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a b s t r a c t 

Inductive Venn-ABERS predictors (IVAPs) are a type of probabilistic predictors with the theoretical guar- 

antee that their predictions are perfectly calibrated. In this paper, we propose to exploit this calibration 

property for the detection of adversarial examples in binary classification tasks. By rejecting predictions 

if the uncertainty of the IVAP is too high, we obtain an algorithm that is both accurate on the original 

test set and resistant to adversarial examples. This robustness is observed on adversarials for the under- 

lying model as well as adversarials that were generated by taking the IVAP into account. The method 

appears to offer competitive robustness compared to the state-of-the-art in adversarial defense yet it is 

computationally much more tractable. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1

 

t  

H  

c  

I  

i  

p  

j  

a  

s  

i  

t  

e  

t  

o  

p  

i  

t

 

r  

e

G

p  

s  

m  

e  

c  

t  

t  

h  

p  

i  

b  

s  

w  

j  

t  

m

 

 

 

h

0

. Introduction 

Modern machine learning methods are able to achieve excep-

ional empirical performance in many classification tasks [1,2] .

owever, they usually give only point predictions : a typical ma-

hine learning algorithm for classification of, say, images from the

mageNet data set [3] will output only a single label given any

mage without reporting how accurate this prediction is. In com-

lex domains such as medicine, it is highly desirable to have not

ust a prediction but a measure of confidence in this prediction

s well. Many state-of-the-art machine learning methods provide

ome semblance of such a measure by transforming their inputs

nto vectors of probabilities over the different possible outputs and

hen selecting as the point prediction the output with the high-

st probability. Usually, these probabilities are obtained by first

raining a scoring classifier which assigns to each input a vector

f scores, one score per class. These scores are then turned into

robabilities via some method of calibration . The most popular cal-

bration method is Platt’s scaling [4] , which fits a logistic sigmoid

o the scores of the classifiers. 

Contrary to popular belief, however, the probability vectors that

esult from methods such as Platt’s scaling cannot be reliably inter-
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reted as measures of confidence [5] . The phenomenon of adver-

arial manipulation illustrates this problem: for virtually all current

achine learning classifiers, it is possible to construct adversarial

xamples [6] . These are inputs which clearly belong to a certain

lass according to human observers and which are highly similar

o inputs on which the model performs very well. Despite this,

he model misclassifies the adversarial example and assigns a very

igh probability to the resulting (incorrect) label. In fact, the in-

uts need not even be similar to any natural input; machine learn-

ng models will also sometimes classify unrecognizable inputs as

elonging to certain classes with very high confidence [7] . Fig. 1

hows examples both of imperceptible adversarial perturbations as

ell as unrecognizable images which are classified as familiar ob-

ects with high confidence. These observations clearly undermine

he idea that one can use such calibrated scores as measures of

odel confidence. It begs the question: 

Do there exist machine learning algorithms which yield prov-

ably valid measures of confidence in their predictions? If so,

could these models be used to detect adversarial manipulation

of input data? 

The answer to the first question is known to be affirmative: the

lgorithms in question are called conformal predictors [8–10] . Our

ontribution here is to show that such valid confidence measures

an in fact be used to detect adversarial examples. In particular,

here exist methods which can turn any scoring classifier into a

robabilistic predictor with validity guarantees; this construction is
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Fig. 1. Illustrations of adversarial and fooling images. These examples highlight the fact that the confidence scores output by deep neural network classifiers are unreliable. 
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known as an inductive Venn-ABERS predictor or IVAP [11] . By mak-

ing use of the confidence estimates output by the IVAPs, many

state-of-the-art machine learning models can be made robust to

adversarial manipulation. 

1.1. Related work 

The reliability of machine learning techniques in adversarial

settings has been the subject of much research for a number

of years already [12–15] . Early work in this field studied how

a linear classifier for spam could be tricked by carefully crafted

changes in the contents of spam e-mails, without significantly al-

tering the readability of the messages. More recently, Szegedy et al.

[14] showed that deep neural networks also suffer from this prob-

lem. Since this work, research interest in the phenomenon of ad-
Please cite this article as: J. Peck, B. Goossens and Y. Saeys, Detecting 

Neurocomputing, https://doi.org/10.1016/j.neucom.2019.11.113 
ersarial examples has increased substantially and many attacks

nd defenses have been proposed [6,16,17] . The defenses can be

roadly categorized as follows: 

• Detector methods [18–21] . These defenses construct a detector

which augments the underlying classification model with the

capability to detect whether an input is adversarial or not. If

the detector signals a possible adversarial, the model prediction

is considered unreliable on that instance and the classification

result is flagged. 

• Denoising methods [22–25] . Here, the goal is to restore the ad-

versarial examples to their original, uncorrupted versions and

then perform classification on these cleaned samples. 

• Other methods [6,22,26–28] . Another class of defenses per-

forms neither explicit detection nor filtering. Rather, the aim is

to make the model inherently more robust to manipulation via
adversarial manipulation using inductive Venn-ABERS predictors, 
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data augmentation, regularization, modified optimization algo-

rithms or special architectures. 

Despite the large number of defenses that have been proposed

o far, at the time of this writing only one technique is generally

ccepted as having any noticable effect [29] : adversarial training

27,28] . However, even this method currently has too limited suc-

ess. The Madry defense [27] , for instance, achieves less than 50%

dversarial accuracy on the CIFAR-10 data set [30] even though

tate-of-the-art clean accuracy is over 95% [31] . Moreover, many

ecently proposed defenses suffer from a phenomenon called gra-

ient masking [32] . Here, the defense protects the model against

dversarials by obfuscating its gradient information. This is com-

only done by introducing non-differentiable components such as

andomization or JPEG compression. However, such tactics only

ender the model robust against gradient-based attacks which cru-

ially rely on this information to succeed. Attacks that do not need

radients or that can cope with imprecise approximations (such as

PDA [32] or black-box attacks [33,34] ) will not be deterred by gra-

ient masking defenses. 

We are not the first to consider the hypothesis that adver-

arial examples are due to faulty confidence measures. Most ex-

sting research in this area has focused on utilizing the uncer-

ainty estimates provided by Bayesian deep learning [35] , espe-

ially Monte Carlo dropout [36–38] and other stochastic regular-

zation techniques [5] . On the other hand, our approach is decid-

dly frequentist and hence differs significantly from this related

ork. We are not aware of much other work in this area that is

lso frequentist (e.g. Grosse et al. [20] ), as the field of deep learn-

ng (and model uncertainty in particular) appears to be primarily

ayesian. Although significant progress is being made [39] , scaling

he Bayesian methods to state-of-the-art deep neural networks re-

ains an open problem. The Bayesian approach of integrating over

eighted likelihoods also suffers from certain pathologies which

ay diminish its usefulness in the adversarial setting [40] . It is our

ope that the method detailed here, which draws upon the power-

ul framework of conformal prediction [9] , can serve as a scalable

nd effective alternative to Bayesian deep learning. 

The defense we propose in this work falls under the category of

etector methods. We are well-aware of the bad track record that

hese methods have: for example, Carlini and Wagner [41] evaluate

any recently proposed adversarial detector methods and find that

hey can be easily bypassed. However, by following the advice of

arlini and Wagner [41] and Athalye et al. [32] in the evaluation of

ur detector, we hope to show convincingly that our method has

he potential to be a strong, scalable and relatively simple defense

gainst adversarial manipulation. In particular, we test our detector

n adversarial examples generated using existing attacks that take

he detector into account as well as a novel white-box attack that

s specifically tailored to our defense. We conclude that the defense

e propose in this work remains robust even when the attacks are

dapted to the defense and it appears to be competitive with the

efense proposed by Madry et al. [27] . 

The present work is an extension of our ESANN 2019 submis-

ion [42] . The main additions are as follows: 

• Include the Zeroes vs ones data set. 

• Perform an ablation study to test the sensitivity of the IVAP to

its hyperparameters. 

• Evaluate the defense in the � 2 norm as well instead of only � ∞ 

.

• The discussions of the results has been significantly extended. 

• We have released a reference implementation on GitHub 1 . 

• Include qualitative examples of adversarials produced by our
white-box attack. 

1 https://github.com/saeyslab/binary-ivap a

Please cite this article as: J. Peck, B. Goossens and Y. Saeys, Detecting 
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.2. Organization 

The rest of the paper is organised as follows. Section 2 pro-

ides the necessary background about supervised learning, con-

ormal prediction and IVAPs which will be used in the sequel.

ection 3 describes the defense mechanism which we propose for

he detection of adversarial inputs. This defense is experimentally

valuated on several tasks in Section 4 . Experimental comparisons

o the Madry defense are carried out in Section 5 . Section 6 con-

ains the conclusion and avenues for future work. The code for our

eference implementation can be found at 

https://github.com/saeyslab/binary-ivap 

. Background 

We consider the typical supervised learning setup for classi-

cation. There is a measurable object space X and a measurable

abel space Y . We let Z = X × Y . There is an unknown probabil-

ty measure P on Z which we aim to estimate. In particular, we

ave a class of X → Y functions H and a data set S = { (x i , y i ) | i =
 , . . . , m } of i.i.d. samples from P . Our goal is to find a function in

which fits the data best: 

f � = argmin f∈H 

R S ( f ) . 

ere, R S is the empirical risk 

 S ( f ) = 

1 

m 

m ∑ 

i =1 

� (x i , y i , f ) , 

here � is the loss function . In principle, this can be any non-

egative X × Y × H → R function. Its purpose is to measure how

close” the function f is to the ground-truth y i locally at the point

 i . Our objective is to find a minimizer f � in H for the average of

he loss over the data set S . For k -ary classification, a commonly

sed loss function is the log loss 

 log (x, y, f ) = − log p y (x ; f ) . 

ere, p y ( x ; f ) is the probability that f assigns to class y for the input

 . Ideally, for a discriminative model this should be equal to the

onditional probability Pr [ y | x ] under the measure P . In the case

f a scoring classifier , these probabilities are computed by fitting a

coring function g to the data followed by a calibration procedure

 . The final classification is then computed as 

f (x ) = argmax i =1 , ... ,k s i (g(x )) . (1)

n the case of Platt’s scaling [4] , which is in fact a logistic regres-

ion on the classifier scores, s i is the softmax function 

 i (z) = 

exp (w T

 

i 
z + b i ) ∑ 

j exp (w T

 

j 
z + b j ) 

. 

ere, w i and b i are learned parameters. 

.1. Conformal prediction 

It is known [5,36] that the calibrated scores produced by scor-

ng classifiers such as (1) cannot actually be used as reliable esti-

ates of the conditional probability Pr [ y | x ] : it is possible to gen-

rate inputs for any given classifier such that the model consis-

ently assigns high probability to the wrong classes. It makes sense,

hen, to look for a type of machine learning algorithm which has

rovable guarantees on the confidence of its predictions. This leads

s naturally to the study of conformal predictors [8] , which hold ex-

ctly this promise. 

In general, a conformal predictor is a function � which, when

iven a confidence level ε ∈ [0, 1], a bag 2 of instances B =
2 A bag or multiset is a collection of objects where the order is unimportant (like 

 set) and duplicates are allowed (like a list). 

adversarial manipulation using inductive Venn-ABERS predictors, 
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3 One might even use Bayesian methods in the computation of 
. In particular, 


 might be computed using integration over weighted likelihoods determined by a 

parametric model together with some prior. This combination of Bayesian inference 

with frequentist methods has been called Frasian inference [43] . 
� z 1 , . . . , z n � and a new object x ∈ X , outputs a set �ε (B, x ) ⊆ Y . In-

tuitively, this set contains those labels which the predictor believes

with at least 1 − ε confidence could be the true label of the input

sample based on the bag of examples given to it. These predictors

must satisfy two properties [8,10] : 

1. Nestedness. If ε1 ≥ ε2 then �ε 1 (B, x ) ⊆ �ε 2 (B, x ) . 

2. Exact validity. If the true label of x is y , then y ∈ �ε( B, x ) with

probability at least 1 − ε. 

The exact validity property is too much to ask from a deter-

ministic predictor [8] . Instead, the algorithms we consider here

are only conservatively valid . Specifically, let ω = z 1 , z 2 , . . . be an

infinite sequence of samples from an exchangeable distribution P .

A distribution is said to be exchangeable if for every sequence

z 1 , . . . , z n and permutation φ of the integers { 1 , . . . , n } it holds

that 

Pr [ z 1 , . . . , z n ] = Pr [ z φ(1) , . . . , z φ(n ) ] . 

That is, each permutation of a sequence of samples from P is

equally likely. In particular, i.i.d. samples are always exchangeable.

Define the error after seeing n samples at significance level ε as 

err ε n (�, ω) = 

{
1 i f y n / ∈ �ε (� z 1 , . . . , z n −1 � , x n ) , 

0 otherwise. 

The quantities err ε n (�, ω) are random variables depending on

ω ~ P ∞ . Exact validity means these variables are all independent

and Bernoulli distributed with parameter ε. Conservative validity

means they are dominated in distribution by independent Bernoulli

random variables. That is, there exist two sequences of random

variables ξ1 , ξ2 , . . . and η1 , η2 , . . . such that 

1. each ξ n is independent and Bernoulli distributed with parame-

ter ε; 

2. err ε n (�, ω) ≤ ηn almost surely for all n ; 

3. the joint distribution of η1 , . . . , ηn equals that of ξ1 , . . . , ξn for

all n . 

This implies the following asymptotic conservative validity

property, by the law of large numbers: 

lim 

n →∞ 

1 

n 

n ∑ 

i =1 

err ε i (�, ω) ≤ ε almost surely . 

Algorithm 1 is the general conformal prediction algorithm. It

Algorithm 1: The conformal prediction algorithm. 

Input : Non-conformity measure 
, significance level ε, bag 

of examples � z 1 , . . . , z n � ⊆ Z , object x ∈ X 

Output : Prediction region �ε (� z 1 , . . . , z n � , x ) 

1 foreach y ∈ Y do 

2 z n +1 ← (x, y ) 

3 for i = 1 , . . . , n + 1 do 

4 αi ← 
(� z 1 , . . . , z n � \ � z i � , z i ) 
5 end 

6 p y ← 

1 
n +1 # { i = 1 , . . . , n + 1 | αi ≥ αn +1 } 

7 end 

8 return { y ∈ Y | p y > ε} 

takes as a parameter a non-conformity measure 
. In general,

a non-conformity measure is any measurable real-valued func-

tion which takes a sequence of samples z 1 , . . . , z n along with an

additional sample z and maps them to a non-conformity score


(� z 1 , . . . , z n � , z) . This score is intended to measure how much the

sample z differs from the given bag of samples. The conformal pre-

diction algorithm is always conservatively valid regardless of the
Please cite this article as: J. Peck, B. Goossens and Y. Saeys, Detecting 
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hoice of non-conformity measure 3 . However, the predictive effi-

iency of the algorithm — that is, the size of the prediction region
ε( B, x ) — can vary considerably with different choices for 
. If

he non-conformity measure is chosen sufficiently poorly, the pre-

iction regions may even be equal to the entirety of Y . Although

his is clearly valid, it is useless from a practical point of view. 

Algorithm 1 determines a prediction region for a new input x ∈
 based on a bag of old samples by iterating over every label y ∈ Y
nd computing an associated p -value p y . This value is the empirical

raction of samples in the bag (including the new “virtual sample”

 x, y )) with a non-conformity score that is at least as large as the

on-conformity score of ( x, y ). By thresholding these p -values we

btain a set of candidate labels y 1 , . . . , y t such that each possible

ombination (x, y 1 ) , . . . , (x, y t ) is “sufficiently conformal” to the old

amples at the given level of confidence. 

.2. Inductive Venn-ABERS predictors 

Of particular interest to us here will be the inductive Venn-

ABERS predictors or IVAPs [11] . These are related to conformal pre-

ictors but they take advantage of the predictive efficiency of some

ther inductive learning rule (such as a neural network or support

ector machine). The IVAP algorithm is shown in Algorithm 2 for

Algorithm 2: The inductive Venn-ABERS prediction algorithm 

for binary classification. 

Input : bag of examples � z 1 , . . . , z n � ⊆ Z , object x ∈ X , 

learning algorithm A 

Output : Pair of probabilities (p 0 , p 1 ) 

1 Divide the bag of training examples � z 1 , . . . , z n � into a proper 

training set � z 1 , . . . , z m 

� and a calibration set � z m +1 , . . . , z n � . 

2 Run the learning algorithm A on the proper training set to 

obtain a scoring rule F . 

3 foreach example z i = (x i , y i ) in the calibration set do 

4 s i ← F (x i ) 

5 end 

6 s ← F (x ) 

7 Fit isotonic regression to { (s m +1 , y m +1 ) , . . . , (s n , y n ) , (s, 0) } 
obtaining a function f 0 . 

8 Fit isotonic regression to { (s m +1 , y m +1 ) , . . . , (s n , y n ) , (s, 1) } 
obtaining a function f 1 . 

9 (p 0 , p 1 ) ← ( f 0 (s ) , f 1 (s )) 

10 return (p 0 , p 1 ) 

he case of binary classification. The output of the IVAP algo-

ithm is a pair ( p 0 , p 1 ) where 0 ≤ p 0 ≤ p 1 ≤ 1. These quantities

an be interpreted as lower and upper bounds on the probability

r [ y = 1 | x ] , that is, p 0 ≤ Pr [ y = 1 | x ] ≤ p 1 . The width of this in-

erval, p 1 − p 0 , can be used as a reliable measure of confidence in

he prediction. Although Algorithm 2 can only be used for binary

lassification, it is possible to extend it to the multi-class setting

44] . This is left to future work. 

IVAPs are a variant of the conformal prediction algorithm where

he non-conformity measure is based on an isotonic regression of

he scores which the underlying scoring classifier assigns to the

alibration data points as well as the new input to be classified.

sotonic (or monotonic) regression aims to fit a non-decreasing

ree-form line to a sequence of observations such that the line lies

s close to these observations as possible. Fig. 2 shows an example

f isotonic regression applied to a 2D toy data set. 
adversarial manipulation using inductive Venn-ABERS predictors, 
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Fig. 2. An example of isotonic regression on a 2D data set. The isotonic fit is shown 

as a red line. This image was produced with the isoreg function from the R lan- 

guage [45] . 
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Fig. 3. Example of the greatest convex minorant of a set of points, shown as a red 

line. This image was produced with the fdrtool package [47] . 
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In the case of Algorithm 2 , the isotonic regression is performed

s follows. Let s 1 , . . . , s k be the scores assigned to the calibration

oints. First, these points are sorted in increasing order and du-

licates are removed, obtaining a sequence s ′ 1 ≤ · · · ≤ s ′ t . We then

efine the multiplicity of s ′ 
j 

as 

 j = # { i | s i = s ′ j } . 
he “average label” corresponding to some score s ′ 

j 
is 

 

′ 
j = 

1 

w j 

∑ 

i : s i = s ′ j 

y i . 

he cumulative sum diagram (CSD) is computed as the set of

oints 

 i = 

( 

i ∑ 

j=1 

w j , 

i ∑ 

j=1 

y ′ j w j 

) 

= (W i , Y i ) 

or i = 1 , . . . , t . For these points, the greatest convex minorant (GCM)

s computed. Fig. 3 shows an example of a GCM computed for a

iven set of points in the plane. Formally, the GCM of a function

f : U → R is the maximal convex function g : I → R defined on a

losed interval I containing U such that g ( u ) ≤ f ( u ) for all u ∈ U

46] . It can be thought of as the “lowest part” of the convex hull

f the graph of f . 

The value at s ′ 
i 

of the isotonic regression is now defined as the

lope of the GCM between W i −1 and W i . That is, if f is the isotonic

egression and g is the GCM, then 

f (s ′ i ) = 

g(W i ) − g(W i −1 ) 

W i − W i −1 

= 

g( W i ) − g(W i −1 ) 

w i 

. 

e leave the values of f at other points besides the s ′ 
i 

undefined,

s we will never need them here. 

. Detecting adversarial manipulation using IVAPs 

IVAPs enjoy a type of validity property which we detail here.

 random variable P is said to be perfectly calibrated for another

andom variable Y if the following equality holds almost surely: 

 [ Y | P ] = P. (2)
Please cite this article as: J. Peck, B. Goossens and Y. Saeys, Detecting 

Neurocomputing, https://doi.org/10.1016/j.neucom.2019.11.113 
et P 0 , P 1 be random variables representing the output of an IVAP

rained on a set of i.i.d. samples and evaluated on a new random

ample X with label Y ∈ {0, 1}. Then there exists a random variable

 ∈ {0, 1} such that P S is perfectly calibrated for Y . Hence, for each

rediction at least one of the probabilites P 0 , P 1 output by an IVAP

s almost surely equal to the conditional expectation of the label

iven the probability. Since the label is binary, the relation (2) can

e rewritten as 

r [ Y = 1 | P S ] = P S . (3)

q. (3) expresses the validity property for IVAPs. If the difference

p 1 − p 0 is sufficiently small for some instance x , so that p 0 , p 1 ≈ p ,

hen (3) allows us to deduce that x has label 1 with probability

pproximately p . The validity property (3) holds for IVAPs as long

s the data are exchangeable, which is the case whenever the data

re i.i.d. 

Our proposed method for detecting adversarial examples is

ased on these observations: we use p 1 − p 0 as a confidence mea-

ure for the prediction returned by the underlying scoring classifier

nd then return the appropriate label based on these values. The

seudocode is shown in Algorithm 3 . The general idea is to use an

VAP to obtain the probabilities p 0 and p 1 for each test instance

 . If these probabilities lie close enough to each other according

o the precision parameter β , then we assume to have enough

onfidence in our prediction; otherwise, we return a special label

EJECT signifying that we do not trust the output of the classifier

n this particular sample. The precision parameter β is tuned by

aximizing Youden’s index [48] on a held-out validation set con-

isting of clean and adversarial samples. In case we trust our pre-

iction, we use p = 

p 1 
1 −p 0 + p 1 as an estimate of the probability that

he label is 1 (as in Vovk et al. [11] ). If p > 0.5, we return 1; oth-

rwise, we return 0. This method of quantifying uncertainty and

ejecting unreliable predictions was in fact already mentioned in

ovk et al. [11] , but to our knowledge nobody has yet attempted

o use it for protection against adversarial examples. 

An important consideration in the deployment of Algorithm 3 is

he computational complexity of the approach. This is clearly de-

ermined by the underlying machine learning model, as we are re-

uired to run its learning algorithm and perform inference with

he resulting model for each sample in the calibration set as well

s for each new test sample. The overhead caused by the IVAP
adversarial manipulation using inductive Venn-ABERS predictors, 
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Algorithm 3: Detecting adversarial manipulation with IVAPs. 

Input : precision β ∈ [0 , 1] , bag of examples � z 1 , . . . , z n � ⊆ Z , 

object x ∈ X , learning algorithm A 

Output : An element of the set Y ∪ { REJECT } . 
1 Use algorithm 2 to compute p 0 , p 1 for x . 

2 if p 1 − p 0 ≤ β then 

3 Set p ← 

p 1 
1 −p 0 + p 1 . 

4 if p > 0 . 5 then 

5 return 1 

6 else 

7 return 0 

8 end 

9 else 

10 return REJECT 

11 end 
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construction consists of the isotonic regressions, which are dom-

inated by the complexity of sorting the samples in the calibration

set, as well as other operations that take linear time. The scores

of the calibration samples can be precomputed and stored for fast

access later, reducing the complexity of the inference step. To sum-

marize, let T A ( n ) and T F ( n ) denote the time complexity of running

the learning algorithm and the scoring rule on a set of n sam-

ples, respectively. Then we can determine the time complexity of

Algorithm 3 as follows for a bag of n samples: 

• Calibration . Initially, when the IVAP is calibrated, we run the

learning algorithm on the proper training set and compute

scores for each of the calibration samples. This takes O(T A (n ) +
T F (n )) time. 

• Inference . To compute the probabilities p 0 , p 1 for a new test

sample, we run the scoring rule and perform two isotonic re-

gressions. This can be done in time O(T F (1) + n log n ) . 

The overhead incurred by the IVAP in the calibration phase

(which only needs to be performed once) is proportional to the

complexity of the learning algorithm and scoring rule when ex-

ecuted on the given bag of samples. When performing inference,

the overhead compared to simply running the underlying model is

log-linear in the size of the calibration set. 

It is also important to consider how the calibration set and the

underlying model affect the performance of the IVAP. To the best

of our knowledge, the existing literature on IVAPs does not provide

quantitative answers to these questions. Vovk et al. [11] note that

the validity property (3) always holds for the IVAP regardless of

the performance of the underlying model, as long as the calibra-

tion set consists of independent samples from the data distribu-

tion. They also point out that, for “large” calibration sets, the differ-

ence p 1 − p 0 will be small. It would be interesting to have uniform

convergence bounds that quantify how quickly p 1 − p 0 converges

to zero as the calibration set grows larger, but we are not aware

of any such results. Most likely, such bounds will depend on the

accuracy of the underlying model, where the convergence is faster

with a more accurate model. 

3.1. White-box attack for IVAPs 

As pointed out by Carlini and Wagner [41] , it is not sufficient to

demonstrate that a new defense is robust against existing attacks.

To make any serious claims of adversarial robustness, we must also

develop and test a white-box attack that was designed to specifi-

cally target models protected with our defense. Let x be any input

that is not rejected and classified as y by the detector. Our attack

must then find ˜ x ∈ X such that 
Please cite this article as: J. Peck, B. Goossens and Y. Saeys, Detecting 
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1. ‖ x − ˜ x ‖ p is as small as possible; 

2. ˜ x is not rejected by the detector; 

3. ˜ x is classified as 1 − y . 

Here, ‖ u ‖ p is the general � p norm of the vector u . Common

hoices for p in the literature are p ∈ {1, 2, ∞ } [27] ; we will fo-

us on � 2 and � ∞ 

norms in this work. 

Following Carlini and Wagner [41] , we design a differentiable

unction that is minimized when ˜ x lies close to x , is not rejected

y the detector and is classified as 1 − y . To do this efficiently, note

hat whenever a new sample has the same score as an old sample

n the calibration set, it will have no effect on the isotonic regres-

ion and the result of applying Algorithm 3 to it will be the same

s applying the algorithm to the old sample. Hence, we search for

 sample ( s i , y i ) in the calibration set such that 

1. y i = 1 − y ; 

2. f 1 (s i ) − f 0 (s i ) ≤ β; 

3. the confidence p = 

f 1 (s i ) 

1 − f 0 (s i )+ f 1 (s i ) 
satisfies p > 0.5 if y i = 1 and

p ≤ 0.5 otherwise. 

From among all samples that satisfy these conditions, we

hoose the one which minimizes the following expression: 

 x − x i ‖ 

2 
2 + c(s (x ) − s i ) 

2 . 

ere, s ( x ) is the score assigned to x by the classifier and c is a con-

tant which trades off the relative importance of reducing the size

f the perturbation vs fooling the detector. We choose these sam-

les in this way so as to “warm-start” our attack: we seek a sample

hat lies as close as possible to the original x in X -space but also

as a score s i which lies as close as possible to s ( x ). This way, we

ope to minimize the amount of effort required to optimize our

dversarial example. 

Having fixed such a sample ( s i , y i ), we solve the following opti-

ization problem: 

min 

∈ [ −1 , 1] d 
‖ δ‖ 

2 
2 + c(s (x + δ) − s i ) 

2 subject to x + δ ∈ [0 , 1] d . (4)

he constant c can be determined via binary search, as in the Car-

ini & Wagner attack [16] . In our case, we are applying the attack to

 standard neural network without any non-differentiable compo-

ents, meaning the score function s is differentiable. The resulting

roblem (4) can therefore be solved using standard gradient de-

cent methods since the function to be minimized is differentiable

s well. In particular, we use the Adam optimizer [49] to minimize

ur objective function. The constraint x + δ ∈ [0 , 1] d can easily be

nforced by clipping the values of x + δ back into the [0, 1] d hy-

ercube after each iteration of gradient descent. 

Note that our custom white-box attack will not suffer from

ny gradient masking introduced by our defense. Indeed, we only

ely on gradients computed from the underlying machine learning

odel. As long as the unprotected classifier does not mask gradi-

nts (which it should not, since the unprotected classifiers will be

anilla neural networks trained in the standard way), this informa-

ion will be useful. 

As described, the above method of selecting a calibration sam-

le and solving (4) only considers adversarials that are minimal in

 2 distance. However, � ∞ 

-bounded perturbations are also of inter-

st, so in our experiments we evaluate both the original � 2 formu-

ation as well as an � ∞ 

variant where we replace ‖ · ‖ 2 2 by ‖ · ‖ ∞ 

. 

. Experiments 

To verify the robustness of Algorithm 3 against adversarial ex-

mples, we perform experiments with several machine learning

lassification tasks. The following questions are of interest to us

ere: 
adversarial manipulation using inductive Venn-ABERS predictors, 
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Fig. 4. Illustration of the different data splits. The training data is split into proper 

training data on which the scoring classifier is trained and calibration data on 

which the IVAP fits the isotonic regression. The test data is split into proper test 

data, which is used to determine the overall accuracy of the resulting algorithm, 

and validation data. Both of these subsets of test data are used to generate adver- 

sarial proper test data and adversarial validation data. The adversarial proper test 

data is used for evaluating the robustness of the resulting algorithm, whereas the 

adversarial validation data is used together with the validation data to tune β . All 

splits are 80% for the left branch and 20% for the right branch. 
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Table 1 

Summary of performance indicators for the CNNs used in our experiments. 

Task Clean accuracy Adversarial accuracy 

Zeroes vs ones 100% 2.31% 

Cats vs dogs 89.87% 1.8% 

T-shirts vs trousers 99.75% 3.43% 

Airplanes vs automobiles 96.69% 3.75% 
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1. How does the IVAP handle adversarial examples targeted at the

original model ( Section 4.1 )? Ideally, the IVAP should be im-

mune to these. 

2. Can we generate adversarial examples specifically to bypass the

IVAP ( Sections 4.2 and 4.3 )? As pointed out by Carlini and Wag-

ner [16] , it is not enough for an adversarial defense to be ro-

bust against an oblivious adversary; we must also establish ro-

bustness against an adversary that is aware of our defense. We

therefore adapt existing adversarial attacks to target our detec-

tor and we also evaluate the IVAP against our custom white-box

attack. 

3. How much adversarial data is actually needed in the validation

set ( Section 4.4 )? As it stands, we augment the validation set

with adversarial examples generated by a variety of attacks in

order to tune the β parameter. However, we want our defense

to be robust not only against attacks which it has been exposed

to but also to attacks which have yet to be invented. We there-

fore compare our results to a setting where only one adversarial

attack is used for the validation set. 

The goal of these experiments is to show that the IVAP can han-

le both old and new adversarial examples and that its robustness

eneralizes beyond the limited set of attacks which it has seen. As

uch, we consider a number of different scenarios for each classi-

cation task, detailed below. 

.1. Robustness of the detector to the original adversarial examples 

We run adversarial attack algorithms on both the validation set

nd the proper test set, creating an adversarial validation set and

n adversarial proper test set (see Fig. 4 for details on our different

ata splits). The attacks we employed were projected gradient de-

cent with random restarts [27] , DeepFool [50] , local search [51] ,

he single pixel attack [52] , NewtonFool [53] , fast gradient sign

6] and the momentum iterative method [54] . This means for each 

est set we generate seven new data sets consisting of all the ad-

ersarial examples the attacks were able to find on the test set

or the original model. We then run Algorithm 3 on the adversar-

al validation set as well as the regular validation set. Our goal is

o maximize Youden’s index (defined below) on both the regular

nd adversarial validation sets. We choose β such that this index

s maximized. We can then use the proper test set and the adver-

arial proper test set to judge the clean and adversarial accuracy of

he resulting algorithm with the tuned value of β . 

.2. Robustness of the detector to new adversarial examples 

We attempt to generate new adversarials which take the de-

ector into account and evaluate the performance similarly to the
Please cite this article as: J. Peck, B. Goossens and Y. Saeys, Detecting 
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rst scenario. The resulting samples are called adapted adversari-

ls . They are generated by applying all of the adversarial attacks

entioned above to Algorithm 3 . For the gradient-based attacks,

e use the natural evolution strategies approach [34,55] to esti-

ate the gradient, thereby avoiding any possible gradient masking

ssues [32] . 

.3. Fully white-box attack 

We run our custom adversarial attack (4) for the detector on

he entire proper test set and evaluate its performance. This attack

s specifically designed to target the IVAP and should represent an

bsolute worst-case scenario for the defense. 

.4. Ablation study 

We estimate β based on adversarials generated only by the

eepFool method on the validation set for the original model and

hen evaluate the resulting detector as before. The purpose of this

cenario is to estimate how “future-proof” our method is, by eval-

ating its robustness against attacks that played no role in the

uning of β . Our choice for DeepFool was motivated by the ob-

ervations that it is efficient and rather effective, but it is by no

eans the strongest attack in our collection. It is less efficient

han fast gradient sign, but this method was never meant to be

 serious attack; it was only meant to demonstrate excessive lin-

arity of DNNs [6] . It is weaker than NewtonFool, for example,

ince this method utilizes second-order information of the model

hereas DeepFool is limited to first-order approximations. It is also

eaker than some first-order attacks such as the momentum itera-

ive method, which was at the top of the NIPS 2017 adversarial at-

ack competition [54,56] . We therefore feel that DeepFool is a good

hoice for evaluating how robust our defense is to future attacks. 

.5. Metrics 

For all scenarios, we report the accuracy, true prositive rate

TPR), true negative rate (TNR), false positive rate (FPR) and false

egative rate (FNR) of the detectors. These are defined as follows: 

ccuracy = 

TA + TR 

m 

, TPR = 

TA 

TA + FR 

, TNR = 

TR 

TR + FA 

, 

FPR = 

FA 

FA + TR 

, FNR = 

FR 

FR + TA 

. 

ere, m is the total number of samples, TA is the number of cor-

ect predictions the detector accepted, TR is the number of incor-

ect predictions the detector rejected, FA is the number of incorrect

redictions the detector accepted and FR is the number of correct

redictions the detector rejected. Youden’s index is defined as 

 = TPR + TNR − 1 = TPR − FPR . 

t is defined for every point on a ROC curve. Graphically, it cor-

esponds to the distance between the ROC curve and the random

hance line [48] . 

These metrics are computed for different scenarios: 

• Clean . This refers to the proper test data set, without any mod-

ifications. 
adversarial manipulation using inductive Venn-ABERS predictors, 
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Table 2 

Summary of performance indicators for the detectors on the different tasks. 

Task Data Size Accuracy TPR TNR FPR FNR 

Zeroes vs ones Clean 1692 98.52% 98.51% 100.0% 0.0% 1.49% 

Adversarial 6918 46.07% 0.0% 100.0% 0.0% 100.0% 

Adapted 5858 97.41% 0.0% 99.06% 0.94% 100.0% 

Custom � 2 1692 0.0% 0.0% 0.0% 100.0% 100.0% 

Custom � ∞ 1692 0.0% 0.0% 0.0% 100.0% 100.0% 

Cats vs dogs Clean 3988 72.94% 75.9% 48.85% 51.15% 24.1% 

Adversarial 22,599 52.56% 71.25% 38.86% 61.14% 28.75% 

Adapted 17,187 59.27% 100.0% 59.18% 40.82% 0.0% 

Custom � 2 3952 1.64% 100.0% 0.0% 100.0% 0.0% 

Custom � ∞ 3145 1.69% 100.0% 0.0% 100.0% 0.0% 

T-shirts vs trousers Clean 1600 96.88% 96.86% 97.44% 2.56% 3.14% 

Adversarial 7076 50.99% 0.0% 99.97% 0.03% 100.0% 

Adapted 5923 77.53% 0.0% 77.99% 22.01% 100.0% 

Custom � 2 1600 0.0% 0.0% 0.0% 100.0% 100.0% 

Custom � ∞ 1600 0.0% 0.0% 0.0% 100.0% 100.0% 

Airplanes vs automobiles Clean 1600 74.38% 73.21% 96.3% 3.7% 26.79% 

Adversarial 8256 58.14% 0.0% 100.0% 0.0% 100.0% 

Adapted 6586 93.99% 0.0% 94.82% 5.18% 100.0% 

Custom � 2 1600 0.0% 0.0% 0.0% 100.0% 100.0% 

Custom � ∞ 1600 0.0% 0.0% 0.0% 100.0% 100.0% 
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• Adversarial . Here, the metrics are computed on the adversarial

test set. This data set is constructed by running existing ad-

versarial attacks against the underlying neural network on the

proper test set. They do not take the IVAP into account. 

• Adapted . This is similar to the Adversarial scenario but the at-

tacks are modified to take the IVAP into account. 

• Custom � p . Here, we compute the metrics for adversarial ex-

amples generated using our custom � p white-box attack on the

proper test set. We report results for p = 2 and p = ∞ . 

4.6. Implementation details 

The implementations of the adversarial attacks, including the

gradient estimator using the natural evolution strategies, were pro-

vided by the Foolbox library [57] . The implementation of the Venn-

BERS predictor was provided by Toccaceli [58] . The different data

splits we perform for these experiments are illustrated schemati-

cally in Figure 4 . Almost all neural networks were trained for 50

epochs using the Adam optimizer [49] with default parameters in

the Keras framework [59] using the TensorFlow backend [60] . The

exception is the CNN for the cats vs dogs task, which was trained

for 100 epochs. No regularization or data augmentation schemes

were used; the only preprocessing we perform is a normalization

of the input pixels to the [0,1] range as well as resizing the images

in one of the tasks. Descriptions of all the CNN architectures can

be found in Appendix A . 

4.7. Data sets 

Here, we detail the different data sets used for our experiments.

Note that these are all binary classification problems, since the

IVAP construction as formulated by Vovk et al. [11] only works for

binary tasks. Extending the IVAP to multiclass problems has been

discussed, for example, in Manokhin [44] ; using a multiclass IVAP

in adversarial defense will be explored in future work. 

Zeroes vs ones. Our first task is a binary classification problem

based on the MNIST data set [61] . We take the original MNIST

data set and filter out only the images displaying either a zero

or a one. The pixel values are normalized to lie in the interval

[0,1]. We then run our experiments as described above, using a

convolutional neural network (CNN) as the scoring classifier for

Algorithm 3 . 
Please cite this article as: J. Peck, B. Goossens and Y. Saeys, Detecting 
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Cats vs dogs. The second task we consider is the classification of

ats and dogs in the Asirra data set [62] . This data set consists of

5,0 0 0 JPEG color images where half contain dogs and half contain

ats. Again we train a CNN as the scoring classifier for Algorithm 3 .

n the original collection, not all images were of the same size. In

ur experiments, we resized all images to 6 4 × 6 4 pixels and nor-

alized the pixel values to [0,1] to facilitate processing by our ma-

hine learning pipeline. 

T-shirts vs trousers. The third task is classifying whether a

8 × 28 grayscale image contains a picture of a T-shirt or a pair

f trousers. Similarly to the MNIST zeroes vs ones task, we take

he Fashion-MNIST data set [63] and filter out the pictures of T-

hirts and trousers. Again, the pixel values are normalized to [0,1]

nd a CNN is used for this classification problem. 

Airplanes vs automobiles. Our fourth task is based on the CIFAR-

0 data set [30] , which consists of 60,0 0 0 RGB images 32 × 32

ixels in size. We filter out the images of airplanes and automo-

iles and train a CNN to distinguish these two classes. 

.8. Results and discussion 

The baseline accuracies of the unprotected CNNs are given in

able 1 for the different tasks. We can see that they perform rea-

onably accurately on clean test data, but as expected the adversar-

al accuracy is very low. Table 2 gives the clean accuracies of the

VAPs for each of the tasks. From these results, we can see that

he clean accuracy of the protected model invariably suffers from

he addition of the IVAP. However, in almost all tasks, the false

ositive and false negative rates are relatively low. Our detectors

re therefore capable of accepting correct predictions and rejecting

istaken ones from the underlying model on clean data. The ex-

eption is the cats vs dogs task, where the false positive rate is un-

sually high at 51.15%. However, we believe these results might be

mproved by using a better underlying CNN. In our initial experi-

ents, we used the same CNN for this task as we did for airplanes

s automobiles and trained it for only 50 epochs. Using a more

omplex CNN and training it longer significantly improved the re-

ults, so we are optimistic that the results we obtained can be im-

roved even further by adapting the underlying CNN and training

egime. 

The results presented here are observations from a single run of

ur experiments. Multiple runs of the experiments did not produce

ignificantly different results. 
adversarial manipulation using inductive Venn-ABERS predictors, 
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Fig. 5. The ROC curves for the different detectors. The orange dashed line is the random chance line. The red solid line is the ROC curve for our detector. The dotted black 

line is the cut-off corresponding to the optimal value of β , which is defined here as the value that maximizes Youden’s index. 

Fig. 6. Selections of adversarial examples which can fool our detectors, generated 

by the custom � 2 white-box attack. 

 

l  

i  

Fig. 7. Selections of adversarial examples which can fool our detectors, generated 

by the custom � ∞ white-box attack. 

a  

o  

i  
Robustness to existing attacks. The first question we would

ike to answer when evaluating any novel adversarial defense

s whether it can defend against existing attacks that were not
Please cite this article as: J. Peck, B. Goossens and Y. Saeys, Detecting 
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dapted specifically to fool it. This is a bare minimum of strength

ne desires: if existing attacks can already break the defense, then

t is useless. In Table 2 , we evaluate our IVAP defense against the
adversarial manipulation using inductive Venn-ABERS predictors, 
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Fig. 8. Selections of adversarial examples which can fool our ablated detectors, gen- 

erated by the custom � 2 white-box attack. 

Fig. 9. Selections of adversarial examples which can fool our ablated detectors, gen- 

erated by the custom � ∞ white-box attack. 
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4 Madry et al. stress that the � ∞ variant be used and not, e.g., an � 2 one. We 

follow their advice and perform adversarial training exclusively with the � ∞ version. 

The implementation we used was taken directly from https://github.com/MadryLab/ 

mnist _ challenge . 
suite of attacks described in Section 4.1 . The results are shown for

the Adversarial and Adapted scenarios. When we transfer adversar-

ials generated for the underlying model to the IVAP, the accuracy

always degrades significantly. However, it is important to note that

all unprotected CNNs have very low accuracy on these samples.

As such, in almost all cases, the IVAP has a very high true nega-

tive rate as most predictions are in error. The exception is the cats

vs dogs task, where the true negative rate is rather low on the

transferred adversarials. The accuracy is still much higher than the

unprotected model, though (52.56% vs 1.8%), so the IVAP did sig-

nificantly improve the robustness against this transfer attack. The

adversarials generated using existing attacks adapted to the pres-

ence of the IVAP also degrade the accuracy, but not as severely as

the transfer attack. True negative rates remain high across all tasks

and the level of accuracy is, at the very least, much better than

without IVAP protection. 

Robustness to novel attacks. To more thoroughly evaluate the

strength of our defense, it is necessary to also test it against an

adaptive adversary utilizing an attack that is specifically designed

to circumvent our defense. For this reason, Table 2 also shows

two rows of test results for each task, where we run our custom

white-box attack for both the � 2 and � ∞ 

norms. At first glance,

it appears as though our attack is completely successful and fully

breaks our defense, yielding 0% accuracy. To investigate this fur-

ther, Figs. 6 and 7 show random selections of five adversarial ex-

amples that managed to fool the different detectors, generated by

our white-box attack. Empirical cumulative distributions of the dis-

tortion levels introduced by our white-box attack are shown in

Figs. 10 and 11 . Visually inspecting the generated adversarials and

looking at the distributions of the distortion levels reveals cause

for optimism: although some perturbations are still visually im-

perceptible, there is a significant increase in the overall distortion

required to fool the detectors. This is especially the case for the

� ∞ 

adversarials, where almost all perturbations are obvious. Even

the � 2 adversarials are generally very unsubtle except for the ones

generated on the cats vs dogs task. We believe this is due to the

fact that the Asirra images are larger than the CIFAR-10 images

(64 × 64 vs 32 × 32), so that the � 2 perturbations can be more

“spread out” across the pixels. Regardless, if one compares the ad-

versarial images to the originals, the perturbations are still obvious

because the adversarials are unusually grainy and blurred. 
Please cite this article as: J. Peck, B. Goossens and Y. Saeys, Detecting 
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Sensitivity of hyperparameters. For the experiments carried out

n Table 2 , the IVAP was only exposed to adversarial attacks which

t had already seen: the rejection threshold β was tuned on sam-

les perturbed using the same adversarial attacks as it was then

ested against. Fig. 5 shows the ROC curves for the different de-

ectors along with the optimal thresholds. An important question

hat arises now is how well the IVAP fares if we test it against

ttacks that differ from the ones used to tune its hyperparame-

ers, since in practice it is doubtful that we will be able to an-

icipate what attacks an adversary may use. Moreover, even if we

an anticipate this, the set of possible attacks may be so large as

o make it computationally infeasible to use them all. Therefore,

e also test the performance of the IVAP when β is tuned on ad-

ersarials generated only by the DeepFool attack instead of the full

uite of attacks. We obtained identical values of β for the Zeroes vs

nes and Cats vs dogs tasks. The results for the other tasks where

was different are shown in Table 3 . The conclusions are simi-

ar: the accuracy degrades both on clean and adversarial data, but

lean accuracy is still high and true negative rates are high on ad-

ersarial data. The custom white-box attack again appears highly

uccessful. Figs. 12 and 13 plot the empirical cumulative distribu-

ions of the adversarial distortion levels for the ablated detectors

nd Figs. 8 and 9 show selections of custom white-box adversar-

als which fooled the ablated detectors. These results show that

obustness to our � 2 white-box attack is significantly lower com-

ared to the non-ablated detectors. The � ∞ 

-bounded perturbations

re still very noticable, however. As an illustrative example, Fig. 14

hows histograms of the differences p 1 − p 0 between the upper

nd lower probabilities for clean and DeepFool adversarial exam-

les on the zeroes vs ones task. Although there is a small amount

f overlap, the vast majority of adversarial examples have a much

igher difference than clean samples: clean data has a difference

lose to 0%, whereas adversarials are almost always close to 50%.

he tuned model threshold is placed so that the majority of clean

amples are still allowed through but virtually all adversarials are

ejected. 

. Comparison with other methods 

In this section, we compare our IVAP method to the Madry de-

ense [27] which, to the best of our knowledge, is the strongest

tate-of-the-art defense at the time of this writing. Specifically, we

pply the Madry defense to each of the CNNs used in the tasks

rom Section 4 and compare the accuracies of the different meth-

ds. We also perform transfer attacks where we try to fool our

VAP using adversarials generated for the Madry defense and vice

ersa. 

The Madry defense is a form of adversarial training where, at

ach iteration of the learning algorithm, the � ∞ 

projected gradient

escent attack is used to perturb all samples in the current mini-

atch 

4 . The model is then updated based on this perturbed batch

nstead of the original. To facilitate fair comparison, we do not use

he pre-trained models and weights published by Madry et al. for

he MNIST and CIFAR-10 data sets, since these are meant for the

ull 10-class problems whereas our defense only considers a sim-

ler binary subproblem. Rather, we modified the network architec-

ures for these tasks so they correspond to our own CNNs from

ection 4 and trained them according to the procedure outlined by

adry et al. [27] . 

Table 4 shows the results we obtained with the Madry defense

s well as the parameter settings we used for the PGD attack. The
adversarial manipulation using inductive Venn-ABERS predictors, 
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Fig. 10. Empirical cumulative distributions of the adversarial distortion produced by our � 2 white-box attack. The distance metrics are � 2 (left) and � ∞ (right). 

Fig. 11. Empirical cumulative distributions of the adversarial distortion produced by our � ∞ white-box attack. The distance metrics are � 2 (left) and � ∞ (right). 

Table 3 

Summary of performance indicators for the ablated detectors on the different tasks. 

Task Data Size Accuracy TPR TNR FPR FNR 

T-shirts vs trousers Clean 1,600 97.81% 97.89% 94.87% 5.13% 2.11% 

Adversarial 7,076 49.31% 3.81% 93.02% 6.98% 96.19% 

Adapted 5,901 56.8% 0.0% 56.93% 43.07% 100.0% 

Custom � 2 1,600 0.0% 0.0% 0.0% 100.0% 100.0% 

Custom � ∞ 1,600 0.0% 0.0% 0.0% 100.0% 100.0% 

Airplanes vs automobiles Clean 1,600 93.62% 95.39% 60.49% 39.51% 4.61% 

Adversarial 8,256 52.63% 0.0% 90.52% 9.48% 100.0% 

Adapted 6,580 69.18% 0.0% 69.73% 30.27% 100.0% 

Custom � 2 1,600 0.0% 0.0% 0.0% 100.0% 100.0% 

Custom � ∞ 1,598 0.0% 0.0% 0.0% 100.0% 100.0% 

Table 4 

Summary of parameters and performance indicators for the Madry defense on the 

machine learning tasks we considered. Step sizes were always set to 0.01 and ran- 

dom start was used each time. 

Task Clean accuracy Adversarial accuracy ε Steps 

Zeroes vs ones 99.88% 97.1% 0.3 40 

Cats vs dogs 54.94% 3.5% 0.3 10 

T-shirts vs trousers 97.12% 85% 0.3 40 

Airplanes vs automobiles 82.06% 29.19% 0.3 10 

d  

t  

i  

Table 5 

Results of the Madry-to-IVAP transfer attack, where adversarial examples generated 

for the Madry defense were tested against our IVAPs. 

Task Accuracy TPR TNR FPR FNR 

Zeroes vs ones 36.05% 30.91% 100.0% 0.0% 69.09% 

Cats vs dogs 61.64% 65.08% 52.3% 47.7% 34.92% 

T-shirts vs trousers 72.75% 71.02% 84.47% 15.53% 28.98% 

Airplanes vs automobiles 45.81% 34.53% 95.92% 4.08% 65.47% 

a  

v  

a

efense performs very well on the zeroes vs ones and T-shirts vs

rousers tasks. However, on airplanes vs automobiles the adversar-

al accuracy is low and on the cats vs dogs task both the clean and
Please cite this article as: J. Peck, B. Goossens and Y. Saeys, Detecting 
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dversarial accuracies are low. In fact, for the latter task, the ad-

ersarial accuracy is almost the same as if no defense was applied

t all. 
adversarial manipulation using inductive Venn-ABERS predictors, 
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Fig. 12. Empirical cumulative distributions of the adversarial distortion produced by our � 2 white-box attack on the ablated detectors. The distance metrics are � 2 (left) and 

� ∞ (right). 

Fig. 13. Empirical cumulative distributions of the adversarial distortion produced by our � ∞ white-box attack on the ablated detectors. The distance metrics are � 2 (left) and 

� ∞ (right). 

Fig. 14. Histograms of the differences p 1 − p 0 for clean and adversarial data along 

with the tuned model threshold β . We used the DeepFool attack here to generate 

adversarials for the zeroes vs ones model. 

 

 

 

 

Table 6 

Results of the IVAP-to-Madry transfer attack. Here, adversarial examples generated 

for the IVAP defense by our custom white-box attack are transferred to the Madry 

defense. We test adversarials generated by both the � 2 and � ∞ variants of our at- 

tack. 

Task Accuracy ( � 2 ) Accuracy ( � ∞ ) 

Zeroes vs ones 46.28% 66.78% 

Cats vs dogs 55.26% 55.48% 

T-shirts vs trousers 94.94% 93.88% 

Airplanes vs automobiles 79.94% 78.38% 

o  

a  

f

 

t  

z  

b  

v  

d  

f  

f

 

t

In Table 6 we transfer the white-box adversarials for our de-

fense to the Madry defense. The Madry defense appears quite ro-

bust to our IVAP adversarials for T-shirts vs trousers and airplanes

vs automobiles, but much less so on zeroes vs ones. The accuracy
Please cite this article as: J. Peck, B. Goossens and Y. Saeys, Detecting 
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n the adversarials for the cats vs dogs task is close to the clean

ccuracy, so these appear to have little effect on the Madry de-

ense. 

Table 5 shows what happens when we transfer adversarials for

he Madry defense to our IVAP detectors. We observe that for the

eroes vs ones and airplanes vs automobiles, the accuracy drops

elow 50%. However, false positive rates on these adversarials are

ery low, so the detectors successfully reject many incorrect pre-

ictions. On the other tasks, accuracy remains relatively high. The

alse positive rate is rather high for the cats vs dogs task, but low

or T-shirts vs trousers. 

Fig. 15 plots the empirical distributions of the adversarial dis-

ortion levels of the Madry adversarials, both for the � and � ∞ 
2 
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Fig. 15. Empirical cumulative distribution curves for the adversarial distortion of the Madry adversarials. 

Fig. 16. Selections of adversarial examples which can fool the Madry defense, gen- 

erated by the � ∞ PGD attack. 

d  

o  

r  

v  

M  

t  

a  

t  

t  

t  

t

 

h  

o  

i  

c  

s  

o  

s  

m  

f  

q  

t  

a  

o  

t  

a  

i  

r  

e

6

 

(  

n  

t  

i  

i  

i  

i  

b  

m  

l  

e  

t  

a  

[

 

p  

m  

t  

p

 

a  

m  

n  

i  

T  

s  

t  

s  

fi  

n  

m  

e

D

 

c  

i

istances. Comparing this figure with Figs. 10 and 11 , we see that

ur custom white-box adversarials for the IVAP defense generally

equire higher � 2 and � ∞ 

levels of distortion than the Madry ad-

ersarials. Fig. 16 plots selections of adversarials generated for the

adry defenses by the � ∞ 

PGD attack. The visual levels of distor-

ion appear comparable to our defense (for the � ∞ 

variant of our

ttack), except in the case of the cats vs dogs task where the per-

urbations for the Madry defense seem much larger. It is important

o note, however, that the performance of the Madry defense on

his task is close to random guessing, whereas the IVAP still ob-

ains over 70% clean accuracy. 

We are lead to the conclusion that our defense in fact achieves

igher robustness on these tasks than the Madry defense. More-

ver, our defense appears to scale much better: adversarially train-

ng a deep CNN with � ∞ 

projected gradient descent quickly be-

omes computationally intractable as the data increase in dimen-

ionality and the CNN increases in complexity. On the other hand,

ur IVAP defense can take an existing CNN (trained using efficient,

tandard methods) and quickly augment it with uncertainty esti-

ates based on a calibration set and a data set of adversarials

or the underlying model. The resulting algorithm appears to re-

uire higher levels of distortion than the Madry defense in order

o be fooled effectively and it seems to achieve higher clean and

dversarial accuracy on more realistic tasks. Finally, we note that

ur method introduces only a single extra scalar parameter, the
Please cite this article as: J. Peck, B. Goossens and Y. Saeys, Detecting 
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hreshold β , which can be easily manually tuned if desired. It is

lso possible to tune β based on other objectives than Youden’s

ndex which was used here. On the other hand, the Madry defense

equires a potentially lengthy adversarial training procedure when-

ver the defense’s parameters are modified. 

. Conclusion 

We have proposed using inductive Venn-ABERS predictors

IVAPs) to protect machine learning models against adversarial ma-

ipulation of input data. Our defense uses the width of the uncer-

ainty interval produced by the IVAP as a measure of confidence

n the prediction of the underlying model, where the prediction

s rejected in case this interval is too wide. The acceptable width

s a hyperparameter of the algorithm which can be estimated us-

ng a validation set. The resulting algorithm is no longer vulnera-

le to the original adversarial examples that fooled the unprotected

odel and attacks which take the detector into account have very

imited success. We do not believe this success to be due to gradi-

nt masking, as the defense remains robust even when subjected

o attacks that do not suffer from this phenomenon. Our method

ppears to be competitive to the defense proposed by Madry et al.

27] , which is state-of-the-art at the time of this writing. 

The algorithm proposed here is limited to binary classification

roblems. However, there exist methods to extend the IVAP to the

ulticlass setting [44] . Our future work will focus on using these

echniques to generalize our detector to multiclass classification

roblems. 

Of course, the mere fact that our own white-box attack fails

gainst the IVAP defense does not constitute hard proof that our

ethod is successful. We therefore invite the community to scruti-

ize our defense and to attempt to develop stronger attacks against

t. Our code is available at https://github.com/saeyslab/binary-ivap .

he performance of the IVAP defense is still not ideal at this stage

ince clean accuracy is noticeably reduced. However, we believe

hese findings represent a significant step forward. As such, we

uggest that the community further look into methods from the

eld of conformal prediction in order to achieve adversarial robust-

ess at scale. To our knowledge, we are the first to apply these

ethods to this problem, although the idea has been mentioned

lsewhere already [64, Section 9.3, p133] . 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ialinterestsor personal relationships that could have appeared to

nfluence the work reported in this paper. 
adversarial manipulation using inductive Venn-ABERS predictors, 

https://github.com/saeyslab/binary-ivap
https://doi.org/10.1016/j.neucom.2019.11.113


14 J. Peck, B. Goossens and Y. Saeys / Neurocomputing xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; April 23, 2020;18:15 ] 

 

 

 

 

 

 

 

Acknowledgements 

We gratefully acknowledge the support of the NVIDIA corpora-

tion who provided us with a Titan Xp GPU to conduct our exper-

iments under the GPU Grant Program. Jonathan Peck is sponsored

by a Ph.D. fellowship of the Research Foundation - Flanders (FWO).

Yvan Saeys is an ISAC Marylou Ingram Scholar. 

Appendix A. Description of the Neural Networks 

In this section, we give detailed descriptions of the CNNs used

in our experiments. These descriptions are Python code for the

Keras framework. Note that we assume the following imports have

been loaded: 

A1. Zeroes vs ones 

A2. Cats vs dogs 
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