods applied within DG2 approach, see, Section 2.

Method Description Obj.

DG2Lie Considers the eigenvalues and the components of the skew-symmetric rotation tensor (Lie Algebra) with the
directed graph (DG2) in Fig. 1

DM L
σLie

DG2Eul Considers the eigenvalues and Euler angles of tensors with the directed graph (DG2) in Fig. 1 DM L
σEu

performance, especially in predicting the rotations, where it is far more accurate than the other two schemes. This
is followed by DG1Eul , whereas for some of the experiments, DG1Comp leads to good accuracy in Rot and PV
predictions.

5.4. Applying DG2-graph to transversely-isotropic-elastic crystal plasticity (TranIso CP)

The following discussion focuses on the application of DG2-approach, illustrated in Fig. 1, with the approaches
DG2Lie and DG2Eul explained in Table 8 as well as in Section 2.

DG2-approach compasses two ML models: The FFNN model applied to the history-independent elastic step
and the LSTM as a RNN applied to the plastic step. This split allows to distinguish between the elasticity-related
rotations and that related to activation of the slip systems within crystal plasticity. Fig. 17, left, depicts the eCDF vs.
scaled MSE curves of the elastic step in connection with the testing dataset. This shows that DG2Lie yields slightly
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Fig. 17. eCDF vs. scaled MSE within TranIso CP of the testing datasets within the directed-graph DG2. The elastic step (left) shows the
accuracy in predicting the principal stress values (PV) and rotation-related quantities (Rot) of DG2Lie and DG2Eul (the curve “Testing Rot
(Eu)” is too close to zero). The plastic step (right) compares the performance of DG2Lie and DG2Eul .

Fig. 18. eCDF vs. scaled MSE within TranIso CP of the testing datasets within the informed, directed graph DG2. A comparison between
the performance of DG2Lie and DG2Eul in prediction of the final principal stress values (PV) and the rotation-related quantities (Rot).

more accurate approximation of the principal stress values (PV) than DG2Eul . However, the rotation prediction (Rot)
of DG2Eul is far more accurate and the errors are close to zero. On the other hand, Fig. 17, right, shows the eCDF
vs. scaled MSE curves of the plastic step, where it is obvious that DG2Lie is more accurate than DG2Eul with
regard to the accuracy of the predicted eigenvalues and rotations.

Following this, we compare between DG2Lie and DG2Eul with regard to the accuracy in predicting the
eigenvalues and rotation entities of the total stress σ n+1 as a final step in the DG2-approach. This is considered
a second elastic step (history-independent), thus, the FFNN can be applied. The second elastic step has the same
graph structure as the first elastic step, used to predict the trial stress σ tr

n+1, i.e. both have an elastic strain and stress
history as an input and an updated stress as an output. Therefore, the same trained FFNN can be used in the second
elastic step, i.e. no new training is needed in this step. As a final stress prediction within the DG2-approach, Fig. 18
shows that DG2Lie yields more accurate predictions than DG2Eul of both the eigenvalues of the stress (PV) and
the related rotation components (Rot).
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Fig. 19. A comparison between DG1Lie and DG2Lie (left) and between DG1Eul and DG2Eul (right) with regard to the prediction accuracy
of the principal stress values (PV) and the rotation-related components of the testing datasets within TranIso CP.

Fig. 20. A comparison between the true and the predicted stress eigenvalues via the stress–strain trajectory (left) and a comparison between
the true and predicted Euler angles via the angle-strain trajectory (right) for an experiment from the testing dataset considering DG1Comp
within TranIso CP.

For sake of completeness and comparison between the simple informed, directed graph (DG1) and the more
detailed elasto-plasticity graph (DG2), we compare between DG1Lie and DG2Lie as well as between DG1Eul

and DG2Eul with regard to the accuracy in predicting the rotations and the principal stress values. Fig. 19, left,
shows that DG1Lie and DG2Lie yield close accuracy in predicting the entities of the skew-symmetric rotation
matrix (Rot), where DG1Lie tends to be more accurate in cases for eCDF< 0.4. For the stress eigenvalues (PV)
prediction, DG2Lie shows more accuracy, except for cases of eCDF> 0.4. However, Fig. 19, right, shows significant
improvement in the Euler angle (Rot) prediction when using DG2Eul instead of DG1Eul , whereas DG2Eul is
slightly less accurate than DG1Eul in predicting the eigenvalues of the stress (PV).

5.5. Discussion of the results

The discussion and comparisons in Sections 5.1–5.4 focused on studying the effects of data form (e.g. tensor
components or spectral representation), the ML objective ”loss” functions, and the graph structure (B B, DG1 and
DG2) on the ML model performance (accuracy in predicting the eigenvalues and the rotations). For completeness,
we apply the final trained ML-models, i.e. DG1Comp, DG2Lie and DG2Eul to experiments from the testing dataset,
where the chosen experiments correspond to a mean value of the scaled MSE of each case. The stress–strain
trajectories in Fig. 20, left, reflect the very good accuracy of DG1Comp in predicting the stress components and,
thus, the corresponding eigenvalues. However, Fig. 20, right, shows the major deficiency of DG1Comp, as the
predicted rotations are completely inaccurate. Thus, the resulting ML material model based on DG1Comp violates
the objectivity condition of material models.
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Fig. 21. A comparison between the true and the predicted stress eigenvalues via the stress–strain trajectory (left) and a comparison between
the true and predicted skew-symmetric rotation matrix components via the angle-strain trajectory (right) for an experiment from the testing
dataset considering DG2Lie within TranIso CP.

Fig. 22. A comparison between the true and the predicted stress eigenvalues via the stress–strain trajectory (left) and a comparison between
the true and predicted Euler angles via the angle-strain trajectory (right) for an experiment from the testing dataset considering DG2Eul
within TranIso CP.

Changing the data representation to spectral form via eigenvalues and skew-symmetric rotation matrix in Lie
algebra, and applying the geodesic on the unit sphere in Lie algebra as a loss function in ML yields a far more
accurate prediction of the rotations, while the eigenvalue prediction maintains good accuracy. This can be seen in
Fig. 21 that shows the stress–strain trajectories (left) and the angle-strain trajectory (right), DG2Lie approach is
applied.

Using the data representation via eigenvalues and Euler angles within DG2Eul approach, Fig. 22 shows the
prediction results of eigenvalues (left) and Euler angles (right), where, obviously, the accuracy in rotation prediction
is far better than that of DG1Comp. It is remarkable in Fig. 22, right, that Euler angles during rotation of the principal
stress directions might change suddenly from π and −π , which adds additional challenges to the training of the
model.

Converting the data from spectral form to component form, Fig. 23 shows the stress–strain trajectories in
component form. The capability of DG2Lie and DG2Eul in capturing the stress–strain behavior is evident. However,
DG2Lie leads to more accurate results.

6. Application to datasets with cyclic strains (loading/unloading)

The test cases and results in Section 5, especially the comparisons in Fig. 19, left, showed that DG1Lie

provides a very good compromise between accuracy and computational costs (one-step graph). Thus, for the sake of
completeness, we test the capability of DG1Lie approach by considering a dataset that includes loading/unloading
cases. In particular, an anisotropic crystal plasticity material model (TranIso CP) with parameters in Table 6 is
considered, and the applied loading combinations for each crystal configuration are based on Table 4 . In this, the
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Fig. 23. A comparison between the true and the predicted stress components via the stress–strain trajectory with DG2Lie (left) DG2Eul
(right) within TranIso CP.

Fig. 24. Application of DG1Lie to datasets that consider cyclic (loading/unloading) vs monolithic loading, where the comparison is based
on the prediction accuracy of the principal stress values (PV) and the rotation-related components of the testing dataset within TranIso CP.

crystal is subjected to incremental loading (50 increments) of one or more strain components, i.e. 2∆ϵ11, 2∆ϵ22
and 2∆ϵ12, followed by a gradual unloading (50 increments). Beside the 24 loading combinations, 49 different
rigid body rotations of the crystal are considered. Thus, the database includes 1176 experiments, which then split
into training (792 experiments), validation (192 experiments) and testing (192 experiments) subsets.

Comparing the performance of DG1Lie for monotonic vs cyclic loading (testing dataset), Fig. 24 shows
deterioration in prediction accuracy of both the principal stress values (PV) and the skew-symmetric rotation tensor
components (Rot). However, the errors (scales-MSE) for PV in all cases still < 5 × 10−4 and for Rot in all cases
< 10−2.

For illustration, we apply the final trained ML-models, i.e. DG1Lie, to experiments from the loading/unloading
testing dataset, where the chosen experiments correspond to a mean value of the scaled MSE. The stress–strain
trajectories in Fig. 25, left, are related to simultaneous loading/unloading of the aforementioned three strain
components, whereas the trajectory in Fig. 25, right, is related to an experiment of which ∆ϵ12 is the only strain
component that is changing. All the mentioned trajectories reflect the good accuracy of DG1Lie in predicting the
stress components, which agrees with the findings in the case of monotonic loading.

7. Conclusion

With the aim to generate a frame-invariant machine-learning constitutive model of anisotropic, inelastic material
response, the underlying research work presented comprehensive comparisons between several approaches that
include changing the data form, using different objective functions in the training and using the informed, directed
graph scheme that hybridizes ML models with the classical material laws.

For generation of datasets for training and validation of the ML model, the focus was laid on crystal plasticity
behavior, which includes inherent anisotropy in the plastic regime due to activation of the differently-oriented slip
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Fig. 25. A comparison between the true and the predicted stress components via the stress–strain trajectory with DG1Lie of two different
experiments (left and right) from the testing dataset within TranIso CP.

systems, whereas considering anisotropic elasticity contributed to enhancement of the principal stress direction
rotations. Different loading combinations beside different rotations were applied to a single f.c.c. crystal, resulted
in 1176 experiments with incremental strain-controlled loading (monotonic and cyclic). Consequently, the generated
datasets contained the total strain and the total stress components at each time step of each experiment.

Alternative to the tensor representation via component form, spectral decomposition was applied to the different
tensors allowing to generate their eigenvalues and eigenvectors. In this, concatenating the orthogonal, normalized
eigenvectors yielded the related 3D rotation tensors in SO(3). These rotation matrices with 9 entities could further
be parameterized to extract the three Euler angles. As an alternative convenient possibility, we applied logarithmic
mapping to represent the rotation matrix via the skew-symmetric counterpart in Lie Algebra so(3), which includes
also three different entities. These changes in the data form allowed to consider different metrics for measuring
the distance between two 3D rotations in order to design new objective “loss” functions for supervised machine
learning. In particular, the proposed loss functions were based on the distance from the identity matrix, the Euclidean
distance between the Euler Angles, and geodesic on the unit sphere in Lie algebra.

With regard to the information flow in the machine learning-based, path-dependent crystal plasticity material
model, three variations of the graph with different details were tested: (1) The direct relation (B B) graph that used
the recurrent neural networks (RNN) to predict the stresses based on the strains as the only input. (2) The ”informed”
direct relation (DG1) with RNN, which used additionally the predicted output history (stress history) to improve
the accuracy of the predicted stresses. (3) The elasto-plasticity-based informed, directed graph (DG2), relied on
splitting the prediction into an elastic and a plastic step, in analogy to the return-mapping plasticity algorithm. The
feed-forward neural networks (FFNN) were used in the history-independent elastic steps, whereas RNN was applied
in the memory-dependent plastic steps.

In the numerical test cases, we examined the performance of the different loss functions with different data
representation forms in the aforementioned three graph designs, in order to figure out which combination yields the
most accurate eigenvalues and rotation-related quantities prediction.

Based on this observations, we concludes that the loss function based on geodesic on the unit sphere in Lie
algebra together with DG1-graph yields the best predictions of rotation, whereas applying DG2-graph with this
loss function does not improve the rotation prediction, but slightly improves the blind predictions of principal
stress values. On the other hand, significant improvement was observed in the rotation prediction accuracy when
applying the loss function based on the Euclidean distance between the Euler angles in DG2-graph instead of B B
or DG1-graph.

Our numerical experiments, which consist of both monotonic and cyclic loading cases, revealed that using
the components of the tensors as input for supervised machine learning (instead of the spectral decomposition
forms) may yield erroneous prediction of the principal directions of tensors, which is crucial in anisotropic material
modeling.
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To further generalize the applications of this research, addition research activities are planned to incorporate
predictions of anisotropic responses of elasto-plastic materials in the geometric nonlinear regime and to predict the
elasto-viscoplastic of high-strain rate materials.
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Appendix. Elasto-plastic crystal plasticity algorithm for database generation

Within crystal plasticity, we make use of the solution of f.c.c. single-crystal plasticity within small-strain
framework to generate the needed database for the machine learning in this paper. In this, the procedure of
the “ultimate algorithm”, introduced in [16,40], is applied to identify the set of active systems and delivers an
exact solution for crystal plasticity, in which the crystals are subjected to tension, shear or mixed tension–shear
deformations varying as a ramp function. In the derivation, the total homogeneous strain rate ϵ̇ in a crystal is
additively decomposed into an elastic (ϵ̇e ) and a plastic (ϵ̇ p) components as

ϵ̇ = ϵ̇e
+ ϵ̇ p with ϵ̇ p

=

∑
β

γ̇ (β) S(β) and S(β)
:=

1
2

(
n(β)

⊗ m(β)
+ m(β)

⊗ n(β)) . (26)

In Eq. (26), γ̇ (β) denotes the plastic slip rate and S(β) is the symmetric part of the Schmid tensor on β-slip systems,
whereas n(β) represents the unit-normal to the slip plane and m(β) is the direction of plastic slip. In this study, the
focus is laid on f.c.c. crystals, which possess eight slip planes and three slip directions for each, thus 24 possible
forward and backward slip systems. However, the maximum number of possible simultaneous active slip systems is
N = 12, as when the forward slip direction is active, then the corresponding backward must be latent. Distinguishing
between the fixed Cartesian frame (x , y, z) and the crystal reference frame (xc, yc, zc), the crystal orientation can
be described by the Euler angles, consisting of a positive rotation θ around y-axis, followed by a positive rotation
ϕ around z-axis.

Considering τ (β) as the Schmid’s resolved shear stress for each slip system., the onset of plasticity is associated
with the critical stress τ (β)

Y for each slip system. In particular, the yield surfaces f (β) for both forward and backward
slips can be expressed as

f (β)
= |τ (β)

| − τ
(β)
Y with τ (β)

= ±σ̂ : S(β) and β = 1, 2, . . . , N . (27)

Following this, the plastic flow relation that considers all activated slip system reads

ϵ̇ p
=

2N∑
β=1

γ̇ (β) ∂ f (β)

∂σ̂
=

2N∑
β=1

γ̇ (β) S(β), (28)

where the condition for the onset of plastic flow can be expressed via the Karush–Kuhn–Tucker (KKT) conditions
as

γ̇ (β)
≥ 0 , f (β)

≥ 0 , γ̇ (β) f (β)
= 0. (29)

Thus, a slip system (β) is considered active if γ̇ (β)
≥ 0 and f (β)

= 0, whereas γ̇ (β)
= 0 and f (β) < 0 corresponds

to an inactive system. The set of all active slip systems will be referred to as Iact. Among several hardening laws
for elastoplastic crystal plasticity, a convenient linear law can be expressed as

τ̇
(β)
Y = ĥ

2N∑
ξ=1

γ̇ (ξ ) , (30)
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with ĥ being the plastic hardening moduli, assumed in this study as a constant for all slip systems. Eq. (30) shows
that the hardening is applied to both the active and the latent slips. Following this, the elastic stress rate can be
expressed as

˙̂σ = Ce
: (ϵ̇ − ϵ̇ p) (31)

with Ce as the elasticity tensor of the f.c.c. lattice. In the numerical solution, we apply the steps of the “ultimate
algorithm”, in which step-wise incremental strains ∆ϵ are applied to the crystal within each time step ∆t ,
i.e. ∆ϵ(τ ) = κ∆ϵ with 0 ≤ κ = τ/∆t ≤ 1 . In this, κ should be tested at each slip system. This is followed
by tracking the active slip systems Iact. The procedure can be split into two sub-algorithms, i.e. an elastic predictor
algorithm to determine the onset of plastic strain, and a plastic integrator algorithm to determine the linearly-
independent active slip systems. For the aim of the underlying work, we present an abstract representation of the
elastic predictor algorithm, where more details and alternative approaches can be found in, e.g., [16,33,40,61].

Algorithm (I): Elastic predictor for the small-strain rate-independent crystal plasticity

Initial: Given at time tk : σ̂k , ϵk = ϵe
k , Iact, k

Step 1: Apply strain increments: ∆ϵ(τ ) = ϵk+1 − ϵk = κ∆ϵ at tk+1 = tk + ∆t

Step 2: Compute the trial stress: σ̂ tr
k+1 = σ̂k + Ce

: ∆ϵ(τ )

Step 3: Assemble trial active slip set I tr
act:=

{
β ∈ {1, · · · 2N }

⏐⏐ f (β)
= |σ̂

tr
k+1 : S(β)

| − τ
(β)
Y, k > 0

}
Step 4: If I tr

act = ∅ −→ elastic step

σ̂k+1 = σ̂ tr
k+1 , τ (β)

Y, k+1 = τ
(β)
Y, k

Step 4: If I tr
act ̸= ∅ −→ elasto-plastic step

Step-wise identification of the active slip systems Iact

test κ (β) for all slip system with β ∈ Iact

compute ∆γ (β) (incremental plasti slip) for β ∈ Iact

compute Cep (elasto-plastic tangent moduli)

update σ̂k+1 = σ̂k , τ (β)
Y, k+1 = τ

(β)
Y, k , Iact, k+1
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