

PREDICTING ELECTRODIALYSIS FOULING: A MODEL-BASED APPROACH

<u>B. De Jaegher^{1,2,3,4}, E. Larumbe¹, W. De Schepper¹, A. Verliefde³, I. Nopens²</u>

¹VITO – Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium

²BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium

³PAINT, Department of Applied Analytical and Physical Chemistry, Ghent University, Coupure links 653, 9000 Ghent, Belgium ⁴CAPTURE, Centre for Advanced Process Technology for Urban Resource recovery, Coupure links 653, 9000 Ghent, Belgium

Electrodialysis applications

State of the art:

- Seawater desalination \bullet
- Desalination of whey
- Tartrate removal from wine \bullet

. . .

Beyond state of the art:

- Pretreatment of bio-based streams
 - Desalination/detoxification of feed stream

usage

- **Downstream processing** of fermentations
 - Desalination of product streams \bullet
 - Selective extraction of amino acids \bullet
- In-situ product recovery of organic acids \bullet

It is important to predict the **fouling rate** during electrodialysis as a function of the process settings in order to improve the **applicability** of electrodialysis in the **bio-based industry**.

Results & Methodology

