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A B S T R A C T   

Emission of N2O represents an increasing concern in wastewater treatment, in particular for its large contribution 
to the plant’s carbon footprint (CFP). In view of the potential introduction of more stringent regulations 
regarding wastewater treatment plants’ CFP, there is a growing need for advanced monitoring with online 
implementation of mitigation strategies for N2O emissions. Mechanistic kinetic modelling in full-scale applica
tions, are often represented by a very detailed representation of the biological mechanisms resulting in an 
elevated uncertainty on the many parameters used while limited by a poor representation of hydrodynamics. 
This is particularly true for current N2O kinetic models. In this paper, a possible full-scale implementation of a 
data mining approach linking plant-specific dynamics to N2O production is proposed. A data mining approach 
was tested on full-scale data along with different clustering techniques to identify process criticalities. The al
gorithm was designed to provide an applicable solution for full-scale plants’ control logics aimed at online N2O 
emission mitigation. Results show the ability of the algorithm to isolate specific N2O emission pathways, and 
highlight possible solutions towards emission control.   

1. Introduction 

Wastewater treatment processes (WWTPs) can be considered to 
contribute to global warming in different ways and one of the most 
effective can be the emission of N2O (inter alia: Law et al., 2012b; 
Kampschreur et al., 2009). At a global level, N2O is a greenhouse (298 
times more potent than CO2) and ozone depleting gas of major concern 
(IPCC, 2013; Ravishankara et al., 2009) and the emissions from the 
wastewater treatment sector account for about 3% of global anthropo
genic emissions (IPCC, 2014). Efforts were concentrated in under
standing the specific bio-chemical processes responsible for N2O 
production (Schreiber et al., 2012) and the WWTP design and opera
tional factors impacting its emission (Daelman et al., 2013; Kamps
chreur et al., 2009; Monteith et al., 2005). 

Measurements on full-scale WWTPs showed that N2O emissions can 
represent more than 78% of a WWTP’s carbon footprint (CFP) (Daelman 
et al., 2015). In addition to this, literature studies show the emission of 
up to 7% of the influent nitrogen load in the form N2O (Kampschreur 

et al., 2008). However, the fraction of influent N that is emitted as N2O 
shows important variations among plants (Kampschreur et al., 2008; 
Mampaey et al., 2013). 

Considerable efforts have been put into modelling the ammonium 
oxidizing bacteria (AOB) pathways known to be responsible for N2O 
production (i.e. AOB denitrification and incomplete NH2OH oxidation) 
either with a single-pathway solution (Law et al., 2012a; Mampaey 
et al., 2013) or considering both AOB pathways (Ni et al., 2014). 
However, given the heterogeneity of WWTP process conditions, the 
potential variability of N2O emissions, and the diversity of available 
models, consensus on model selection, dominant pathways and their 
implementation is yet to be reached. 

At present, most advanced WWTPs have the availability of a large 
amount of data from sensors scattered over the plant, which is largely 
underexploited. Modern small WWTPs generate up to 500 signals, 
whereas larger ones typically register over 30 k signals (Olsson et al., 
2014). These data are, in some sense, lost in most of the cases, as they are 
stored in databases and not transformed into actionable knowledge for 
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system optimization. As a result, the investments made for these sensors 
is only marginally payed back. Resources are thus dissipated on 
installing and maintaining on-line sensors without making proper use of 
potentially hidden information. Sub-optimal operation of WWTPs is still 
the norm rather than the exception (Villez et al., 2016). 

In the literature several applications of data mining tools to waste
water treatment for process understanding, monitoring (fault detection), 
and control of industrial processes such as wastewater treatment are 
reported (Gernaey et al., 2004). Clustering techniques have been applied 
to characterize industrial wastewaters (Dürrenmatt and Gujer, 2011), 
while Pareto efficiency algorithms have been proven to be effective in 
defining the optimal sensor placement (Villez et al., 2016). Several 
variants of Principal Component Analysis (PCA) have been proven to be 
effective in the control of different aspects of sequencing batch reactors 
(SBRs) (Villez et al., 2008). However, to the best of the authors’ 
knowledge, there is neither research nor applications of a data mining 
technique for N2O production monitoring in WWTPs yet. 

In this work, we propose a practical application of PCA coupled with 
clustering techniques aimed at providing a realistic solution for online 
implementation of N2O emission monitoring and control. Results show 
that WWTP’s historical data can be used to train a monitoring tool 
describing full-scale N2O production. The variables that are normally 
measured on a full-scale can be used for full-scale N2O minimization. 

2. Materials and methods 

2.1. Full-scale data 

A one-month long dataset from one of the biological reactors of the 
WWTP of Eindhoven (The Netherlands) was used to identify potential 
clues related to the emissions of N2O from this treatment step. The 
dataset, with a frequency ranging from 1 to 15 min, was collected during 
an extensive field measurement campaign. Data from the supervisory 
control and data acquisition (SCADA) system at the WWTP of Eind
hoven, and N2O concentrations measured in the liquid, were used to 
unravel possible relations among variables that are normally measured 
in WWTPs and N2O liquid concentrations. The variables monitored from 
the SCADA system were NH4, NOx, dissolved oxygen (DO) and airflow 
(Qair), while concentrations of N2O in the liquid phase were measured by 
means of two full-scale probes (Unisense Environment, Denmark) 
located at the beginning and the end of the summer aeration package 
(Fig. 1). 

The sensors of NH4, NOx, DO and the N2O sensor 2, were located 
reasonably close to one another, whereas N2O sensor 1 was located 
about 70 m upstream, at the beginning of the aeration compartment. 
This ensured a high resolution of information at the end of the aeration 
compartment and, at the same time, a monitoring location for the N2O 
concentration entering the aerated zone. 

2.2. Data preparation 

Pre-processing of the dataset is important in order to provide good 
quality and validated input data, free of potential biases for the 
following data mining steps. However, to ease its practical imple
mentation in full-scale, data preparation needs to be kept minimal and 
robustly applicable to a large amount of data for a given WWTP. In this 
work, it was decided to use the information contained in the entire 
dataset to build a representative daily pattern for each variable. 

After a first cleaning step with a moving average, all variables were 
grouped for each quarter of an hour contained in a day. Thus, extracting 
the ith percentile, allowed to build a distribution for each time step over 
the whole month. The best performing percentile for our purpose was 
observed to be the 70th, which returned a close representation of a 
typical daily pattern for every variable. The use of higher percentiles 
than the 70th, results in important data losses as the time series vari
ability sensibly decreases. On the other hand, using smaller percentiles 
than the 70th, favoured the appearance of less frequent daily dynamics 
and emphasised noise. 

Finally, a Kaiser-Meyer-Olkin (KMO) test was run to ensure suit
ability of the data for the application of PCA. 

2.3. Data reduction 

PCA is a multivariate statistical method for data mining and is often 
used for process understanding, monitoring (fault detection), and con
trol of industrial processes such as WWTPs (Gernaey et al., 2004; Villez 
et al., 2008). The principle of PCA is to reduce the amount of informa
tion available to a smaller number of variables, or principal components 
(PCs), capable of explaining most of the variance of the dataset. In this 
way, it is possible to unravel hidden dependencies among known key 
variables. 

A set of variables describing a certain process can be represented by a 
two dimensional matrix Z composed of N samples and M variables 
(NxM) (Equation (1). 

X¼

2

6
6
6
6
6
6
4

x1;1 x1;2 … z1;j … x1;M
x2;1 x2;2 … x2;j … x2;M
⋮ ⋮ ⋮ ⋮

xi;1 xi;2 … xi;j … xi;M
⋮ ⋮ ⋮ ⋮

xN;1 xN;2 … x:N;j … xN;M

3

7
7
7
7
7
7
5

(1) 

By calculating the scatter matrix (Equation (2) of this dataset, or the 
covariance matrix (Equation (3) of the standardized data ~X, it is possible 
to generate a newly referred dataset expressed by a new set of variables 
which are linear combinations of the original variables (Equation (4). 

S ¼
XN

1

�
xj � x

��
xj � x

�T (2)  

X
¼ covð~XÞ ¼

~XT ⋅~X
N

(3) 

Of this new set of variables, the coefficients are the principal com
ponents, i.e. the new reference system is defined. 

ti;1 ¼ ~Xi;:⋅p:;1 ¼ ~xi;1⋅p1;1 þ ~xi;2⋅p2;1 þ…þ ~xi;2⋅pM;1

ti;2 ¼ ~Xi;:⋅p:;2 ¼ ~xi;1⋅p1;2 þ ~xi;2⋅p2;2 þ…þ ~xi;2⋅pM;2

ti;C ¼ ~Xi;:⋅p:;C ¼ ~xi;1⋅p1;C þ ~xi;2⋅p2;C þ…þ ~xi;2⋅pM;C

(4) 

An interesting property of the p:;c vectors is that they are the eigen
vectors of the covariance matrix S and the corresponding eigenvalues λc 
(Equation (5) are equal to the variance of the corresponding linear 
combinations (Johnson and Wichern, 1992). 

λc¼ varðt:;cÞ ¼ var
�
p:;c ⋅ ~X

�
(5) 

Thus, by sorting the eigenvectors according to their eigenvalues and 

Fig. 1. Sensors location in the outer ring of the bioreactor of Eindhoven.  
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selecting the first c of them, one has exactly determined the order of the 
PCs. Another important characteristic of the eigenvalues is that the 
relative variance (RV) captured by the cth component can be expressed 
as in (Equation (6): 

RV ¼
varðt:;cÞ

trðSÞ
¼

λc
PmaxðM;NÞ

b¼1 λb
(6) 

The equation can be explained as the proportional amount of vari
ance captured by the cth PC, and is equal to the ratio of its corresponding 
eigenvalue to the sum of all eigenvalues (Johnson and Wichern, 1992). 
The relative cumulative variance (RCV) of all components is the sum of 
the relative variances of each component (Equation (7). 

RCV ¼
PC

c¼1varðt:;cÞ
trðSÞ

¼
λb

PmaxðM;NÞ
b¼1 λb

(7) 

Once the PCs are identified there are different methods used for data 
reduction, but the common target is to capture a maximal amount of 
variance with a minimum number of dimensions. It is generally rec
ommended to select the number of PCs explaining at least 70% of the 
variance of the original dataset (Villez et al., 2008). 

2.4. Clustering 

Most commonly applied clustering techniques are based on two 
popular methods, i.e. the iterative square-error partitional clustering 
and the agglomerative hierarchical clustering. Clustering algorithms in 
literature can generally be classified into two types: hierarchical clus
tering and partitional clustering. Hierarchical clustering methods 
include agglomerative algorithms and are more efficient in handling 
noise and outliers than partitional algorithms. On the other hand, par
titional clustering admit relocation of points from a different cluster thus 
allowing to correct initial partitions in later stages. 

In addition to hierarchical and partitional clustering, a large number 
of methods are available from the literature (Han and Kamber, 2001). 
One example among the most implemented solutions alternative to hi
erarchical and partitional clustering, is the density-based clustering. 
This method groups a dataset based on specific criterion of the density 
functions, defining density as the number of objects in a particular 
neighborhood of a dataset. 

Three clustering techniques were chosen to be applied to the results 
of this work, being among the most widely accepted by the scientific 
community (Pedregosa et al., 2011), in order to evaluate the capabilities 
of grouping relevant information isolated by the PCs. In particular, 
K-means and the agglomerative clustering are two well-known algo
rithms already tested in wastewater treatment (Dürrenmatt and Gujer, 
2011; L�opez Garcıá and Mach�on Gonz�alez, 2004), while, to the author’s 
best knowledge, recent improvements of density based clustering 
methods, i.e. hierarchical methods, have never been used in wastewater 
treatment applications. 

2.4.1. K-means 
The K-means algorithm has been traditionally used as a non- 

hierarchical method for the analysis of the data prior to more rigorous 
methods such as hierarchical methods or PCA. K-means normally di
vides the dataset in a number of pre-defined clusters (K) and, as a result 
of the Ward’s method, iteratively minimizes the sum of squared errors 
within the cluster. For doing so, at the ith iteration each point x is 
assigned to a cluster based on the following relation. 

x2 cjðkÞ ​ if ​ x � zjðkÞ < ​ x � ziðkÞ (8)  

With cjðkÞ the set of samples with center zjðkÞ. At this point, the sum of 
squared distances for all points belonging to the new cluster center is 
minimized with the sample mean of cjðkÞ (inter alia: Han and Kamber, 
2001). 

2.4.2. Agglomerative 
This algorithm uses a bottom-up approach, therefore starting with 

each sample being a separate cluster itself. Successively, groups are 
merged according to a distance measure, similarly to the K-means case, 
this is done minimizing the sum of squared differences between two 
clusters (Ward’s method) or using the maximum distances between all 
observations of the different sets (maximum linkage method), but 
tackling the objective with a hierarchical approach. This recursively 
merges the pair of clusters that minimally increase a given linkage dis
tance (Murtagh and Legendre, 2014). The classification may stop when 
all samples are in a single group or when the required number of clusters 
is reached. Nonetheless, with this method the statistical distance be
tween each cluster can be visualized. 

2.4.3. HDBSCAN 
Campello et al. (2013), demonstrated that extending the original 

density based method (DBSCAN) with a hierarchical clustering algo
rithm, it was possible to achieve an improved application of the 
DBSCAN. This is one of the latest developments in clustering algorithms 
providing improvements in the results of a wide variety of data (McInnes 
et al., 2017; Melvin et al., 2016). HDBSCAN has been observed to be 
useful for determining a system’s stability by grouping stable systems in 
few bins (Melvin et al., 2016). In this work, HDBSCAN is considered for 
classification of the PCA output given its exceptional results reported in 
the literature. 

3. Results and discussion 

Fig. 2 shows the time series of the variables acquired from the WWTP 
of Eindhoven for this study. It is noticeable how the peaks in N2O con
centration in the liquid phase (and therefore its actual production) 
correspond to peaks in NH4, however, the contrary cannot be stated. The 
production of N2O is in fact related to multiple interchanging factors and 
therefore qualifies as a multivariate problem. 

The N2O sensor 1 (Fig. 2, top graph), located at the beginning of the 
aerated compartment and the first sensor according to the flow direc
tion, always shows a higher concentrations compared to the N2O sensor 
2. This is mostly due to the stripping effect of the aeration package, but 
the high concentration of N2O at the end of the anoxic zone confirms its 
production prior to entering the aerobic zone. 

Given the relevant concentrations observed by the N2O sensor 2 
about 70 m downstream at the end of the aerated compartment despite 
stripping effect by diffused aeration, it can be stated that N2O production 
also occurs within the aerated zone. This means that multiple pathways 
of N2O production occur in the different zones of a biological tank. The 
concentrations recorded by the N2O sensor 1 are most likely caused by 
the activity of AOB in DO limiting conditions, while the signal recorded 

Fig. 2. Dataset of an entire month for a bioreactor of the WWTP of Eindhoven.  
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by the N2O sensor 2, given the non-limiting levels of DO also during N2O 
peaks, are most likely to be caused by autotrophic NH2OH oxidation. In 
this view, another relevant element is the NO2 concentration, reported 
here together with NO3 as NOx, which is strongly influencing the N2O 
production (Peng et al., 2015). 

Also included in this dataset is Qair supplied as m3/h over the aera
tion package surface (Fig. 2, bottom). Qair is obviously strongly linked 
primarily with DO, and then with NH4, given that the aeration control is 
primarily based on the NH4 concentration in the tank. 

These variables potentially contain most of the information required 
to develop a monitoring tool for N2O aimed at minimizing its emission. 

The dataset reported in Fig. 2 contains high quality data in terms of 
time frequency and sensor status. This is not common for a general 
WWTPs data stream since periods of missing data for maintenance or 
failures of probes are rather frequent. The dataset shows a period of 
regular operation of the plant, good data quality of the sensors without 
major failures (only exception between 24 and 25th September), and 
was acquired during a month of good performance in dry weather. This 
represents a good example of training dataset for the application of a 
data mining technique. 

3.1. Pre-processing 

A generally applicable smoothing function including a moving 
average and the extraction of the 70th percentile from the time-wise 
distribution was implemented. This approach was observed to remove 
outliers and those variabilities in the dataset having higher frequency 
than the plant’s biological dynamics which are interesting for the study. 
The resulting dataset was composed of representative data describing a 
characteristic day for each of the variables (Fig. 3). 

A KMO test on the resulting daily pattern, returned a score of 0.53, 
just coping with the minimum acceptable requirements (Kaiser, 1974) 
for the application of the PCA. On the other hand, despite the high 
volume of data, the KMO scored 0.41 on the raw dataset, confirming its 
unsuitability for direct PCA application without preprocessing. 

By definition, the 70th percentile of a distribution returns the value 
below which can be found 70% of the observations. This eliminates the 
most infrequent absolute daily peaks and valleys, but leaves the general 
daily pattern of the dataset and its internal variability. This is the reason 
why the relative concentrations of NH4, NOx and DO in Fig. 3 are 
somewhat higher than one would normally expect in a correctly 
managed bioreactor, i.e. concentrations of NOx and NH4 peak above 8 
and 2 mg/L. In this way, treating all variables the same, means main
taining the intrinsic information of a daily pattern for all variables even 
though relative values are slightly higher than in reality. However, this 
raises no concern in terms of the application of the PCA since this 
technique uses the correlation matrix (or the scatter matrix) to derive 
relations between standardized variables and therefore is not affected by 
the relative value of a variable. 

3.2. Application of the Principal Component Analysis 

All variables were fed to the PCA except for N2O measurements. In 
this way, the information contained in those variables can be effectively 
tested for its capability of describing N2O production. 

The first two PCs were selected as they explained more than 90% of 
the variance of the entire dataset (i.e. the first, second, and third PC 
explained 68%, 23%, and 9% of the total variance respectively). 
Therefore, two PCs can be considered to describe most of the variability 
of the original variables. 

The results of the first two PCs are reported in Fig. 4. It is interesting 
to notice that two main groups of data points can be already distin
guished at the positive and negative sides of the x axis. The measure
ments of the liquid concentrations of N2O were used to color the data 
points according to the concentration measured, so to ease the visuali
zation of highly emitting clusters. The left graph reports the values of the 
PCs colored according to the N2O sensor 1, while the data points in the 
right graph were colored according to the concentration measured by 
the N2O sensor 2. 

The red vectors reported on the scatterplot indicate the degree of 

Figs. 3. 15 min 70th percentile of the raw dataset. This represents a typical daily 24 h pattern of the WWTP dynamics, and is the input of the PCA.  
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correlation (variance explained) by a certain PC with respect to each 
original variable. PC1 is more correlated with Qair and DO while PC2 
describes the behavior of the nitrogen species. A small correlation of PC1 
with NH4 and NOx was expectable, given the effect of DO on the nitrogen 
transformation, as well as the small correlation between Qair and PC2 in 
the direction of NH4, as a result of the NH4 based control. Finally, it is 
important to mention that in the direction of each vector the values of 
the respective variable increase, hence, the expectable opposite di
rections of NH4 and NOx. The vicinity of the vectors relative to Qair and 
DO suggests that they bring very similar information to the results. 

Both N2O sensors’ highest concentrations are mostly clustered on the 
positive side of PC1, indicating that Qair, and ultimately DO, has a high 
impact on N2O production. However, the cluster forming for both graphs 
in Fig. 4 at the negative side of PC2 indicates that NOx has also a strong 
importance on N2O formation. These two groups of data are already 
suggesting two main types of pathways possible for N2O production. 
Interestingly, the N2O sensor 2, being physically closer to the rest of the 
sensors in the tank considered for the PCA, is returning a better defined 
separation between high and low N2O concentrations (Fig. 4, right). 

The two groups of data points identifiable for high N2O concentra
tions, can be interpreted as the interchange of the two main pathways 
already observed to be occurring in this plant (Bellandi et al., 2018; 
Porro et al., 2017), i.e. AOB denitrification and incomplete NH2OH 
oxidation pathways. The data grouping close to the tip of the DO and 
Qair vectors are related to the highest DO concentrations observed in the 
time series, and therefore most likely to be linked to the incomplete 
NH2OH oxidation pathway. 

The data grouping close to the tip of the NOx axis and closer to the 
zero of PC1, are more likely to correspond to high NO2 concentrations as 
NO2 is also inherently linked to DO (Peng et al., 2015) since lower DO 
concentrations can lead to higher NO2 concentrations due to the dif
ference in oxygen half-saturation index between AOB and NOB (Hanaki 
et al., 1990; Mota et al., 2005). This suggests a possible AOB preference 
of NO2 as the electron acceptor over DO (Bock et al., 1995; Kampschreur 
et al., 2009) and the production of N2O due to AOB denitrification. In 
addition to this, since red dots of N2O sensor 2 reach to the negative side 
of PC2, this can correspond to more limiting DO concentrations associ
ated with the AOB denitrification pathway. 

3.3. Clustering 

In view of applying the PCA results on a full-scale control, a clus
tering technique is necessary for automating the recognition of the 
different N2O production pathways. The three clustering methods 
introduced were applied to the PCA results with the aim of recognizing 
the different clusters in terms of N2O formation and possibly extract 
more information. 

The different clusters are colored differently to distinguish the 
different groups. Colors are not specific of a single cluster. 

3.3.1. K-means 
The main input of the K-means clustering method is the number of 

clusters. The minimum number of interesting groups for the purpose of 
this study is 3 if we focus on the recognition of the two main N2O pro
duction pathways (i.e. AOB denitrification and incomplete NH2OH 
oxidation) and the zone of low N2O production. A number of 4 clusters 
was also used to further test the algorithm. 

Initializing K-means with 3 clusters (Fig. 5, left), it is interesting to 
see how the resulting clusters at equilibrium are already nicely divided 
among the groups previously indicated, corroborating with the initial 
interpretation of the raw PCA results. However, the points closer to the 
NH4 vector should not belong to the cluster of high emissions for 
incomplete NH2OH oxidation. The cluster relative to AOB denitrifica
tion is instead rather well defined, including also one of the points in the 
negative side of PC1 known to have elevated N2O concentration. 

When 4 clusters were used for initialization (Fig. 5, right), the 
resulting cluster responsible for N2O formation due to incomplete 
NH2OH oxidation was defined better than in the previous case, although 
some of the points close to the NH4 vector are still included. The cluster 
attributable to AOB denitrification remains the same, while the low 
emission cluster, closer to the PC2 axis is divided in two as expected 
from the need of dividing the space in 4. 

3.3.2. Agglomerative 
Using the Ward’s method, four clusters were needed for initialization 

in order for the algorithm to distinguish the two groups of data known to 
describe the two main N2O production pathways, i.e. AOB denitrifica
tion and incomplete NH2OH oxidation (Fig. 6, left). Without the 
initialization of the algorithm to target four final clusters, it was not 
possible to achieve this distinction. This resulted also in the division in 
two clusters of the group of data linked to small N2O concentrations in 
the same fashion as for the K-means method. 

Initializing the agglomerative clustering to target 3 clusters with the 
maximum linkage method for the iterated merging of initial clusters, the 
algorithm isolated all three main groups of data, i.e. the AOB denitrifi
cation, the incomplete NH2OH oxidation and the area of low N2O pro
duction (Fig. 6, right). 

The Ward’s algorithm performed better in terms of time, taking only 
1/3 of the time needed for the maximum linkage method. The difference 
in time is probably due to the fact that the Ward’s method was able stop 
one iteration earlier (ending with 4 clusters instead of 3). However, 
although each algorithm performs in the order of few milliseconds, in 
terms of efficiency for future implementation this can be a useful se
lection criterion to choose between the algorithms. 

Fig. 4. Scatterplot of the first two PCs labeled according to the N2O concentrations in the liquid of sensor 1 (left) located at the beginning of the aeration 
compartment and sensor 2 (right) located at the end of the aeration compartment. 
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Interestingly, for both merging algorithms, the data points close to 
the NH4 vector are correctly grouped with the cluster of data relative to 
low N2O concentration, corroborating with the results discussed in the 
PCA section. However, few data points corresponding to the negative 
part of PCs and characterized with a rather high N2O concentration by 
the N2O sensors, were included in the low N2O concentration cluster by 
both algorithms. Finally, the two clusters relative to high N2O concen
trations coincide for the two methods. 

3.3.3. HDBSCAN 
This clustering method, distinct from the former ones, requires as 

input the minimum number of points to be considered as a cluster. With 
this feature, the HDBSCAN output can also consider the existence of data 
points not belonging to any of the clusters (reported in black). 

With a minimum cluster size of 4 data points (Fig. 7, left) the 
HDBSCAN distinguishes between the two clusters of known high N2O 
concentration. Interestingly, between these two clusters there are two 
black data points not belonging to either of the clusters. This is an 

interesting result since it allows for the existence of points of transition 
between one cluster and another. However, the data points close to the 
NH4 vector, known to belong to low N2O concentrations or at least ex
pected to be classified in a transition zone, are instead grouped with the 
high N2O concentration due to the incomplete NH2OH oxidation 
pathway. 

In the negative part of both PC1 and PC2, the high N2O concentration 
cluster linked to AOB denitrification, and the rest of the clusters close to 
the PC2 axis, are divided by three black data points that the previous 
clustering methods grouped uncertainly. In fact, these three data points 
seem to lay in a transition zone that only the HDBSCAN is able to detect. 

The low N2O concentration zone, in the negative side of PC1, is 
divided into four clusters (Fig. 7, left). Although this subdivision is 
allowed by the minimum cluster size, no physical meaning could be 
found for these different clusters. This granularity of clusters in this part 
of the graph disappears when increasing the minimum cluster size to 9 
(Fig. 7, right). 

Increasing the minimum cluster size to 9 (Fig. 7, right), sensibly 
decreases the number of clusters on the left part of the plot (corre
sponding to the lowest concentrations of N2O) while maintaining the 
two clusters relative to high N2O concentration (center and right of 
PC1). Interestingly, the points close to the NH4 vector are still classified 
within the cluster of high N2O concentration due to incomplete NH2OH 
oxidation, but more data points were addressed (in black) to the tran
sitional points. Therefore, this initialization performed slightly better 
than the minimum cluster size of 4. 

3.4. Overall evaluation 

All clustering methods were able to recognize differences among 
those clusters generated by the two PCs resulting from the application of 
the PCA. The K-means method could sufficiently isolate the main clus
ters known to be linked to specific N2O production pathways. However, 

Fig. 5. K-Means with 3 clusters (left) and 4 clusters (right). Colors are randomly assigned only to distinguish clusters.  

Fig. 6. Agglomerative clustering with Ward’s (left) and maximum linkage 
(right) methods. Colors are randomly assigned only to distinguish clusters. 

Fig. 7. HDBSCAN with minimum clusters size 4 (left) and minimum clusters size 9 (right). Colors are randomly assigned only to distinguish clusters. In black the data 
points not attributed to any cluster. 
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some imprecisions in the classification of data points close to the edge of 
two neighboring clusters were observed. In this view, the agglomerative 
method was able to identify with more precision those data points that 
were erroneously addressed by K-means to the clusters of higher emis
sion. On the other hand, the HDBSCAN method does not coerce the 
attribution of boundary data points to a cluster and allows to consider 
the existence of transitional zones. This is an important point in moni
toring full-scale WWTPs as conditions in AS tanks are highly dynamic 
and transitions from one state to another are continuously happening. 

For an online application, based on their good performances, at the 
moment both the agglomerative method and the HDBSCAN are equally 
applicable. For discriminating between one method or the other would 
need more testing. 

For a practical online application, the clustering method chosen, 
could be initially integrated in a supervisory system to alert operators on 
the possibility of an important N2O production. Based on the PCA model 
built with the training dataset, the online data stream can be projected 
on the PCs space, thus, potentially revealing in which of the clusters 
related to N2O production the system is. Based on the cluster, specific 
instructions can be proposed. For instance, in the case that the system 
would be directing to the cluster responsible for N2O production due to 
incomplete NH2OH oxidation, the operator could evaluate the option of 
reducing the DO, thus limiting this reaction. On the other hand, if the 
system would reveal to be shifting towards the cluster responsible for 
N2O production due to AOB denitrification, the operator could be 
prompted to evaluate the possibility of increasing the DO concentration. 
Simple instructions or suggestions deriving from a thorough analysis of 
WWTP data in real time. 

4. Conclusions 

PCA was applied to a dataset of the WWTP of Eindhoven for 
detecting a possible relation between variables known to be highly 
related to N2O production. A PCA model was defined after a small pre- 
processing step defining the most typical behavior observed in one 
entire month for all variables. The PCA model could separate the two 
main N2O production pathways by using two PCs. The results show that 
the two PCs could isolate the main known relations between N2O pro
duction and plant operation. Both the AOB denitrification and the 
incomplete NH2OH oxidation N2O production pathways were nicely 
identifiable. 

In view of applying these results to full-scale, three clustering 
methods were tested for automating the identification of the different 
regions of the PCA scatterplot. The K-means method could sufficiently 
separate between the two main N2O production pathways, although 
some of the edges of the clusters included data points that could be 
questionable. Both the HDBSCAN and the agglomerative methods suc
cessfully differentiated between the two N2O production pathways 
excluding irrelevant points that were difficult to detect. 

Results confirm the potential for defining a new monitoring system 
for N2O emissions based on historical plant data. Operators could be 
provided with important information deriving from a thorough analysis 
of the AS tank, this in view of a full integration in a SCADA system. 
Future implementations should consider the introduction of MPCA to 
increase the informative content of the original dataset and limit the loss 
of information in the pre-processing step. 
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