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Abstract: Deoxynivalenol is one of the most ubiquitous mycotoxins in the Western diet through
its presence in cereals and cereal products. A vast amount of studies indicate the worrying level
of exposure to this toxin, while even high percentages of the population exceed the tolerable daily
intake. To evaluate and assess dietary exposure, analysis of urinary levels of deoxynivalenol and its
glucuronides has been proposed as a reliable methodology. An indirect preliminary method was used
based on the cleavage of deoxynivalenol glucuronides through the use of enzymes (β-glucuronidase)
and subsequent determination of "total deoxynivalenol" (sum of free and released mycotoxins
by hydrolysis). Next, a direct procedure for quantification of deoxynivalenol-3-glucuronide and
deoxynivalenol-15-glucuronide was developed. As deoxynivalenol glucuronides reference standards
are not commercially available, the indirect method is widely applied. However, to not underestimate
the total deoxynivalenol exposure in urine, the direct and indirect methodologies need to be compared.
Urinary samples (n = 96) with a confirmed presence of deoxynivalenol and/or deoxynivalenol
glucuronides were analysed using both approaches. The indirect method clarified that not all
deoxynivalenol glucuronides were transformed to free deoxynivalenol during enzymatic treatment,
causing an underestimation of total deoxynivalenol. This short communication concludes on the
application of direct or indirect assessment of urinary deoxynivalenol.
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Key Contribution: Indirect method for the determination of total urinary deoxynivalenol does not
convert all glucuronide forms to free deoxynivalenol.

1. Introduction

Deoxynivalenol (DON) is a food contaminant mycotoxin that produces a potent inhibition of protein
synthesis. DON presence causes the pro-inflammatory response, produces ribotoxic stress, cytotoxicity
and apoptosis and ends in the impairment of various physiological functions, such as the gastrointestinal
mucosa, growth, immune regulation and reproduction [1–3]. Furthermore, this mycotoxin has been
associated with acute animal and human gastro-enteritis outbreaks [4]. DON, as all trichothecenes, is
commonly found in cereals and cereal-based products [5,6]; therefore, these foodstuffs are the principal
contributors to chronic dietary exposure to DON and its metabolites [7]. Additionally, recent studies
revealed that the mean attributed chronic dietary exposure exceeds the group tolerable daily intake
(group-TDI) of 1 µg/kg body weight/day in children (including infants and toddlers), and a high exposure
was observed in both adolescents and adults [8]. Additionally, our group recently revealed an association
between chronic DON-exposure and colorectal cancer risk [9], which is in line with the findings of Payros
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et al. [10,11]. These facts point out a potential health concern, although IARC Monographs attributed that
DON has no evidence for carcinogenicity to humans [7,12–14].

To fully unravel exposure to DON, the analysis of DON in urine has been proposed due to its fast
excretion [15]. A few published results revealed that deoxynivalenol glucuronides, which are the main
phase II metabolites of DON, are validated biomarkers in urine, namely deoxynivalenol-3-glucuronide
(DON-3-glucuronide) and deoxynivalenol-15-glucuronide (DON-15-glucuronide) [16]. Approximately 90%
of urinary DON is conjugated with glucuronic acid [15]. To determine the urinary glucuronides, an indirect
method was developed based on the enzymatic hydrolysis of DON glucuronides and subsequent
determination of “total DON” (sum of free and modified mycotoxins by hydrolysis) [17]. Next, a direct
method for quantification of glucuronides (DON-3-glucuronide and DON-15-glucuronide) was described
using in-house synthesized mycotoxin-standards [15]. These analytical advances allowed the scientific
community to observe a high correlation between the sum of urinary DON and its glucuronides [18].
However, the lack of commercial standards for DON-glucuronides further cause limitations to accurately
quantify DON exposure.

Although both methods, direct and indirect, have been used in several publications, the methods
have never been compared to our knowledge. For this reason, the main aim of this study was to analyse
DON, DON-3-glucuronide, DON-15-glucuronide, deoxynivalenol-3-glucoside (DON-3-glucoside),
deepoxy-deoxynivalenol (DOM-1), 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol
(15-ADON) in urinary samples of DON-exposed human volunteers using both methodologies.

2. Results

The detected increase of free DON (from 43% to 71% > LOQ) and concentration
(from 4.18 ± 2.63 nmol of free DON to 23.89 ± 8.61 nmol of free DON) that took place in the urine after
enzymatic treatment was expected (Table 1). During enzymatic treatment, β-glucuronidase converted
DON glucuronide forms into free DON.

Deoxynivalenol glucuronides forms (DON-15-glucuronide and DON-3-glucuronide) had lower
presence when the sample was submitted to enzymatic treatment, especially DON-3-glucuronide
(Table 1). During the analyses, 72.4% and 74.4% of DON-3-glucuronide and DON-15-glucuronide,
respectively, were transformed to free DON. However, enzymatic treatment could not convert all
glucuronide forms to free DON. DON-3-glucuronide was completely removed in 67% of the samples,
but DON-15-glucuronide was only removed in three samples (the three samples had initially <1 nmol of
DON-15-glucuronide). The reduction was larger for DON-3-glucuronide, probably because the initial
concentration of DON-15-glucuronide was four-fold higher than DON-3-glucuronide concentration.
The larger concentration of DON-15-glucuronide was expected, as DON-15-glucuronide is the
predominant DON metabolite in human urine [15]. There was not any statistical difference (p < 0.05)
in total DON presence between the indirect and direct method; however, the average concentration
was lower in the indirect (27.69 ± 26.64 nmol) than in the direct method (37.95 ± 37.21 nmol). After
enzymatic treatment, some DON glucuronides (DON-15-glucuronide or DON-3-glucuronide) were not
converted to DON, so there was an underestimation of the total DON and as a result an underestimation
of the DON-exposure in the urine when samples were only analysed by the indirect method.
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Table 1. Presence (%), mean recoveries ± standard deviation (nmol) and maximum concentration (nmol) of DON and its metabolites (DON-3-glucuronide and
DON-15-glucuronide) in urine samples.

Method
Free DON DON-3-GLUCURONIDE DON-15-GLUCURONIDE Total DON

Presence
(%) *

Mean ± SD
(nmol)

Max.
(nmol)

Presence
(%)

Mean ± SD
(nmol)

Max.
(nmol)

Presence
(%)

Mean ± SD
(nmol)

Max.
(nmol)

Presence
(%)

Mean ± SD
(nmol)

Max.
(nmol)

Direct 43 4.18 ± 2.63 18.23 71 7.51 ± 6.98 74.27 94.0 32.76 ± 30.19 147.86 95.2 37.95 ± 37.21 223.57
Indirect 71 23.89 ± 8.61 44.62 33 2.07 ± 1.67 17.74 92.0 8.38 ± 7.60 42.09 95.2 27.69 ± 26.64 150.56

DON = deoxynivalenol; SD = standard deviation; Max.= maximum concentration; Total DON = deoxynivalenol + deoxynivalenol-3-glucuronide + deoxynivalenol-15-glucuronide; *
Percentage of samples > LOQ.
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DOM-1 traces were found in two samples (<LOQ), and no changes were detected between the
indirect and direct method. The low presence of DOM-1 was expected because it is a residual metabolic
transformation product of DON in human urine [8], and it is a predominant compound in faeces because it is
produced by gastro-intestinal bacteria [19]. Due to the low concentration of DOM-1 in human urine, DOM-1 is
not recommended as a trustworthy urinary biomarker for DON exposure. Six different DOM-1-glucuronides
have been identified in vitro and in vivo studies using humans and animals (deepoxy-DON-15-glucuronide,
deepoxy-DON-3-glucuronide, iso-deepoxy-DON, iso-deepoxy-DON-15-glucuronide, iso-deepoxy-DON-3
-glucuronide and iso-deepoxy-DON-8-glucuronide) [16,20–22], but only deepoxy-DON-15-glucuronide,
deepoxy-DON-3-glucuronide and iso-deepoxy-DON-3-glucuronide were detected in animal urine [20].
Deepoxy-DON-3-glucuronide was considered as a predominant compound in cow urine, so it could be
possible that the ruminant’s gastro intestinal tract leads to an increase of deepoxy-DON forms. In pig
urine, only minor levels of deepoxy-DON-15-glucuronide were verified [20]. So, it is expected that the
deepoxy-DON glucuronides are not predominant in human urine. The enzymatic treatment could cause an
increase of DOM-1 due to the presence of the DOM-1 glucuronide forms, but the possible low concentration
of DOM-1 (<LOQ) made it difficult to identify an increase of DOM-1.

Several publications describe an indirect approach to estimate total DON in urine (Table 2).
Unfortunately, more of these studies analysed DON glucuronides as a comparison. Moreover, every study
used different enzymatic treatment conditions (different enzyme, pH and amount of enzyme). Only one
study compared the direct and indirect methodologies with similar results for both methods: 20.4 ± 2.4 ng
total DON/mL (direct) and 19.5 ± 1.2 ng total DON/mL (indirect) [23]. However, DON glucuronides
were not analysed after the indirect method. Differences regarding the enzyme type were detected [24].
β-glucuronidase from Helix pomatia (Type I) and Escherichia coli (Type IX) showed better performances than
Patella vulgate (Type L-II). The enzyme concentration did not affect the conversion rate; only free DON was
higher (9%) when 10,000 units of β-glucuronidase from Escherichia coli were applied instead of 5000 units.

Table 2. Hydrolysis conditions (pH, temperature, time, type and concentration of the enzyme) and
maximum deoxynivalenol concentration found in human urine in the studies where indirect urinary
deoxynivalenol analysis was performed.

pH Time Enzyme type Enzyme concentration
(units/mL)

Max DON
concentration (ng/mL) Reference

- 18 h Helix pomatia (Type H-2) 6510 67.4 [17]
- Overnight Helix pomatia (Type H-2) 6510 14.2 [25]
- Overnight - 5750 152.6 [26]
- Overnight Helix pomatia (Type H-2) 6510 353.0 [27]

7.4 18 h Escherichia coli (Type IX) 6000 40.0 [28]
7.4 18 h Escherichia coli (Type IX) 6000 19.5 [23]
5.0 18 h Helix pomatia (Type I) 5000/10,000 26.2

[24]7.4 18 h Escherichia coli (Type IX) 5000/10,000 26.2
6.8 18 h Patella vulgate (Type L-II) 5000/10,000 26.2
- - Escherichia coli (Type IX) 5750 116.7 [29]

7.4 18 h - 7000 59.9 [30]
7.4 18 h Escherichia coli (Type IX-A) 4500 7.0 [31]

Overnight - 5750 78.2 [32]
7.4 18 h Escherichia coli (Type IX-A) 5750 28.8 [33]
6.8 18 h Escherichia coli (Type IX-A) 5750 10.5 [34]
7.2 18 h Escherichia coli (Type IX-A) 5750 48.2 [35]
- Overnight Helix pomatia (Type H-2) 6510 72,439.0 [36]

6.8 18 h Escherichia coli (Type IX) 2000 247 [37]
6.8 18 h Escherichia coli (Type IX-A) 23,000 13.8 [38]
6.8 18 h Escherichia coli (Type IX-A) 23,000 140.9 [39]
7.4 Overnight Escherichia coli (Type IX-A) 1750 135.2 [40]
6.8 18 h Escherichia coli (Type IX-A) 23,000 135.0 [41]
5.0 18 h Helix pomatia (Type H-1) 4000 84.1 [42]
5.0 Overnight Helix pomatia 0.044 14.6 [43]
6.8 18 h Escherichia coli (Type IX) 23,000 436.0 [44]
5.0 Overnight Helix pomatia 0.044 1.8 [45]
5.0 Overnight Helix pomatia 0.073 7.2 [46]
- 18 h Helix pomatia (Type H-2) 6510 >20.0 [47]

- Information not present in the manuscript.
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3. Conclusions

During the last decade, more focus has been set towards the assessment of human mycotoxin
exposure through the analysis of biomarkers of exposure. Due to its common presence in cereal
products, DON has been widely analysed in urine, and several publications estimated DON-exposure
through urinary biomarkers. Most of the studies indicated a chronic exposure to DON, and several of
them demonstrated that the population exceeds the TDI (1 µg/kg bw/day) [12,13,17]. To correctly assess
urinary DON, it is imperative to quantify free DON, DON-3-glucuronide and DON-15-glucuronoide,
which are the main DON biomarkers [15]. For this reason, it is crucial to develop a robust quantification
method for these compounds in the urine to correctly assess DON exposure. The no-transformation of
all DON glucuronides to free DON observed in the indirect method could cause an underestimation of
the DON exposure. For this reason, this study suggests the use of the direct method to quantify total
DON in urine because it will permit to achieve the most accurate estimation of total DON presence in
urine. However, the lack of commercial standards for DON glucuronides still provokes difficulties
for quantification.

4. Materials and Methods

4.1. Reagents and Chemicals

The individual mycotoxin solid calibration standards (1 mg) of DON, 3-ADON, 15-ADON,
DOM-1, DON-3-glucoside, isotope-labelled (13C15) deoxynivalenol (13C15-DON) (internal standard)
and β-glucuronidase from Helix pomatia Type H-2 (≥85,000 units/mL) were obtained from Sigma
Aldrich (Bornem, Belgium). The mycotoxin standards were dissolved in methanol (1 mg/mL) and
were stable for a minimum of one year at -18 ◦C [48]. The working solutions of DON, 3-ADON,
15-ADON, DOM-1, DON-3-glucoside and isotope-labelled (13C15) DON were prepared in methanol
and stored at -18 ◦C. DON-3-glucuronide and DON-15-glucuronide were kindly supplied by Dr.
Huybrechts (Sciensano, Tervuren, Belgium). Water was obtained from an Arium® Pro water system
from Sartorius (Brussels, Belgium). Disinfectol® (denatured ethanol with 5% ether) was purchased from
Chem-Lab (Zedelgem, Belgium). Methanol (LC–MS grade) was supplied by BioSolve (Valkenswaard,
the Netherlands), while acetonitrile (Analar Normapur) was purchased from VWR International
(Zaventem, Belgium). Formic acid (98–100%) and acetic acid (glacial, 100%) were obtained from Merck
(Darmstadt, Germany). Anhydrous magnesium sulphate (>99.5%) was purchased from Alfa Aesar
(Haverhill, MA, USA). Sodium chloride (>99.5%) was obtained from VWR Chemicals (Radnor, PA,
USA). Anhydrous magnesium sulphate (>99.5%) was purchased from Alfa Aesar (Haverhill, MA,
USA) and anhydrous sodium chloride (>99%) from VWR Chemicals (Radnor, PA, USA). Phosphate
(PBS) buffer was prepared by dissolving sodium phosphate dibasic and sodium phosphate monobasic
in water.

4.2. Sample Collection

Based on acquired urinary samples from Vidal et al. [15], the presence of DON and DON
metabolites were re-analysed using direct and indirect methodology. Briefly, 20 healthy adults were
used as volunteers to perform the study, including 9 men (45%) and 11 women (55%). The average age
of the volunteers was 32 years, min 18 and max 61 years old. Sixteen volunteers (four volunteers served
as controls) received an oral dose of DON according to the tolerable daily intake (TDI, 1 µg/kg bw/day)
and their body weight. Two days prior to and two days after the mycotoxin administration, participants
had to follow a scrupulous diet that did not have cereals and cereal-based products. All individual
urinary discharges had to be collected during 24 h just after mycotoxin dose intake and stored at −20
◦C until analysis. This intervention study was conducted following the guidelines laid down in the
declaration of Helsinki and the Ethical Committee of the Ghent University Hospital (B670201630414,
approved on 2th February 2017). All individual participants included in this study had to sign an
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informed consent. Ninety-six urine samples with the highest DON and DON metabolites incidence
were selected to perform the current study.

4.3. Enzymatic Treatment

For the hydrolysis experiments, 0.25 mL of PBS buffer (pH 7.4) containing ~ 13,000 U of
β-glucuronidase (corresponding to approximately 6000 units/mL) was added to 2.1 mL of urine.
The samples were incubated overnight at 37 ◦C. Afterwards, they were centrifuged at 5750× g for
10 min, and 2 mL of the supernatant was transferred to another plastic tube. Samples for direct
quantification also received 0.25 mL of PBS buffer without enzymatic presence.

4.4. Sample Preparation and Targeted LC–MS/MS Analysis

Ten microliters of internal standard was added to 2 mL of pre-treated urine sample and 18 mL of
acetonitrile/water/formic acid (52/45/3, v/v/v) and finally 4 g of anhydrous magnesium sulphate and
1 g of sodium. After addition, the sample was forcefully shaken by hand. Later, the samples were
collocated on an agitator decanter overhead shaker for 30 min (Agitelec, J. Toulemonde & Cie., Paris,
France) and then centrifuged at 4000× g for 6 min.

To 18 mL of acetonitrile/water/formic acid (52/45/3, v/v/v), 2 mL of the pre-treated urine sample
was added in combination with 10 µL of internal standard, 4 g of anhydrous magnesium sulphate and
1 g of sodium chloride. After addition, the sample was vigorously shaken by hand. Then, the samples
were placed on an agitator decanter overhead shaker for 30 min (Agitelec, J. Toulemonde & Cie.,
Paris, France) and centrifuged at 4000× g for 6 min. Seven milliliters of the upper layer (non-polar
fraction) was evaporated to dryness using a gentle nitrogen stream at 40 ◦C. To finish, the residue was
redissolved in 250 µL injection solvent (methanol/water, 10/90, v/v).

The urine samples were analysed using a LC–MS/MS (Waters Acquity UPLC system coupled
to a Quattro XEVO TQS mass spectrometer). Data acquisition and processing were performed with
MassLynx™ version 4.1 and QuanLynx® version 4.1 software (Waters, Manchester, UK). A column
Waters Acquity UPLC® HSS T3 (2.1 × 100 mm, 1.8 µm) was used (Waters, Manchester, UK). Two
mobile phases were applied for the analysis. The two mobile phases were water/acetic acid (99.9/0.1,
v/v (A)) and methanol/acetic acid (99.9/0.1, v/v (B)). The gradient program started at 99% mobile phase
A. After an isocratic phase for 0.5 min at initial conditions, mobile phase B increased to 45% in 6
min. Then, a plateau phase for 1.5 min was enhanced with 99% mobile phase B. An equilibration
step of 1.5 min was introduced, resulting in a total run time of 9 min. The flow rate was set at 0.4
mL/min. Positive and negative electrospray ionisation modes (ESI+/ESI-) were set off in the mass
spectrometer. The capillary voltage was 30 kV, and nitrogen was applied as spray gas. The source
and desolvation temperatures were set at 150 ◦C and 200 ◦C, respectively. The argon collision gas
pressure was 9 × 10−6 bar, the cone gas flow 50 L/h and the desolvation gas flow 500 L/h. Two selected
product ions with a specific dwell-time were optimized for each analyte, in order to increase the
sensitivity and the selectivity of the mass spectrometric conditions (Table 3). DON-3-glucuronide
and DON-15-glucuronide had the same MS/MS transitions and exactly the same case for 3-ADON
and 15-ADON. The used LC–MS/MS method was validated [15] based on the European Commission
Decision 2002/657/EC laying down the rules for the analytical methods to be used in the testing of
official samples [49].
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Table 3. ESI–MS/MS parameters used for the analysis of deoxynivalenol (DON), deoxynivalenol-3-
glucoside (DON-3-glucoside), deoxynivalenol-3-glucuronide/deoxynivalenol-15-glucuronide (DON-3-
glucuronide/DON-15-glucuronide), 3-acetyldeoxynivalenol/15-acetyldeoxynivalenol (3-ADON/

15ADON), de-epoxy-deoxynivalenol (DOM-1) and isotope-labelled (13C15) deoxynivalenol (13C15 DON)
in urine and the respective limits of detection and quantification.

Mycotoxin
Precursor

ion
(m/z)

Product
ions a

(m/z)

CE a,b

(eV)
CV c

(V)

Retention
time
(min)

LOD d

(ng/mL)
LOQ e

(ng/mL)

DON 297.0 249.0/231.0 9/9 40 3.99 0.2 0.4
DON-3-glucoside 459.1 168.1/132.0 10/9 15 3.90 0.3 0.6

DON-3-glucuronide/
DON-15-glucuronide 471.0 113.0/193.0 30/24 60 3.65/3.78 0.5 1.0

3-ADON/15-ADON 339.0 231.0/203.1 15/9 15 5.69 0.1 0.2
DOM-1 281.1 215.1/233.1 9/9 40 4.83 0.6 1.2

13C15 DON 311.9 262.9/130.5 10/10 30 3.99
a Values are given as quantifier ion/qualifier ion; b CE: collision energy; c CV: cone voltage; d LOD: limit of detection;
e LOQ: limit of quantification.

4.5. Calculations

All obtained results were carried out on molar basis taking the molecular weight of the analytes
(DON, 296 g/mol and DON-3-glucuronide and DON-15-glucuronide, 472 g/mol) and the total urinary
volume of each sampling point into account. The statistical analysis was performed using the software
Microsoft Excel® 2016 and SPSS® 23.0.
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