
Grand Valley State University Grand Valley State University

ScholarWorks@GVSU ScholarWorks@GVSU

Technical Library School of Computing and Information Systems

2020

Frisbee Golf Score Keeper Frisbee Golf Score Keeper

Sanil Apte
Grand Valley State University

Follow this and additional works at: https://scholarworks.gvsu.edu/cistechlib

ScholarWorks Citation ScholarWorks Citation
Apte, Sanil, "Frisbee Golf Score Keeper" (2020). Technical Library. 344.
https://scholarworks.gvsu.edu/cistechlib/344

This Project is brought to you for free and open access by the School of Computing and Information Systems at
ScholarWorks@GVSU. It has been accepted for inclusion in Technical Library by an authorized administrator of
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarworks@GVSU

https://core.ac.uk/display/322835529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/cistechlib
https://scholarworks.gvsu.edu/cis
https://scholarworks.gvsu.edu/cistechlib?utm_source=scholarworks.gvsu.edu%2Fcistechlib%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/cistechlib/344?utm_source=scholarworks.gvsu.edu%2Fcistechlib%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

1

Frisbee Golf Score Keeper

By
Sanil Apte

A project submitted in partial fulfillment of the requirements for the degree of

Master of Science in

Computer Information Systems

at
Grand Valley State University

April 2020

Byron DeVries 4/21/2020
Project Advisor Date

2

Table of Contents
Abstract .. 3

Goals ... 4

The Original Plan .. 4

Development .. 6

Overcoming Issues .. 8

Accomplished - Core ... 9

Accomplished - Side .. 10

Flutter/Dart ... 11

Conclusion ... 13

Bibliography .. 14

3

Abstract

The project is a mobile application that will allow users to track scores while they play Frisbee

Golf. The app is built for those like me who enjoy playing Frisbee/Disc Golf and would like to

track their scores. In the mobile world there are two prevailing operating systems, iOS and

Android. Both have their strengths and weakness, however, the problems that arise for

developers is that both ecosystems require applications on their platform be in different coding

languages. A solution to that is Flutter, which allows developers to build an app entirely in

DART, Flutter automatically optimizes the applications so that they can work and be published

in both ecosystems. Flutter itself is a new UI software development kit made by Google. While

this app is currently been tested in the Android environments there is future pathway to iOS

development already built in since it is built in Flutter. This app uses Google Firebase, a cloud-

based solution which allows hosting and many other features for mobile apps and websites, for

authentication services and data storage. This Frisbee Golf app supports multiple pages including

the play page and scores page. The play and scores pages allow users to record and review their

scores at their leisure.

4

Goals

Right off the bat there were a few features that I knew the application that I was developing must

have. In my mind there were 4 core features, along with 3 side features.

Core features are:

• Login/logout

• Sign-up

• Track and saves scores

• Show the users history.

These core features are quite closely linked to each other as some of them would be useless

without the other features already being implemented.

Side features are:

• Account info page

• Search for courses

• Search for discs page.

The Original Plan

Before the project semester began, I had done research into what tools I could use, and API’s I

could connect to, and much more to accomplish this project. At first, I reached the conclusion

that I was going to use Apache Cordova using JavaScript and HTML to accomplish the project. I

had also found a very convenient API built and provided by DG Course Review. Finally, I was

going to put all the backend on Firebase which I had experience in prior. That all came crashing

down just about a week into the project. The first blow was Apache Cordova. I wanted to build a

cross platform app, and Apache Cordova advertised that it was able to do just that. However, I

found out later that in order to build the iOS app you needed and Apple Mac device in order to

5

be able to even get off the ground in Cordova. I unfortunately do not have a Mac, so I had to

look elsewhere. That was when I came upon Google’s Flutter. Flutter also required that you have

a Mac in order to deploy to iOS, but had the caveat that the iOS part could be added an anytime

in the application’s life cycle. It also added one more core goal to my project, the opportunity to

learn a brand-new language, in an area that is quite new. Flutter uses Dart as its base

programming language, and it was not a language that I had done any coding in whatsoever. So,

this was an opportunity to pick up a new skill as well. The next blow was the DG course review

API. I used Postman to try and see how the queries and results worked with this API. However,

no matter how I tried, I received no data from the connection. Through some thorough research I

found that the API was no longer available or supported and that any new connections were not

allowed. Thus, the second blow. I had intended on using this API to allow users to search for

discs and courses. There is a pretty well-known principle attributed to German General Helmut

von Moltke that “No plan of operations extends with certainty beyond the first encounter with

the enemy's main strength.” While this plan was not war strategy, it followed that principle.

Luckily, the last part Firebase did not let me down and that worked properly. Since my original

plan had been changed so drastically, I created some detailed wireframes (shown in Figures 1

and 2), to get some concrete thoughts down on paper.

6

While a lot has changed from what the original wireframes were, the app functionality remains

similar.

Development

This stage started off fairy smoothly. Since this was my first-time coding in Dart/Flutter, I dove

into the tutorials that google had created along with some other tutorials made by other Internet

users in order to familiarize myself with the language. I had hoped that Flutter would have a GUI

editor that would allow a drag and drop sort of like how Android Studio does it for Java and

Kotlin apps, but it unfortunately does not. However, even though there was no Visual Editor, the

Flutter way of build GUI’s was actually fairly simple and easy enough to work with. A lot of the

tutorials that I listened to likened GUI development in Flutter to Lego Bricks. I absolutely agree,

it is very much plugging different components on top of each other. An example of the code for

widgets is in Figure 3.

Figure 1: Wireframes 1 Figure 2: Wireframes 2

7

You can build as many of these widgets as you wish. Then following that you just have to add

them to your build method. The way I accomplish it on different pages depends on the page.

Some pages I directly have the widgets in the build because they are not too long or

cumbersome, but other pages I have included a separate method that has all the widget calls held

within it.

Displayed in Figures 4 and 5 is an example of the second, where I call the showItems() method

inside the build, which then goes and calls and stacks all the other widgets.

Figure 3: showPlayButton

Figure 4: showItems()

Figure 5: Build Call

8

Overcoming Issues

As is normal, there a good amount of issues that I ran into during the development period of this

app. Not including the issues I hit before development even began that is. The first one had to do

with states. The app that I had created was one where it required users to login, thus there needed

to be some sort of state included with the app. It was not until after I had created a login method

that I realized that way I had created it, I could not access user information that was vital to

saving and displaying information. I knew of the concept of states, but turning my app into a

stateful one vs the current stateless turned out to be quite a bit harder than expected. Then I had

to figure out what pages should be stateless, and which should be stateful. Currently I have all

but two pages in the app as stateful and they do require the users ID in some fashion. The next

issue I ran into was the firebase not properly storing the data I was sending to it. It was supposed

to be saving three things, User Email, Course Name, and Final Score. That was not what was

appearing the Firebase Realtime Database. Since the Realtime Database was not storing my

information properly, I attempted switching the backend storage from the Realtime Database to

the Firebase FireStore instead. It worked at first. However, when I tried to access the data later

on to display it the app would crash. I switched back immediately, even if it was not saving

properly in the Realtime Database, at least the app could read and receive data properly. I then

proceeded to entirely rework, how the app was sending the information to Firebase. I created

separate specific object called finalScores (pictured in Figure 6) which could format the data and

turn into json format before sending the information.

9

This class was extremely useful later on, when I needed display the results on a different page. It

allowed me to properly get the information from the Realtime Database (shown in Figure 7) and

access and format it properly on the display screen.

Accomplished - Core

Of the original 4 core features that were outlined in my goals, I was able to accomplish all four

of them. No matter the hitches that came up with them, I was able to get all of them working

smoothly. Users can freely sign up, log in, and log out. The final two core features require user

login and work without fault. Users can record scores, which are temporarily saved on the page

Figure 6: finalScores Object

Figure 7: Firebase DB

10

for the user’s viewing pleasure (Figure 8). They can then save the information to the cloud

Firebase Realtime Database and access that information at their leisure (Figure 9).

Accomplished - Side

There were 3 side features that I wanted accomplished, and while I did implement all three, not

all of them are quite what I had imagined at the outset of the project. The Account feature was

the only one that turned out how I had imagined it. It successfully allows users to manipulate

different areas of their account such as their passwords. The final two features were the only that

were majorly hit by the DG Course Review API being defunct. The features were the find

courses and find discs. Both sets of information were going to be provided to the API. However,

since that was not possible anymore, I tried a couple different things. At first, I tried including a

live view of a different websites of disc golf manufacturers and retailer within my app itself,

however that did not quite workout, due to how Android permission worked. However, I was

able to links to the websites within the app that can launch the user’s native browser. Then, for

the find courses feature, I attempted to link my app with the Google Locations API and use that

Figure 8: Scorecard

Figure 9: Scores

11

search functionality to return results. I spent almost two weeks on that trying to fetch the data

and show the top 5 results. However, it would not do as I asked. So, I ended up doing what I had

done for the find discs page and included links to different sites which have disc golf course

locations and reviews. This last feature is one that I am going to continue working on even past

the end of the semester and get it working. Many times, I thought I was close to having it

working but it did not. Thus, the last two features were “completed.” (Figures 10 and 11 show

the features in their current state)

Flutter/Dart

One of the goals that I did not mention in the accomplished section was the last one that was

added to my goals list. The goal of learning Flutter/Dart. The tool and language were not like

anything that I had really worked with before in a mobile environment. In the mobile

development class that I had taken, I learned how to build an Android and iOS app using Java

and Swift. In both those languages I found that apps were given functionality after the UI had

Figure 10: Course Finder

Figure 11: Disc Vendor

12

been designed. For Flutter, I found that quite a few times you are building functionality

alongside of building the UI. I believe this is due to the functionality being built into the widgets

themselves. Now that I have worked in Flutter/Dart for the past three months, I see opportunities

for new features and other things that I can implement. Also, since I have grown there are things,

such as the FutureBuilder widget, I now know about Flutter that will allow me to go back and

optimize some of the code that I created at the very beginning of the project. The FutureBuilder

is a great way to display async operations to the users. At the very beginning of development, I

had been calling async methods from standard widget, then calling the setState() to force a

refresh of the screen. The FutureBuilder gets rid of the need for that method entirely as the entire

widget itself is an asynchronous method. Thus, there is no need to call other methods or even

setState() as that widget does everything before load even occurs.

Flutter has a bunch of cool features like that, another one that I quite enjoyed making use of was

the Hot Reload feature. The Hot Reload allows a developer to make changes to app code while

the app is still running, then hitting the Hot Reload button has those changes pushed and

mimicked in the live app. No interruption, this is useful especially if a developer is running off of

an emulated android phone because it can be quite slow to stop, reload, and restart an app

completely. However, there are some downsides to using flutter and dart. I have already

mentioned the lack of GUI designer, but that is not the only hang up I found. For one, running an

app in debug mode can be a bit tedious. The debug mode does not work at all with the Hot

Reload and at time will cause the emulator to crash. I did not dare test it with my own phone

after this occurred on the emulator. At other times it just felt a little unwieldy compared to the

some off the other debuggers that I have used. The second knock against that I found against

Flutter is the lack of Open Source Libraries. Compared to one of its competitors React, the total

13

amount of external libraries is paltry. React is a JavaScript framework, as such there are a ton of

Node.js modules and packages that a React developer can use.

Coming back to the original question, have I accomplished the goal of learning flutter. I would

say that I have, but that I am not done. This past semester I have immersed myself in learning

this new technology and I have found it fascinating. There is always give and take when it

comes to technology, and I found that what Flutter “gives” is worth more than what it “takes”

away. There are also things I have yet to discover about Flutter and I am looking forward to

figuring them out.

Conclusion

This project was one I immensely enjoyed working on. I spent quite a lot of time on it this past

semester. Between learning a new language, troubleshooting issues, and finishing features there

was not a dull moment. At the end of the Master’s Project, I am quite happy with what I

accomplished. It is not perfect by any definition of the word. There are still a couple bugs that I

have yet to iron out and figure from where they are occurring. I suspect they are caused by some

hidden race conditions because they do not happen consistently. Of the 7 or so feature goals that

I set, I have fully accomplished 5 of them and partially accomplished the last 2. Learning Flutter

has also been a great boon to my Resume, as I have had a couple job interviews offered to me

because I had knowledge of what Flutter is and a little bit of experience in it. This mobile

application is one that I am going to continue working even after graduation and starting a job. I

am already planning some of my next steps, such fleshing out the Find Discs and Courses page.

Also, I have ideas for what future features could be, such as member levels and party play.

14

Bibliography

“Documentation | Firebase.” Google, Google, firebase.google.com/docs.

“Flutter Documentation.” Flutter, Google, flutter.dev/docs.

“Learning Center” Postman, Postman, https://learning.postman.com/docs/postman/launching-

postman/introduction/

Moltke, H. G. von. (1993). Moltke on the art of war: Selected writings. Translated by Daniel J

Hughes and Harry Bell. New York: Presidion Press.

	Frisbee Golf Score Keeper
	ScholarWorks Citation

	Microsoft Word - Apte.Sanil.docx

