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Abstract
An understanding of the oceanic response to tropical cyclones is of importance for studies on climate change, ecological
variability and environmental protection. Hurricane Irma (2017, Atlantic Ocean) broke many records, including the fact that it
was the first category 5 hurricane making landfall in Cuba since 1924. In this study, we assess the oceanic response of the waters
of the Cuban Exclusive Economic Zone (EEZ) and the eastern Gulf of Mexico (GoM) to the passage of this hurricane. Overall,
Irma led to a weak sea surface cooling in the EEZ, which was associated with the thermal structure of its waters and the fact that it
was affected by the left-side quadrants of this hurricane. This cooling was driven by mixing and upwelling processes. In contrast,
the chlorophyll-a (chl-a) concentration increase was comparable with climatological records, suggesting that horizontal advection
of coastal waters and entrainment of chl-a rich waters from remote regions of the GoM influenced the post-storm chl-a concen-
tration. Moreover, Irma increased the chl-a concentration in the northeastern GoM and stimulated the offshore transport of these
chl-a-rich waters to the interior GoM. A high chl-a plume (HCP) extended southward across the eastern GoM during the first
post-storm week of Irma, and these waters reached the northwestern Cuban coast following the Loop Current. An intensification
of the geostrophic currents of an anticyclonic eddy at the upper front of the Loop Current, the formation of an anticyclonic-
cyclonic eddy pair in the northeastern GoM and wind-driven advection governed the extension of this HCP.

Keywords Chlorophyll-a concentration . Exclusive Economic Zone of Cuba . Hurricane Irma . Remote sensing . Sea surface
temperature

1 Introduction

Tropical cyclones (TCs) are extreme environmental phenom-
ena having substantial effects on the upper oceanographic
conditions (Price 1981). Oceanic response to TCs has been
a hot topic given its importance for studies on climate
change, ecological variability and environmental protection
(Fu et al. 2014). Over oceans, TC-induced wind forcing
mixes the surface layer, deepens the mixed layer and induces
a decrease in sea surface temperature (SST) (Price 1981;
Shay and Elsberry 1987). Vertical mixing and upwelling lead

to an increased abundance of surface phytoplankton via two
vertical transport pathways, i.e. entrainment of nutrient-rich
waters from the nitracline to the ocean surface and/or entrain-
ment of phytoplankton from the deep chlorophyll maximum
(Babin et al. 2004; Walker et al. 2005a; Gierach and
Subrahmanyam 2008; Shropshire et al. 2016). The nutrient
influx coupled with adequate sunlight stimulates phyto-
plankton growth and can lead to phytoplankton blooms last-
ing several days after the TC passage in very oligotrophic
oceanic waters (Babin et al. 2004; Hanshaw et al. 2008;
Shropshire et al. 2016).

On the other hand, as a TC makes landfall, the coastal land
is inundated with convective rain and storm surge. This heavy
rainfall leads to a substantial input of nutrients and organic
matter through freshwater river discharges that can also trigger
phytoplankton blooms in coastal waters (Mallin et al. 1993;
Farfán et al. 2014; Anglès et al. 2015). Moreover, interaction
of TCs with coastal waters can lead to the advection of these
highly productive coastal waters to the open ocean (Acker
et al. 2009). Thus, both vertical and horizontal transport path-
ways can modulate the biological response following a TC
(Avila-Alonso et al. 2019).

Responsible Editor: Christoph Voelker

* Dailé Avila-Alonso
davila@uclv.cu

1 Laboratory of Planetary Science, Department of Physics,
Universidad Central “Marta Abreu” de Las Villas, 54830 Santa
Clara, Villa Clara, Cuba

2 KERMIT, Department of Data Analysis and Mathematical
Modelling, Faculty of Bioscience Engineering, Ghent University,
9000 Ghent, Belgium

https://doi.org/10.1007/s10236-020-01350-y

/Published online: 5 March 2020

Ocean Dynamics (2020) 70:603–619

http://crossmark.crossref.org/dialog/?doi=10.1007/s10236-020-01350-y&domain=pdf
http://orcid.org/0000-0001-9855-0876
mailto:davila@uclv.cu


A combination of in situ and remotely sensed measure-
ments enables the best characterization of ocean waters
(Meyers et al. 2016). Some authors have used both types of
observation to assess the oceanic post-storm response (e.g.
Fuentes Yaco et al. 2007; Meyers et al. 2016; Wang et al.
2016). However, given the limitations induced by weather
conditions on in situ measurements during the passage of
TCs, satellite data are promising sources of information to
further our understanding of the TC-induced oceanographic
variability (Son et al. 2007). Hence, several studies have
assessed the oceanic response to TCs on the basis of satellite
data in the North Atlantic Basin in general (e.g. Babin et al.
2004; Hanshaw et al. 2008; Foltz et al. 2015; Shropshire
et al. 2016) and the Gulf of Mexico (GoM) and the
Caribbean Sea in particular (e.g. Gilbes et al. 2001; Gilbes
and Armstrong 2004; Walker et al. 2005a; Gierach and
Subrahmanyam 2008; Shi and Wang 2007; Acker et al.
2009; Pérez-Santos et al. 2014; Avila-Alonso et al. 2019).
From satellite imagery, an increase in phytoplankton abun-
dance is identified as elevated chlorophyll-a (chl-a) concen-
tration. Distinguishing between mechanisms inducing this
change is crucial to understanding the impact of storms on
surface oceanographic conditions.

The Atlantic Hurricane Season in 2017 showed an activity
well above the normal (Trenberth et al. 2018). In particular,
Hurricane Irma broke many records including the longest life-
time as a category 5 storm on the Saffir-Simpson hurricane
scale. Besides, it was the first category 5 hurricane making
landfall in Cuba since 1924 and it produced the most accumu-
lated cyclone energy of any storm in the tropical Atlantic ever
(Trenberth et al. 2018). Given that Irma made landfall in Cuba
and the Florida Peninsula, it may be thought that the induced
oceanic response in this region could have been influenced by
coastal processes.

The long-term oceanic response of the waters of the
Exclusive Economic Zone (EEZ) of Cuba to the passage of
hurricanes in the period 1998–2016 has recently been assessed
(Avila-Alonso et al. 2019). Marine research in the EEZ meets
the need to manage sea exploitation and conservation at the
national level according to the Marine Spatial Planning
Programme of the UNESCO Inte rgovernmenta l
Oceanographic Commission (Meaden et al. 2016). Countries
must manage fisheries within their EEZs (Prescott-Allen
2001). Since fisheries are ultimately linked to the patterns of
phytoplankton production, an assessment of the oceanograph-
ic variability under normal and extreme meteorological con-
ditions is crucial to comprehending the possible effects on
fisheries resources. The waters surrounding Cuba are pelagic
larval nursery areas for the spiny lobster Panulirus argus
(Latreille, 1804) (Kough et al. 2013). These are areas in the
open Caribbean Sea where lobster larvae from the Caribbean
spend much of their planktonic existence before settling in
coastal benthic nurseries (Kough et al. 2013). Given that the

TC-induced oceanographic variability can lead to fluctuations
of P. argus recruitment in the GoM and the Caribbean Sea
(Briones-Fourzán et al. 2008), an assessment of the oceanic
response to TCs serves for future studies on fishery oceanog-
raphy in the region. However, the possible oceanic effects
induced by Irma in the waters of the EEZ of Cuba have not
yet been studied.

In this work, we assess the oceanic response of the waters
of the EEZ of Cuba and the eastern GoM to the passage of
Irma using remotely sensed data as primary source of infor-
mation, thus extending the study of Avila-Alonso et al. (2019).
The latter region was included in our analysis because the
storm-induced oceanographic variability in it impacted the
oceanic response of the EEZ of Cuba. The methods adopted
and the considered data sets are introduced in Sect. 2. Next, in
Sect. 3, we present the synoptic history of Irma and the oce-
anic changes it induced, followed by a discussion of the ob-
served storm-induced variability (Sect. 4).

2 Materials and methods

2.1 Methodology

The oceanic response to TCs has been assessed in ocean par-
cels along the TC trajectory (Babin et al. 2004; Menkes et al.
2016; Shropshire et al. 2016). Yet, using this approach to
evaluate the oceanic response induced by Irma in the waters
surrounding Cuba is difficult because Irma passed across the
narrowest area of the EEZ of Cuba (Fig. 1). Besides, north of
the northern EEZ of Cuba lies the Great Bahama Bank (GBB),
which has oligotrophic and shallow waters (3 to 10 m)
(Dierssen et al. 2010). The GBB is, for the most part, optically
shallow, in that reflectance of the seafloor contributes to the
reflected light measured by satellites (Dierssen et al. 2010),
which leads to data quality issues when quantifying, for in-
stance, chl-a (Boss and Zaneveld 2003). Overall, although
Irma mainly moved over oceanic waters of the Old Bahamas
Channel, its trajectory was surrounded by shallow and coastal
waters of Cuba and The Bahamas. In order to quantify the
oceanic response along the trajectory of Irma, we studied the
part of the EEZ directly affected by the centre of this hurricane
(Fig. 1). We refer to this area as the along-track sector, which
has a mean depth of approximately 1000 m according to the
ETOPO1 model.

Although Irma moved across the northern waters of Cuba,
its outer spiral rain bands extended over the entire EEZ (see
Fig. 6 in the Irma TC report of the National Hurricane Center
(NHC), https://www.nhc.noaa.gov/data/tcr/AL112017_
Irma.pdf). For that reason, we also assessed the oceanic
response throughout the entire EEZ. Given that the
hurricane-induced oceanographic variability is associated
with the pre-storm conditions of the ocean (Menkes et al.
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2016) and considering that the northern and southern waters
of Cuba have different oceanographic conditions, i.e. the
southern waters are warmer and less productive that the
northern ones (González et al. 2000; Cerdeira-Estrada et al.
2005), we assessed the oceanic response in the northern and
southern sectors of the EEZ separately (Fig. 1). These have a
mean depth of 2024 and 3697 m, respectively, according to
the ETOPO1 model.

The oceanic response to the passage of a TC can be di-
vided into two stages, i.e. the forced stage (when the TC is
overhead the study area) and the relaxation stage (after the
TC leaves the study area) (Jaimes and Shay 2015). We
assessed the daily response of the oceanographic variables
before, during and after the passage of Irma. We considered
the pre-storm week (i.e. days −10 to −3 before hurricane
passage) as a benchmark for comparison with the post-
storm weeks in agreement with the procedure followed by
Vincent et al. (2012) and Menkes et al. (2016). It has been
reported that the storm-induced SST cooling can last up to a
month after the TC passage (Menkes et al. 2016; Avila-
Alonso et al. 2019). However, in the fourth post-storm week
of Irma, the tropical storm Nate passed between the Yucatan
Peninsula and the northwestern tip of Cuba leading to clouds
during its pre- and post-storm weeks. Thus, we limited our
study to 2 weeks after the entrance of Irma in the EEZ (i.e.
from day 0 to + 15, where day 0 refers to the day the hurri-
cane entered the study area) (Vincent et al. 2012; Menkes
et al. 2016; Avila-Alonso et al. 2019). Besides, the oceanic
response of the eastern GoM was analysed for the mentioned
pre- and post-storm weeks considering the day that Irma
entered the EEZ as reference.

Daily and weekly arithmetic means were computed for
each analysed variable. We calculated the mean daily value
of the pixel data within each sector of the EEZ. Because of

cloud-induced gaps and incomplete spatial coverage as a con-
sequence of satellite orbits, we only analysed mean daily data
for images with more than 50% of pixel data in the sectors of
the EEZ. Weekly means were then calculated from these daily
means. We also computed standardized anomalies by
subtracting the mean pre-storm week value from the daily
values (from day − 10 to day + 15), in agreement with the
procedure followed by Menkes et al. (2016). We calculated
the translation speed of Irma when it had hurricane strength in
general, and within the EEZ of Cuba and in the eastern GoM
(i.e. from the EEZ to the last point of its trajectory as hurri-
cane) in particular. For this purpose, we followed the proce-
dure outlined by Babin et al. (2004) and Gierach and
Subrahmanyam (2008).

2.2 Data

The shapefile of the EEZ of Cuba was obtained from the
world EEZ product (version 9) (http://www.marineregions.
org/downloads.php) of the Flanders Marine Institute, where
the inner boundary of the EEZ is used as a proxy for the low
water line. We obtained the hurricane trajectory from the
International Best Track Archive for Climate Stewardship
(IBTrACS v03r03) (Knapp et al. 2010) (ftp://eclipse.ncdc.
noaa.gov/pub/ibtracs/v03r09/all/shp). Besides, the reported
“best track” observations of time and position from the
hurricane database (HURDAT2) of the NHC (http://www.
aoml.noaa.gov/hrd/hurdat/hurdat2.html) were used to
calculate the translation speed.

2.2.1 Response variables

We considered SST and chl-a concentration as the main phys-
ical and biological oceanographic response variables,
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Fig. 1 Trajectory of tropical
cyclones (TCs) Irma, Harvey and
Franklin (2017). Colours indicate
the TC category (i.e. TD: Tropical
depression, TS: Tropical storm,
H1–H5: Saffir Simpson
Hurricane Categories). Numbers
along the trajectory of Irma
indicate the day. The Exclusive
Economic Zone (EEZ) of Cuba is
represented by the grey area
surrounding Cuba, where light
and dark grey represent the
northern and southern sectors,
respectively. The along-track
sector in the EEZ is indicated by
the dotted lines. The forward
direction of the TCs is indicated
by arrows
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respectively. SST data were derived from the Operational SST
and Sea Ice Analysis (OSTIA) Near Real Time Level 4 product
(Donlon et al. 2012) provided by the Copernicus Marine
Environment Monitoring Service (http://marine.copernicus.
eu). OSTIA merges both infrared and microwave radiometer
data, together with in situ observations at a spatial resolution of
0.05° × 0.05°. The chl-a images were obtained from the
multisatellite merged global data of the GlobColour project
(http://globcolour.info), developed, validated and distributed
by ACRI-ST, France. We used the chl-a concentration data
computed with the OC5 algorithm at a spatial resolution of 0.
0417° × 0.0417°. This method is empirical and derived from
the OC4/Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)
algorithm of NASA (or OC3M-547 for Moderate Resolution
Imaging Spectroradiometer (MODIS) and OC4E for Medium
Resolution Imaging Spectrometer (MERIS)) (Gohin 2011). It
uses the 412 and 555 nmwavelengths accounting for the effects
of coloured dissolved organic matter (CDOM) and suspended
matter, respectively (Gohin et al. 2002; Gohin 2011).

In general, the deep waters surrounding Cuba are consid-
ered as Case 1 waters (Matsushita et al. 2012; Mélin and
Vantrepotte 2015), according to the classification of Morel
(1980). Hence, chl-a (and its associated degradation products)
is a major factor affecting its optical properties (Mélin and
Vantrepotte 2015). However, after a TC passage, marine wa-
ters become Case 2 of the Morel (1980) classification (i.e.
waters with high concentrations of CDOM and total
suspended matter) since, for instance, the storm-induced
mixing and upwelling can transport deep oceanic waters con-
taining CDOM to the surface (Acker et al. 2009). Moreover,
given that Irma crossed close to the Cuban coast, horizontal
advection of optically complex coastal waters is expected. In
this sense, the OC5 algorithm is suitable for assessing storm-
induced chl-a response given its potential to quantify chl-a
concentration across a large range of optically complex waters
(Loisel et al. 2017).

Although SST has been widely used to assess storm-
induced cooling, it only gives insight into the sea surface
variability. This limitation can be avoided by using the upper
ocean heat content (OHC), which is the integrated vertical
temperature from the sea surface to the 26 °C isotherm depth
(Leipper and Volgenau 1972; Price 2009). We used daily
OHC data from the Systematically Merged Regional
Atlantic Temperature and Salinity (SMARTS) Climatology
adjusted to a two-layer reduced gravity model at a spatial
resolution of 0.25° × 0.25° (Meyers et al. 2014). Meyers
et al. (2016) found that OHC estimates were fairly accurate
in the GoM for assessments to the passage of Hurricane
Gustav (2008). All SMART Climatology data were provided
by the Upper Ocean Dynamics Laboratory at the University of
Miami Rosenstiel School of Marine and Atmospheric
Sciences (www.rsmas.miami.edu/groups/upper-ocean-
dynamics).

2.2.2 Drivers of ocean cooling

The TC-induced oceanic cooling results from the combined
effects of heat loss to the storm across the air-sea interface,
upwelling of cooler thermocline waters (Ekman pumping),
and turbulent vertical entrainment of cooler thermocline wa-
ters across the ocean mixed layer (Price 1981; Jaimes and
Shay 2015). These processes are strongly related to TC winds
(Wei et al. 2018, and references therein) and other factors (e.g.
Sun et al. 2010; Sun et al. 2014). It has been suggested that
those wind-driven processes govern the post-storm SST
cooling in the waters of the Cuban EEZ due to the high and
statistically significant correlation of wind speed and SST
(Avila-Alonso et al. 2019). Several studies have documented
the occurrence of upwelling and vertical mixing in the waters
surrounding Cuba after the passage of hurricanes (e.g. Oey
et al. 2006; Oey et al. 2007; Meyers et al. 2016), but the main
physical processes underlying the upper-ocean cooling across
the entire EEZ of Cuba during and after the passage of hurri-
canes are not yet understood. For that reason, we assessed the
variability of the mixed layer and the thermocline displace-
ment during the forced and relaxation stages of Irma in the
EEZ of Cuba, as well as the temporal evolution of wind speed
as the potential main driver of such responses. We used the
Cross-Calibrated Multi-Platform (version 2.0) 6-hourly
gridded ocean vector wind (to a height of 10 m) data (Atlas
et al. 2011) at a spatial resolution of 0.25° × 0.25° produced by
Remote Sensing Systems (data available at ftp://ftp.remss.
com/ccmp/v02.0). We determined the daily wind speed by
averaging the 6-hourly products.

Upwelling and downwelling regimes can be identified by
analysing the fluctuations in the 20 °C isotherm depth (D20)
in the GoM because wind-driven vertical mixing is confined
to waters above this depth (Price 1983; Jaimes and Shay 2009;
Jaimes and Shay 2015). Thus, D20 has been considered as a
proxy of the thermocline in the GoM (Jaimes and Shay 2009;
Jaimes and Shay 2015) where it was reported to be about 200–
250m in the Loop Current and 100–120 m in cold-core eddies
(Jaimes and Shay 2009). We quantified the upwelling re-
sponses in terms of fluctuations in D20, by computing the
difference between pre- and post-storm D20 values as in
Meyers et al. (2016). We inferred daily D20 from the
SMARTS Climatology.

Given that the MLD is not directly measurable, extensive
data sets are lacking (both in situ and satellite-sensed data).
The SMARTS Climatology provides an MLD product, but
even though these MLD data seem to be consistent with in
situ observations for the GoM (including the NWS of the EEZ
of Cuba) under normal meteorological conditions, they do not
capture the extensive deepening of the mixed layer after the
passage of hurricanes (Meyers et al. 2016). Thus, we derived
daily data of MLD from the vertical profiles of temperature
produced by the Global Ocean Physics Analysis and Forecast
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model MERCATOR PSY 4QV3R1. We considered the
Levitus criterion (Levitus 1982) to define the surface
isothermic layer, i.e. the bottom of the mixed layer is defined
as the depth where temperature is 0.5 °C lower than the sur-
face temperature, as in previous studies in the waters sur-
rounding Cuba (Mitrani Arenal 2001; Mitrani Arenal and
Rodríguez 2001).

2.2.3 High chlorophyll plume

As we will show in Sect. 3, a high chl-a plume (HCP) extend-
ing from the northeastern GoM to the central basin was ob-
served during the pre- and the post-storm weeks of Irma.
Given that these chl-a-rich waters reached the northwestern
EEZ of Cuba after the passage of Irma and consequently im-
pacted the chl-a concentration in the region, we aim at identi-
fying the origin of this HCP as well as the main mechanisms
driving it. Commonly, HCPs have a high concentration of
CDOM and non-algal particles (NAP, i.e. detrital organic
and inorganic particulates). Because of the strong relationship
between CDOM and dissolved organic carbon (DOC)
(Spencer et al. 2013), the former can be used as a tracer of
terrigenous DOC (Zhu et al. 2011), while DOC has been used
as a tracer of river plumes (da Silva and Castelao 2018). Given
the similar absorption spectra of CDOM and NAP, they are
often combined together as a single optical product, i.e. as a
coloured dissolved and detrital organic material absorption
coefficient (CDM) (Matsuoka et al. 2013 and references
therein). However, CDOM and NAP have a different dynam-
ics in the ocean since, for instance, particles sink rather quick-
ly at a vertical speed ranging from a few meters to several
hundred meters per day (Fischer and Karakaş 2009), while
CDOM can be transported by ocean currents over long dis-
tances (Matsuoka et al. 2011; Matsuoka et al. 2012).
Consequently, we analysed CDM at 443 nm to corroborate
the riverine origin of the observed HCP. They were obtained
from the GlobColour project computed with the Garver,
Siegel and Maritorena model (0.0417° × 0.0417° of spatial
resolution) (Maritorena et al. 2010).

Given that in river plumes up to 50% of the remotely
sensed chl-a concentration could be an artefact of the high
CDOM concentration (Hochman et al. 1994), we also
analysed the phytoplankton absorption coefficient at
443 nm (aph) provided by MODIS Aqua (https://oceancolor.
gsfc.nasa.gov) at a spatial resolution of 0.0417° × 0.0417°.
This enabled us to confirm that the chl-a increase in the HCP
was related to the presence of phytoplankton. On the other
hand, HCPs can also be tracked as filaments of low-salinity
waters which primarily originate from river discharge in
coastal zones (Morey et al. 2003a; da Silva and Castelao
2018). Thus, we also analysed sea surface salinity (SSS) data
to draw sound conclusions on the riverine origin of the HCP.
More specifically, we used daily SSS data derived from the

Operational Mercator Global Ocean Analysis and Forecasting
System at a spatial resolution of 0.083° × 0.083° (http://
marine.copernicus.eu). The Global Analysis and Forecasting
System PSY4V3R1 uses version 3.1 of the NEMO ocean
model (Madec 2008).

On the other hand, considering that both wind- and eddy-
driven dynamics play major roles in the transport and disper-
sion of HCPs in the GoM (Walker et al. 2005a; Schiller et al.
2011; Jones and Wiggert 2015), we analysed wind speed,
geostrophic current sand sea surface height anomaly (SSHA)
data to identify the environmental drivers governing the hor-
izontal advection of chl-a-rich waters to the central GoM. We
used daily satellite wind speed data derived from the Cross-
Calibrated Multi-Platform (version 2.0) (Atlas et al. 2011).
Besides, we used the Salto/DUACS gridded multimission al-
timeter data of SSHA and the zonal and meridional compo-
nents of the absolute geostrophic currents. These data have a
spatial resolution of 0.25° × 0.25°, and are processed and
distributed by the Copernicus Marine Environment
Monitoring Service.

3 Results

3.1 Synoptic history and classification of Hurricane
Irma

According to the TC report of the NHC (https://www.nhc.
noaa.gov/data/tcr/AL112017_Irma.pdf), Irma originated
from a tropical wave that departed from the west coast of
Africa on 27 August 2017 and intensified rapidly while
moving westward, and finally reached the hurricane
category on 31 August. Irma made its first landfall on
Barbuda island on 6 September as a category 5 hurricane
and continued moving west-northwestward across the
Caribbean entering the EEZ of Cuba on 9 September as a
category 5 hurricane (Fig. 1), where it weakened to a category
2. Then, early on 10 September Irma turned to the northwest,
and moved over the warm waters of the Florida Strait where it
reintensified to major hurricane (i.e. higher than category 3)
and made final landfall near Marco Island, Florida, at that day
(Fig. 1). Once inland over southwestern Florida, Irma weak-
ened quickly and became a TC of lower intensity on 11
September, though its tropical-storm-force winds extended
up to 667 km from the centre. After that, Irma continued
across northern Florida, southern Georgia and became a rem-
nant low over Alabama on 12 September. Finally, it dissipated
shortly after on 13 September over southeastern Missouri.

TCs are classified into two groups either by their maximum
sustained wind speed (strong or weak TCs) or by their trans-
lation speed (fast or slow moving TCs) (Fu et al. 2014).
According to its maximum sustained wind speed, Irma was
a strong TC considering the criterion of Fu et al. (2014) (i.e.

Ocean Dynamics (2020) 70:603–619 607

https://oceancolor.gsfc.nasa.gov
https://oceancolor.gsfc.nasa.gov
http://marine.copernicus.eu
http://marine.copernicus.eu
https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf
https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf


> 33 m s−1). Overall, the mean maximum sustained wind
speed across the Cuban EEZ was 60 m s−1, while this was
49 m s−1 over the Florida Strait and the Florida Peninsula
(until the last track point where it had hurricane strength)
according to HURDAT2 data. Several thresholds have been
used to classify TCs on the basis of their translation speed
(Bender et al. 1993; Lonfat et al. 2004; Fu et al. 2014;
Domingues et al. 2015). Given this variability and considering
that classification of TCs on the basis of their translation speed
is very latitude dependent, we compared the computed trans-
lation speed of Irma with the climatological records of
Atlantic hurricanes derived from the HURDAT2 data (see
table in http://www.aoml.noaa.gov/hrd/tcfaq/G16.html). So,
we considered that a fast (slow) moving TC has a higher
(lower) translation speed than the climatological one for the
concerned latitudinal band.

The entire trajectory of Irma was largely restricted to the
latitudinal band 15–30°N (see Fig. 1 in Irma TC Report), for
which the mean climatological translation speed of Atlantic
hurricanes is 18.3 km h−1. Irma had a mean translation speed
of 20.41 km h−1 (5.67 m s−1), so, it may be considered as a fast
moving hurricane. Moreover, across the Cuban EEZ, Irma
moved at 17.04 km h−1 (4.73 m s−1), while the climatological
translation speed in the latitudinal band 20–25°N (that of the
Cuban EEZ) is 17.4 km h−1. So, Irma can be considered as a
moderately fast-moving hurricane in this region, and this
slight slowdown was related to the turn Irma made to the
northwest in the direction of the Florida Strait (Fig. 1). Then,
over the Florida Strait and the Florida Peninsula (until the last
track point where it had hurricane strength), Irma advanced at
a mean translation speed of 21.27 km h−1 (5.91 m s−1), which
is higher than the climatological translation speed in the lati-
tudinal band 25–30°N (i.e. 20.1 km h−1). All together, it can
be concluded that Irma was a strong and fast-moving TC.

3.2 Oceanic response in the waters of the Exclusive
Economic Zone of Cuba

3.2.1 Sea surface temperature and ocean heat content

During the pre-storm week of Irma, the highest SST values
were observed south of Cuba, around The Bahamas and along
the West Florida Shelf. On the other hand, the lowest SST
values were observed north of the Yucatan Peninsula
(Fig. 2a). The latter could be related to the coastal upwelling
system of the Campeche Bank (Zavala-Hidalgo et al. 2006)
and to the passage of TCs Franklin and Harvey across the
Yucatan Peninsula in August (Fig. 1), which led to a SST
decrease of 0.9 and 0.1 °C during their first post-storm week,
respectively. After the passage of Irma across the northern
waters of Cuba, a sea surface cooling occurred over the entire
EEZ during the first post-stormweek, although it was the most
substantial in the northern sector and along Irma trajectory

(Fig. 2b, c). In contrast, a considerable decrease of the OHC
was only observed along the trajectory (Fig. 2d). Specifically,
Irma induced a weak SST (and OHC) decrease since mean
SST during the first post-storm week only dropped 0.7, 1.4
and 1.6% in the north, south and along-track sectors, respec-
tively. Along the trajectory, 93 and 97% of SST anomalies
accounted for surface cooling of less than 1 °C during the first
and second post-storm weeks, respectively. Moreover, Irma
led to a significant weaker SST cooling (Mann-Whitney test,
p < 0.05) both along the trajectory (− 0.49 °C) and over the
entire EEZ (− 0.1 °C) as comparedwith climatological records
(i.e. − 0.63 °C along the trajectory and − 0.47 °C over the
entire EEZ) during the first two post-storm weeks (Avila-
Alonso et al. 2019).

Drivers of the post-storm cooling The surface wind speed
anomalies in the Cuban EEZ had a distinct dynamics during
the passing of a hurricane (Fig. 3a). In general, wind speed
values where higher along track since the spatially averaged
data at this scale account for the eyewall winds (Fig. 3a).
However, spatially averaged winds across the northern and
southern sectors as a whole had similar values given the vast
extent of the strong winds of Irma. Hurricane winds can
generate inertial currents in the upper ocean (Gonella
1971), as such leading to mixing of the upper oceanic layer
(Prakash et al. 2018). We found fluctuations of the MLD
during and immediately after the passage of Irma across the
EEZ of Cuba. In general, Irma led to a maximum deepening
of the mixed layer of 15 and 8 m in the northern and southern
sectors, respectively, and 25 m along track (Fig. 3b). Then,
after this maximum deepening, a sudden shoaling of the
MLD was observed around days 4–6 (Fig. 3b), which is
consistent with the increased number of pixels indicating
post-storm upwelling (Fig. 3c) and the most pronounced up-
ward displacement of the thermocline (Fig. 3d). This largely
agrees with the findings of Wu and Chen (2012) for the
North Pacific Ocean, who reported that, on average, the
mixed layer returns to its pre-storm depth about 5 days after
the passage of a TC.

It has been reported that upwelling can reduce the MLD,
increase entrainment efficiency at the mixed layer base and
bring more cold water to cool the surface mixed layer (Sun
et al. 2012; Zhang et al. 2016). Hence, the strongest cooling of
surface and subsurface waters was observed during the relax-
ation stage (Fig. 2c, d) and was driven by upwelling of the
thermocline. Overall, entrainment has been considered the
dominant process leading to ocean surface cooling after the
passage of TCs due to the mixing of the surface waters with
upwelled cold waters (Price 1981; D’Asaro et al. 2007; Jullien
et al. 2012). On the other hand, the rise of OHC during the
forced stage in all sectors of the EEZ can be associated with
extensive downwelling events at this time (Fig. 3c), which led
to a subsurface warming (Jaimes and Shay 2015; Zhang et al.
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2019). TCs typically produce an energetic upwelling flow
underneath the storm centre and weak downwelling of the
displaced warm water over a broad area outside upwelled
regions (Price 1981; Jullien et al. 2012; Fu et al. 2014; Liu
et al. 2017). Given that only a small area of the EEZ of Cuba
was affected by the storm centre as compared with that ex-
posed to its outer spiral bands, spatially averaged data of OHC
essentially captured the latter response.

3.2.2 Chlorophyll-a concentration

For what concerns the oceanic biological response to the
passage of Irma, we found that the chl-a concentration in-
creased over the entire EEZ of Cuba during the first and the
second post-storm weeks, although it was the most pro-
nounced in the northern sector and along Irma’s track
(Fig. 4b, d). Specifically, chl-a concentration increased by
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25, 18 and 56% in the north, south and along-track sectors,
respectively, during the first post-storm week. The Irma-
induced chl-a concentration increase over the entire EEZ of
Cuba was comparable with climatological records (Mann-
Whitney test, p > 0.05) during the first two post-storm
weeks, while the increase along track was significantly
higher (Mann-Whitney test, p < 0.05) (0.053 mg m−3) than
climatology observed at this scale (0.016 mg m−3) (Avila-
Alonso et al. 2019). Overall, the most remarkable biological
response to Irma was the extension of an HCP in the eastern
GoM during its first post-storm week, which reached the
northwestern EEZ of Cuba during some days of the first
post-storm week. The chl-a concentration increase after the
TCs passage has been associated with vertical transport path-
ways driving the enhancement of nutrient concentration in
the upper ocean and/or vertical transport of chl-a from great-
er depths. However, the increased oceanic biological re-
sponse after the passage of a TC can also be driven by hor-
izontal transport of chl-a rich waters from coastal areas ad-
jacent to the TC trajectory (Avila-Alonso et al. 2019), as well
as from remote regions of the GoM as will be shown in this
study.

During Irma’s pre-storm week, the chl-a concentration in
the northeastern GoM was high and a HCP extended along

the northeastern front of the Loop Current up to approxi-
mately 26°N latitude (i.e. I in Fig. 4a). At this time, chl-a-
rich waters of 0.14 mg m−3 entered the northwestern sector
of the EEZ of Cuba following the Loop Current circulation.
In general, these chl-a enriched waters flowed at a distance of
50 km from the northwestern coast of Cuba. In contrast,
during the first post-storm week the HCP extended in a more
southern direction up to approximately 24°N latitude (i.e. I in
Fig. 4b). However, at some days, the distance between the
northwestern coast of Cuba and the waters of the HCP (with
chl-a concentration of 0.2 mg m−3) was only 12 km (Fig. 4c).
Moreover, a moderate entrainment of chl-a-rich waters to the
interior GoM from the west side of the Mississippi River
delta was observed during the first post-storm week (i.e. II
in Fig. 4b), which was more pronounced than in the pre-
storm week (i.e. II in Fig. 4a).

3.3 Oceanic response in the eastern Gulf of Mexico

3.3.1 Origin of the high chlorophyll plume

Irma induced an increased chl-a concentration in the north-
eastern GoM and the suitable oceanographic conditions to
enhance the offshore transport of these chl-a-rich waters. In
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this section, we analyse the mechanisms induced by Irma that
led to this chl-a increase and we verify the riverine/coastal
origin of the HCP. In general, Irma led to a mean chl-a anom-
aly of 0.084 mg m−3 during its first post-storm week in the
area delineated by the rectangle in Fig. 2b. This increased chl-
a concentration appears to have been driven by both vertical
and horizontal transport pathways. The surface waters in the
rectangular area in Fig. 2b cooled, on average, − 1.24 °C dur-
ing the first post-storm week with the strongest cooling of −
1.8 °C at day + 7 (Fig. 5a). This cooling was partially driven
by vertical mixing, since the MLD showed a considerable
deepening during and immediately after the passage of Irma
(Fig. 5b). Because the tongue of cool waters extended mainly
over the West Florida Shelf, data derived from SMARTS cli-
matology (i.e. D20 and OHC) showed a limited spatial cov-
erage in this area, so, we did not analyse those variables in a
spatially averaged way. Nevertheless, in Fig. 5c and d we
observe that the D20 values were lower during the first post-
storm week as compared with the pre-storm week in an area
close to the tongue of cool waters, which indicates that up-
welling could also have influenced the SST decrease in some
areas of the northeastern GoM and consequently the biologi-
cal response.

On the other hand, Irma led to heavy rainfall along its
trajectory. Although the largest accumulated rainfall esti-
mates on the basis of the NASA Integrated Multi-satellite
Retrievals for Global Precipitat ion Measurement

constellation were higher than 20 in. (512 mm) over Cuba
(https://disasters.nasa.gov/hurricane-irma-2017), rainfall
also affected the west coast of Florida. This explains the
increased river discharge in several stations of the United
States Geological Survey Water Resources Program
(https://waterwatch.usgs.gov) along the west coast of
Florida after the passage of Irma (Fig. 6). We found that as
the water discharge increased, its temperature decreased (see
station FL_02359170 in Fig. 6), which could also have con-
tributed to the post-storm cooling in coastal areas. Moreover,
a sudden and extensive SST drop after the passage of a hur-
ricane near coastal areas can be influenced by offshore ad-
vection of cooler shelf/slope waters by the storm (Oey et al.
2006). Accordingly, this could explain in part the extensive
SST cooling in the northeastern GoM during the first post-
storm week of Irma (Fig. 2b). Moreover, hurricanes can
change the biogeochemistry and productivity of coastal re-
gions due to their impact on river discharge and land runoff
(Gilbes et al. 2001). Thus, phytoplankton production in the
northeastern GoM could have also been fuelled after the
passage of Irma given the consequent nutrient deposition
by rivers (Anglès et al. 2015).

The low chl-a concentration at the west side of the HCP
(Fig. 4a, b) suggests that it could have originated from hor-
izontal advection of riverine/coastal waters from the north-
eastern GoM that entrained the Loop Current circulation. da
Silva and Castelao (2018) observed river plumes in the GoM
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as waters with a high content of terrigenous DOC that were
transported along the boundary of a Loop Current eddy;
hence, an isolated pool of oceanic waters with low terrige-
nous DOC content in the eddy interior was observed.
Figure 7a shows the mean values of CDM in the eastern
GoM during the first post-storm week of Irma, which indi-
cate a similar spatial pattern as the HCP, and thereby con-
firms the riverine origin of these waters. On the other hand,
although aph was also elevated in the West Florida Shelf and
the northeastern GoM, it showed lower values than CDM
(Fig. 7), which agrees with the findings of Acker et al.
(2009). The low values of aph can be related with the decay
of phytoplankton along the path of the plume (Hu et al.
2005).

For what concerns SSS, we observed a clear progressive
expansion of low-salinity waters from the northeastern GoM
to the central basin and the northwestern waters of the EEZ
of Cuba during the first post-storm week of Irma (Fig. 8). In
general, low-salinity waters are transported first eastward
along the northern GoM continental shelf, then southwest-
ward along the edge of the West Florida Shelf, before
reaching the deep GoM and the Florida Strait (Fig. 8), which
corroborates the findings of Le Hénaff and Kourafalou
(2016). Besides, during the first post-storm week of Irma,

low-salinity waters emerged from the southwestern coast of
the Florida Peninsula and joined the low-salinity filament
coming from the northern GoM (Fig. 8). On the other hand,
during the pre-storm week of Irma, the spatial distribution of
low-salinity waters was similar to that observed on 9
September (Fig. 8), which in turn agrees with the typical
spatial pattern in August (Morey et al. 2003b).

3.3.2 Drivers of the high chlorophyll plume

During the pre-storm week of Irma, southwesterly winds
affected the northeastern GoM, while northeasterly winds
prevailed during the first post-storm week (Fig. 9a, b).
Besides, during these weeks an anticyclonic eddy at the
upper front of the Loop Current impacted the northern
GoM offshore circulation beyond 28°N (Fig. 9c, d).
During the first post-storm week, the east side currents
of this eddy intensif ied up to a mean speed of
0.26 m s−1, whereas this was 0.14 m s−1 during the pre-
storm week (Fig. 9c, d). On the other hand, during the
first post-storm week of Irma a cyclonic eddy formed in
the Apalachee Bay (Fig. 9d), leading to the formation of
an anticyclonic-cyclonic eddy pair. The formation of the
cyclonic or cold-core eddy could have been associated
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with the cooling following the passage of Irma in this
region (Fig. 2b) since the post-storm SST decrease has
been related with oceanic cyclonic rotation (Walker
et al. 2005a; Gierach and Subrahmanyam 2008). Overall,

TCs can intensify pre-existing cyclonic eddies and gener-
ate new ones as well (Sun et al. 2014). Hence, it has been
suggested that wind forcing of TCs could be one of the
genesis mechanisms of cold-core eddies (Sun et al. 2010).
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Fig. 9 Weekly mean (a, b) wind
speed and (c, d) sea surface height
anomaly (SSHA) with wind and
geostrophic current vectors
superimposed, respectively, in the
pre- (left panel) and first post-
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4 Discussion

4.1 Sea surface temperature response

The weak SST cooling in the waters of the EEZ of Cuba
following the passage of Irma might be related to (1) the fact
that the EEZ was impacted by the left-side quadrants of this
hurricane and (2) the thermal structure of the waters surround-
ing Cuba. It has been reported that the oceanic responses such
as upwelling, cooling and deepening of the isothermal layer
are more evident on the right side of TCs (Price 1981; Shay
et al. 1992; Hanshaw et al. 2008; Gierach and Subrahmanyam
2008; Fu et al. 2014). This bias is more obvious during strong
and fast moving TCs (Stramma et al. 1986; Fu et al. 2014),
which largely agrees with the general traits of Irma (see Sect.
3.1). Indeed, according to the TC report of the NHC, most of
the deep convection of Irma was located well to the northeast
of its centre (i.e. right-front quadrant) while it moved across
northern Florida, and the strongest winds were confined to the
northeast coast of Florida and southeastern Georgia (see Fig.
8b in the Irma TC Report).

However, wind intensity and propagation speed—which
govern the rightward bias—cannot be the sole drivers of the
reduced cooling (Chiang et al. 2011). The latter also indicates
oceanic conditions that are relatively insensitive to atmospher-
ic perturbations (e.g. weak ocean stratification and deepmixed
layers) (Lloyd and Vecchi 2011). In general, the SST response
is largest where cold waters are near the sea surface, i.e. where
the mixed layer is thin and the upper thermocline is shallow
(Price 1981; Chiang et al. 2011). Thus, the magnitude of the
SSTcooling due to mixing and entrainment is partly tied to the
thermal structure of the ocean lying beneath the TC (Meyers
et al. 2016). Subtropical waters like the ones of the Caribbean
Sea are warm up to great depths, which increases their OHC
(Shay et al. 2000).We found that during the pre-stormweek of
Irma, mean D20 values in the northern, southern and along-
track sectors of the EEZ of Cuba were 196, 233 and 221 m,
respectively, which indicates that the water column was warm
up to great depths.

The more intense physical response in the northern sector of
the EEZ as compared with that in the southern sector was large-
ly caused by their different oceanographic conditions. Although
the centre of Irma crossed the northern waters of Cuba, in gen-
eral, wind speed anomalies were similar in both sectors (Fig.
3a) due to the large extent of the strong winds of Irma. Yet, the
mixed layer deepening was more pronounced in the northern
waters than in the southern ones (Fig. 3b). It has been reported
that the southern waters of Cuba show a higher resistance to
TC-induced cooling than the northern ones (see Fig. 5b in
Vincent et al. 2012) as a consequence of their deeper MLDs
as compared with the northern waters. In general, a deep mixed
layer has been associated to a weak SST cooling (Shay et al.
2000). Considering the classification criterion of Wang et al.

(2016), i.e. shallow mixed layer (< 30 m) and deep mixed layer
(> 30 m), we found that 44 and 67% of the pixels within the
northern and southern sectors of the EEZ, respectively, had
deep mixed layers during the pre-storm week of Irma.

The temporal variability of the MLD in the EEZ is rather
consistent with reports in other regions of the world (e.g. Foltz
et al. 2015; Prakash et al. 2018). In general, during and imme-
diately following the cyclone’s passage, the MLD can deepen
sharply by wind-driven mixing and entrainment (Girishkumar
et al. 2014; Foltz et al. 2015; Zhang et al. 2016; Prakash et al.
2018), but then, this process is countered by strong upwelling
events at the beginning of the relaxation stage, which lead to a
shoaling of the thermocline and MLD (Prakash et al. 2018).
After that, the MLD oscillates (shoaling/deepening) while its
mean depth can remain more or less the same (Girishkumar
et al. 2014; Foltz et al. 2015; Zhang et al. 2016; Prakash et al.
2018).

4.2 Chlorophyll-a response

The positive chl-a concentration anomalies during the first and
the second post-storm weeks in the EEZ of Cuba (Fig. 4d)
agree with previous studies reporting blooms lasting about 2–
3 weeks after a TC passage (Babin et al. 2004; Hanshaw et al.
2008; Avila-Alonso et al. 2019). The highest values of the
post-storm chl-a anomalies along the hurricane track are con-
sistent with the most negative SST anomalies at this scale
(Figs. 2c and 4d). Thus, the vertical processes driving the
SST decrease also influence the chl-a response. Mixing and
upwelling can lead to vertical transport of nutrient and/or chl-a
from the nitracline and/or the deep chlorophyll maximum,
respectively, fuelling phytoplankton production and enhanc-
ing, in general, the surface chl-a concentration. However, giv-
en the close proximity of coastal waters to the deep oceanic
ones along Irma’s track, horizontal transport of chl-a-rich wa-
ters could also have influenced the biological post-storm re-
sponse at this scale. This also holds for the northern sector of
the EEZ since, for instance, after the passage of Irma, a chl-a
filament of approximately 155 km length extended from the
northeastern coast of Cuba to the adjacent oceanic waters from
14 to 19 September (Fig. 4c). On the other hand, as we have
indicated before, coastal productive waters advected horizon-
tally from remote regions of the GoM also influenced the post-
storm chl-a concentration in the northwestern waters of Cuba
(Fig. 4b, c).

The high chl-a concentration in the northeastern GoM and
the offshore extension of the HCP during the pre- and post-
storm weeks of Irma (Fig. 4a, b) agree with their seasonal
variability in the region (Martínez-López and Zavala-
Hidalgo 2009; Son et al. 2012; Muller-Karger et al. 2015; da
Silva and Castelao 2018). Despite this natural variability, the
high chl-a values during the pre-storm week might have been
influenced by Hurricane Harvey, which affected the
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northwestern GoM during the week before the pre-stormweek
of Irma. Several studies have reported high rainfall amounts
associated with Harvey in the western GoM (e.g. Risser and
Wehner 2017; Trenberth et al. 2018), extending over the entire
northern coast of the GoM (see Fig. 8 in the Harvey TCReport
and Fig. 5 in Trenberth et al. 2018). This rainfall appears to
have increased discharge in stations along the coast of
Alabama and Mississippi at the beginning of the pre-storm
week of Irma (Fig. 10), which in turn, could have stimulated
phytoplankton production at this time.

4.2.1 High chlorophyll-a plume

For what concerns the mechanisms driving the HCP variabil-
ity in the eastern GoM, the cyclonic circulation of Harveymay
have influenced the strong southwesterly winds observed in
the northeastern GoM during the pre-storm week of Irma (Fig.
9a). It has been reported that the east- and southeastward ad-
vection of riverine plumes in the GoM can result from the
forcing of south- and southwesterly winds, which are common
in spring and summer over the northern GoM (Morey et al.
2003a; Walker et al. 2005b; Schiller et al. 2011; Jones and
Wiggert 2015; Le Hénaff and Kourafalou 2016). Since
wind-induced plumes occur in short time frames of 3–7 days
(da Silva and Castelao 2018), southwesterly winds could have
led to an eastward movement of the Mississippi River waters
during the pre-storm week of Irma, probably reinforced by the
anticyclonic circulation at the upper front of the Loop Current
at this time (Fig. 9c). This anticyclonic circulation could have
contributed to the subsequent cross-shelf entrainment of the
chl-a-rich waters to the interior GoM.

The extension of the HCP during the first post-storm week
of Irma (Fig. 4b, c) appears to be related to its passage across
the Florida Peninsula. Irma not only led to an increased chl-a
concentration in the northeastern GoM, but it also reinforced
the oceanic mechanisms to extend the HCP to the interior
GoM. During the first post-storm week of Irma, northeasterly
winds dominated the wind regime in the eastern GoM, which
was influenced by the cyclonic circulation of this major

hurricane (Fig. 9b). Northeasterly winds drive westward flows
of the Mississippi River waters to the Louisiana-Texas Shelf
(Walker et al. 2005b; Schiller et al. 2011), which could have
enhanced the entrainment of chl-a-rich waters to the interior
GoM from the west of the Mississippi River Delta (i.e. II in
Fig. 4b). However, northeasterly winds can also lead to the
advection of coastal waters to the interior GoM, as was ob-
served after the passage of Hurricane Katrina (2005) near
Florida Peninsula (Acker et al. 2009). This might explain the
filament of low-salinity waters extending from the southwest-
ern coast of the Florida Peninsula and joining the main low-
salinity filament coming from the northern GoM (Fig. 8).
Besides, wind-driven advection of coastal waters could also
have contributed to the high chl-a concentration, CDM and aph
over the West Florida Shelf at this time (Figs. 4b and 7).
Storms passing over the ocean can affect the flow of marine
currents (Oey et al. 2006; Ezer et al. 2017; Ezer 2018).
Moreover, Irma affected the northeastern GoM with intense
winds blowing southward on some days (e.g. on September
11) in this area. Hence, the anti-clockwise winds of Irma could
have stimulated an increased cross-shelf flow of waters to the
interior GoM.

Furthermore, the extension of the HCP in the eastern GoM
during the first post-storm week of Irma (Fig. 4b) appears to
be related with the interaction of riverine/coastal waters with
the energetic eddy field near the shelf break of the northern
GoM (Morey et al. 2003a; Morey et al. 2003b). Overall, even
if the wind regime becomes irregular and unfavourable for the
offshore transport of Mississippi River waters, mesoscale cir-
culation can transport these waters to the central GoM
(Schiller et al. 2011). The Loop Current system is a major
factor in the offshore spreading of waters from the
Mississippi River Delta to the GoM Basin interior
(Androulidakis and Kourafalou 2013), connecting the coastal
and oligotrophic waters in the GoM (Schiller et al. 2011). In
particular, interactions with the Loop Current and associated
eddies play a critical role transporting the Mississippi-
Atchafalaya River System plumes offshore on short time
scales (i.e. days to weeks) (da Silva and Castelao 2018).

Fig. 10 River discharge in stations along the coast of Alabama (AL) and
Mississippi (MI). The station number according to the United States
Geological Survey is indicated in the upper right corner (i.e. from east
to west in Fig. 2b, AL_02376115 Fish River near Silver Hill (30°29′ 53′

′ N, 87°20′ 09′′ W), AL_02378500 Elevenmile Creek near Pensacola
(30°32′ 43′′N, 87°47′55′′W) and MI_02481510 Wolf River near Landon
(29°56′ 57′′ N, 85°00′ 56′′W)). The grey bands indicate the pre-storm
week of Irma
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The offshore transport of these waters takes place when the
Loop Current system is well extended and close to the shelf
break of the northern GoM (Hu et al. 2005; Schiller et al.
2011), as was observed during the pre- and post-storm weeks
of Irma (Fig. 9c, d). In addition, the intensification of geo-
strophic currents during the first post-storm week, together
with the formation of an eddy pair near the shelf break (Fig.
9d), could have favoured the cross-shelf advection of chl-a-
rich waters into the central GoM in agreement with previous
reports (Chassignet et al. 2005; Jones and Wiggert 2015; da
Silva and Castelao 2018). Thus, both winds and marine cur-
rents stimulated the transport of chl-a coastal-rich waters to the
interior GoM during the first post-storm week of Irma.

The extension of the HCP during Irma first post-storm
week could have important ecological implications, as it con-
nected the waters of the northern GoM and northwestern
Cuba. This long distance transport of coastal and riverine wa-
ters is important for the dispersal of valuable fishing resources
since a high density of larval and juvenile fishes in waters of
the Mississippi River plumes have been reported (Govoni
et al. 1989; Grimes and Finucane 1991). Furthermore, it has
been suggested that the reduced salinity and nutrient enriched
waters of the Mississippi River plume could enhance the mi-
crobial diversity in marine environments of the northern GoM
as the plume migrates away from the river mouth and mixes
with seawater (Mason et al. 2016).

5 Conclusions

Hurricane Irma induced a weak mean SST cooling in the wa-
ters of the Cuban EEZ during its first two post-storm weeks
because the EEZ was mainly impacted by the left-side quad-
rants of this hurricane and the thermal structure of the waters
surrounding Cuba. A considerable subsurface cooling only
occurred in the waters along its trajectory, which were ex-
posed to the most intense winds, and consequently to the
highest deepening of the MLD and extensive upwelling.
However, despite this limited oceanic cooling, the chl-a con-
centration response was comparable with climatological re-
cords over the entire EEZ. Hence, we conclude that horizontal
advection of coastal waters and entrainment of chl-a-rich wa-
ters from remote regions of the GoM to the oceanic waters of
the Cuban EEZ contributed to the observed post-storm bio-
logical response. For what concerns the northeastern GoM, a
considerable increase in the chl-a concentration occurred after
the passage of Irma, driven by both vertical and horizontal
transport pathways. Moreover, an HCP of riverine/coastal or-
igin extending from the northern GoM to the interior GoM
was observed during the pre- and the post-storm weeks of the
Irma. During the first post-storm week of Irma, this HCP
extended southward and chl-a-rich waters flowed near the
northwest coast of Cuba following the Loop Current

circulation. This extension was driven by winds, by the inten-
sification of the geostrophic currents in an anticyclonic eddy at
the upper front of the Loop Current and by the formation of an
anticyclonic-cyclonic eddy pair in the northeastern GoM dur-
ing the first post-storm week of Irma.
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