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Shallow whole-genome sequencing of
plasma cell-free DNA accurately
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Abstract

Background: Accurate lung cancer classification is crucial to guide therapeutic decisions. However, histological
subtyping by pathologists requires tumor tissue—a necessity that is often intrinsically associated with procedural
difficulties. The analysis of circulating tumor DNA present in minimal-invasive blood samples, referred to as liquid
biopsies, could therefore emerge as an attractive alternative.

Methods: Concerning adenocarcinoma, squamous cell carcinoma, and small cell carcinoma, our proof of concept
study investigates the potential of liquid biopsy-derived copy number alterations, derived from single-end shallow
whole-genome sequencing (coverage 0.1–0.5×), across 51 advanced stage lung cancer patients.

Results: Genomic abnormality testing reveals anomalies in 86.3% of the liquid biopsies (16/20 for adenocarcinoma,
13/16 for squamous cell, and 15/15 for small cell carcinoma). We demonstrate that copy number profiles from
formalin-fixed paraffin-embedded tumor biopsies are well represented by their liquid equivalent. This is especially
valid within the small cell carcinoma group, where paired profiles have an average Pearson correlation of 0.86 (95%
CI 0.79–0.93). A predictive model trained with public data, derived from 843 tissue biopsies, shows that liquid
biopsies exhibit multiple deviations that reflect histological classification. Most notably, distinguishing small from
non-small cell lung cancer is characterized by an area under the curve of 0.98 during receiver operating
characteristic analysis. Additionally, we investigated how deeper paired-end sequencing, which will eventually
become feasible for routine diagnosis, empowers tumor read enrichment by insert size filtering: for all of the 29
resequenced liquid biopsies, the tumor fraction could be increased in silico, thereby “rescuing” three out of five
cases with previously undetectable alterations.
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Conclusions: Copy number profiling of cell-free DNA enables histological classification. Since shallow whole-
genome sequencing is inexpensive and often fully operational at routine molecular laboratories, this finding has
current diagnostic potential, especially for patients with lesions that are difficult to reach.

Keywords: Lung cancer, Liquid biopsy, Cell-free DNA, Shallow whole-genome sequencing, Copy number
alterations, Histological classification

Background
Despite research and development at unrivaled pace,
lung cancer remains the most dominant cause of cancer-
related deaths worldwide [1]. With time, the disease’s
overall 5-year survival rate did however increase, mainly
due to the expanding pool of diverse treatment [2]. In
order to administer the most appropriate therapy, accur-
ate histological classification is essential to guide individ-
ual decisions.
The subcategorization of non-small cell lung cancer

(NSCLC), representing approximately 85% of all lung
cancers, in inter alia adenocarcinoma (LUAD) and squa-
mous cell carcinoma (LUSC), has long been clinically
relevant, especially for targeted therapy [3]. For chemo-
therapy, likewise, the therapeutic agent pemetrexed, for
example, proves to be effective in patients with non-
squamous histology; thus, it is not recommended for
treating LUSC [4]. In contrast, further subclassifying
small cell lung cancer (SCLC) has fewer diagnostic con-
sequence, as it is sufficient to correctly determine the
small cell histology in order to initiate chemotherapeutic
treatment [5]. Ongoing clinical trials are evaluating tar-
geted and immunotherapies for molecularly character-
ized SCLCs, yet none of these are routinely
implemented at present [6].
Current favored histological subtyping approaches

are based on hematoxylin and eosin staining, and
morphologic tissue examination, often in combination
with immunohistochemistry. Notwithstanding these
methodologies are rapid and affordable, they coexist
with major disadvantages, inherent to the requirement
of tumor biopsies. These drawbacks mainly emerge
from the invasive nature of the used procedures, such
as bronchoscopy, endobronchial ultrasound with
transbronchial needle aspiration, or percutaneous
computed tomography-guided transthoracic lung bi-
opsy—techniques that require expertise and operator
skills and, importantly, always coincide with consider-
able patient discomfort and sometimes serious com-
plications. For lung cancer patients with inaccessible
lesions or substantial comorbidity, tissue examination
might be delayed or simply not possible [7].
Conceptionally, establishing diagnosis through tissue

analysis introduces another inconvenience: since tumors
are heterogenic in essence, solely a portion of the cancer

complexity is examined [8]. This bias underestimates
both intratumoral and intermetastatic heterogeneity.
With the above intrinsic limitations of current

methods in mind, the idea of liquid biopsies (LBs), which
are classic blood samples, is rapidly emerging as an in-
teresting alternative. Cell-free plasma DNA (cfDNA),
likely to contain a share of tumor-derived fragments in
cancer patients, forms an attractive novel source of diag-
nostic information [9]. The most profound advantage of
LBs is undeniably the convenience by which tumor
DNA is collected, which could enable molecular pathol-
ogists to genetically track tumor evolution over time in a
personalized manner.
Several specialized high-throughput techniques to

analyze cfDNA have been developed. Especially, ultra-
deep duplex sequencing for mutation calling appears to
be a promising approach; however, it remains expensive,
requires targeted panels, and is yet to be extensively vali-
dated for its clinical use [10]. Shallow (coverage 0.1–
0.5×) whole-genome sequencing (sWGS), on the other
hand, has been shown to reliably detect copy number al-
terations (CNAs) in cfDNA [11–13]. As for single nu-
cleotide polymorphisms (SNPs), specific CNAs are
widely described to correlate with diagnosis in lung can-
cer [14].
Since approximately 70–75% of all lung cancer cases

are diagnosed as advanced stage diseases (stage III and
IV), and plasma genomic abnormality increases with
tumor stage, we focused on patients with advanced stage
tumors during recruitment [10, 15]. For this proof of
concept study, 51 LBs (20 LUADs, 16 LUSCs, and 15
SCLCs) and 39 matched formalin-fixed paraffin-
embedded (FFPE) solid biopsies (SBs) have been
analyzed.

Methods
Study population
Between January 2016 and June 2019, 51 patients diag-
nosed with LUAD, LUSC, or SCLC were enrolled (Add-
itional file 1: Table S1). Classification was executed
according to the 2016 World Health Organization’s
guidelines. When available, results were compared with
FFPE tissue (n = 39). SBs were mostly taken at primary
diagnosis, whilst LBs were sometimes drawn shortly be-
fore starting second-line treatment (Additional file 1:
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Table S2). Negative controls included LBs from healthy
subjects (females from routine non-invasive prenatal
testing (NIPT) and healthy males; n = 60) and FFPE sam-
ples from benign tissue (n = 9). Other than these in-
house cases, public segmental copy number data, derived
from SNP array 6.0 (Affymetrix, Santa Clara, CA) exper-
iments, complemented with clinical information and a
list of significantly aberrant loci per histological subtype,
were collected from the supplement of the study of Sei-
del et al., which presents the collective effort from the
consortia “Clinical Lung Cancer Genome Project”
(CLCGP) and “Network Genomic Medicine” (NGM)
[16]. This dataset was filtered on histology (exclusively
LUAD, LUSC, and SCLC; n = 843).

Formalin-fixed paraffin-embedded DNA sequencing
Seven sections were cut from the FFPE tumor blocks.
The middle five were subjected to DNA extraction
whilst section one and seven, stained with
hematoxylin and eosin, served as references to locate
regions with high tumor cell concentrations. After
macrodissection, DNA extraction was performed with
the QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden,
Germany), according to the manufacturer’s instruc-
tions. DNA shearing to 200 bp fragments was exe-
cuted by Covaris’ Adaptive Focused Acoustics
technology using an M220 Focused-ultrasonicator
(Covaris, Woburn, Massachusetts). Using 200 ng of
starting material, library construction was completed
by use of the NEXTflex Rapid DNA-Seq Kit and
NEXTflex DNA Barcodes (Bioo Scientific, Austin,
TX). After pooling, cluster generation and sequencing
were executed by respectively a cBot 2 and HiSeq
3000 system (Illumina, Essex, UK). The minimal num-
ber of reads (single-end (SE); 50-cycle mode) per
sample was intended to be at least 15 million (mean
coverage of 0.25×).

Cell-free DNA sequencing
Blood samples were collected in Cell-Free DNA BCT
tubes (10 mL) (Streck, La Vista, NE) or PAXgene Blood
ccfDNA tubes (10 mL) (PreAnalytiX, Hombrechtikon,
Switzerland). Within 24 h of collection, plasma isolation
was executed by one (PAXgene) or two consecutive
(BCT) centrifugation steps, according to the manufac-
turer’s protocol. cfDNA extraction from 3.5 mL of
plasma was performed using the Maxwell RSC ccfDNA
Plasma Kit (Promega, Madison, WI), following the man-
ufacturer’s instructions.
Using 25 μL (~ 12 ng) of cfDNA, library preparation

was executed by a Hamilton Star liquid handler using
the NEXTflex Cell Free DNA-Seq Library Prep Kit and
protocol (Bioo Scientific) and NEXTflex DNA Barcodes
(Bioo Scientific), initiated by magnetic bead-based size

selection to enrich for 100–170 bp fragments [17]. Pool-
ing, cluster generation, and sequencing were performed
in correspondence to the SBs.
A selection of 29 LBs (Additional file 1: Table S2) was

reanalyzed by paired-end (PE) sequencing, using similar
steps as described above, to computationally enrich for
tumor-derived reads by insert size (IS) filtering [17, 18].
We aimed at obtaining at least 80 million reads per sam-
ple, employing the Illumina NovaSeq 6000 (Illumina,
Essex, UK).

Copy number profiling
Raw reads were mapped by Bowtie 2 (v2.3.2) onto hu-
man reference genome GRCh38, using the fast-local flag
[19]. Biobambam’s bamsormadup (v2.0.87) was used to
mark duplicate reads and to sort the resulting bam files
[20]. No additional quality filtering was applied. The lat-
ter files were indexed by SAMtools (v1.4.1) [21]. The
novel WisecondorX (v1.1.2) was deployed to reliably de-
duce normalized genome-wide bin-wise (100 kb) log2 ra-
tios, representing copy number [22]. Normalization was
performed using two healthy reference sets: one for
cfDNA (n = 333) and one for FFPE samples (n = 181).
Note that these sets exclude the 60 liquid and nine solid
controls used for comparative analyses in this study, to
avoid normalization bias. Stretches of expected equal
copy number were defined by circular binary segmenta-
tion segments [23]. Regions without information were
interpreted as loci of undeterminable copy number (e.g.,
at centromeres).

Aberration calling
Losses and gains were called once segments had an ab-
solute Z-score of 3 or more. These scores are calculated
as shown by Eq. (1) [22]:

Zsegment n→mð Þ ¼
μw Rn;R…;Rmð Þ−μ μw r1;n; r1;…; r1;m

� �
;…; μwðrp;n; rp;…; rp;mÞ

� �

std μw r1;n; r1;…; r1;m
� �

;…; μw rp;n; rp;…; rp;m
� �� �

ð1Þ

Zsegment(n→m) represents the Z-score of a segment
ranging from bin n until m. μw() calculates the average
of a sequence of bins weighted by normal variability de-
rived during reference creation in WisecondorX [22].
The functions μ() and std() calculate a default mean and
standard deviation, respectively. Rn represents the ratio
of the studied sample at bin n, whilst, for example, r1, n
holds the ratio of the same locus in the first reference
“control sample.” There are p controls in the reference.

Defining copy number tumor burden
The “plasma genomic abnormality (PGA) score” has pre-
viously been shown to correlate to clinical outcome
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across different cancer types [24, 25], whereas ichorCNA
calculates the most likely circulating tumor DNA
(ctDNA) fraction according to copy number profiles
[26]. In accordance to their intention—quantifying copy
number tumor burden—we developed a novel, more ro-
bust score, which enables control-case comparison in a
manner that is less subject to variable Gaussian variance
resulting from coverage bias and less subject to variable
sample quality: the copy number profile abnormality
(CPA) score. This score quantifies the deviation of seg-
ments from the normal diploid state, using segmental Z-
scores, as shown by Eq. (2):

CPA ¼
Xn

i¼1
Zsegmenti

�� ��� lsegmenti

� �
=n ð2Þ

In this equation, Zsegmenti represents the Z-score of
segmenti. The length of this segment is given by lsegmenti .
Copy number profiles are defined by n segments. The
CPA score is expressed per 100Mb. More details cover-
ing this formula (Additional file 2), and a thorough com-
parison between CPA, PGA, and ichorCNA values
(Additional file 3: Figure S1), can be found in the
supplement.

Abnormality calling
In order to detect cancerous LBs, the theoretical cumu-
lative distribution function of the controls’ CPA scores,
which is assumed to be normally distributed, was calcu-
lated. The abnormality cutoff was chosen at P(x) = 0.99,
delineating a type 1 error cutoff: samples that cross this
limit are abnormal at the 1% false discovery rate (FDR)
level. This process was repeated for the SBs separately,
as FFPE-derived profiles tend to be subject to increased
levels of noise, which generally lowers Z-scores and
thereby CPA values [27].

Predictive modeling
The used public training set contains copy number data
complemented with relevant clinical information [16].
This set holds LUAD (n = 424), LUSC (n = 351), and
SCLC (n = 68) patients, each of which were released
alongside segmental continuous copy number states de-
rived from array experiments on tumor tissue. This data-
set is sufficiently large to train a robust model, which
served as an evaluation platform for our in-house SBs
and LBs. For all samples (public and in-house), whilst
aiming at partly sidelining variable tumor fraction as a
source of variability, loci (100 kb bins) were given three
states to serve as model features: loss (− 1), copy neutral
(0), and gain (+ 1).
Five different classifiers (random forest; support vector

machine; logistic regression with ridge, elastic net, and
lasso regularization) were evaluated using leave-one-out
cross-validation (LOOV) on a class-balanced training set

(n = 204), sampled from the public data. The most ac-
curate model, according to the mean area under the
curve (mAUC), preceded by a one-versus-all receiver op-
erating characteristic (ROC) analysis, was passed to the
newly sequenced SBs and LBs. Details on all machine
learning steps can be found in supplement
(Additional file 2).

Tumor enrichment by insert size filtering
As mentioned before, 29 LBs were reanalyzed by PE se-
quencing. Three parallel computational pipelines were
implemented to derive copy number profiles: the first
uses all raw PE reads, the second uses exclusively prop-
erly paired reads with an IS between 90 and 135 bp, and
the third uses randomly sampled PE reads, such that the
same number of reads as in the second pipeline is ob-
tained—this to assure novel CNAs do not result from in-
creased levels of noise caused by downsampling. Raw IS
statistics were derived by Picard (v2.21.1; broadinstitute.
github.io/picard/), using the CollectInsertSizeMetrics
functionality.

Results
Following sample collection, sequencing, and read map-
ping, CNAs were inferred from 51 LBs and 39 SBs (see
the “Methods” section). A copy number profile, a major
concept throughout our study, tries to visualize the copy
number state across the genome in a predefined number
of bins (Fig. 1). Every dot in such a profile represents a
bin for which copy number is inferred. Each bin is
expressed as a log2 ratio between the observed and the
expected number of reads, the latter matching the
healthy diploid state. As bin-wise values are subject to
Gaussian noise, segments are typically inferred, covering
bins of equal copy number. It is paramount to compre-
hend that, for example, not every gain has the same log2
ratio value. This is caused by three main effects: the copy
number state of the gain (3n, 4n, …), tumor heterogen-
eity (when not all tumor cells express the gain), and
tumor fraction (samples always contain germline DNA).
With these concepts in mind, following outcome could
be described.

LUAD displays less plasmatic abnormalities in comparison
to LUSC and SCLC
To gain insight in the level of plasmatic abnormality, we
developed a novel statistic, named the “CPA score” (see
the “Methods” section). In practice, this measure can
range from zero, representing a “flat” profile, to, for ex-
ample, 10, matching a highly aberrant sample. This ap-
proach was found to outperform previously published
methods in terms of tumor detection accuracy, such as
ichorCNA and the PGA score (Additional file 3: Figure
S1) [24, 26].
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The CPA score across LBs was found to significantly
differ (P < .001; Welch’s t test) between lung cancer pa-
tients and healthy controls. More specifically, LUAD and
LUSC were noticed with a lower plasmatic abnormality
than SCLC (P < .001 and P = .014, respectively; Welch’s t
test). Assuming normality (Lilliefors’ test returns
P = .372 in the control group), 99% of control LBs are
expected to have a CPA lower than 0.623 (see the
“Methods” section), suggesting aberrations can be de-
tected in 86.3% (44/51) of advanced stage lung cancer
LBs (80% of LUADs, 81.3% of LUSCs, and 100% SCLCs)
at the 1% FDR level (Fig. 2a). For the SBs, this was the
case for 92.3% (36/39) of the samples (Fig. 2b). Here, a
similar increase in abnormality along the sequence
LUAD-LUSC-SCLC is present.
Two possible effects explain the observed differences

in plasmatic abnormality between the histological sub-
types. First, LUAD tumors tend to contain tumor cells
with less structural aberrations, which is, as anticipated,
illustrated by the CPA across SBs (Fig. 2b) [14]. Second,
since a higher portion of SBs have detectable aberra-
tions, a prominent flat profile cause must be an insuffi-
cient ctDNA fraction, noticeable in LUAD and LUSC.
SCLCs, on the other hand, are known for having exces-
sive cell turnovers (a high proliferation rate in combin-
ation with extensive apoptosis and necrosis), which
consequently affects the plasmatic tumor fraction [28].
Interesting to note in this context, circulating tumor
cells have been described to be excessively present in
SCLC patients [29].

Concordance between solid and liquid biopsies highly
depends on plasmatic tumor fraction
When comparing the copy number profiles between
paired SBs and LBs, mostly well-correlating cases were
encountered. In general, LBs with a high tumor fraction
often exhibit identical aberrations compared to their
solid counterpart (e.g., patient 17; Fig. 1). Here, deletions
and gains are positioned in the same loci, whereas their
amplitudes—a concept defined as the absolute value of a
segment’s log2 ratio—are mostly tumor fraction
dependent.
Concerning less concordant cases, three main factors

explain their presence. First, disregarding constitutional
events, a LB without observable aberrations, presumably
caused by insufficient ctDNA, cannot show agreement
(e.g., patient 5; Additional file 4). Second, as SBs repre-
sent a distinct part of the total tumor, whereas LBs study
all sources of cfDNA simultaneously, tumor heterogen-
eity introduces additional disconcordance (e.g., patient
37; at 5p and chromosome X; Additional file 4). Third,
since paired SBs and LBs were sometimes taken at inde-
pendent moments, another source of potential diver-
gence is present, considering time and treatment both
contribute to tumor evolution, as, for example, tumor
cells resistant to first-line treatment can evolve or clon-
ally expand to alter genomic composition. These dis-
similarities were thus possibly seen when dealing with
large time gaps (e.g., patient 22; at 6p; this patient was
treated with concomitant chemoradiotherapy, after
which progression was observed 7 months later, when

Fig. 1 Copy number profile comparison between the liquid (LB) and solid biopsy (SB) of patient 17. a Copy number profile of the LB (top) and SB
(bottom). Dots represent bins, whereas horizontal white lines indicate segments, covering bins of expected equal copy number. b Overlap plot
derived from a smoothing sliding window, which interpolates the average of 100 enclosed bins to its central position. c Correlation scatter plot,
using previous smoothened values. The solid line indicates identity (y = x), whereas the dotted line results from a total least squares analysis. A
steeper dotted than solid line shows that the tumor fraction is higher in the SB. The Pearson correlation coefficient (r) is given

Raman et al. Genome Medicine           (2020) 12:35 Page 5 of 12



palliative treatment was initiated, indicating chemoresis-
tance; Additional file 4); however, whether these were
caused by either heterogeneity or evolution could not be
confirmed. Revisiting tumor heterogeneity, 19 patients
were represented by aberrant LBs and SBs taken within
the same period of time. Of these, four showed clear evi-
dence of heterogeneity, whereas three others solely sug-
gested heterogeneity (Additional file 3: Figure S2).

Notwithstanding the potential consequence of the
above confounders, LBs with detectable tumor DNA
(CPA > 0.623) represent their paired SB well, as indi-
cated by a mean Pearson correlation of 0.767 (95% CI
0.706–0.827) (Fig. 2c). For specifically SCLC, this meas-
ure amounted to 0.861 (95% CI 0.790–0.931). Although
often large interval times are present (e.g., patient 15
and 22, with intervals of 504 and 345 days, respectively),
the correlation metric (close to 0.9) implies that tumor
characteristics, according to the observed CNAs, largely
remain the same at progression, confirming ineffective
first-line treatment. Remark that for LBs to operate as a
diagnostic tool, the described effect of interval time is
evidently not relevant.

Liquid biopsy copy number profiles correlate with public
solid biopsy data
When summarizing all gains and losses per histological
subtype, both lung cancer (e.g., gains at 5p) and distinct
subtype-specific fingerprints are detected (Fig. 3). The
overall correlation between the mean log2 ratios of the
LBs and public SB data amounts to 0.840, 0.756, and
0.869 for LUAD, LUSC, and SCLC, respectively. In
addition, non-supervised clustering applied to these re-
sumptive profiles reflects histological hierarchy: NSCLC
and SCLC are depicted as two separate entities. A
sample-wise alternative cluster is shown in the supple-
ment (Additional file 3: Figure S3).
To assess whether the high concordance with public

data can be translated into a clinical application, the per-
formance of a predictive model was assessed.

A predictive model trained with public data performs well
on liquid biopsies
Machine learning based on LBs is non-trivial as there
are no conform training sets available at present. None-
theless, the consortia CLCGP and NGM released data
from large-scale genome-wide microarray experiments
[16]. Although these data are thus array derived, in con-
trast to our study, superior training sets are currently
not available. Five different multiclass classifiers were
compared, followed by evaluating the in-house SBs and
LBs using the former most performant model (see the
“Methods”section).
Logistic regression with ridge regularization produced

the best outcome according to an mAUC of 0.936,
resulting from an iterative one-vs-all ROC analysis fol-
lowing training set LOOV (Fig. 4a). Where other learn-
ing strategies were discarded, the ridge model was
enforced on the newly sequenced SBs, establishing an
mAUC of 0.959 and an accuracy of 89.7% (Fig. 4b). The
LBs however were predicted less precisely (mAUC of
0.885; accuracy of 80.4%), mainly because seven samples
had no detectable aberrations in plasma: these were all

Fig. 2 Copy number abnormality and concordance analyses across
histological subtypes. a Dots represent the copy number profile
abnormality (CPA) score for liquid biopsies (LBs). Boxplots indicate
distributions. The gray box (bottom) shows the 1% false discovery
rate (FDR) cutoff. Dot colors (positive/negative) clarify their position
with respect to this box. The fractions on top summarize the latter.
b Identical to a, yet dots represent solid biopsies (SBs). c Scatter plot
evaluating the SB/LB Pearson correlation (r; defined as in Fig. 1) in
relation to the CPA score of LBs. Dot size indicates days between
biopsies and is quadratically scaled. The dense gray box (left)
represents the 1% FDR cutoff. The horizontal solid lines are means,
embedded within non-dense boxes, showing their uncertainty (95%
CI). Boxplots (right) indicate the underlying distributions per
histological subtype. Means, standard errors, and boxplots are
weighted by dot size
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predicted as LUAD, yet pathologists claimed three were
LUSC. When dismissing cases without detectable aberra-
tions, performance increased (mAUC of 0.927; accuracy
of 84.1%). This was repeated across a range of possible
CPA cutoffs (Additional file 3: Figure S4), showing that
once the previously established 0.623 is reached, a more
conservative cutoff does not necessary produce more ac-
curate results. Finally, the ability to differentially diag-
nose SCLC from NSCLC employing LBs is given by an
AUC of 0.983 and an accuracy of 96.1% (Fig. 4c). In
comparison, during training set LOOV, this AUC
amounted to 0.969.
Since the used logistic regression model appears to be

reliable, its β coefficients (i.e., class-wise weights
assigned to genomic loci to guide differential classifica-
tion) were studied in detail (Fig. 4d). The six most prom-
inent regions, according to the multinomial model, that
discriminate NSCLC from SCLC are located at chromo-
some arm 1p (e.g., MYCL1), 3p (e.g., FHIT), 9p (e.g.,
CDKN2A), 16q, 19p (e.g., STK11), and chromosome 22.
Revising the CNAs detected in the LBs (Fig. 3), it seems
reasonable why these loci produce accurate predictions,
e.g., chromosome arm 1p and 9p were frequently gained
in SCLC, whilst they were more often lost in NSCLC,
and chromosome arm 3p was deleted more often in
SCLC.
It is not surprising that the prediction probability

highly depends on the tumor fraction and thus the CPA
score, as measured by a correlation of 0.496 (P < .001)
(Fig. 4e). Therefore, because of the apparent inherent
variability between the ctDNA fractions across the histo-
logical subgroups, SCLCs are favored for correct

classification. Furthermore, SCLC is characterized by
more distinct features in comparison to both NSCLC
subtypes. Discriminating LUAD from LUSC was indeed
expected to be intrinsically more ambitious, as previ-
ously demonstrated by cluster analysis (Fig. 3).
Amongst all wrongly predicted LBs (Fig. 4f), two (pa-

tients 10 and 20) were identically falsely classified based
on their solid equivalent, three (patients 5, 14, and 35)
resemble flat profiles due to an insufficient tumor frac-
tion, three (patients 1, 20, and 33; Additional file 1:
Table S1) were marked by pathologists for having an
ambiguous histology prior to any in silico examination,
and one (patient 50) concerned a patient with liver me-
tastases identified with excessive heterogeneity (Add-
itional file 3: Figure S2), possibly affecting the original
classification.

Copy number detection sensitivity can be improved by
paired-end sequencing
PE sequencing at greater depths (1–1.5×) is expected to
become increasingly feasible. Therefore, this section is
dedicated to the latter technique as a “future prospect”:
PE approaches could be favored over SE alternatives,
since the acquired IS (i.e., cfDNA fragment size) infor-
mation can be employed to enrich for tumor reads, as
shorter DNA fragments are more likely to be tumor de-
rived [17, 18]. We selected 29 LBs (especially wrong pre-
dictions and samples with insufficient ctDNA) for
resequencing, after which copy number profiles were de-
rived for raw PE data, IS filtered PE data, and randomly
sampled PE data (as a “negative” control for IS filtered
PE data) (see the “Methods” section).

Fig. 3 Overview of aberrations detected using liquid biopsies (LBs) in comparison to public data. Colored waves represent fractions of aberrant
LBs per histological subtype. Patterns above the x-axes indicate gains, whilst opposite contours represent losses. The dendrogram (left) results
from agglomerative complete-linkage clustering applied to the Pearson distances (i.e., d = (1 − r)/2) between these waves (vectors defined as
%gains–%losses). Line graphs represent smoothened mean log2 ratios for LBs (thick solid) and the used large public dataset (thin dotted) [16].
The Pearson correlation (r) between these lines is given. Horizontal gray bars below and above each profile hold subtype-specific aberrant loci
according to public data [16]
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Following IS filtering (range 90–135 bp), on average,
4.31 million mapped reads (95% CI 2.40–6.22)
remained. Sample-wise and histologically averaged IS
distributions again signal that SCLCs release an abun-
dance of ctDNA (Fig. 5a, b). As expected, segmental
log2 ratios of copy number profiles differ little be-
tween SE and PE sequenced LBs (Fig. 5c). After IS
filtering, however, the segmental amplitudes increased
with an average of 0.050 (95% CI 0.035–0.065) in
comparison to SE sequencing (Fig. 5c; Add-
itional file 5). Similar observations were made for the
LB/SB Pearson correlations, especially for patients
with an originally low concordance (Fig. 5d).

The increase in absolute log2 ratio was most promin-
ent for LBs with detectable tumor fraction, such as the
SCLC samples (Fig. 5c)—patient 41, a representative
SCLC case, demonstrates this effect elegantly (Fig. 5e).
For “flat” SE profiles, this raise was less pronounced: al-
though the correlation with the paired SB doubled, clear
CNAs remain difficult to discriminate for patient 35
(Fig. 5f; Additional file 5).
In total, five LBs without detectable CNAs (CPA <

0.623) were resequenced, where three expressed signifi-
cantly aberrant segments after IS filtering. Two of these
concerned LUSC cases, previously misclassified as
LUAD, yet now correctly classified following tumor read

Fig. 4 Multiclass predictive modeling for liquid biopsy (LB)-based histological classification. a One-vs-all receiver operating characteristic (ROC)
analysis was executed in combination with leave-one-out cross-validation (LOOV) using the public training set for classifier selection [16].
Evaluated classifiers include random forest (RF); support vector machine (SVM); and logistic regression (LR) with ridge, elastic net (enet), and lasso
regularization. Lines represent average ROC curves. Performance is quantified by the mean area under the curve (mAUC). b Solid (SBs) and LBs
were evaluated with the best model (LR with ridge penalty) from a, using one-vs-all ROC analysis (dotted lines). Abnormal (abn) LBs, defined by
copy number profile abnormality (CPA > 0.623), are shown separately in addition (solid line). c LBs evaluated using default ROC analysis. d β
coefficients from the best model (LR with ridge penalty) from a. For perceptibility, the most prominent regions are colored (absolute value > 1),
where the six most important loci to distinguish non-small cell lung cancer from small cell lung cancer (SCLC), according to the model, are
emphasized by arrows. Coefficients were multiplied by 100. e Scatter plot of the relation between the CPA score and the prediction probability
for LBs. The gray box (left) shows the 1% false discovery rate (FDR) cutoff. Colors indicate histology according to pathologists. The dotted line
represents an ordinary least squares fit with the corresponding Pearson correlation (r). f Custom performance plot, where numbers represent
patient IDs. Paired LBs (top) and SBs (bottom) are connected. Colors represent predicted type, grid position type according to pathologists
(adenocarcinomas (LUADs), left; squamous cell carcinomas (LUSCs), central; SCLCs, right). The prediction probability linearly sets character size.
Position within grid squares is random
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enrichment (patients 5 and 35; Additional file 5). To
conclude, after substituting the original profiles with the
tumor-enriched profiles, the overall mAUC raised from
0.885 to 0.912 (Additional file 3: Figure S5).

Discussion
Molecular profiling was long challenged by instrumental
bottlenecks and economic feasibility, yet recent techno-
logical advancements have largely overcome these obsta-
cles. Tumor classification by next-generation sequencing
is now expected to mature into the most informed av-
enue to direct therapeutic decisions; however, with the
necessity of tumor tissue, associated intrinsic complica-
tions remain. In reaction, LBs could emerge as a com-
plementary source—and, ultimately, an alternate
practice—to obtain genomic information on tumors
minimally invasive.
In this proof of concept study, we set out to examine

51 advanced stage lung cancer patients, using sWGS and
copy number profiling. In 44 liquid samples, genomic
aberrations could be identified. Plasmatic abnormality
analysis revealed a significant difference between
NSCLCs and SCLCs. Next, we noticed a high correlation
in a subsequent concordance study between matched
SBs and LBs once genomic aberrations were identifiable,
despite the long interval times for several patients be-
tween pairs. Four patients did however express clear evi-
dence of tumor heterogeneity, which could bias
diagnosis using tissue-based methodologies. Our work
further shows that LB-derived copy numbers can accur-
ately differentiate SCLC from NSCLC, partly because

SCLC ctDNA seems to be detectable with high sensitiv-
ity, and SCLCs are represented by distinct copy number
profiles. This is highly relevant, as to date, correctly
diagnosing SCLC is necessary and sufficient, due to the
absence of effective targeted SCLC therapies. Differenti-
ating LUAD versus LUSC, equally important to direct
therapy, seems less accurate. Similar reasoning applies:
profiles are less specific and ctDNA fractions are lower.
The latter shortcoming, however, can be partly mini-
mized by deeper PE sequencing: computational tumor
enrichment based on IS statistics manages to increase
the overall model performance.
Whilst some lung cancer studies have recently in-

vestigated LBs, currently none have truly examined
their use for histological subtyping [25, 30–34]. To
evaluate the adopted modeling approach, we therefore
compared ours to other published tissue-based alter-
natives. The CLCGP and NGM study reports binary
classification accuracies of 71.3%, 77.1%, and 91.7%
for LUAD, LUSC, and SCLC, respectively (n = 637; in-
cluding only samples with at least one genetic alter-
ation) [14]. Using our strategy in combination with
cross-validation, binary accuracies of respectively
86.8%, 84.8%, and 92.2% were settled on a class-
balanced subset of the same public dataset (n = 204;
no additional filtering). Two more large studies per-
formed (binary) classification using copy numbers be-
tween LUAD and LUSC: the work of Li et al. claims
an accuracy of 86.1% (n = 301), whilst Qiu and col-
leagues report 84.0% (n = 986) [35, 36]. Likewise, the
in-house SBs (89.7%, 92.3%, and 97.4%, respectively)

Fig. 5 Paired-end (PE) sequencing and insert size (IS) filtering to increase sensitivity. a Sample-wise IS histograms of liquid biopsies (LBs). b
Histology-wise mean IS histograms of LBs, with transparent background waves, which indicate the 95% CI. The gray box delineates the applied IS
filter. c Comparison between three types of PE data: raw, randomly sampled, and sampled according to IS. The distance to the single-end (SE)
profiles is shown for each instance. Thicker black line and gray background show mean and 95% CI interval, respectively. d Identical to c, yet for
the Pearson correlation (r) with paired solid biopsies (SBs). e Copy number profiles of patient 41. The gray background dots represent the SB; line
graphs on top are smoothened LB profiles, derived from SE data, PE data, and PE data, followed by IS filtering. f Identical to e, yet for patient 35
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and LB (SE sequenced; 80.4%, 84.3%, and 96.1%, re-
spectively) sets returned similar statistics.
Adopting discrete states (loss, copy neutral, gain) as

model features (see the “Methods” section), which was
favored to disregard variable tumor fractions, down-
weighs the presence of amplifications, indicated by, for
example, patient 32: a 7p11.2 (EGFR) amplification, indi-
cative for NSCLC, is clearly present (Additional file 4),
yet the overall signal (wrongly) pushed classification to-
wards SCLC [14]. Interesting in this context, small cell
transformation of EGFR mutated LUAD is sometimes
seen as a mechanism of resistance [37]. Transformation
possibly occurred in patient 26, who was included at
progressive stage and was subsequently correctly classi-
fied by the model as SCLC. A baseline SB was sequenced
in addition to the main cohort, exposing initial LUAD-
specific aberrations (Additional file 3: Figure S6).
To mimic a clinically realistic cohort, diagnostically

challenging cases were not excluded. Moreover, the
set comprised small biopsies and eight cytological
specimens (Additional file 1: Table S2). Central path-
ology review identified five cases with divergent im-
munohistochemical results: these were therefore
annotated with a genuine uncertainty (Additional file
1: Table S1). The most interesting case, patient 20,
was the sole wrong prediction amongst the SCLCs.
Its SB, representing a brain metastasis that was ori-
ginally morphologically classified as SCLC, showed
atypical small cell features on review: cell nuclei were
rather large with sometimes prominent nucleoli, sug-
gesting large cell neuroendocrine carcinoma [38].
Using additional immunohistochemistry analyses, RB1
seemed copy neutral and p53 resulted in a wild-type
pattern (unfortunately, no information on mutations
could be obtained, as TP53 sequencing failed due to
coverage issues). However, as described for small cell-
like large cell neuroendocrine carcinoma, a high pro-
liferation index of 80% was documented by Ki67
staining. Therefore, based on morphology and immu-
nohistochemistry, patient 20 remained difficult to
categorize and could thus concern either SCLC or
large cell neuroendocrine carcinoma.
A considerable advantage of sWGS is the convenience

by which LBs for copy number profiling could be imple-
mented as routine practice in molecular diagnostic la-
boratories. To clarify, NIPT has evolved into a daily
executed application, and in essence, it concerns the
same technological and laboratory steps. A turnaround
time of less than 4 days and a total (i.e., including pro-
cessing costs) price tag of roughly $200 could be
expected.
Classification according to morphology and immuno-

histochemistry is sometimes subjective, as it is not con-
sistently a black-and-white story. Therefore, a

computationally processed copy number profile could be
of considerable help as an addition to current traditional
diagnostic methods. However, our conclusions should be
confirmed on larger independent datasets.
To conclude, this work reveals the presence of rather

surprisingly large amounts of aberrant ctDNA, especially
for SCLC. This realization offers opportunities in future
research: introducing single nucleotide variants, obtained
from targeted sequencing, to current classification
model, seems largely feasible. It is likely that in the near
future, combinations of these sequencing methods could
tackle molecular complexity beyond histology: given a
patient with a clinical picture suspicious for advanced
stage lung cancer, a diagnostic LB could offer both ac-
curate classification and all necessary sequencing infor-
mation to direct precision medicine.

Conclusions
We demonstrate, as a proof of principle, that copy num-
ber profiling of cell-free DNA can be used to differenti-
ate NSCLC from SCLC. The central technique, sWGS, is
inexpensive and often fully operational at routine mo-
lecular laboratories. These concepts therefore have rele-
vant diagnostic potential, especially for patients with
lesions that are difficult to reach—all the more since cor-
rectly diagnosing SCLC is sufficient to initiate therapy.
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