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Abstract: In this work, the design, fabrication and characterization are reported for a distributed
Bragg reflector (DBR) filter with a specific wavelength and angular dependency, which aims
to improve the light collection from a wavelength-converter-based light source into a smaller
angle than the full angle Lambertian emission. The desired design is obtained by optimizing
the transmission characteristics of a multi-layer structure. Titania (TiO2) and silica (SiO2) are
used as high and low refractive index materials, respectively. The deposition is made by electron
beam evaporation without substrate heating, followed by a post-annealing procedure. The optical
properties of the evaporated layers are analyzed by ellipsometer and spectrometer measurements.
The angular and wavelength dependency of the fabricated DBR is in good agreement with
simulations for the designed structure.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The amount of collected light from a light source is critical for many optical systems, such as
projection display systems, because the image quality and the viewing experience are significantly
influenced. A second essential parameter of the light source is the étendue, the product of the
area and the solid angle of the emission. Reducing the étendue while maintaining the amount
of collected light allows to reduce the size of optical systems. A reduction of étendue can be
realized by concentrating light into a smaller cone angle, compared to Lambertian emission. An
additional advantage of a smaller emission angle is that the collimation of light with conventional
lenses becomes more efficient. This work focuses on a wavelength conversion system [1]
that transforms incident blue light into green light, if possible with a small étendue. In this
approach it is especially preferred to reduce the solid angle of the emission, because a larger
emission area allows to reduce the power density and increase the conversion efficiency. For
the considered wavelength conversion element, a reduced solid cone angle can be achieved by
adding a well-designed optical filter that reflects light emitted at larger angles.

A distributed Bragg reflector (DBR) is a multi-layer structure with alternate layers of high and
low refractive indices nh and nl, which are typically wavelength dependent. The wavelength range
with high reflectivity, called the stop band, results from constructive interference of light reflecting
on multiple interfaces. For high reflectivity around a central wavelength λc for perpendicular
incidence, the layer thicknesses should be di = λc/4ni, with ni the corresponding refractive index.
In this case, the peak reflectivity [2] is given by :
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Where ns is the refractive index of the substrate, na that of the surrounding ambient (air),
and N is the number of repeated pairs of high and low refractive index layers. It can be seen
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that increasing the number of layers and the contrast between the refractive indices, increases
the reflectivity. In this way a peak reflectivity exceeding 99% can be achieved for a particular
wavelength [3].

DBRs can be fabricated using different types of materials, for example organic polymers [4],
semiconductors [5] or metal derivatives [6,7]. Different processes can be used to deposit DBR
layers, such as chemical vapor deposition [8,9], sol-gel [10,11], sputtering [5,7] and electron-beam
evaporation [12–14]. Due to their high reflectivity and low losses, DBRs have been widely used
in many areas like optical filters [15], micro-cavities [7,16], vertical-cavity surface-emitting lasers
[17], photonic crystals [18], organic light emitting diodes [19] and enhancement of emitting
efficiency [20,21]. However, a current limitation of the DBR is that only the high reflection under
a near-normal incidence is considered, also in a limited wavelength interval. The transmission
property and the oblique incidence are often not taken into account. Still, more complex designs
and applications are possible, as will be shown later.

In this work, a specific DBR is designed and fabricated as an optical filter with both wavelength
and angular dependency, located in close proximity of a wavelength conversion material deposited
on a reflector as shown in Fig. 1. The DBR filter should allow the excitation beam for the
wavelength converter to pass, while only the emission of the wavelength-converter within a
certain emission cone angle should be transmitted. The light that is emitted outside of this cone
should be reflected by the DBR. As the emission material present here is a very strong scatterer
[22], the reflected light will be back-scattered, again with a Lambertian distribution. After every
scatter process there is a chance that the redistributed light is falling into the smaller emission
cone. Ideally, after a few reflections most of the light should be emitted within the desired
cone and be transmitted through the DBR. The requirements for the wavelength and angular
dependency of the filter are as follows: it should have a high transmission for the blue excitation
light (450 nm<λ<460 nm) within the incident cone angle (θ<22◦); a high transmission for the
emitted green light (500 nm<λ<590 nm) within the incident cone angle (θ<45◦); and a high
reflection for the same emitted green light (500 nm<λ<590 nm) outside of the incident cone
angle (θ>45◦). This setup with a blue exciting beam and a photoluminescent emitter can be used
when a large flux of green light is required with a small étendue (small area and small emission
cone). In projection applications a dichroic mirror is used to split the exciting blue beam and
the generated green beam, so that the green light can be combined with red and blue sources to
generate white light. This principle is also relevant for directional phosphors used for high power
LEDs [23]. Plane wave optical simulations for the transmission on a multi-layer structure have
been carried out to determine the optimal DBR structure.

Fig. 1. Wavelength conversion set-up with a blue excitation beam and a green emission
beam. (a) Lambertian emission by the emission material.(b) Emission with the DBR
reflecting light outside of a certain cone angle. Light reflected by the DBR is scattered by
the emission layer.
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For the realization of this device, titania (TiO2) and silicon dioxide (SiO2) are chosen because
of the large refractive index contrast and the stability of the materials [11,16]. It is well-known that
untreated evaporated TiO2 often suffers from strong absorption in the visible wavelength range
[13] and has a refractive index lower than the reported crystalline value [18], thus it is essential
to establish a proper post-annealing procedure. In this work, SiO2 and TiO2 are deposited by
electron beam evaporation on unheated substrates without additional oxygen ambient. This is
followed by an annealing step in a tube furnace with added oxygen to reduce the absorption in
visible light by TiO2 [24]. The angle and wavelength dependency of the transmission of the
fabricated DBR is measured and compared to the numerical simulations.

In this work, we present a wavelength-selective thin film optical filter, realized by this specially
designed and fabricated DBR, to be used in combination with a wavelength-converting-element
to increase the light emitted within a given solid angle, and improve the conversion efficiency to
transform incident blue light into collected green light.

2. Materials and methods

To prove the stability of the materials and the fabrication method, a simple DBR is made to
compare between the simulation and experiment results. Si wafers and glass substrates are cleaned
in ultrasonic baths with subsequently aceton, isopropanol and deionized water, on which the
layers are deposited by e-beam evaporation in vacuum without substrate heating. The deposition
rate and total thickness are monitored by a quartz crystal sensor, which measures the change in
resonance frequency [25]. After each deposition of TiO2, a post-annealing treatment in oxygen
environment is carried out. In Figs. 2(a) and (b) a significant improvement in transparency by
annealing is clearly visible for a single, 162 nm thick layer of TiO2.

Fig. 2. Materials properties after post-annealing procedure. (a) and (b), transparency of
a 162 nm thick TiO2 layer before and after annealing, observed on a white background in
yellow ambient light. (c) Real part of the refractive indices for TiO2 (blue) and SiO2 (red)
extracted from ellipsometer data.

Samples with a single layer of TiO2 or SiO2 on silicon substrates have been fabricated and
annealed for calibration purposes. From ellipsometer measurements, the layer thicknesses and
the real part of the refractive indices have been extracted. The refractive indices as a function of
wavelength for the fabricated TiO2 and SiO2 are shown in Fig. 2(c).

The transmission spectrum of a single layer of TiO2 on glass is measured by a Perkin Elmer
Lambda 35 UV/VIS spectrometer for wavelengths between 400 nm and 1000 nm. The obtained
transmission spectrum is compared with the simulated one, based on the corresponding refractive
index and thickness extracted from the ellipsometer. The result is shown in Fig. 3(a).
The good correspondence between measurement and simulation indicates that the thickness

and the refractive index of the layer are similar to the values used in the simulation. For the blue
region the measured transmission is lower than the simulated value, which indicates that there is
some residual absorption in TiO2.
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Fig. 3. Comparison between simulated and measured transmission spectra. Transmission
spectra for (a) a single layer of TiO2, and (b) a seven-layer DBR obtained from numerical
simulation (red) and from measurement (black).

For the fabrication of a DBR, the annealing procedure is repeated, after each deposition of TiO2.
The thicknesses for the TiO2 and SiO2 layers are 63 nm and 105 nm respectively, corresponding
to a maximum reflection at 630 nm. This DBR has 4 layers of TiO2 and 3 layers of SiO2, thus the
structure can be described as na/(nh/nl) × 3/nh/ns, with na the refractive index of air (=1) and ns
that of the substrate. The additional high refractive index layer leads to the highest reflectivity
[26]. The simulated transmission and the measured transmission, together with the schematic
structure of the DBR are shown in Fig. 3(b).
The measurement and simulation curve match well, indicating that the fabricated device

operates as expected, and illustrating the reliability of the deposition procedure and the extracted
material parameters.

3. DBR design and simulation

3.1. Objective and parameters

In this simulation, the DBR is designed to function as an optical filter to increase the transmission
efficiency of the light excited from a Lambertian emitter. In the green range (from 500 nm to 590
nm), the DBR should have low transmission for angle of incidence θ above 45◦, and meanwhile
high transmission for angle of incidence below 45◦, which requires transparent material. A
second requirement is that for a range in the blue spectrum (for example from 450 nm to 460
nm), the transmission for angle of incidence below 22◦ should be high. The objectives for the
transmission function T(λ, θ) are depicted in a wavelength-angle diagram in Fig. 4(a).

Fig. 4. Transmission property for the designed DBR. (a) Target regions in the wavelength-
angle diagram. (b) Transmission spectrum of the DBR for normal incidence after the first
iteration. The green range indicates the FWHM of the spectrum. (c) Transmission property
of the designed eleven-layer-DBR, with indication of the three target regions.
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In order to obtain a well-defined optimization of the DBR design, a figure of merit is proposed,
taking into account the requirements for the different wavelength ranges.

As the blue spectral range for high transmission is narrow, we will only consider the middle of
the wavelength interval, namely 455 nm. The average transmission within the cone with half
angle 22◦ is defined by Eq. (2).

Tblue =

∫ 22◦

0 T(455nm, θ) sin(θ) dθ∫ 22◦

0 sin(θ) dθ
(2)

For the green transmission range, we define the wavelength- dependent figure of merit F(λ) as
the ratio of the average transmission within the cone θ<45◦ over the average transmission out
of the cone (with θ>45◦), as expressed by Eq. (3). To factor in the Lambertian distribution of
emission and scattering, a cosine theta dependency has to be added to the weighing function.

F(λ) =

∫ 45◦

0 T(λ, θ)cos(θ)sin(θ) dθ∫ 90◦

45◦ T(λ, θ)cos(θ)sin(θ) dθ
(3)

A general green spectrum P(λ) is considered as the target, with wavelength range between 500
nm and 590 nm, full width half maximum (FWHM) of 64 nm with a central wavelength at 542
nm, as given in Fig. 4(b).

For a particular wavelength, the ratio of the light that is transmitted through the DBR towards
the collecting lens, divided by the total transmission is given by F/(1+F). The figure of merit G,
the efficacy of the light emitted towards the collecting lens, is then given by Tblue from Eq. (2),
multiplied by the factor F/(1+F) weighted with the spectral density P(λ) of the emission from the
layer, as shown in Eq. (4). When there is no DBR, this figure of merit G equals to 0.5 because the
factor F becomes equal to one for all wavelengths under the condition of Lambertian emission.

G =

∫ λ2
λ1

F(λ)
1+F(λ)P(λ) dλ∫ λ2
λ1

P(λ) dλ
× Tblue (4)

3.2. Simulations and results

For a conventional DBR, high reflectivity is obtained for a certain wavelength λ when the
layer thicknesses are equal to a quarter-wavelength for the corresponding refractive indices
(di = λc/4ni). In our case, high reflectivity is desired for a continuous green wavelength range,
under the condition of the incident angle above 45◦. To achieve high reflectivity with a certain
inclination angle θ, the thickness of each layer should be increased according to:

di =
λ

4nicosθi
(5)

The transmission T(λ, θ) for a given multi-layer stack is calculated in Matlab based on the
scattering matrix method, taking into account the interference of plane waves due to partial
reflections at all interfaces [27]. Each layer is defined by its (real) refractive index and its
thickness.

The aim of this work is to optimize the target function defined in Eq. (4) for a stack of TiO2 and
SiO2 on a glass substrate. Based on the high index contrast of these materials, it is known that a
DBR with only seven layers can yield a high reflection. However we found that by increasing the
number of layers to eleven, a more detailed design and a higher figure of merit for our application
could be obtained. Adding again more layers in the DBR would increase the complexity of
optimization and fabrication. As there are now in total eleven layers to be adjusted, it is important
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to start the optimization from a realistic estimation. For the first estimation, the initial thicknesses
(quarter wavelengths) are designed to obtain high reflectivity (and low transmission) around 550
nm with incident angle 60◦. For normal incidence, the reflection around 550 nm will be low
(high transmission).

As already seen in Fig. 3(b), in a simple DBR spectrum, the transmission peak is very narrow
compared to the FWHM of the required green range (64 nm). To fulfill the requirements of high
transmission for a broad green band at normal incidence, with a high reflection for a broad green
band at inclined incidence, the transmission peak adjacent to the reflection band needs to be
broadened, which can be achieved through varying the layer thickness during a first iteration.
Figure 4(b) shows the resulting transmission spectrum for normal incidence after the first iteration.
The figure shows indeed maxima around 550 nm. The corresponding thicknesses for each layer
after the first iteration are shown in the second row in Table 1 (labeled as ’starting point’). For
this DBR stack, the calculated value of G is 0.3, which is low because in the first iteration we
only aimed at increasing the transmission for normal incidence.

Table 1. Design parameters of the DBR after the first iteration (’starting point’) and after the
optimization of G (’final optimized’). All thicknesses are in nm.

TiO2 (air
side) SiO2 TiO2 SiO2 TiO2 SiO2 TiO2 SiO2 TiO2 SiO2 TiO2 G Tblue

starting
point

186 128 64 125 64 128 64 131 64 128 186 0.3 40.4%

final opti-
mized

73.3 133.9 58.2 153.9 42.8 135.0 47.4 166.5 44.5 150.8 65.5 0.85 99.86%

Taking the values obtained after this first iteration as a starting point, the DBR thicknesses are
further adjusted to optimize the figure of merit G mentioned above. For a DBR with m layers,
this requires to find the optimized G value in an m-dimension space, where the variables are the
thicknesses of the m layers.

To find the 11 layer thicknesses that maximize the value of G, a gradient method is implemented
in an eleven-dimensional space. For each layer i, the difference in G is calculated when the
thickness of this layer is incremented with a small amount ∆d (e.g. 1 nm) as in Eq. (6). The
gradient method provides the direction of steepest ascent to maximize the value of G. Equation (7)
is used to adjust the different layers, where ∆d′ determines the magnitude of the thickness change.
After a number of iterations, in which the step size ∆d′ is gradually reduced, the optimized set of
layer thicknesses and corresponding value of G are found.

gradGi =
G(dold,i + ∆d) − G(dold,i)

∆d
(6)

dnew,i = dold,i + ∆d′ ×
gradGi

‖gradG‖
(7)

For a DBR with 11 layers, the optimized thicknesses after this procedure are given in the
third row of Table 1, labeled as ’final optimized’. The angle and wavelength dependency of the
transmission is shown in Fig. 4(c). The corresponding factor G is equal to 0.85 and Tblue is equal
to 99.86%. This is a considerable improvement from the starting point. Compared with the case
without the DBR where G equals to 0.5, the efficacy of the emission light is increased by 70%.

4. Device fabrication and discussion

A device has been fabricated according to the design of Table 1 with eleven layers of TiO2 and
SiO2, following the procedure described in section II. It is important to deposit the layers with
accurate thicknesses in order to obtain a precise result. A cross section SEM image is shown in
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Fig. 5, with the darker regions corresponding to TiO2 layers. The measured spectrum for normal
incidence is compared with the simulated transmission spectrum in Fig. 6(a). The match between
the two curves indicates that the fabricated parameters are sufficiently accurate.

Fig. 5. Cross-sectional SEM image of the fabricated 11 layer DBR andmeasured thicknesses
for the top two layers. The measured thicknesses in this image have limited accuracy due to
thickness variations and the oblique side view of the SEM.

Fig. 6. Experimental and simulated transmission spectra (400 nm to 700 nm) of the
fabricated DBR for different angles of incidence (a) normal incidence (b) θ =20◦ (c) θ =40◦
(d) θ =60◦. The reduction in the measured transmission under large incident angle is caused
by the reflection of the compensating glass substrate in the holder.

To realize the function of concentrating Lambertian emission into a small solid angel cone,
different reflection and transmission properties are required under oblique incidence. Spectral
transmissionmeasurements for different inclination angles are conductedwith a spectrophotometer
with a holder designed for oblique incidence, which contains two rotatable sample holders. As the
test sample holder is oriented under a certain angle, a second glass substrate under the opposite
angle is used to compensate the lateral displacement caused by the inclined test sample. The
spectra of the simulated and experimental results are plotted in the same graph together with the
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target blue and green region, as shown in Fig. 6, where the measured and simulated spectra are
highly corresponding. With the increase in inclination angle, the transmission window shifts to
shorter wavelengths, as expected from the theory. For the green wavelength range of interest,
the emission within a certain solid angle cone (around 40◦) will be mostly transmitted through
the DBR as it is in the transmission window. The emission out of the cone will be reflected
back, as shown in Fig. 6(d), and get a another chance to be redirected into the cone. In this
way, the Lambertian emitted light will be concentrated into a certain cone, thus increasing the
transmission efficiency in this system. Note that the measured transmission is typically somewhat
lower than the simulated value. This is partly due to the reflection at the glass/air interface,
which is not taken into account in the simulations. In addition there may be a small amount of
absorption or scattering in the experimental samples.

Figure 7 shows photographs of the fabricated device under different viewing angles. The color
shift in transmission from green to blue and purple is clearly visible. The images show that the
background image is not subjected to blurring, indicating that low-angle scattering is limited.

Fig. 7. Images of the fabricated sample observed under different angles with the city of
Ghent in the background (a) normal view with green transmission; (b) 20◦ inclination with
green transmission; (c) 40◦ inclination with blue transmission; (d) 60◦ inclination with
purple transmission.

5. Conclusion

In this work the design and realization of a complex eleven-layer DBR filter with a particular
angular and wavelength dependency is demonstrated. The figure of merit is defined to increase
the light output for a wavelength converter over a given wavelength range and within a given
emission cone. The DBR is based on TiO2 and SiO2 layers to realize respectively the high
and low refractive index, and the materials are properly handled for precise optical properties.
The deposition is conducted by e-beam evaporation in vacuum without substrate heating. A
post-annealing procedure is used to reduce absorption in the TiO2 layer and to obtain high
transmission. The large refractive index contrast makes it possible to obtain a broad stop band
with high reflectivity with only eleven layers. A particular design with specific requirements is
optimized based on the gradient method. The resulting DBR stack has been fabricated by e-beam
evaporation. Comparison between simulated and measured transmission spectra, at different
inclination angles, indicates that the DBR operates according to the design. Green light is well
transmitted for inclination angles below 45◦, and well reflected for inclination angles above
45◦. Blue light ranges from 450 nm to 460 nm is well transmitted for inclination angles below
22◦. The simulated figure of merit G for the designed filter is 0.85 for this specific design. The
realization indicates not only that the materials and the fabrication procedures are very promising,
but also that DBR devices can be realized with a complex functionality.
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